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Abstract

We prove global well-posedness of the short-pulse equation with small initial

data in Sobolev space H2. Our analysis relies on local well-posedness results

of Schäfer and Wayne, the correspondence of the short-pulse equation to the

sine-Gordon equation in characteristic coordinates, and conserved quantities

of the short-pulse equation. We perform numerical computations to illustrate

this result. We also prove local and global well-posedness of the sine-Gordon

equation in an appropriate vector space.
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Introduction

Fiber-optics communication lines are very efficient in rapid data transmission

on long distances. In such systems a communication channel is an optical

fiber with a certain balance between dispersion and nonlinearity. The data

to be transmitted is encoded in pulses. If the pulses do not suffer much from

dissipation and dispersion effects the data can be decoded on the other end

of the communication channel. Using shorter pulses as an information carrier

improves a bandwidth of the system. Modern lasers are capable of generating

femtosecond laser pulses containing only a few cycles on a pulse length [23].

Figure 1: A wavetrain (left) and a short pulse (right).

Propagation of light pulses in an optical fiber is described by Maxwell’s

equations [4]. There are two alternative approaches to work with these equa-

tions. The first one relies on numerical approximations [12, 14]. This method

allows us to compute evolution of any initial data provided numerical errors are
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sufficiently small. However, this method is computationally costly and does

not say much about the analytic properties of pulse solutions. The other line

of attack is based on asymptotic approximations to the Maxwell’s equations.

If the spectrum of a pulse is sufficiently narrow, the solution has a form of a

wavetrain (see Figure 1, left) which fits into a “slowly varying envelope ap-

proximation”. This pulse can be represented as a product of a slowly changing

amplitude and a rapidly oscillating phase function, with the amplitude satis-

fying the well-known nonlinear Schrödinger equation [29]. If the spectrum of a

pulse is broad, the solution has the form of a short pulse (see Figure 1, right).

In the past decade, the topic of short pulses was intensively studied in the

literature [5, 6, 10,16,27] due to rapid technological progress.

This thesis is devoted to a model equation for ultra-short pulses in sil-

ica optical fiber derived recently by Schäfer and Wayne [27]. This model is

referred to as the short-pulse equation in literature. Chung et al. [9] justified

derivation of this equation in linear case and presented numerical approxi-

mations of modulated pulse solutions. In addition to the derivation of the

short-pulse equation, the pioneer paper [27] contains two important results.

First, non-existence of a smooth travelling wave solution was proved in the

entire range of the speed parameter. Second, the short-pulse equation was

proved to be locally well-posed in a certain Sobolev space. The first result

was recently extended by Costanzino, Manukian and Jones [11], who added a

high-frequency dispersive term to the model of Schäfer and Wayne allowing

for existence of smooth travelling solutions. To construct homoclinic solutions

with slow and fast motions, the authors of [11] applied the Fenichel theory for

singularly perturbed differential equations. Extension of the second result is

described in the present thesis.

The short-pulse equation has a number of remarkable properties. Not

2
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only it is integrable by the Inverse Scattering Transform method [2], but also it

is related to a well-studied sine-Gordon equation in characteristic coordinates

through a coordinate transformation [24, 26]. This transformation endows

the short-pulse equation with solitary wave solutions [19, 25] and an infinite

hierarchy of conserved quantities [7]. There are two types of solitary wave

solutions of the sine-Gordon equation (breathers and kinks) that generate two

special solutions of the short-pulse equation (pulses and loops) [26]. The loop

solutions are multi-valued, while pulse solutions are single-valued for small

amplitudes.

This thesis addresses properties of the short-pulse equation and con-

tains the following original results:

• We show that the short-pulse equation passes the Painlevé test, that

is it only admits solutions “whose only movable singularities are poles”

[2, 22]. Having passed the Painlevé test, the system is considered to be

integrable.

• We prove global well-posedness of the short-pulse equation for small ini-

tial data in energy space. We rely on equivalence of the short-pulse

equation and sine-Gordon equation through a coordinate transforma-

tion [24,26] and the hierarchy of its conserved quantities [7].

• We prove that the sine-Gordon equation in characteristic coordinates

is locally well-posed in a constrained Sobolev space. Our analysis is

based on the Duhamel’s principle, properties of the linearized problem

and contraction arguments. By using the conserved quantities of the

sine-Gordon equation in characteristic coordinates we prove global well-

posedness for small initial data in the constrained energy space.
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• We illustrate our result on global well-posedness of the short-pulse equa-

tion by numerical simulations based on the pseudospectral method [31].

The numerical approximation to the solution of the short-pulse equation

remains bounded and smooth for small initial data and develops shocks

and wave breaking for large initial data. We also test stability of the

exact pulse solutions by numerical simulations.

