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Abstract

We consider existence of three-dimensional gravity waves traveling along a channel of variable depth. It is well known
that the long-wave small-amplitude expansion for such waves results in the stationary Korteweg–de Vries equation, coef-
ficients of which depend on the transverse topography of the channel. This equation has a single-humped solitary wave
localized in the direction of the wave propagation. We show, however, that there exists an infinite set of resonant Fourier
modes that travel at the same speed as the solitary wave does. This fact suggests that the solitary wave confined in a chan-
nel of variable depth is always surrounded by small-amplitude oscillatory disturbances in the far-field profile.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a channel of variable depth, where the coordinate x is chosen in the direction of the wave prop-
agation and the transverse coordinate y is chosen in the direction of the channel topography. The vertical
coordinate z changes between the rigid bottom at z = �H(y) and the free surface z = g(x,y), where
H(y) P 0 is given and g(x,y) is unknown.

The stationary propagation of the homogeneous, incompressible and inviscid fluid in the direction of x with
the constant velocity c is prescribed by the Euler equations. The Euler equations in the reference frame moving
with the speed c take the form
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ðcþ uÞux þ vuy þ wuz ¼ �px;

ðcþ uÞvx þ vvy þ wvz ¼ �py ;

ðcþ uÞwx þ vwy þ wwz ¼ �g � pz;

ux þ vy þ wz ¼ 0;
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where (u,v,w) is the velocity field in the direction of (x,y,z) and p is a normalized pressure. The system of
equations is defined in the domain
XðgÞ ¼ ðx; yÞ 2 R2; �HðyÞ < z < gðx; yÞ
� �

; ð1:2Þ
subject to the boundary conditions at z = �H(y) and z = g(x,y) and the decay conditions at infinity. To be
precise, the bottom boundary condition is
wþ H 0ðyÞv ¼ 0 at z ¼ �HðyÞ; ð1:3Þ

while the free surface boundary conditions are given by the kinematic condition
w ¼ ðcþ uÞgx þ vgy at z ¼ gðx; yÞ ð1:4Þ
and the dynamic condition
p ¼ p0 at z ¼ gðx; yÞ; ð1:5Þ

where p0 is the constant atmosphere pressure. The air pressure can be normalized to p0 = 0. We are looking for
solutions close to solitary waves that have a sufficient decay to the equilibrium state (u,v,w) = (0,0,0) and
g = 0 as jxj, jyj ! 1.

The fluid motion is vorticity free if the velocity vector can be represented by the scalar velocity potential
u(x,y,z), such that (u,v,w) = $u. It is well known that the Euler equations in the domain X(g) can be closed
at the three-dimensional Laplace equation for velocity potential
uxx þ uyy þ uzz ¼ 0; 8ðx; y; zÞ 2 XðgÞ; ð1:6Þ
subject to the boundary conditions
onujz¼�HðyÞ ¼ 0;

oz � gxox � gyoy

� �
ujz¼gðx;yÞ ¼ cgx;

(
ð1:7Þ
and the Bernoulli condition
ggþ cuxjz¼gðx;yÞ þ
1

2
u2

x þ u2
y þ u2

z

� �
jz¼gðx;yÞ ¼ 0; ð1:8Þ
where onujz¼�HðyÞ ¼ �
ðozþH 0ðyÞoy Þuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðH 0ðyÞÞ2
p

				
z¼�HðyÞ

is the outward normal derivative to the boundary z = �H(y). If

H(y) = h on y 2 R, the following theorem was proved in [1]:

Theorem 1. Suppose that g 2 C1ðR2Þ and u 2 C1(X(g)) solve system (1.6)–(1.8), such that g(x,y) P 0 on

ðx; yÞ 2 R2 and u(x,y, z)! 0 as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
!1. Then, in fact, g = 0 and u = 0.

