Multi-pulse solutions to the focusing NLS equation.

JAMES BROWN
SUPERVISOR: DR. DMITRY PELINOVSKY

Non-Linear Schrodinger Equation

$$E\Psi = -\frac{d^2}{dx^2}\Psi + V(x)\Psi + \sigma|\Psi|^2\Psi$$

Energy

Periodic Potential

The non-linear term

The Defocusing NLS $\sigma=1$

The Focusing NLS $\sigma=-1$

For our purposes...

Periodic Potential

The potential that we will use is

$$V\left(x\right) = \sin^2\left(x/2\right)$$

Non-linear term

We will be examining the focusing NLS

$$\sigma = -1$$

All solutions are real

$$E\Psi = -\frac{d^2}{dx^2}\Psi + \sin^2(x/2)\Psi - \Psi^3$$

Spectral Renormalization Method

$$E\Psi(x) = -\partial_x^2 \Psi(x) + V(x) \Psi(x) - \Psi(x)^3$$

Define the linear operator L

$$L = -\partial xx + V(x)$$

$$(L - E)\Psi = \Psi^3$$

Consider the Iterations Scheme

$$u_{n+1} = (L - E)^{-1} u_n^3$$

Will This Scheme Converge

$$u_{n+1} = (L - E)^{-1} u_n^3$$

• Lets say u_n is $a_n \Psi$

$$a_{n+1} = a_n^3$$

So we need to define a renormalization factor

$$M_n = \frac{\langle u_n, (L-E)u_n \rangle}{\langle u_n, u_n^3 \rangle} \qquad 1 = \frac{\langle \Psi, (L-E)\Psi \rangle}{\langle \Psi, \Psi^3 \rangle}$$

Renormalized Iteration Scheme

$$u_{n+1} = M_n^{3/2} (L - E)^{-1} u_n^3$$

Numerical Methods

- There are three methods that we will be examining all based on the Spectral Renormalization method
 - Finite-Difference

$$\widehat{u_{n+1}} = M_n^{3/2} (L - IE)^{-1} \widehat{u_n^3}$$

Discrete Fourier

$$\widehat{u_{n+1}} = M_n^{3/2} \frac{\widehat{V(x)u_n + u_n^3}}{k^2 - E}$$

Bloch-Fourier

$$\tilde{\phi}_n = \int \phi(x) \, \bar{l}_m(x;k) \, dx$$

$$\phi(x) = \int \sum_{m \in \mathbb{N}} \tilde{\phi}_n(k) \, l_m(x;k) \, dk$$

How do we measure error?

Compare with exact solution.

$$e_{actual}^{(n)} = \sup_{x \in \mathbb{R}} |u_n - \Psi|$$

Compare M_n with unity

$$e_M^{(n)} = |M_n - 1|$$

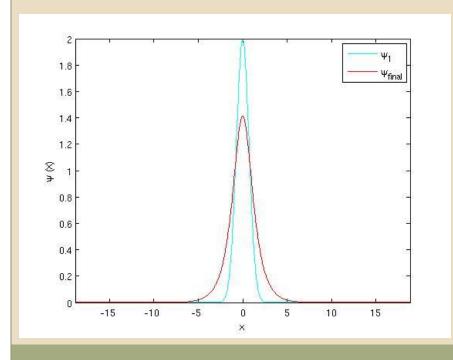
Compare two successive iterations

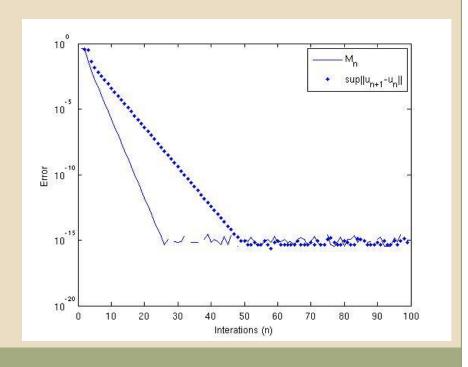
$$e_u^{(n)} = \sup_{x \in \mathbb{R}} |u_n - u_{n-1}|$$

