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a b s t r a c t

Discrete solitons of the discrete nonlinear Schrödinger (dNLS) equation are compactly supported in the
anti-continuum limit of the zero coupling between lattice sites. Eigenvalues of the linearization of the
dNLS equation at the discrete soliton determine its spectral stability. Small eigenvalues bifurcating from
the zero eigenvalue near the anti-continuum limit were characterized earlier for this model. Here we
analyze the resolvent operator and prove that it is bounded in the neighborhood of the continuous
spectrum if the discrete soliton is simply connected in the anti-continuum limit. This result rules out
the existence of internal modes (neutrally stable eigenvalues of the discrete spectrum) near the anti-
continuum limit.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The discrete nonlinear Schrödinger (dNLS) equation is a mathematical model of many physical phenomena including the Bose–Einstein
condensation in optical lattices, propagation of optical pulses in coupled waveguide arrays, and oscillations of molecules in DNAs [1].
Discrete solitons (stationary localized solutions) are used to interpret the results of physical experiments and to characterize the global
dynamics of the dNLS equation with decaying initial data.

Discrete solitons are compactly supported in the anti-continuum limit of the zero coupling between lattice sites. Different families
of discrete solitons can be uniquely characterized near the anti-continuum limit from a number of limiting configurations [2]. This is
the main reason why the anti-continuum limit has been studied in detail after the pioneer works of Eilbeck et al. [3] and Aubry and
Abramovici [4]. The existence of discrete solitons (also called discrete breathers in the context of the discrete Klein–Gordon equation) was
rigorously justified with implicit function theorem arguments by MacKay and Aubry [5]. Their work on existence of discrete solitons led to
further progress in understanding their stability properties as well as nonlinear dynamics of nonlinear lattices [6–8].

Spectral stability of discrete solitons is determined by the eigenvalues of the discrete spectrum of an associated linearized operator
because its continuous spectrum is neutrally stable. Unstable eigenvalues can be fully characterized near the anti-continuum limit
because they bifurcate from the zero eigenvalue of finite multiplicity and the zero eigenvalue is isolated from the continuous spectrum.
Characterization of unstable eigenvalues for each family of discrete solitons bifurcating from a compact limiting solution was obtained by
Pelinovsky et al. [9] with an application of the Lyapunov–Schmidt reduction technique. Besides the unstable eigenvalues, the same technique
was used to characterize a number of neutrally stable eigenvalues of negative energy (also called eigenvalues of negative Krein signature)
which bifurcate from the same zero eigenvalue. These isolated eigenvalues of negative energy may become unstable far from the anti-
continuum limit because of collisions with eigenvalues of positive energy (also called internal modes) or with the continuous spectrum
of the linearized operator. Isolated eigenvalues of negative energy may also induce nonlinear instability if their multiples belong to the
continuous spectrum [10].

In the same anti-continuum limit, another bifurcation occurs beyond the applicability of the Lyapunov–Schmidt reduction technique:
a pair of semi-simple nonzero eigenvalues of infinite multiplicity transforms into a pair of continuous spectral bands of small width. This
transformation may produce additional eigenvalues of the discrete spectrum similar to what happens for the discrete kinks (which are

∗ Corresponding author.
E-mail address: dmpeli@math.mcmaster.ca (D. Pelinovsky).

0167-2789/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2010.09.002

http://dx.doi.org/10.1016/j.physd.2010.09.002
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:dmpeli@math.mcmaster.ca
http://dx.doi.org/10.1016/j.physd.2010.09.002


266 D. Pelinovsky, A. Sakovich / Physica D 240 (2011) 265–281

non-compact solutions of the nonlinear lattice in the anti-continuum limit) [11]. No complex unstable eigenvalues may bifurcate from
the semi-simple nonzero eigenvalues of infinite multiplicity because such eigenvalues are excluded by the count of unstable eigenvalues
in [9]. Nevertheless, internal modes may in general be expected outside the continuous spectrum.

It is important to know the details of the existence of internal modes because of several reasons. First, these internal modesmay collide
with eigenvalues of negative energy to produce the Hamilton–Hopf instability bifurcations [9]. Second, analysis of asymptotic stability of
discrete solitons depends on the number and location of the internal modes [12,13]. Third, the presence of internal modes may result in
long-term quasi-periodic oscillations of discrete solitons [14].

In this paper, we address bifurcations of internal modes from semi-simple nonzero eigenvalues of infinite multiplicity. We continue
the resolvent operator across the continuous spectrum and prove that it is bounded near the end points of the continuous spectrum if the
discrete soliton is simply connected in the anti-continuum limit; see Definition 2. As a result, no internal modes exist in the neighborhood
of the continuous spectrum. These results hold for any discrete soliton of the dNLS equation with any power nonlinearity near the anti-
continuum limit.

There aremultiple numerical evidences that no internal modes exist near the anti-continuum limit for the fundamental discrete soliton,
which is supported at a single lattice site in the zero coupling limit. In particular, this fact is suggested by Fig. 1 in [15] and by Fig. 2.5 in [1].
Our article presents the first analytical proof of this phenomenon.

The paper is organized as follows. Section 2 reviews results on existence and stability of discrete solitons near the anti-continuum limit.
Section 3 is devoted to analysis of the resolvent operator with the limiting compact potentials. Section 4 develops perturbative arguments
for the full resolvent operator. Section 5 considers a case study for the resolvent operator associatedwith a non-simply connected two-site
discrete soliton. The Appendix is devoted to the cubic dNLS equation, for which perturbation arguments are more delicate.
Notations.We denote the bi-infinite sequence {un}n∈Z by u. The lp space for sequences is denoted by lp(Z) and is equipped with the norm

‖u‖lp :=

−
n∈Z

|un|
p

1/p

, p ≥ 1.

The algebraically weighted space lps (Z) with s ∈ R is the lp(Z) space for the sequence
{(1 + n2)s/2un}n∈Z.

A disk of radius δ > 0 centered at the point λ0 ∈ C on the complex plane is denoted by Bδ(λ0) ⊂ C.

2. Review of results on discrete solitons

Consider the dNLS equation in the form

iu̇n + ϵ(un+1 − 2un + un−1) + |un|
2pun = 0, n ∈ Z, (1)

where the dot denotes differentiation in t ∈ R, {un(t)}n∈Z : RZ
→ C is the set of amplitude functions, and parameters ϵ ∈ R and p ∈ N

define the coupling constant and the power of nonlinearity. The anti-continuum limit corresponds to ϵ = 0, in which case the dNLS
equation (1) becomes an infinite system of uncoupled differential equations.

Discrete solitons are defined in the form un(t) = φneit , where the frequency is normalized thanks to the scaling symmetry of the power
nonlinearity. By the standard arguments [16] based on the conserved quantity

ϵ ≠ 0: φ̄nφn+1 − φnφ̄n+1 = const in n ∈ Z, (2)
it is known that if {φn}n∈Z decays to zero as |n| → ∞, then {φn}n∈Z is a real-valued module to multiplication by eiθ for any θ ∈ R. The
real-valued stationary solutions are found from the second-order difference equation

(1 − φ2p
n )φn = ϵ(φn+1 − 2φn + φn−1), n ∈ Z. (3)

The algebraic system is uncoupled if ϵ = 0.
Let us consider solutions of the difference equation (3) for φ ∈ l2(Z). If ϵ = 0 and p ∈ N, the limiting configuration of the discrete

soliton is given by the compact solution

ϵ = 0: φ(0)
=

−
n∈U+

δn −

−
n∈U−

δn, (4)

where U± are compact subsets of Z such that U+ ∩U− = ∅ and δn is the standard unit vector in l2(Z) expressed via the Kronecker symbol
by

(δn)m = δn,m, m ∈ Z.

Wewill denote the number of sites in U± by |U±|. The following proposition gives a unique analytic continuation of the compact limiting
solution (4) to a particular family of discrete solitons (see [5,16] for the proof).

Proposition 1. Fix U+,U− ⊂ Z such that U+ ∩ U− = ∅ and |U+| + |U−| < ∞. There exists ϵ0 > 0 such that the stationary dNLS
equation (3) with ϵ ∈ (−ϵ0, ϵ0) admits a unique solution φ ∈ l2(Z) near φ(0)

∈ l2(Z). The map (−ϵ0, ϵ0) ∋ ϵ → φ ∈ l2(Z) is analytic
and

∃C > 0: ‖φ − φ(0)
‖l2 ≤ C |ϵ|. (5)

Moreover, there are κ > 0 and C > 0 such that for any ϵ ∈ (−ϵ0, ϵ0)

|φn| ≤ Ce−κ|n|, n ∈ Z. (6)

Remark 1. Thanks to the exponential decay (6), the solution φ ∈ l2(Z) of Proposition 1 belongs to φ ∈ l2s (Z) for any s ≥ 0.
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By Proposition 1, the solution φ for a given φ(0) can be expanded in the power series

φ = φ(0)
+

∞−
k=1

ϵkφ(k), ϵ ∈ (−ϵ0, ϵ0), (7)

where correction terms {φ(k)
}k∈N are uniquely defined by a recursion formula.