A more general case of a bounded continuously differentiable boundary z = �H(y) can be incorporated in
the proof of Lemma 3.2 in [1] and thus in the proof of Theorem 1, if the wave propagates in the x-direction (as
in our case). The main reason for non-existence of a three-dimensional surface solitary wave is that the neigh-
borhoods of infinity on ðx; yÞ 2 R2 are connected in X(g), such that the solution u(x,y,z) of the Laplace equa-
tion (1.6) must have the same (zero) constant as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
!1 (see Remark 2.2 in [1]). This result rules out a

hope to find a three-dimensional gravity solitary wave in a channel with variable bottom, unless the y-axis is
compactified by the assumption that H(y) = 0 on jyj > L for some 0 < L <1. If, instead of X(g), we consider a
compactified space
XcðgÞ ¼ x 2 R;�L < y < L;�HðyÞ < z < gðx; yÞf g; ð1:9Þ

the arguments of Theorem 1 are not applicable as the neighborhoods of infinity on x 2 R are disconnected in
Xc(g). Therefore, we shall assume from now that H(y) is a continuously differentiable positive function with a
compact support on the interval [�L,L].

Two-dimensional (y-independent) gravity and gravity–capillary solitary waves were proved to exist by
using the spatial dynamics formulation and the central manifold reductions [2]. These methods were extended
to the three-dimensional gravity–capillary solitary waves in [5], where y-periodic and x-localized waves were
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constructed in the channel of uniform depth H(y) = h on jyj < L. A more general class of traveling gravity–
capillary waves which are periodic in one coordinate and localized in the other coordinate, where both coor-
dinates are oblique to the direction of the wave propagation, was constructed in [4]. Spatial dynamics for
three-dimensional gravity waves in the channel of uniform depth was considered in [3] where well-posedness
of the linearized evolution equations in x- and y-variables was proved.

In our paper, we shall consider traveling gravity waves in a channel of variable depth, modelled by the func-
tion H(y) on the interval [�L,L]. The gravity waves are confined in the channel and satisfy the Neumann
boundary conditions at the bottom of the channel. Two situations differ in details: (i) if
limy!�LHðyÞ ¼ limy!�LH 0ðyÞ ¼ 0 and (ii) if either H(y) or H 0(y) does not vanish in the limit y! ± L. In
the former case, the boundary conditions (1.7) are continuous at the intersection of z = 0 and z = �H(y) at
y = ± L such that the surface elevation g(x,y) is zero at y = ± L for any x 2 R. In the latter case, the surface
elevation g(x,y) is non-zero as y! ± L and the walls at y = ± L must be added above z = 0, together with the
Neumann boundary conditions at y = ± L to ensure that the fluid is contained in the domain Xc(g).

A crucial difference between our work and the previous works [2,4,5] is the fact that we consider gravity
waves with zero surface tension. In terms of the spatial dynamics formulation, this difference shows up as fol-
lows. The dynamical system for gravity–capillary waves with non-zero surface tension is given by the semi-lin-
ear equations with a finite-dimensional center manifold. On the contrary, the dynamical system for gravity
waves is given by the quasi-linear differential equations with an infinite-dimensional center manifold. In this
case, the double zero eigenvalue for a bifurcating solitary wave coexists with an infinite set of simple purely
imaginary eigenvalues. We shall prove that this situation is generic for any topography given by a smooth
function H(y) on [�L,L].

Although the system of linearized equations for spatial dynamics is well posed [3], existence of the center man-
ifold in the system of quasi-linear equations does not follow immediately from the theory of center manifold
reductions. If this manifold can be constructed, one can apply the recent results of [6,7] to prove existence of
local bounded solutions of the nonlinear system which represent a solitary wave surrounded by small-amplitude
oscillatory disturbances in the far-field profile. When the system of dynamical equations is formulated as the
Hamiltonian system and the Hamiltonian function is sign-definite at the eigenmodes of the linearized system
corresponding to purely imaginary eigenvalues, the local solution can be extended to a global bounded solution
[6]. In accordance with this theory, we will show that the Hamiltonian function is indeed sign-definite for the
eigenmodes of the linearized system associated with gravity waves in a channel of arbitrary topography. How-
ever, we do not attempt here to prove existence of the center manifold in the nonlinear problem.