The thesis is organized as follows. In Chapter 1, we show that the

short-pulse equation possesses the Painléve property and review important

properties of this model. Chapter 2 is devoted to global well-posedness of

the short-pulse equation and well-posedness of the sine-Gordon equation in

characteristic coordinates. In Chapter 3, we perform numerical computations

of the short-pulse equation.

4



Chapter 1

Formalism of the short-pulse

equation

The short-pulse equation derived by Schäfer and Wayne in [27] after rescaling

of dependent and independent variables can be conveniently represented in a

normalized form

uxt = u+
1

6

(
u3
)
xx
, u(x, t) : R× R 7→ R, (1.1)

where x and t are spatial and temporal variables correspondingly, and u is

proportional to the amplitude of the pulse. This model possess a scaling

invariance property

u(x, t) = αU(α−1x, αt), α 6= 0, (1.2)

which allows to generate a one-parametric family of solutions from any known

solution U(X,T ) to this equation.

Linearized short-pulse equation uxt = u restricts propagation of the

wave packets to the left. Indeed, the dispersion relation ω(k) = k−1 for the

5
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harmonic waves

u(x, t) = Aei(kx−ωt)

shows that the phase and group velocities are, correspondingly,

vph =
ω

k
=

1

k2
> 0, vgr =

dω

dk
= − 1

k2
< 0,

and, in particular, the sign of the group velocity tells us that small-amplitude

pulses of the short-pulse equation propagate leftwards.

In this chapter, we prove that the short-pulse equation (1.1) possesses

a Painlevé property which is a reliable indicator of its integrability. We also

review the other properties of the short-pulse equation (1.1) which stem out

of its integrability. Those are Lax representation, transformation to the sine-

Gordon equation in characteristic coordinates, solitary wave solutions, and

conserved quantities.

1.1 Transformation to the sine-Gordon equa-

tion

Let us consider the sine-Gordon equation in characteristic coordinates in the

form

wyt = sinw, w(y, t) : R× R 7→ R, (1.3)

It was shown in [24] that the short-pulse equation (1.1) and the sine-Gordon

equation (1.3) can be transformed to each other. This was done by transform-

ing the generalized symmetry of the short-pulse equation to that of the sine-

Gordon equation and then applying the transformations obtained directly to

the equations. The derivation of this result was substantially simplified in [26]

6
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by making a change of variables that remove all but mixed second order deriva-

tives. Using the same method as in [26] we show how the transformation can

be derived.

Rewriting the short-pulse equation (1.1) in the parametric form

u(x, t) = v(y, t), y = y(x, t), (1.4)

we obtain

vytyx + vyyxt + vyyyxyt − v − vv2
yy

2
x −

1

2

(
v2vyyy

2
x + v2vyyxx

)
= 0. (1.5)

To remove the terms with vyy, we require

yt =
1

2
v2yx, (1.6)

so that

yxt = vvyy
2
x +

1

2
v2yxx,

and the main equation (1.5) reduces to

vytyx − v = 0. (1.7)

Let us assume that y(x, t) is invertible in x and consider x = x(y, t). By the

chain rule,

xy =
1

yx
, xt = −xyyt. (1.8)

Thus, (1.6), (1.7) and (1.8) yield
xy =

1

yx
=
vyt
v
,

xt = −xyyt = −xy
1

2
v2yx = −v

2

2
.

(1.9)

By compatibility condition xty = xyt we get(vyt
v

)
t
+ vvy = 0.

7
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Using an integrating factor 2vyt
v

we arrive at

v2
yt

v2
+ v2

y = f(y), (1.10)

where f(y) : R 7→ R+ is arbitrary.

The choice f(y) ≡ 0 gives only a trivial real solution v(y, t) = v0(t), for

which xy ≡ 0.

Let us consider the case f(y) > 0. Due to representation (1.4) and

invertibility of y(x, t) with respect to x, we can write the solution to the short-

pulse equation in the parametric form

u = v(y, t), x = x(y, t), (y, t) ∈ R2.

This solution is invariant with respect to reparametrization y = ψ(ỹ) with

ψ : R 7→ R. Let ψ be invertible function with the inverse φ = ψ−1 : R 7→ R.

Then for v(y, t) = ṽ(ỹ, t) we have

vy = φ′(y)ṽỹ.

One can choose the function φ to satisfy

(φ′(y))
2

= f(y) > 0.

Therefore, without loss of generality we can set f(y) = 1 in (1.10). Now, for

the equation
v2
yt

v2
+ v2

y = 1,

we make a potential transformation v = wt, thus obtaining

wytt√
1− w2

yt

= ±wt.