Spectral stability of the discrete solitons is determined from the analysis of the spectral problem

L+u = −λw, L−w = λu, (8)

where λ ∈ C is the spectral parameter, (u,w) ∈ l2(Z) × l2(Z) is an eigenvector, and L± are discrete Schrödinger operators given by
(L+u)n = −ϵ(un+1 − 2un + un−1) + (1 − (2p + 1)φ2p

n )un,

(L−w)n = −ϵ(wn+1 − 2wn + wn−1) + (1 − φ2p
n )wn,

n ∈ Z. (9)

We recall the basic definitions and results from the stability analysis of the spectral problem (8).

Definition 1. The eigenvalues of the spectral problem (8) with Re(λ) > 0 (resp. Re(λ) = 0) are called unstable (resp. neutrally stable). If
λ ∈ iR is a simple isolated eigenvalue, then the eigenvalue λ is said to have a positive energy if ⟨L+u,u⟩l2 > 0 and a negative energy if
⟨L+u,u⟩l2 < 0.

Remark 2. If λ ∈ iR is an isolated eigenvalue and ⟨L+u,u⟩l2 = 0, then λ is not a simple eigenvalue. In this case, the concept of eigenvalues
of positive and negative energies is defined by the diagonalization of the quadratic form ⟨L+u,u⟩l2 , where u belongs to the subspace of
l2(Z) associated to the eigenvalue λ of the spectral problem (8) and is invariant under the action of the corresponding linearized operator
(see [17] for the relevant theory).

In the anti-continuum limit ϵ = 0, the spectrum of L+ (resp. L−) includes a semi-simple eigenvalue −2p (resp. 0) of multiplicity
N = |U+| + |U−| < ∞ and a semi-simple eigenvalue 1 of multiplicity |Z \ {U+ ∪ U−}| = ∞. The spectral problem (8) has a pair of
eigenvalues λ = ±i of infinite multiplicity and the eigenvalue λ = 0 of geometric multiplicity N and algebraic multiplicity 2N . The
following proposition describes the splitting of the zero eigenvalue near the anti-continuum limit for ϵ > 0 (see [9] for the proof).

Proposition 2. Fix U+,U− ⊂ Z such that U+ ∩ U− = ∅ and N := |U+| + |U−| < ∞. Fix ϵ > 0 sufficiently small and denote the number of
sign differences of {φ

(0)
n }n∈U+∪U−

by n0.

• There are exactly n0 negative and N − 1 − n0 small positive eigenvalues of L− counting multiplicities and a simple zero eigenvalue.
• There are exactly n0 pairs of small eigenvalues λ ∈ iR and N − 1 − n0 pairs of small eigenvalues λ ∈ R of the spectral problem (8) counting

multiplicities and a double zero eigenvalue.

Proposition 2 completes the characterization of unstable eigenvalues and neutrally stable eigenvalues of negative energy from negative
eigenvalues of L+ and L−. In particular, we know from [17] that if Ker(L+) = {0},Ker(L−) = span{φ}, and ⟨L−1

+ φ, φ⟩l2 ≠ 0, then
n(L+) − p0 = N−

r + N−

i + Nc,

n(L−) = N+

r + N−

i + Nc,
(10)

where n(L±) denotes the number of negative eigenvalues of L±,N−

i denotes the number of eigenvalues λ ∈ iR with negative energy, Nc
denotes the number of eigenvalues with Re(λ) > 0 and Im(λ) > 0,N±

r denotes the number of eigenvalues λ ∈ R with ⟨L+u,u⟩l2 ≷ 0,
and

p0 =


1 if ⟨L−1

+
φ, φ⟩l2 < 0,

0 if ⟨L−1
+

φ, φ⟩l2 > 0.

To compute p0, we extend the family of discrete solitons by parameter ω as solutions of

(ω − φ2p
n )φn = ϵ(φn+1 − 2φn + φn−1), n ∈ Z. (11)

Differentiation of Eq. (11) in ω at ω = 1 gives

⟨L−1
+

φ, φ⟩l2 = −⟨∂ωφ|ω=1, φ⟩l2 = −
1
2

d
dω

‖φ‖
2
l2


ω=1

= −
N
2p

+ O(ϵ),

where in the last equality we used Proposition 1 and the anti-continuum limit

ϵ = 0: ‖φ(ω)‖2
l2 = Nω1/p.

Therefore, p0 = 1 for small ϵ > 0.
By Proposition 2, we have n(L−) = n0 and N−

i ≥ n0. Also, n(L+) = N . Using the count (10), we have for small ϵ > 0

N+

r = 0, N−

r = N − 1 − n0, N−

i = n0, Nc = 0. (12)

Equality (12) shows that besides the small and zero eigenvalues described by Proposition 2, the spectral problem (8) may only have the
continuous spectrum and the eigenvalues on iR with positive energy. These eigenvalues of positive energy are called the internal modes
and existence of such eigenvalues for small ϵ > 0 is the main theme of this article.
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3. The resolvent operator for the limiting configuration

Let us consider the truncated spectral problem (8) afterφ is replaced byφ(0). The resolvent operator is defined from the inhomogeneous
system

−ϵ(un+1 − 2un + un−1) + un − (2p + 1)
−

m∈U+∪U−

δn,mum + λwn = Fn,

−ϵ(wn+1 − 2wn + wn−1) + wn −

−
m∈U+∪U−

δn,mwm − λun = Gn,
n ∈ N, (13)

where F,G ∈ l2(Z) are given. Since we are interested in the continuous spectrum and eigenvalues on iR, we set λ = −iΩ and use new
coordinates

an := un + iwn, bn := un − iwn,
fn := Fn + iGn, gn := Fn − iGn,

n ∈ Z.

The inhomogeneous system (13) transforms to the equivalent form
−ϵ(an+1 − 2an + an−1) + an −

−
m∈U+∪U−

δn,m((1 + p)am + pbm) − Ωan = fn,

−ϵ(bn+1 − 2bn + bn−1) + bn −

−
m∈U+∪U−

δn,m(pam + (1 + p)bm) + Ωbn = gn,
(14)

which can be rewritten in the operator form

L
[
a
b

]
− Ω

[
a
b

]
=

[
f

−g

]
, L =

[
−ϵ∆ + I − (1 + p)V −pV

pV ϵ∆ − I + (1 + p)V

]
, (15)

where ∆ : l2(Z) → l2(Z) is the discrete Laplacian operator
(1u)n := un+1 − 2un + un−1, n ∈ Z

and V : l2(Z) → l2(Z) is the associated compact potential

(Vu)n =

−
m∈U+∪U−

δn,mum, n ∈ Z.

Let R0(λ) : l2(Z) → l2(Z) be a free resolvent of the discrete Schrödinger operator −∆ for λ ∉ σ(−∆) ≡ [0, 4]. The free resolvent was
studied recently by Komech et al. [18]. The free resolvent operator can be expressed in the Green function form

∀f ∈ l2(Z): (R0(λ)f)n =
1

2i sin z(λ)

−
m∈Z

e−iz(λ)|n−m|fm, (16)

where z(λ) is a unique solution of the transcendental equation for λ ∉ [0, 4]

2 − 2 cos z(λ) = λ, Re z(λ) ∈ [−π, π), Im z(λ) < 0. (17)
The limiting absorption principle (see, e.g., [19]) states that a bounded operator R0(λ) : l2(Z) → l2(Z) for λ ∉ [0, 4] admits the limits

R±

0 (ω) = lim
µ↓0

R0(ω ± iµ) : l2σ (Z) → l2
−σ (Z), σ >

1
2

for any fixed ω ∈ (0, 4).
The limiting free resolvent operators R±

0 (ω) can also be expressed in the Green function form

∀f ∈ l1(Z): (R±

0 (ω)f)n =
1

2i sin θ±(ω)

−
m∈Z

e−iθ±(ω)|n−m|fm, (18)

where θ±(ω) = ±θ(ω) and θ(ω) is a unique solution of the transcendental equation for ω ∈ [0, 4]

2 − 2 cos θ(ω) = ω, Re θ(ω) ∈ [−π, 0], Im θ(ω) = 0. (19)
The limiting operators R±

0 (ω) : l1(Z) → l∞(Z) are bounded for any fixed ω ∈ (0, 4) but diverge as ω ↓ 0 and ω ↑ 4. These divergences
follow from the Puiseux expansion, e.g.,

∀f ∈ l12(Z): (R±

0 (ω)f)n =
1

2iθ±(ω)

−
m∈Z

fm −
1
2

−
m∈Z

|n − m|fm + (R̂±

0 (ω)f)n as ω ↓ 0, (20)

where
∃C > 0: ‖R̂±

0 (ω)f‖l∞ ≤ C |θ±(ω)| ‖f‖l12
.

Divergences of R±

0 (ω) at the end points ω = 0 and ω = 4 indicate resonances, which may result in the bifurcation of new eigenvalues
from the continuous spectrum on [0, 4] either for λ < 0 or λ > 4, when −∆ is perturbed by a small potential in l2(Z).