The article is organized as follows. In Section 2, we study eigenvalues of the boundary-value problem (1.6)–
(1.8) linearized around the zero solution. In Section 3, we show that the Hamiltonian function of the linearized
system is sign-definite for eigenmodes corresponding to purely imaginary eigenvalues. Section 4 concludes the
article with discussions.
2. Linear theory

Linearizing the boundary conditions (1.7) and (1.8) at the zero solution, we find that the Laplace equation
(1.6) in the domain Xc(0) is supplemented by the boundary conditions
onujz¼�HðyÞ ¼ 0;

guzjz¼0 þ c2uxxjz¼0 ¼ 0;

(
ð2:1Þ
while the free surface is found from the relation g ¼ � c
g uxjz¼0. The variables x and (y,z) are separated by using

the Fourier transform in x 2 R with parameter k 2 R. As a result, the boundary-value problem is rewritten in
the form of the two-dimensional modified Helmholz equation
uzz þ uyy � lu ¼ 0; ðy; zÞ 2 X0; ð2:2Þ
subject to the boundary conditions
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onujz¼�HðyÞ ¼ 0;

ozujz¼0 ¼ kujz¼0:



ð2:3Þ
Here, l ¼ k2 2 Rþ and k ¼ c2k2

g are parameters of the problem and X0 is the cross-section of the domain Xc(0)
at any x 2 R given by
X0 ¼ �L < y < L; �HðyÞ < z < 0f g: ð2:4Þ

Solutions of the boundary-value problem (2.2)–(2.3) are obtained in the following theorem.

Theorem 2. Assume that H(y) is a continuous function on the interval [�L,L] such that for some H0,L0 > 0
lim
d!1

H
y
d

� �
¼ H 0; 8y 2 ½�L0; L0� � R:
The boundary-value problem (2.2)–(2.3) with l = 0 has an infinite set of eigenvalues fkmð0Þgm2N with km(0) > 0, in
addition to the eigenvalue k0(0) = 0. Each eigenvalue is uniquely continued as a monotonically increasing function

km(l) for l P 0 and liml!1
kmðlÞffiffi

l
p ¼ 1.

Proof. When k = 0, the Neumann boundary-value problem (2.2)–(2.3) in a bounded domain X0 has an infinite
set of eigenvalues {lm(0)}mP0, such that
� � � 6 l3ð0Þ 6 l2ð0Þ 6 l1ð0Þ < l0ð0Þ ¼ 0:
When k 2 Rþ, the Robin boundary-value problem (2.2)–(2.3) has an infinite set of eigenvalues {lm(k)}mP0,
which are continuously differentiable functions of k. We will prove that each eigenvalue lm(k) is a strictly
increasing function of k. To do so, we consider a derivative problem
l0mðkÞum þ lmðkÞokum ¼ o
2
y þ o

2
z

� �
okum; ðy; zÞ 2 X0; ð2:5Þ
subject to the boundary conditions
onokumjz¼�HðyÞ ¼ 0;

ozokumjz¼0 ¼ kokumjz¼0 þ umjz¼0:



ð2:6Þ
By applying the second Green identity to the solutions of (2.5), we find that
l0mðkÞ
Z

X0

u2
m dy dzþlmðkÞ

Z
X0

umokum dydz¼
Z

X0

um o2
y þo2

z

� �
okum dydz

¼
Z

X0

okum o2
y þo2

z

� �
um dydzþ

Z
oX0

umonokum�okumonumð Þds; ð2:7Þ
where s is a parameter along the boundary oX0 and n is the outward normal to the domain X0. Using (2.2) and
the boundary conditions (2.3) and (2.6), we obtain that
l0mðkÞ ¼
R L
�L u2

mðy; 0ÞdyR
X0

u2
mðy; zÞdy dz

> 0; ð2:8Þ
for any um 5 0. Since lm(k) is strictly monotonic, there exists exactly one simple root km P 0 for each m P 0,
where lm(km) = 0, such that k0 = 0 and km > 0 for m 2 N. Therefore, there exists a set of monotonically
increasing functions fkmðlÞgm2N on l P 0, such that km(0) = km.