8
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Assuming that w with its derivatives decays to zero at infinity, upon integration

in t we obtain the sine-Gordon equation

wyt = ± sinw,

where we can choose “+”, due to invariance of u(x, t) with respect to the trans-

formation y 7→ −y. Hence, the above computations give important formulae

relating (1.1) and (1.3):

u(x, t) = wt(y, t), x = x(y, t) :


xt = −1

2
w2
t ,

xy = cosw.

(1.11)

Formulae (1.11) make it possible to derive solutions of the short-pulse equation

(1.1) from those of the sine-Gordon equation in characteristic coordinates (1.3).

We note that

ux(x, t) = tanw(y, t), (1.12)

so that the infinite slope of u(x, t) occurs in the solution of the short-pulse

equation (1.1) at the same points where the solution w(y, t) of the sine-Gordon

equation (1.3) intersects zeros of cosw. We will be interested in localized

solutions w(y, t) satisfying

‖w(·, t)‖L∞ <
π

2
, ∀t ∈ R+.

1.2 Painlevé property

To use the Inverse Scattering Transform scheme for a nonlinear partial differ-

ential equation, one can start by checking if it passes a Painlevé test [22, 30]

that indicates typically integrability of the nonlinear equation. This approach,

which is also known as the singularity analysis method, was adjusted to par-

tial differential equations by Weiss, Tabor and Carnevale in [34]. The idea

9
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is to check whether the solution to the partial differential equation with in-

dependent variables x1, x2, . . . , xn is a single-valued function about a movable

singular manifold φ(x1, x2, . . . , xn) = 0. The equation passes the Painlevé test

if the expansion of a solution into Laurent series about the singular manifold

has the number of arbitrary functions being equal to the order of the system,

that is the highest derivative in x1, x2, . . . , xn.

The short-pulse equation in the form (1.1) does not allow to determine

the leading order behaviour of Laurent series. Therefore, we perform the

Painlevé test for the equivalent system
vyt − vxy = 0,

xt + 1
2
v2 = 0,

(1.13)

which follows from (1.9). We apply the Weiss–Kruskal algorithm for Painlevé

test (see [22] and references therein) to the system (1.13): the singular manifold

is taken in the form

φ(y, t) = y + ψ(t), ψ′(t) 6= 0, ∀t ∈ R,

and Laurent series expansions for v and x are represented as
v(y, t) =

∑∞
n=0 an(t)φ(y, t)n+α,

x(y, t) =
∑∞

n=0 bn(t)φ(y, t)n+β.

The balance of the lowest powers of φ(y, t) in the system (1.13) occurs if α− 2 = α + β − 1,

β − 1 = 2α,

so that α = β = −1 after which we find that

a0(t) = ±2iψ′(t), b0(t) = −2ψ′(t).

10
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We are going to consider only the branch with a0(t) = 2iψ′(t) because the

other branch a0(t) = −2iψ′(t) will give the same expansion, but with the

opposite sign due to the symmetry v 7→ −v of the system. To determine the

values of r at which one or both coefficients ar(t), br(t) can be arbitrary, we

substitute the expansions
v(y, t) ∼ a0(t)φ

−1(y, t) + ar(t)φ
r−1(y, t),

x(y, t) ∼ b0(t)φ
−1(y, t) + br(t)φ

r−1(y, t),

into (1.13), group the terms at φr−3 and φr−2 for the first and second equations

correspondingly, and obtain r = −1, 1, 4. The value r = −1 corresponds to

the arbitrariness of the function ψ(t). In order to see what actually happens

at the orders r = 1, 4 we need to use the full series expansions. With this idea

in mind, we derive the recursion relations
(n− 2)a′n−1 + (n− 2)(n− 1)anψ

′ −
∑n

k=0(k − 1)an−kbk = 0,

b′n−1 + (n− 1)bnψ
′(t) + 1

2

∑n
k=0 akan−k = 0,

(1.14)

where a−1 = b−1 = 0 and n = 0, 1, 2, . . . . The results of our computations are

listed as follows:

• n = 1

a1(t) = −iψ
′′(t)

ψ′(t)
,

b1(t) – arbitrary.

• n = 2

a2(t) = −ib2(t), b2(t) =
1

6ψ′(t)3

(
ψ′′(t)2 − 2b′1(t)ψ

′(t)2
)
.