Let us denote the solution of the inhomogeneous system (15) by[
a
b

]
= RL(Ω)

[
f

−g

]
, RL(Ω) =

[
R11(Ω) R12(Ω)
R21(Ω) R22(Ω)

]
. (21)

The following theorem represents the main result of this section. This theorem is valid for the simply connected sets U+ ∪ U−, which
are defined by the following definition.
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Definition 2. We say that the set U+ ∪U− is simply connected if no elements in Z \ {U+ ∪U−} are located between elements in U+ ∪U−.

Theorem 1. Fix U+,U− ⊂ Z such that U+ ∩ U− = ∅, N := |U+| + |U−| < ∞, and U+ ∪ U− is simply connected. There exist small ϵ0 > 0
and δ > 0 such that for any fixed ϵ ∈ (0, ϵ0) the resolvent operator

RL(Ω) : l2(Z) × l2(Z) → l2(Z) × l2(Z)

is bounded for any Ω ∉ Bδ(0) ∪ [1, 1+ 4ϵ] ∪ [−1− 4ϵ, −1]. Moreover, RL(Ω) has exactly 2N poles (counting multiplicities) inside Bδ(0) and
admits the limits

R±

L (Ω) := lim
µ↓0

RL(Ω ± iµ)

such that for any Ω ∈ [1, 1 + 4ϵ] ∪ [−1 − 4ϵ, −1] and any ϵ ∈ (0, ϵ0), there is C > 0 such that

‖R±

L (Ω)‖l11×l11→l∞×l∞ ≤ Cϵ−1.

Remark 3. The other way to formulate the main theorem is to say that the end points of the continuous spectrum σc(L) ≡ [1, 1 + 4ϵ] ∪

[−1−4ϵ, −1] are not resonances and no eigenvalues of the linear operator Lmay exist outside a small disk Bδ(0) ⊂ C. The 2N eigenvalues
inside the small disk Bδ(0) are characterized in Proposition 2.

Solving the linear system (14) with the Green function (16), we obtain the exact solution for any n ∈ Z
an =

1
2iϵ sin z(λ+)

−
m∈Z

e−iz(λ+)|n−m|fm +

−
m∈U+∪U−

e−iz(λ+)|n−m|((1 + p)am + pbm)


,

bn =
1

2iϵ sin z(λ−)

−
m∈Z

e−iz(λ−)|n−m|gm +

−
m∈U+∪U−

e−iz(λ−)|n−m|(pam + (1 + p)bm)


,

(22)

where the map C ∋ λ → z ∈ C is defined by the transcendental equation (17) and

λ± =
±Ω − 1

ϵ
.

The solution is closed if the set {(an, bn)}n∈U+∪U−
is found from the linear system of finitely many equations for any n ∈ U+ ∪ U−

2iϵ sin z(λ+)an −

−
m∈U+∪U−

e−iz(λ+)|n−m|((1 + p)am + pbm) =

−
m∈Z

e−iz(λ+)|n−m|fm,

2iϵ sin z(λ−)bn −

−
m∈U+∪U−

e−iz(λ−)|n−m|(pam + (1 + p)bm) =

−
m∈Z

e−iz(λ−)|n−m|gm.
(23)

Let us order lattice sites n ∈ U+ ∪ U− such that the first site is placed at n = 0, the second site is placed at m1, the third site is placed
at m1 + m2, and so on, the last site is placed at m1 + m2 + · · · + mN−1, where N = |U+| + |U−| and all mj > 0. If U+ ∪ U− is a simply
connected set, then allmj = 1.

Let Q (q1, q2, . . . , qN−1) be the matrix in CN×N defined by

Q (q1, q2, . . . , qN−1) :=


1 q1 q1q2 · · · q1q2 · · · qN−1
q1 1 q2 · · · q2q3 · · · qN−1

q1q2 q2 1 · · · q3 · · · qN−1
...

...
...

...
...

q1q2 · · · qN−1 q2 · · · qN−1 q3 · · · qN−1 · · · 1

 . (24)

Let q±

j = e−imjz(λ±) and Q±(Ω, ϵ) := Q (q±

1 , q±

2 , . . . , q±

N−1). The coefficient matrix of the linear system (25) is given by

A(Ω, ϵ) :=

[
2iϵ sin z(λ+)I − (1 + p)Q+(Ω, ϵ) −pQ+(Ω, ϵ)

−pQ−(Ω, ϵ) 2iϵ sin z(λ−)I − (1 + p)Q−(Ω, ϵ)

]
, (25)

where I is an identity matrix in CN×N .
We split the proof of Theorem 1 into three subsections, where solutions of system (22) and (23) are studied for different values of Ω .

3.1. Resolvent outside the continuous spectrum

We consider the resolvent operator RL(Ω) for a fixed small ϵ ∈ (0, ϵ0). The following lemma shows that RL(Ω) is a bounded operator
from l2(Z) × l2(Z) to l2(Z) × l2(Z) for all Ω ∈ C except three disks of small radii centered at {0, 1, −1}.

Lemma 1. There are ϵ0 > 0 and δ, δ± > 0 such that for any ϵ ∈ (0, ϵ0), the resolvent operator RL(Ω) : l2(Z) × l2(Z) → l2(Z) × l2(Z) is
bounded for all Ω ∈ C \ {Bδ(0) ∪ Bδ+(1) ∪ Bδ−(−1)}. Moreover, RL(Ω) has exactly 2N poles (counting multiplicities) inside Bδ(0).
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Fig. 1. Schematic display of various domains in the Ω-plane.

Proof. From the property of the free resolvent operator R0(λ), we know that the Green function in the representation (22) is bounded and
exponentially decaying as |n| → ∞ for anyΩ such that λ± ∉ [0, 4]. This givesΩ ∉ σc(L) ≡ [1, 1+4ϵ]∪[−1−4ϵ, −1]. Therefore, RL(Ω)
is a boundedmap from l2(Z)× l2(Z) to l2(Z)× l2(Z) for anyΩ ∉ σc(L) if and only if the system of linear equation (23) is uniquely solvable.
We shall now consider the invertibility of the coefficient matrix A(Ω, ϵ) of the linear system (23) in various domains in the Ω-plane for
small ϵ > 0. Fig. 1 shows schematically the location of these domains on the Ω-plane.

Fix δ0 ∈ (0, 1). Let Ω belong to the vertical strip

Sδ0 := {Ω ∈ C : Re(Ω) ∈ [−δ0, δ0]}.

Then z(λ±) = −iκ± are uniquely determined from the equation

eκ± + e−κ± − 2 =
1 ∓ Ω

ϵ
, Re(κ±) > 0, Im(κ±) ∈ [−π, π),

which admits the asymptotic expansion

eκ± =
1 ∓ Ω

ϵ
+ 2 −

ϵ

1 ∓ Ω
+ O(ϵ2) as ϵ → 0

and

e−κ± =
ϵ

1 ∓ Ω
+ O(ϵ2) as ϵ → 0.

Therefore, both ϵ sinh(κ±) and Q±(Ω, ϵ) are analytic in ϵ near ϵ = 0 and

2iϵ sin z(λ±) = 2ϵ sinh(κ±) = 1 ∓ Ω + 2ϵ + O(ϵ2) as ϵ → 0

and

Q±(Ω, ϵ) = I + O(ϵ) as ϵ → 0.

It now becomes clear that A(Ω, ϵ) is analytic in Ω ∈ Sδ0 and ϵ ∈ (−ϵ0, ϵ0) with the limit

A(Ω, 0) =

[
−(p + Ω)I −pI

−pI −(p − Ω)I

]
. (26)

The matrix A(Ω, 0) ∈ C2N×2N is singular only for Ω = 0. Thanks to the analyticity of A(Ω, ϵ), the determinant D(Ω, ϵ) = det A(Ω, ϵ)
is also analytic in these variables and

D(Ω, ϵ) = (−Ω2)N + O(ϵ) as ϵ → 0.

Therefore, there exist 2N zeros of D(Ω, ϵ) for small ϵ ∈ (0, ϵ0) in a small disk Bδ(0) with δ = O(ϵ1/2N). By Cramer’s rule, these zeros of
D(Ω, ϵ) give poles of RL(Ω).

Fix δ+ ∈ (0, 1) and θ+ ∈


π
2 , π


. We now consider Ω in the domain

Sδ+ := {Ω = 1 + reiθ , r > δ+, θ ∈ (−θ+, θ+)}.

In this domain, we have the same presentation for z(λ−) = −iκ− but a different presentation for z(λ+) = −iκ+ − π . Now κ+ is uniquely
determined from the equation

eκ+ + e−κ+ + 2 =
Ω − 1

ϵ
=

r
ϵ
eiθ , Re(κ+) > 0, Im(κ+) ∈ [0, 2π),

which admits the asymptotic expansions

eκ+ =
Ω − 1

ϵ
− 2 −

ϵ

Ω − 1
+ O(ϵ2) as ϵ → 0



D. Pelinovsky, A. Sakovich / Physica D 240 (2011) 265–281 271

and

2iϵ sin z(λ+) = 1 − Ω + 2ϵ + O(ϵ2) as ϵ → 0.