To consider the asymptotic behavior of the functions km(l) as l!1, we rescale the coordinates
~y ¼ ffiffiffi
l
p

y; ~z ¼ ffiffiffi
l
p

z; ~X0 ¼ ð~y;~zÞ : �eL < ~y < eL;� eH ð~yÞ < ~z < 0
n o

; eL ¼ ffiffiffi
l
p

L;
where eH ð~yÞ ¼ ffiffiffi
l
p

H ~yffiffi
l
p
� �

. The rescaled boundary-value problem is rewritten in the form
u ¼ o2
~y þ o2

~z

� �
u; ð~y;~zÞ 2 eX0; ð2:9Þ
subject to the boundary conditions
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o~nuj~z¼� ~Hð~yÞ ¼ 0;

o~zuj~z¼0 ¼ kffiffi
l
p uj~z¼0:

(
ð2:10Þ
Let eH ð~yÞ ¼ ~H 0 be constant and construct the explicit set of eigenvalues of the boundary-value problem
(2.9)–(2.10) in the form
kffiffiffi
l
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pm

2eL
� �2

s
tanh eH 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pm

2eL
� �2

s
; m P 0:
Since eL ¼ ffiffiffi
l
p

L and eH 0 �
ffiffiffi
l
p

H 0 for sufficiently large l, we obtain that liml!1
kffiffi
l
p ¼ 1 for any fixed value

of m. h

Corollary 3. The Laplace equation (1.6) with the boundary values (2.1) has an infinite set of Fourier modes sat-
isfying the dispersion relation c = cm(k) for any integer m P 0, such that limk!0c0ðkÞ <
1 and limk!0cmðkÞ ¼ 1; 8m 2 N, while limk!1cmðkÞ ¼ 0; 8m P 0.

Proof. Let us consider a monotonically increasing curve k = km(l) for l P 0 and m P 0. Since k ¼ c2k2

g and
l = k2, we obtain that
lim
k!0

c2
0ðkÞ ¼ lim

l!0

gk0ðlÞ
l
¼ lim

k!0

gk
l0ðkÞ

¼ g
l00ð0Þ
and
lim
k!0

k2c2
mðkÞ ¼ lim

l!0
gkmðlÞ ¼ gkmð0Þ > 0; 8m 2 N;
such that c0(0) <1 and cm(k)!1 as k! 0 for m 2 N. Similarly, we obtain that
lim
k!1

kc2
mðkÞ ¼ lim

l!1

gkmðlÞffiffiffi
l
p ¼ g; 8m P 0;
such that cm(k)! 0 as k!1 for any integer m P 0. h

Remark 4. If limy!�LHðyÞ ¼ limy!�LH 0ðyÞ ¼ 0, then the boundary conditions (2.3) imply that
lim
y!�L

ozujz¼0 ¼ lim
y!�L

ozujz¼�HðyÞ ¼ 0; lim
y!�L

ujz¼0 ¼ 0:
Therefore, limy!�Lg ¼ 0. If either H(y) or H 0(y) is non-zero at y = ± L, then limy!�Lg 6¼ 0 in general.

Example 5. Let the bottom be flat such that H(y) = h on y 2 [�L,L]. Since limy!±LH(y) 5 0, we add the
Neumann boundary conditions uyjy=±L = 0 at the walls y = ± L. The boundary-value problem (2.2)–(2.3)
becomes separable in (y,z) with an explicit set of eigenfunctions
uðy; zÞ ¼ cos kmðy þ LÞ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

m

q
ðzþ hÞ; km ¼

pm
2L

; 8m P 0: ð2:11Þ
The dispersion relation c = cm(k) is found in the explicit form
c2 ¼
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

m

q
k2

tanh h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

m

q
; 8k 2 R: ð2:12Þ
Fig. 1 shows the curves c = cm(k) for m P 0 versus k P 0. The curves cm(k) with m 2 N diverge to a positive
infinity as k! 0, while the curve c0(k) converges to