One-Pulse Solution with no potential

• Exact Solution for V(x) = 0

$$\Psi = \sqrt{2|E|} sech^2 \left(\sqrt{|E|} x \right)$$





One-Pulse Solutions with Potential

Solutions can only exist where there is an extremum

$$V'(x) = 0, \quad V''(x) \neq 0$$

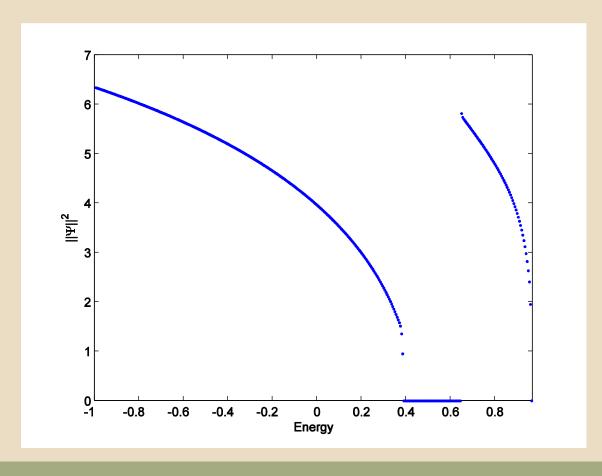
- The solutions exist in $V(x) = \sin^2(x/2)$ at
 - ox = 0
 - $ox = \pi$

stable

unstable

One-Pulse Solutions

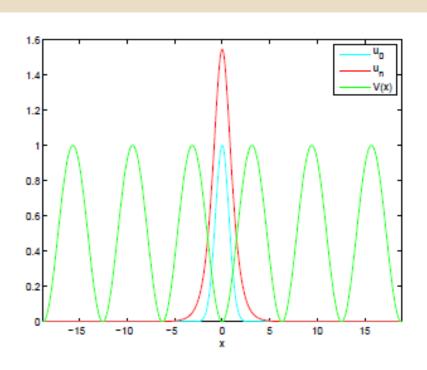
Can only exist in Band Gaps.

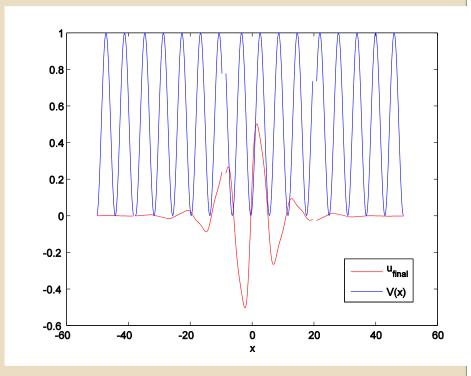


One-Pulse Solutions

Semi-Infinite Gap

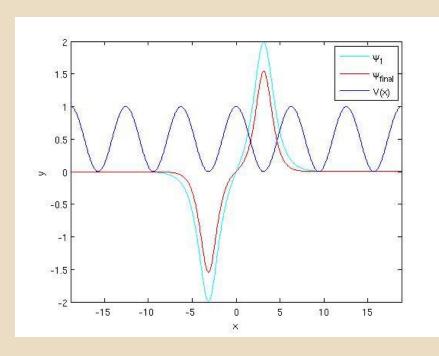
Band-Gap

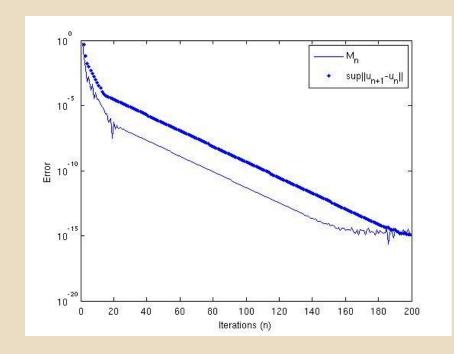




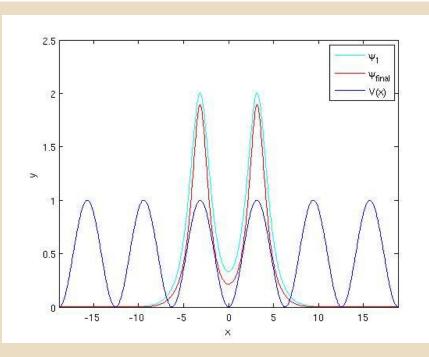
Stable Two-Pulse Solution

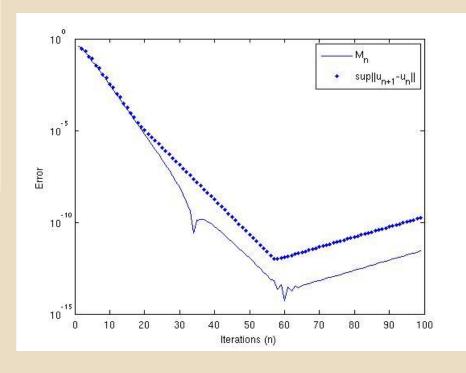
We need to force Symmetry to ensure convergence





Unstable Two-Pulse Solution





Summary

- Computed One-Pulse Solutions
 - Semi-Infinite Gap
 - Band Gap
- Computed Two-Pulse Solutions
 - Semi-Infinite Gap