Since Re(κ+) → ∞ as ϵ → 0, A(Ω, 0) is the same as matrix (26) and it is invertible for Ω ∈ Sδ+ . Similar arguments can be developed
for

Sδ− :=

Ω = −1 + reiθ , r > δ−, θ ∈ (θ−, 2π − θ−)


,

where δ− ∈ (0, 1) and θ− ∈

0, π

2


. Because there are choices of δ0, δ± > 0 such that

Sδ0 ∪ Sδ+ ∪ Sδ− = C \ {Bδ+(1) ∪ Bδ−(−1)},

we obtain the assertion of the lemma. �

Remark 4. The proof of Lemma 1 implies that poles of RL(Ω) may have size |Ω| = O(ϵ1/2N). The results of the perturbation expansions
(see [9] for details) imply that the eigenvalues bifurcating from 0 in the full spectral problem (8) have size O(ϵ1/2). Moreover, the same
perturbation expansion technique can be applied to show that eigenvalues of the truncated spectral problem (13) have the same size
O(ϵ1/2).

3.2. Resolvent inside the continuous spectrum

We shall now consider the resolvent operator RL(Ω) inside the continuous spectrum

σc(L) := [1, 1 + 4ϵ] ∪ [−1 − 4ϵ, −1].

Thanks to the symmetry of system (22)–(23) in Ω , we can consider only one branch of the continuous spectrum [1, 1 + 4ϵ]. Therefore,
we set Ω = 1 + ϵω with ω ∈ [0, 4] and define

z(λ+) = z(ω) ≡ θ and z(λ−) = z(−2ϵ−1
− ω) ≡ −iκ.

It follows from (17) and (19) that θ ∈ [−π, 0] and κ > 0 are uniquely defined from equations

2 − 2 cos(θ) = ω, 2ϵ(cosh(κ) − 1) = 2 + ϵω, ω ∈ [0, 4]. (27)

The choice of θ ∈ [−π, 0] corresponds to the limiting operator R+

0 (ω) of the free resolvent. Since R+

0 (ω) : l2σ (Z) → l2
−σ (Z) is well

defined for ω ∈ (0, 4) and σ > 1
2 , R

+

L (1 + ϵω) is a bounded map from l2σ (Z) × l2σ (Z) to l2
−σ (Z) × l2

−σ (Z) for any ω ∈ (0, 4) and σ > 1
2 if

and only if there exists a unique solution of the linear system (23). On the other hand, the free resolvent is singular in the limits ω ↓ 0 and
ω ↑ 4 and, therefore, we need to be careful in solving system (22)–(23) in this limit.

The main result of this section is given by the following theorem.

Theorem 2. Let m1 = m2 = · · ·mN−1 = 1. There exists ϵ0 > 0 such that for any ω ∈ [0, 4] and any ϵ ∈ (0, ϵ0), there exist C > 0 such that

‖R+

L (1 + ϵω)‖l11×l11→l∞×l∞ ≤ Cϵ−1, (28)

where the upper sign indicates that ω is parameterized by ω = 2 − 2 cos(θ) for θ ∈ [−π, 0].

To prove Theorem 2, we analyze the solutions of system (23) for ω ∈ [0, 4]. Let us rewrite explicitly

q+

j = e−imjθ and q−

j = e−mjκ , j ∈ {1, 2, . . . ,N − 1}.

The coefficient matrix (25) for Ω = 1 + ϵω with ω ∈ [0, 4] is rewritten in the form

A(θ, ϵ) ≡

[
2iϵ sin(θ)I − (1 + p)M(θ) −pM(θ)

−pN(κ) 2ϵ sinh(κ)I − (1 + p)N(κ)

]
, (29)

where M(θ) ≡ Q (q+

1 , q+

2 , . . . , q+

N−1) and N(κ) ≡ Q (q−

1 , q−

2 , . . . , q−

N−1). Note that θ and M(θ) are ϵ-independent, whereas N(κ) depends
on ϵ via κ . The linear system (23) is now expressed in the matrix form

A(θ, ϵ)c = h(θ, ϵ), (30)

where components of c ∈ C2N and h ∈ C2N are given by
an
bn


n∈U+∪U−

and


−
m∈Z

e−iθ |n−m|fm−
m∈Z

e−κ|n−m|gm


n∈U+∪U−

.

Thanks to the asymptotic expansion

eκ
=

2
ϵ

+ 2 + ω −
ϵ

2
+ O(ϵ2) as ϵ → 0,

we have

2ϵ sinh(κ) = 2 + (2 + ω)ϵ + O(ϵ2) as ϵ → 0.

Both A(θ, ϵ) and h(θ, ϵ) are analytic in θ ∈ [−π, 0] and ϵ ∈ (−ϵ0, ϵ0). The following lemma establishes the invertibility condition for
matrix A(θ, ϵ).
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Lemma 2. For any ϵ ∈ (0, ϵ0), matrix A(θ, ϵ) has a zero eigenvalue of geometric and algebraic multiplicities N − 1 for θ = −π and θ = 0. If
m1 = m2 = · · · = mN−1 = 1, matrix A(θ, ϵ) is invertible for any θ ∈ (−π, 0).

Proof. We use the fact that matrix A(θ, ϵ) is analytic in ϵ for small ϵ ∈ (−ϵ0, ϵ0). Therefore, it remains invertible if A(θ, 0) is invertible.
To consider the limit ϵ → 0, we note that κ → ∞ and N(κ) → I as ϵ → 0, so we have

A(θ, 0) =

[
−(1 + p)M(θ) −pM(θ)

−pI (1 − p)I

]
.

For any p ∈ N, matrix A(θ, 0) is invertible if and only if matrixM(θ) is invertible. Let us then compute

DN(q1, q2, . . . , qN−1) := detQ (q1, q2, . . . , qN−1).

We note that DN(±1, q2, . . . , qN−1) = 0 and DN(q1, q2, . . . , qN−1) is a quadratic polynomial of q1. Therefore,

DN(q1, q2, . . . , qN−1) = (1 − q21)DN(0, q2, . . . , qN−1) = (1 − q21)DN−1(q2, . . . , qN−1).

Continuing the expansion recursively, we obtain the exact formula

DN(q1, q2, . . . , qN−1) = (1 − q21)(1 − q22) · · · (1 − q2N−1), (31)

from which we conclude that Q (q1, q2, . . . , qN−1) is invertible if and only if all qj ≠ ±1. This implies that M(θ) is invertible if and only if
all e−imjθ ≠ ±1, which is satisfied if all mj = 1 and θ ∈ (−π, 0). The second assertion of the lemma is proved: for any ϵ ∈ [0, ϵ0), matrix
A(θ, ϵ) is invertible for θ ∈ (−π, 0) if allmj = 1.

The first assertion of the lemma tells us that for any ϵ ∈ (0, ϵ0), matrices A+(ϵ) := A(0, ϵ) and A−(ϵ) := A(−π, ϵ) have a zero
eigenvalue of geometric and algebraic multiplicities N − 1. We write A±(ϵ) explicitly in the form

A±(ϵ) =

[
−(1 + p)M± −pM±

−pN(κ±) 2ϵ sinh(κ±)I − (1 + p)N(κ±)

]
,

where κ± > 0 are uniquely defined by

2ϵ(cosh(κ+) − 1) = 2, 2ϵ(cosh(κ−) − 1) = 2 + 4ϵ,

whereas matricesM± are given by

M+ =


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

...
...

1 1 1 · · · 1


and

M− =


1 (−1)m1 (−1)m1+m2 · · · (−1)m1+m2+···+mN−1

(−1)m1 1 (−1)m2 · · · (−1)m2+···+mN−1

(−1)m1+m2 (−1)m2 1 · · · (−1)m3+···+mN−1

...
...

...
...

...

(−1)m1+m2+···+mN−1 (−1)m2+···+mN−1 (−1)m3+···+mN−1 · · · 1

 .

It is clear that Null(M+) and Null(M−) are (N − 1) dimensional.
The first N rows of A+(ϵ) are identical to the first row, whereas the last N rows of A+(ϵ) are linearly independent at ϵ = 0 and, by

continuity, for small ϵ ∈ [0, ϵ0). Therefore, Null(A+(ϵ)) is (N − 1) dimensional for any ϵ ∈ [0, ϵ0). Similarly, the second, third, and Nth
rows of A−(ϵ) are identical to the first row multiplied by (−1)m1 , (−1)m1+m2 , and (−1)m1+m2+···+mN−1 , respectively. The last N rows of
A−(ϵ) are linearly independent for small ϵ ≥ 0. Therefore, Null(A−(ϵ)) is (N − 1) dimensional for any ϵ ∈ [0, ϵ0).