ffiffiffiffiffi
gh
p

. On the other hand, all curves converge to zero as
k!1. These behavior coincides with the predictions of Theorem 2. If a solitary wave bifurcates from the
point c ¼

ffiffiffiffiffi
gh
p

to c >
ffiffiffiffiffi
gh
p

, the solitary wave is in resonance with an infinite set of Fourier modes of the same
speed c for all m 2 N.
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Fig. 1. Branches c = cm(k) of the dispersion relation (2.12) in the rectangular channel with L = h = 10 and 0 6 m 6 10.
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Proposition 6. The dispersion relation c = c0(k) and the corresponding eigenmode are approximated near k = 0 by

the asymptotic expansions:
c2
0ðkÞ ¼ c2

0 þ k2c2 þOðk4Þ; uðy; zÞ ¼ 1þ k2u2ðy; zÞ þOðk4Þ; ð2:13Þ
where
c2
0 ¼

g
2L

Z L

�L
HðyÞdy; c2 ¼

g
2L

Z L

�L

Z 0

�HðyÞ
u2ðy; zÞdzdy � c2

0

2L

Z L

�L
u2ðy; 0Þdy ð2:14Þ
and u2(y, z) solves the inhomogeneous problem
o
2
z þ o

2
y

� �
u2 ¼ 1; ðy; zÞ 2 X0; ð2:15Þ
subject to the boundary conditions

o u j ¼ 0;
(

n 2 z¼�HðyÞ

ozu2jz¼0 ¼
c2

0

g :
ð2:16Þ
Proof. By Theorem 2 and direct substitutions, the constant solutions for the leading-order term of u(y,z) are
unique solutions of the Laplace equation, so that we can normalize u0 = 1. The correction term u2(y,z) is
uniquely defined from the boundary-value problem (2.15)–(2.16). Applying the Green formula to this
problem, we obtain the solvability condition resulting in the first equation (2.14) for c2

0. More generally,
applying the first Green identity to system (2.2)–(2.3), we obtain that
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k2

Z
X0

udy dz ¼
Z

X0

uzz þ uyy

� �
dy dz ¼

Z
oX0

onuds ¼
Z

z¼�HðyÞ
onudsþ

Z L

�L
ozujz¼0 dy ¼ c2k2

g

Z L

�L
uðy; 0Þdy:

ð2:17Þ
Now the first equation (2.14) follows from the Green formula (2.17) after the asymptotic expansions (2.13).
Extending the asymptotic expansion to the next order, we obtain the correction term c2 in the form of the sec-
ond equation (2.14). h

Example 7. Let H(y) = h and find the correction terms u2(y,z) and c2 in the explicit form
u2 ¼
1

2
ðhþ zÞ2; c2 ¼ �

1

3
gh3:
These corrections are the same as in the standard linear theory of two-dimensional surface water waves.
3. Hamiltonian for linearized system

We cast the nonlinear system (1.6)–(1.8) as a Hamiltonian system for spatial dynamical evolution, following
the approach of [5] in the limit of no surface tension. We will show that the quadratic part of the Hamiltonian
function at the eigenmodes of the linearized system is sign-definite, such that the energy of the Fourier modes
with k = km, m 2 N for the same value of c > c0(0) is of the same sign. This fact implies that a global bounded
solution of the nonlinear spatial dynamical system (1.6)–(1.8), resembling a solitary wave surrounding by
oscillatory disturbances in the far-field profile, can be constructed, similarly to the approach in [6,7], if exis-
tence of the center manifold can be proven for the nonlinear system (1.6)–(1.8). However, the existence of a
center manifold and the construction of global solutions in the nonlinear system (1.6)–(1.8) is beyond the
scopes of the present manuscript.