It remains to prove that the zero eigenvalue of A±(ϵ) is not degenerate (has equal geometric and algebraicmultiplicities) for ϵ ∈ (0, ϵ0).
It is clear from the explicit form of A±(0) andM± that

u ∈ Null(A±(0)) ⇔ u =

[
(1 − p)w

pw

]
, w ∈ Null(M±). (32)

To construct a generalized kernel, we consider the inhomogeneous equation

A±(0)ũ = u, u ∈ Null(A±(0)).

Then, we obtain for w ∈ Null(M±),

ũ =

[
(1 − p)w̃ − w

pw̃

]
, M±w̃ = (p − 1)w.

If p ≠ 1, then no w̃ ∈ CN exists because M± is symmetric. Therefore, for p ≠ 1, the zero eigenvalue has equal geometric and algebraic
multiplicities for the matrix A±(0) and, by continuity, for the matrix A±(ϵ) for ϵ ∈ [0, ϵ0).
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The case p = 1 needs a separate consideration since w̃ = 0 and the zero eigenvalue of A±(0) has geometric multiplicity N − 1 and
algebraic multiplicity 2N − 2. This case is considered in the Appendix, where we show that the degeneracy is broken for any ϵ ≠ 0, so
that A±(ϵ) in the case p = 1 still has a zero eigenvalue of equal geometric and algebraic multiplicities N − 1 for any ϵ ∈ (0, ϵ0). �

Because the coefficient matrix A(θ, ϵ) is singular at θ = 0 and θ = −π , we shall consider the limiting behavior of solutions of the
linear system (30) near these points. The following abstract lemma gives the sufficient condition that the unique solution c of the linear
system (30) for small θ ≠ 0 and fixed ϵ ∈ (0, ϵ0) remains bounded in the limit θ → 0. Because ϵ is fixed, we can drop this parameter
from the notations of the lemma.

Lemma 3. Assume that A(θ) ∈ C2N×2N and h(θ) ∈ C2N are analytic in θ ∈ (−θ0, θ0) for θ0 > 0 and consider solutions of

A(θ)c = h(θ), c ∈ C2N .

Assume that A(θ) is invertible for θ ≠ 0 and singular for θ = 0 and that the zero eigenvalue of A(0) has equal geometric and algebraic
multiplicities n ≤ 2N. A unique solution c for θ ≠ 0 is bounded as θ → 0 if

h(0) ⊥ Null(A∗(0)) and Null(A′(0)|Null(A(0))) = {0}. (33)

Remark 5. We denote the Hermite conjugate of a matrix A0 ∈ C2N×2N by A∗

0 = AT
0 . Let

Null(A0) = span{u1, . . . , un} and Null(A∗

0) = span{v1, . . . , vn}, (34)

where {u1, . . . , un} and {v1, . . . , vn} are mutually orthogonal bases, so that

⟨ui, vj⟩C2N = δi,j for all 1 ≤ i, j ≤ n. (35)

The restriction of matrix A1 ∈ C2N×2N on Null(A0) denoted by A1|Null(A0) can be expressed by the matrix P ∈ Cn×n with elements

Pij = ⟨vj, A1ui⟩C2N for all 1 ≤ i, j ≤ n. (36)

Proof. The proof of the lemma is achieved with the method of Lyapunov–Schmidt reductions. Using the analyticity of A(θ) and h(θ), let
us expand

A(θ) = A0 + θA1 + θ2Ã(θ), h(θ) = h0 + θh1 + θ2h̃(θ),

where A0 = A(0), A1 = A′(0), h0 = h(0), h1 = h′(0), and Ã(θ) and h̃(θ) are bounded as θ → 0. Given the basis for Null(A0) in (34), we
consider the orthogonal decomposition of the solution

c =

n−
j=1

ajuj + b, b ⊥ Null(A0). (37)

The linear system becomes

(A0 + θA1 + θ2Ã(θ))b + θ

n−
j=1

aj(A1 + θ Ã(θ))uj = h0 + θh1 + θ2h̃(θ). (38)

Projections of system (38) to the basis for Null(A∗

0) in (34) give n equations

n−
j=1


Pij + θ P̃ij(θ)


aj + ⟨vi, (A1 + θ Ã(θ))b⟩C2N = ⟨vi, h1 + θ h̃(θ)⟩C2N , 1 ≤ i ≤ n, (39)

where Pij is given in (36), P̃ij(θ) = ⟨vi, Ã(θ)uj⟩C2N is bounded as θ → 0, and we have used the condition h0 ⊥ Null(A∗

0).
Let Q : C2N

→ Ran(A0) ⊂ C2N and Q ∗
: C2N

→ Ran(A∗

0) ⊂ C2N be the projection operators. Recall that Ran(A0) ⊥ Null(A∗

0) and
Ran(A∗

0) ⊥ Null(A0). Projection of system (38) to Ran(A0) gives an equation for b

Q (A0 + θA1 + θ2Ã(θ))Q ∗b = Q (h0 + θh1 + θ2h̃(θ)) − θ

n−
j=1

ajQ (A1 + θ Ã(θ))uj. (40)

Because QA0Q ∗ is invertible, there is a unique map Cn
∋ (a1, . . . , an) → b ∈ Ran(A∗

0) for any θ ∈ (−θ0, θ0) such that b is a solution of
system (40) and for any θ ∈ (−θ0, θ0), there is C > 0 such that

‖b − Q ∗A−1
0 Qh0‖C2N ≤ Cθ. (41)

Since Null(A1|Null(A0)) = {0}, matrix P is invertible. For any b from solution of system (40) satisfying bound (41), there exists a unique
solution of system (39) for (a1, . . . , an) for any θ ∈ (−θ0, θ0) such that

∃C > 0: ‖a − P−1(I − Q )(h1 − A1Q ∗A−1
0 Qh0)‖Cn ≤ Cθ. (42)

For any θ ≠ 0, the solution of system A(θ)c = h(θ) is unique. Therefore, the unique solution obtained from the decomposition (37) for
any θ ∈ (−θ0, θ0) is equivalent to the unique solution of system A(θ)c = h(θ) for θ ≠ 0. �
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We shall check that the conditions (33) of Lemma 3 are satisfied for our particular matrix A(θ, ϵ) and the right-hand side vector h(θ, ϵ)
for both end points θ = 0 and θ = −π .

Lemma 4. Let h+(ϵ) := h(0, ϵ) and h−(ϵ) := h(−π, ϵ). For any ϵ ∈ (0, ϵ0), it is true that

h±(ϵ) ⊥ Null(A∗

±
(ϵ)) and Null(∂θA±(ϵ)|Null(A±(ϵ))) = {0}. (43)

Proof. It is sufficient to develop the proof for θ = 0. The proof for θ = −π is similar.
Recall that the first N rows of A(0, ϵ) are identical to the first row. Since components of h(0, ϵ) are given by

−
m∈Z

fm−
m∈Z

e−κ|n−m|gm


n∈U+∪U−

,

the first N entries of h(0, ϵ) are also identical so that h(0, ϵ) ∈ Ran(A(0, ϵ)) ⊥ Null(A∗(0, ϵ)) for any ϵ ∈ (0, ϵ0). Therefore, the first
condition (43) is satisfied.

Next, we compute A1(ϵ) = ∂θA(θ, ϵ)|θ=0. We know that

2ϵ(cosh(κ) − 1) = 2 + ϵ(2 − 2 cos(θ)) ⇒
dκ
dθ

=
sin(θ)

sinh(κ)
,

therefore,

A1(ϵ) ≡ i
[
2ϵI + (1 + p)R pR

0 0

]
, (44)

where

R =


0 m1 m1 + m2 · · · m1 + m2 + · · · + mN−1
m1 0 m2 · · · m2 + m3 + · · · + mN−1

m1 + m2 m2 0 · · · m3 + · · · + mN−1
...

...
...

...
...

m1 + m2 + · · · + mN−1 m2 + · · · + mN−1 m3 + · · · + mN−1 · · · 0

 .

Let P(ϵ) be the matrix in C(N−1)×(N−1) which represents the restriction A1(ϵ)|Null(A0(ϵ)). The existence of a ∈ Null(P(ϵ)) ⊂ CN−1 is
equivalent to the existence of u ∈ Null(A0(ϵ)) ⊂ C2N such that A1(ϵ)u ∈ Ran(A0(ϵ)) ⊥ Null(A∗

0(ϵ)). In other words, we need to find
u ∈ Null(A0(ϵ)) such that the first N entries of A1(ϵ)u are identical (the other N entries of A1(ϵ)u are zeros).

By continuity in ϵ ∈ [0, ϵ0), the second condition (43) is satisfied if it is satisfied for ϵ = 0. Therefore, it is sufficient to check the
existence of u ∈ Null(A0(0)) such that the first N entries of A1(0)u are identical.

It follows from relations (32) and (44) that the existence of u ∈ Null(A0(0)) such that the first N entries of A1(0)u are identical is
equivalent to the existence of w ∈ Null(M+) ⊂ CN such that all entries of Rw are identical.

If w = [w1, w2, . . . , wN ]
T

∈ Null(M+), then

w1 + w2 + · · · + wN = 0. (45)

The condition (Rw)1 = (Rw)2 gives

m1(w2 + · · · + wN) = m1w1.