The Lagrangian function for the nonlinear system (1.6)–(1.8) is written in the form
L ¼ 1

2

Z
R

Z L

�L

Z gðx;yÞ

�HðyÞ
2cux þ u2

x þ u2
y þ u2

z

� �
dzþ gg2

" #
dy dx: ð3:1Þ
By using the new variables
l ¼ zþ HðyÞ
gðx; yÞ þ HðyÞ ; u ¼ /ðx; y; lðx; y; zÞÞ; ð3:2Þ
we transform the Lagrangian function into new form
L ¼ 1

2

Z
R

Z L

�L

Z 1

0

2cðgþ HÞ/x � 2clgx/l þ ðgþ HÞ /x �
lgx

gþ H
/l

� �2
 "

þðgþ HÞ /y þ
H 0 � lðgy þ H 0Þ

gþ H
/l

� �2

þ
/2

l

gþ H

!
dlþ gg2

#
dy dx: ð3:3Þ
We apply the Legendre transformation
x ¼ dL
dgx
¼ �

Z 1

0

l/l cþ /x �
lgx

gþ H
/l

� �
dl; ð3:4Þ

n ¼ dL
d/x
¼ ðgþ HÞðcþ /xÞ � lgx/l; ð3:5Þ
such that
x ¼ �
Z 1

0

l/ln

gþ H
dl; ð3:6Þ
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and obtain the Hamiltonian function in the form
H ¼
Z

R

Z L

�L

Z 1

0

n/x dlþ xgx

 �
dy dx�L

¼ 1

2

Z
R

Z L

�L

Z 1

0

n2

gþ H
� 2cn� ðgþ HÞ /y þ

H 0 � lðgy þ H 0Þ
gþ H

/l

� �2

�
/2

l

gþ H

 !
dl

"
þc2ðgþ HÞ � gg2

�
dy dx: ð3:7Þ
Although the Hamiltonian function H is not too complicated, the symplectic structure of nonlinear evolution
equations for spatial dynamics is non-canonical since Eq. (3.6) gives a constraint on the canonical variables (/,n)
and (g,x). Therefore, we shall avoid writing and analyzing equations of motion in the case of gravity waves.
(These equations are analyzed in [5] for gravity–capillary waves.)

We note that g = x = / = 0 and n = cH(y) gives a trivial solution of the Hamiltonian system, whose line-
arization recovers the linear system considered in Section 2. Therefore, using the substitution
g ¼ ~g; x ¼ ~x; / ¼ ~/ and n ¼ cHðyÞ þ ~n and truncating equations (3.4) and (3.5) at the linear terms, we
obtain the linearized constraints
~n ¼ c~gþ HðyÞ~/x; ~x ¼ �c
Z 1

0

l~/l dl: ð3:8Þ
Furthermore, truncating the Hamiltonian function H at the quadratic terms and dropping the tilde notations,
we obtain the quadratic Hamiltonian function Hquad in the form
Hquad ¼
1

2

Z
R

Z L

�L

Z 1

0

n2

H
� 2cng� H /y þ

H 0

H
ð1� lÞ/l

� �2

�
/2

l

H

 !
dlþ c2 � gH

H
g2

" #
dy dx

¼ 1

2

Z
R

Z L

�L

Z 1

0

H/2
x � H /y þ

H 0

H
ð1� lÞ/l

� �2

�
/2

l

H

 !
dl� gg2

" #
dy dx; ð3:9Þ
where we have substituted expression (3.8). Our main result of this section is described in the following
theorem.

Theorem 8. The Hamiltonian function Hquad is negative for solutions of the linear system (2.2)–(2.3).
Proof. After the Fourier transform in x, the density of the Hamiltonian function Hquad becomes
cHquad ¼
1

2

Z L

�L

Z 1

0

k2H j/j2 � H /y þ
H 0

H
ð1� lÞ/l

				 				2 � j/lj
2

H

 !
dl� gjgj2

" #
dy

¼ 1

2

Z L

�L

Z 0

�HðyÞ
k2juj2 � juy j

2 � juzj
2

� �
dz� gjgj2

" #
dy; ð3:10Þ
where the transformation (3.2) has been used. The last expression gives a Hamiltonian function for the linear
system (2.2)–(2.3) with the constraint g ¼ � ick

g ujz¼0. Using the Helmholz equation (2.2) for the first term and
applying the first Green identity, we obtain
cHquad ¼
1

2

Z
z¼�HðyÞ

uonudsþ 1

2

Z L

�L
uozujz¼0 dy �

Z L

�L

Z 0

�HðyÞ
juy j

2 þ juzj
2

� �
dzþ 1

2
gjgj2

" #
dy

¼ �
Z L

�L

Z 0

�HðyÞ
juy j

2 þ juzj
2

� �
dz

" #
dy; ð3:11Þ
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where we have used the boundary conditions (2.3). Therefore, cHquad 6 0 and it reaches the zero value if and
only if u � 1, which corresponds to the case k = l = 0, that is c2 ¼ c2

0ð0Þ for k = 0 and m = 0. h

Example 9. Let H(y) = h on y 2 [�L,L] and consider the explicit solution (2.11). Then, direct computations
show that
cHquad ¼
L
2

hk2 �
sinh h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ k2

m

q
cosh h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ k2

m

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ k2

m

q k2þ 2k2
m

� �264
375¼�hLk2

2

k2þ 2k2
m

k2

sinh 2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ k2

m

q
2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ k2

m

q � 1

264
375;
which is non-positive. Moreover, if the bifurcation happens for m = 0, k = 0, for which cHquad ¼ 0, the other
modes with m 2 N and k = km have strictly negative values of cHquad.

Remark 10. Discussions in Section 6 of [3] imply that the results of Example 9 were known although no com-
putations can be found in [3].
4. Discussions

It is well known that the formal long-wave small-amplitude expansions for solutions of the nonlinear
system (1.6)–(1.8) in the form
u ¼ e
c

u0ðX Þ þ e2u2ðX ; y; zÞ þOðe4Þ
� �

; g ¼ e2 g0ðX Þ þ e2g2ðX ; yÞ þOðe4Þ
� �

;

and
c2 ¼ c2
0 þ e2ðDcÞ þOðe4Þ;
where X = ex and e is a formal small parameter, result in the fourth-order equation for u0(X)
c2u
ðivÞ
0 þ b2u

0
0u
00
0 þ ðDcÞu000 ¼ 0; ð4:1Þ
where the coefficient c2 is determined by the second equation (2.14), parameter (Dc) is arbitrary, and the coef-
ficient b2 is found in the form
b2 ¼ 2þ 1

2L

Z L

�L
o2

z u2ðy; 0Þdy ¼ 3� 1

2L

Z L

�L
u002ðy; 0Þdy ¼ 3:
The fourth-order ODE (4.1) is rewritten as the third-order ODE
c2U 000 þ 3UU 0 þ ðDcÞU 0 ¼ 0; ð4:2Þ

where U ¼ u00ðX Þ. The free surface is approximated at the leading order by g0 ¼ � 1

g UðX Þ. The third-order
ODE (4.2) is usually referred to as the stationary Korteweg–de Vries equation. When the quadratic term is
neglected in the ODE (4.2) and /0(X) 	 eikX, the linear theory is recovered with (Dc) = c2k2. On the other
hand, the nonlinear ODE (4.2) has a solitary wave solution in the form
UðX Þ ¼ �ðDcÞsech2ðjxÞ; j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðDcÞ

4c2

s
; ð4:3Þ
under the condition that sign((Dc)c2) = �1. The latter condition indicates that the speed of the solitary
wave c2 ¼ c2

0 þ �2ðDcÞ þOð�4Þ > c2
0 is different from the speed of the linear waves c2

0ðkÞ ¼ c2
0

þc2k2 þOðk4Þ 6 0, where the expansion of c0(k) for small k is defined by Proposition 6. Therefore, the
solitary wave (4.3) bifurcates from the mode m = 0 at the point k = 0 and c = c0(0). However, according
to Corollary 3, there exist infinitely many Fourier modes with m 2 N, which have the same c = c0(0) for
k = km. The formal long-wave small-amplitude expansions neglect existence of these Fourier modes. It is
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expected that these Fourier modes lead to oscillatory disturbances far from the localization of a solitary
wave. Construction of such local solutions to the full nonlinear system (1.6)–(1.8) remains an open prob-
lem up to the date.
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