Constraint (45) implies that if m1 ≠ 0, then w1 = 0 and w2 + · · · + wN = 0. Continuing by induction for condition (Rw)j = (Rw)j+1,
where j ∈ {1, 2, . . . ,N −1}, we obtain that ifmj ≠ 0, then wj = 0 for all j ∈ {1, 2, . . . ,N −1}. In view of constraint (45), we havewN = 0
that is w = 0 ∈ CN . As a result, we have proved that Null(A1(0)|Null(A0(0))) = {0}. By continuity in ϵ ∈ [0, ϵ0),Null(A1(ϵ)|Null(A0(ϵ))) = {0}
for small ϵ ≠ 0, which gives the second condition (43) for θ = 0. �

Remark 6. Lemma 4 is proved without assuming that allmj = 1.

Proof of Theorem 2. By Lemma 4, assumptions of Lemma 3 are satisfied and the unique solution of system (30) for θ ∈ (−π, 0) is
continued to the unique bounded limit c0 = limθ→0 c. From the first N equations of system (23), we infer that

θ = 0 :

−
m∈U+∪U−

((1 + p)am + pbm) = −

−
m∈Z

fm.

As a result, the simple pole singularity at θ = 0 (z(λ+) = 0) in the Green function representation (22) with the Puiseux expansion (20)
is canceled. Similarly, the simple pole singularity at θ = −π is canceled. On the other hand, the representation (22) contains ϵ in the
denominator, which does not cancel out generally. As a result, Lemma 2 for all mj = 1 and Lemma 4 give that for any ω ∈ [0, 4] and any
ϵ ∈ (0, ϵ0), there exists C > 0 such that

‖a‖l∞ ≤ Cϵ−1.

This gives bound (28) and hence Theorem 2. �
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3.3. Matching conditions for the resolvent operator

To complete the proof of Theorem 1, we need to prove that no singularities of linear system (23) are located inside the disks Bδ+(1) and
Bδ−(−1) for ϵ-independent δ± > 0. It is again sufficient to consider the disk Bδ+(1) because of the symmetry in the Ω-plane.

The free resolvent operator R+

0 (λ) : l2σ (Z) → l2
−σ (Z)with σ > 1

2 is extendedmeromorphically in variable θ(λ) for λ ∈ C+
\ [0, 4]with

simple poles at θ = 0 (λ = 0) and θ = −π (λ = 4). By Theorem 2, the resolvent operator R+

L (1 + ϵω) : l11(Z) × l11(Z) → l∞(Z) × l∞(Z)

is bounded for ω ∈ [0, 4] and the pole singularities are canceled. As a result, the resolvent operator R+

L (1 + ϵλ) can be extended as a
bounded operator from l2σ (Z) × l2σ (Z) to l2

−σ (Z) × l2
−σ (Z) with σ > 1

2 for any λ ∈ C+
\ [0, 4]. We need to show that no singularities of the

resolvent operator RL(1 + ϵλ) exist in the upper semi-annulus

Dδ+ =

λ ∈ C+

: γ+ < |λ| < δ+ϵ−1 ,

where γ+ > 4 and δ+ ∈ (0, 1). A similar analysis can also be used to show that the resolvent operator R−

L (1 + ϵλ) can be extended as a
bounded operator in the lower semi-disk in Bδ+(1).

Lemma 5. For any ϵ ∈ (0, ϵ0) and all λ ∈ Dδ+ , the resolvent operator RL(1 + ϵλ) is a bounded operator from l2(Z) × l2(Z) to l2(Z) × l2(Z).

Proof. Since the continuous spectrum does not touch the boundaries of Dδ+ , the statement is true if and only if there exists a unique
solution of linear system (23).

Let us denote z(λ+) = z(λ) and z(λ−) = −iκ(λ), where z(λ) is found from the transcendental equation (17) and κ(λ) with
Re(κ(λ)) > 0 admits the asymptotic expansion for λ ∈ Dδ+

eκ(λ)
=

2 + ϵλ

ϵ
+ 2 −

ϵ

2 + ϵλ
+ O(ϵ2) as ϵ → 0.

As earlier, we denote q+

j = e−imjz(λ) and q−

j = e−mjκ(λ) for j ∈ {1, 2, . . . ,N − 1}.
We write the coefficient matrix (25) for Ω = 1 + ϵλ in the form

A(λ, ϵ) ≡


−ϵ


λ(λ − 4)I − (1 + p)M(λ) −pM(λ)

−pN(κ)


(2 + ϵλ)2 + 4ϵ(2 + ϵλ)I − (1 + p)N(κ)


, (46)

whereM(λ) ≡ Q (q+

1 , q+

2 , . . . , q+

N−1),N(κ(λ)) ≡ Q (q−

1 , q−

2 , . . . , q−

N−1), and the appropriate branches of sin z(λ) and sinh(κ(λ)) are chosen
in the domain Dδ+ .

Let |λ| = O(ϵ−r) as ϵ → 0 for r ∈ [0, 1). Then, we have

A(λ, ϵ) →

[
−(1 + p)M(λ) −pM(λ)

−pI (1 − p)I

]
as ϵ → 0, (47)

where M(λ) → I as ϵ → 0 if r ∈ (0, 1) and M(λ) 9 I as ϵ → 0 if r = 0. The limiting matrix (47) is not singular if γ+ > 4. Hence A(λ, ϵ)
is not singular for small ϵ ≥ 0 if |λ| = O(ϵ−r) with r ∈ [0, 1).

Let |λ| = O(ϵ−r) as ϵ → 0 for r ∈ (0, 1]. Then, we have

A(λ, ϵ) →

[
−(1 + ϵλ + p)I −pI

−pI (1 + ϵλ − p)I

]
as ϵ → 0. (48)

Again, the limiting matrix is not singular if ϵλ ≠ −1 (that is δ+ < 1) and hence A(λ, ϵ) is not singular for small ϵ ≥ 0 if |λ| = O(ϵ−r)
with r ∈ (0, 1].

Since the above asymptotic scaling overlap at r ∈ (0, 1), the matrix A(λ, ϵ) is not singular in the domain Dδ+ for small ϵ > 0. �

Theorem 1 is proved with Lemma 1, Theorem 2, and Lemma 5.

4. Perturbation arguments for the full resolvent

Let us now consider the full spectral problem (8). Thanks to Proposition 1 and expansion (7), we can represent φ
2p
n by

φ2p
n =

−
m∈U+∪U−

δn,m(1 + ϵχm) + ϵ2Wn,

where {χm}m∈U+∪U−
is a set of numerical coefficients and {Wn}n∈Z ∈ l2(Z) is a new potential such that ‖W‖l2 = O(1) as ϵ → 0.

In variables {(an, bn)}n∈Z, the resolvent problem can be rewritten in the operator form

(L̃ + ϵ2W̃ )

[
a
b

]
− Ω

[
a
b

]
=

[
f

−g

]
, (49)

where

L̃ =

[
−ϵ∆ + I − (1 + p)Ṽ −pṼ

pṼ ϵ∆ − I + (1 + p)Ṽ ,

]
, W̃ =

[
−(1 + p)W −pW

pW (1 + p)W ,

]
,
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and Ṽ is the associated compact potential such that

(Ṽ u)n =

−
m∈U+∪U−

δn,m(1 + ϵχm)um, n ∈ Z.

Let us denote the solution of the inhomogeneous system (49) by[
a
b

]
= R(Ω)

[
f

−g

]
, (50)

where R(Ω) is the resolvent operator of the full spectral problem (8). The following theorem represents the main result of our paper.

Theorem 3. Fix U+,U− ⊂ Z such that U+ ∩U− = ∅, N := |U+| + |U−| < ∞, and U+ ∪U− is simply connected. For any integer p ≥ 2, there
are ϵ0 > 0 and δ > 0 such that for any fixed ϵ ∈ (0, ϵ0) the resolvent operator

R(Ω) : l2(Z) × l2(Z) → l2(Z) × l2(Z)

is bounded for any Ω ∉ Bδ(0) ∪ [1, 1 + 4ϵ] ∪ [−1 − 4ϵ, −1]. Moreover, R(Ω) has exactly 2N poles (counting multiplicities) inside Bδ(0) and
admits the limits

R±(Ω) := lim
µ↓0

R(Ω ± iµ)

such that for any Ω ∈ [1, 1 + 4ϵ] ∪ [−1 − 4ϵ, −1] and any ϵ ∈ (0, ϵ0), there is C > 0 such that

‖R±(Ω)‖l11×l11→l∞×l∞ ≤ Cϵ−1.

Proof. Let RL̃(Ω) be the resolvent operator for the inverse operator (L̃− ΩI)−1 associated with the compactly supported potential Ṽ . We
shall prove that Theorem 1 remains valid for the resolvent operator RL̃(Ω). Assuming it, the rest of the proof of Theorem 3 relies on the
perturbation arguments and the resolvent identities

R(Ω) = RL̃(Ω)(I + ϵ2W̃RL̃(Ω))−1
= (I + ϵ2RL̃(Ω)W̃ )−1RL̃(Ω).

Indeed, outside the continuous spectrum located at

σc(L̃ + ϵ2W̃ ) = σc(L̃) = σc(L) ≡ [−1 − 4ϵ, −1] ∪ [1, 1 + 4ϵ],

the resolvent operator RL̃(Ω) is only singular inside the disk Bδ0(0), where the perturbation theory of isolated eigenvalues apply. Inside
the continuous spectrum, RL̃(Ω) is extended as a bounded operator from l11(Z)× l1(Z) to l∞(Z)× l∞(Z) such that for any Ω ∈ [1, 1+ 4ϵ]
and any ϵ ∈ (0, ϵ0), there is C > 0 such that

∃C > 0: ‖R±

L̃
(Ω)‖l11×l11→l∞×l∞ ≤ Cϵ−1. (51)

Since W̃ is a bounded (Ω, ϵ)-independent operator from l∞(Z) × l∞(Z) to l11(Z) × l11(Z) (note here that φ ∈ l2s (Z) for any s ≥ 0, see
Remark 1), bound (51) implies that

∃C > 0: ‖ϵ2W̃RL̃(Ω)‖l11×l11→l11×l11
≤ Cϵ,

so that (I + ϵ2W̃RL̃(Ω)) is an invertible bounded operator from l11(Z) × l11(Z) to l11(Z) × l11(Z) for small ϵ > 0.
We only need to extend Theorem 1 to the resolvent operator RL̃(Ω). The Green function representation (22) and the linear system (23)

are now written with the factor (1 + ϵχm) in the sum over m ∈ U+ ∪ U−. This implies that the coefficient matrix A(Ω, ϵ) is now written
as

Ã(Ω, ϵ) :=

[
2iϵ sin z(λ+)I − (1 + p)Q+(Ω, ϵ)(I + ϵD) −pQ+(Ω, ϵ)(I + ϵD)

−pQ−(Ω, ϵ)(I + ϵD) 2iϵ sin z(λ−)I − (1 + p)Q−(Ω, ϵ)(I + ϵD)

]
,

where D is a diagonal matrix of elements {χm}m∈U+∪U−
. If p ≥ 2, Lemmas 1, 2, 4 and 5 remain valid with new coefficient matrix

Ã(Ω, ϵ) as these lemmas were proved from the limit ϵ = 0 (perturbation theory of the Appendix is only required for p = 1), where
Ã(Ω, 0) = A(Ω, 0). Therefore, Theorem 1 holds for the resolvent operator RL̃(Ω) if p ≥ 2. �

Corollary 1. The result of Theorem 3 holds for p = 1 if N = 1.

Proof. If N = 1 (which is the case of fundamental discrete soliton), the 2 × 2 coefficient matrix

Ã(Ω, ϵ) =

[
2iϵ sin z(λ+) − (1 + p)(1 + ϵχ0) −p(1 + ϵχ0)

−p(1 + ϵχ0) 2iϵ sin z(λ−) − (1 + p)(1 + ϵχ0)

]
,

is only singular in Bδ(0) for small ϵ > 0, where a double pole of RL̃(Ω) and R(Ω) resides. �
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Unfortunately, in the cubic case p = 1, we cannot generally extend the result of Theorem 3 to multi-site discrete solitons with N ≥ 2
because the perturbation theory for Ã(Ω, ϵ) near the end points of the continuous spectra Ω = ±1 and Ω = ±(1 + 4ϵ) draws no
conclusion in a general case. For instance, reworking the perturbative arguments of the Appendix, we obtain the necessary condition for
Null(A±(ϵ))2 > Null(A±(ϵ)) in the form

ϵ(2I − J − 2D)w + O(ϵ2) ⊥ w ∈ Null(M+),

where I is the identity matrix in RN , J is the two-diagonal matrix (55) from the Appendix, and D is a diagonal matrix of {χm}m∈U+∪U−
.

Because (2I − J − 2D) is no longer positive definite, the degenerate cases with Null(A±(ϵ))2 > Null(A±(ϵ)) are possible.
To illustrate this possibility, we set N = 3 and consider three distinct simply connected discrete solitons associated with the sets

(a) U+ = {0, 1, 2}; (b) U+ = {0, 1},U− = {2}; (c) U+ = {0, 2},U− = {1}.

Computations of the power expansions (7) give

(a) χm =

1, m = 0,
0, m = 1,
1, m = 2,

(b) χm =

1, m = 0,
2, m = 1,
3, m = 2,

(c) χm =

3, m = 0,
4, m = 1,
3, m = 2.

As a result, the matrix C ≡ 2I − J − 2D is obtained in the form

(a) C =

 0 −1 0
−1 2 −1
0 −1 0


, (b) C =

 0 −1 0
−1 −2 −1
0 −1 −4


, (c) C =


−4 −1 0
−1 −6 −1
0 −1 −4


.

We have

Null(M+) = span{w1, w2}, w1 =
1

√
2

 1
0

−1


, w2 =

1
√
6

 1
−2
1


,

from which we compute the matrix of projections Pij = ⟨Cwi, wj⟩C3 in the form

(a) P =


0 0

0
8
3


, (b) P =

−2
2

√
3

2
√
3

−
2
3

 , (c) P =

[
−4 0
0 −4

]
.

The projection matrices in cases (a) and (b) are singular. In order to show that Null(A±(ϵ))2 = Null(A±(ϵ)) for ϵ ∈ (0, ϵ0), we need to
extend the perturbation arguments of the Appendix to the order O(ϵ2). Although it is quite possible that the non-degeneracy condition
Null(A±(ϵ))2 = Null(A±(ϵ)) is still satisfied for simply connected multi-site discrete solitons for p = 1, we do not include computations
of the higher-order perturbation theory in this paper.

5. Case study for a non-simply connected two-site soliton

We explain now why the resolvent operator associated with non-simply connected multi-site discrete solitons have singularities in
the anti-continuum limit. These singularities appear in Lemma 2 because the determinant DN(q1, q2, . . . , qN−1) given by (31) has zeros
for some θ ∈ (−π, 0).

Let us consider a case study of a two-site soliton with n1 = 0 and n2 = m ≥ 2. For clarity of presentation, we only consider p ≥ 2. The
power series expansions (7) give

m ≥ 3: φ2p
n = (δn,0 + δn,m)(1 + 2ϵ − 2ϵ2) + ϵ3Wn, n ∈ Z, (52)

and

m = 2: φ2p
n = (δn,0 + δn,m)(1 + 2ϵ − 3ϵ2) + ϵ3Wn, n ∈ Z, (53)

where {Wn}n∈Z ∈ l2(Z) is a new potential such that ‖W‖l2 = O(1) as ϵ → 0.
Let us consider the coefficient matrix A(θ, ϵ) at the continuous spectrum [1, 1 + 4ϵ] defined by (29). We have explicitly

M(θ) =

[
1 e−imθ

e−imθ 1

]
, N(κ) =

[
1 e−2κ

e−2κ 1

]
.

Note that detM(θ) = 1− e−2imθ . Besides the end points θ = −π and θ = 0, the matrixM(θ) (and, therefore, the limiting matrix A(θ, 0))
is singular at the intermediate points θj = −

π j
m for j = 1, 2, . . . ,m − 1.

If m = 2, there is only one intermediate-point singularity of A(θ, 0) at θ = −
π
2 . We have dimNull A


−

π
2 , 0


= 1 and

Null A∗


−

π

2
, 0


= span {e1} , e1 =

1
1
0
0

 .

The first two entries of the right-hand side vector h(θ, ϵ) in the linear system (30) are given explicitly by

h1(θ, ϵ) =

−
n∈Z

e−iθ |n|fn, h2(θ, ϵ) =

−
n∈Z

e−iθ |n−2|fn.
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The constraint

e1, h


−

π
2 , 0


C4 = 0 of Lemma 3 gives h1


−

π
2 , 0


= −h2


−

π
2 , 0


and it is equivalent to the constraint f1 = 0. If f ∈ l1(Z)

with f1 ≠ 0, then the solution of the linear system (23) and hence the resolvent operator (22) has a singularity at Ω = 1 + 2ϵ

θ = −

π
2


as ϵ → 0. This singularity indicates a resonance at the mid-point of the continuous spectrum in the anti-continuum limit.

We would like to show that the resonance does not actually occur at the continuous spectrum if ϵ > 0 and does not lead to (unstable)
eigenvalues of the continuous spectrum. To do so, we use the perturbation theory up to the quadratic order in ϵ.

Expanding the solutions of the transcendental equation

2ϵ(cosh(κ) − 1) = 2 + ϵω, ω = 2 − 2 cos(θ),

we obtain

e−κ
=

1
2
ϵ −

2 + ω

4
ϵ2

+ O(ϵ3) as ϵ → 0

and

2ϵ sinh(κ) = 2 + (2 + ω)ϵ − ϵ2
+ O(ϵ3) as ϵ → 0.

Using expansion (53) for m = 2, we obtain the extended coefficient matrix Ã(θ, ϵ) in the form

Ã(θ, ϵ) :=

[
2iϵ sin(θ)I − (1 + p)ν(ϵ)M(θ) −pν(ϵ)M(θ)

−pν(ϵ)N(κ) 2ϵ sinh(κ)I − (1 + p)ν(ϵ)N(κ)

]
,

where ν(ϵ) = 1 + 2ϵ − 3ϵ2
+ O(ϵ3). Using MATHEMATICA, we expand the roots of det Ã(θ, ϵ) = 0 near θ = −

π
2 and ϵ = 0 to obtain

θ = −
π

2
+ (p − 1)ϵ + 2(1 − p)ϵ2

+ i(p − 1)2ϵ2
+ O(ϵ3) as ϵ → 0. (54)

Since Im(θ) > 0 for small ϵ > 0 and z(λ+) = θ , the solution of the linear system (30) is singular at the point z(λ+), which does not belong
to the domain Im z(λ+) < 0 and hence violates the condition (17).

The singularity of the solution of the linear system (30) is still located near the continuous spectrum for small ϵ > 0 and, therefore, the
resolvent operator R(Ω) becomes large near the points Ω = ±(1 + 2ϵ) (although, it is always a bounded operator from l2σ (Z) × l2σ (Z) to
l2
−σ (Z) × l2

−σ (Z) for small ϵ > 0 and fixed σ > 1
2 ). Since sin(θ) is nonzero for θ = −

π
2 , the norm of R(Ω) is proportional to the 2-norm

of inverse matrix Ã−1(θ, ϵ).
Fig. 2 illustrates the singularities of the resolvent operator R(Ω) by plotting pseudospectra of the coefficient matrix A(Ω, ϵ) in the

complex Ω-plane for p = 2 and ϵ = 0.05. The subplots (a) and (b) for m = 1 show that the matrix is singular at the edges of the
continuous spectrum Ω = ±1 and Ω = ±(1 + 2ϵ), and at four points on the imaginary axis, the latter being attributed to the splitting
of zero eigenvalue in the anti-continuum limit. The subplots (c) and (d) for m = 2 and m = 3, respectively show that in addition to
singularities at the edges of continuous spectrum there are alsom−1 localmaxima at its intermediate points. This localmaxima correspond
to theminima of det A(Ω, ϵ). We also notice the wedges on the level sets as they cross the continuous spectrum occurring due to the jump
discontinuities in z(λ+) and A(Ω, ϵ) because the resolvent operator R(Ω) is discontinuous across the continuous spectrum.

Fig. 3 further illustrateswhat exactly happens at the continuous spectrum. On the left, we plot
A(Ω, ϵ)−1


2 versus θ ∈ (−π, 0) for the

casem = 2. On the right, we show that the height of the local maxima near θ = −π/2 is proportional to ϵ−2 as prescribed by formula (54).
Fig. 4 gives an illustration for pseudospectra of the resolvent operator R(Ω). Recall that on the continuous spectrum, R(Ω) is a bounded

operator from l2σ (Z) × l2σ (Z) to l2
−σ (Z) × l2

−σ (Z) for fixed σ > 1
2 . To incorporate the weighted l2 spaces, we consider the renormalized

resolvent operator

R̃L(Ω) = (L̃ − Ω Ĩ2)−1
: l2(Z) × l2(Z) → l2(Z) × l2(Z),

where L̃ is derived from L by replacing operators I, ∆ and V with Ĩ, ∆̃ and Ṽ , and Ĩ2 = diag{Ĩ, Ĩ}. Here

Ĩn,m = κ2
n δn,m, Ṽn,m = Ĩn,m

−
j∈U+∪U−

δn,j,

∆̃n,n = −2κ2
n , ∆̃n,n+1 = ∆̃n+1,n = κnκn+1,

and κn = (1 + n2)σ/2. The lattice problem is considered for 2K + 1 grid points and the corresponding matrix representation of operators
L̃ and Ĩ2 is constructed subject to the Dirichlet boundary conditions.

The level sets for the (2K + 1) × (2K + 1) matrix approximation of the resolvent R̃(Ω) are plotted on Fig. 4. The subplots of Fig. 4
correspond to the subplots of Fig. 2. We observe that the norm of R̃(Ω) has the same global behavior as for the norm of A(Ω, ϵ)−1.
However, the resolvent operator R̃(Ω) has no singularities at the edges Ω = ±1 and Ω = ±(1 + 4ϵ) because these singularities are
canceled according to Lemma 4 (which remains true for anym ≥ 1, see Remark 6).

Although no arguments exist to exclude resonances at the mid-point of the continuous spectrum for the linearized dNLS equation (8),
the case study of a two-site discrete soliton suggests that the resonances do not happen at the continuous spectrum for small but finite
values of ϵ > 0. Moreover, the resonances do not bifurcate to the isolated eigenvalues of the continuous spectrum because isolated
eigenvalues near the continuous spectrum would violate the count of unstable eigenvalues (12). Therefore, the only scenario for these
resonances is to move to the resonant poles on the wrong sheets Im(z(λ±)) > 0 of the definition of z(λ±).
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a b

c d

Fig. 2. Level sets for ‖A(Ω, ϵ)−1
‖2 in the Ω-plane. The levels are equidistant on a logarithmic scale.

Fig. 3. Left: Norm ‖A(Ω, ϵ)−1
‖2 versus θ ∈ (−π, 0) for m = 2. Right: The value of local maxima of ‖A(Ω, ϵ)−1

‖2 in the neighborhood of θ = −π/2 as a function of ϵ.

Appendix. Perturbative arguments for the cubic dNLS equation

We recall the coefficient matrices A±(ϵ) from the proof of Lemma 2. In the case p = 1 (the cubic dNLS equation), these matrices are
rewritten in the form

A±(ϵ) =

[
−2M± −M±

−N(κ±) 2ϵ sinh(κ±)I − 2N(κ±)

]
,

where κ± > 0 are uniquely defined by

2ϵ(cosh(κ+) − 1) = 2, 2ϵ(cosh(κ−) − 1) = 2 + 4ϵ.

We recall that Null(A±(ϵ)) and Null(M±) are (N − 1) dimensional for any ϵ ∈ [0, ϵ0). It is clear from the explicit form of A∗
±
(ϵ) that

u ∈ Null(A∗

±
(ϵ)) ⇔ u =

[
w
0

]
, w ∈ Null(M±).
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a b

c d

Fig. 4. The level sets of ‖(L̃ − Ω Ĩ2)−1
‖2 in the Ω-plane. The black dots represent eigenvalues of the matrix representation of operator L̃. The levels are equidistant on a

logarithmic scale.

At ϵ = 0, we also recall that Null(A±(0))2 is (2N−2) dimensional because of (N−1) eigenvectors and (N−1) generalized eigenvectors,

A±(0)
[
0
w

]
=

[
0
0

]
, A±(0)

[
−w
0

]
=

[
0
w

]
, w ∈ Null(M±).

We would like to show that Null(A±(ϵ))2 = Null(A±(ϵ)) is (N − 1) dimensional for any ϵ ∈ (0, ϵ0). In other words, we would like to
show that no solution ũ ∈ C2N of the inhomogeneous equation A±(ϵ)ũ = u ∈ Null(A±(ϵ)) exists for ϵ ∈ (0, ϵ0). This task is achieved by
the perturbation theory. Wewill only consider the case A+(ϵ), which corresponds to θ = 0. The case A−(ϵ)which corresponds to θ = −π
can be considered similarly.

We shall only consider the case of the simply connected set U+ ∪U− withm1 = m2 = · · · = mN−1 = 1. The general case holds without
any changes.

Thanks to the asymptotic expansions

e−κ+ =
ϵ

2
+ O(ϵ2), 2ϵ sinh(κ+) = 2 + 2ϵ + O(ϵ2), as ϵ → 0,

we obtain the asymptotic expansion

A+(ϵ) =

[
−2M+ −M+

−I O

]
+ ϵ


O O

−
1
2
J 2I − J


+ O(ϵ2),

where I and O are identity and zero matrices in RN and J is the three-diagonal matrix in RN

J =



0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0

 . (55)

Note that (2I − J) is a strictly positive matrix because it appears in the finite-difference approximation of the differential operator −∂2
x

subject to the Dirichlet boundary conditions.
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Perturbative computations show that if u ∈ Null(A+(ϵ)), then u is represented asymptotically as

u =

[
ϵ(2I − J)v

v

]
+ O(ϵ2),

where v + 2ϵ(2I − J)v + O(ϵ2) = w ∈ Null(M+).
Now, there exists a solution ũ ∈ C2N of the inhomogeneous equation A+(ϵ)ũ = u ∈ Null(A+(ϵ)) if and only if u ⊥ Null(A∗

+
(ϵ)). For

small ϵ ∈ (0, ϵ0), this condition implies that

ϵ(2I − J)v + O(ϵ2) = ϵ(2I − J)w + O(ϵ2) ⊥ w ∈ Null(M+),

which is not possible since (2I − J) is a strictly positive matrix.
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