• n = 3

a3(t) = −ib3(t),

b3(t) =
1

12ψ′(t)5

(
b′′1(t)ψ′(t)3 − 2b′1(t)ψ

′′(t)ψ′(t)2 − ψ′′(t)ψ3(t)ψ′(t) + 2ψ′′(t)3
)
,

11
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• n = 4

a4(t) =
i

144ψ′(t)7

(
216b4(t)ψ

′(t)7 − 4b′1(t)
2ψ′(t)4 + 6b1

(3)(t)ψ′(t)4

− 30b′′1(t)ψ′′(t)ψ′(t)3 − 12b′1(t)ψ
(3)(t)ψ′(t)3

+ 52b′1(t)ψ
′′(t)2ψ′(t)2 − 6ψ(3)(t)2ψ′(t)2

− 6ψ′′(t)ψ(4)(t)ψ′(t)2 + 66ψ′′(t)2ψ(3)(t)ψ′(t)

− 73ψ′′(t)4
)
,

b4(t) – arbitrary.

Higher-order corrections of the Laurent series for v(y, t) and x(y, t) can be

obtained in the same way by recursion relation (1.14). We observe that Laurent

series for the solution to system (1.13) about φ(y, t) = y + ψ(t) possess three

arbitrary parameters ψ(t), b1(t) and b4(t). Since system (1.13) is of the third

order, this indicates that the short-pulse equation passes the Painlevé test.

1.3 Lax pair

It is common to tag a nonlinear PDE as an integrable system if it can be

written as a compatibility condition of two linear operators, known as the Lax

pair. In this case, the initial-value problem can be solved by means of the

Inverse Scattering Transform method [2]. It has been checked for a number

of examples that the existence of a Lax pair appears to be equivalent to some

other tests on integrability such as the Painlevé test. There is no proof to this

fact, but there is no counterexample either. A good introduction to the topic

of integrable systems is given in the books [1], [2] and [30].

Following the results presented in [24] we show how to derive the Lax

12
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pair of the short-pulse equation (1.1) in the form ψx = Xψ,

ψt = Tψ,

where X and T are n× n matrices depending on x, t, function u(x, t) and its

derivatives, and ψ(x, t) is an n-component column. The compatibility condi-

tion

Xt − Tx + [X,T ] = 0,

where square brackets denote a matrix commutator, must recover the short-

pulse equation (1.1). It is important to note that X, T and ψ are defined up

to some gauge transformation

ψ 7→ Gψ,

X 7→ GXG−1 + (DxG)G−1,

T 7→ GTG−1 + (DtG)G−1,

where G is a nondegenerate n × n matrix depending on x, t, u(x, t) and its

derivatives.

The Lax representation of the short-pulse equation can be obtained in

terms of 2× 2 traceless matrices X and T , upon assuming that

X = Aux +B,

T = T (u, ux),

where A and B are 2 × 2 constant traceless matrices. This gives a set of

commutator equations which can be solved for

A = i

 0 λ

−λ 0

 , B =

0 λ

λ 0

 ,

13
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with λ being an arbitrary nonzero constant, which produces

X =

 0 λ(1 + iux)

λ(1− iux) 0

 ,

T =

 i
2
u i

2
λu2ux + 1

2
λu2 + 1

4λ

− i
2
λu2ux + 1

2
λu2 + 1

4λ
− i

2
u

 .

Finally, the gauge transformation induced by a matrix

G =

 1 1

−i i


yields another representation of the Lax pair

X =

 λ λux

λux −λ

 , T =

 λ
2
u2 + 1

4λ
λ
2
u2ux − 1

2
u

λ
2
u2ux + 1

2
u −λ

2
u2 − 1

4λ

 . (1.15)

The spectral problem ψx = Xψ produced by the operator X in (1.15) is of the

Wadati–Konno–Ichikawa type [33].

1.4 Exact solutions

Using transformation (1.11), it is possible to generate solutions of the short-

pulse equation (1.1) from those of the sine-Gordon equation (1.3). In [25] loop

and pulse solutions were derived in this way. Later in [19], general formulae

for multiloop and multibreather solutions were obtained by means of Hirota’s

method. In [21], some other periodic and solitary travelling-wave solutions to

equation (1.1) were presented. Below we provide some explicit solutions of the

short-pulse equation (1.1) following the results of [25].

14
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Figure 1.1: The loop solution u(x, t) (1.17) to the short-pulse equation (1.1)

Consider the kink solution of the sine-Gordon equation (1.3) in the

form

w = 4 arctan
(
exp(y + t)

)
(1.16)

and apply transformation (1.11) to arrive at the solution in the parametric

form 
u = 2 sech(y + t),

x = y − 2 tanh(y + t).

(1.17)

This solution represents a loop soliton of the short-pulse equation (1.1) trav-

elling with a unit speed to the left (Figure 1.1). This solution always has two

singular points, because kink (1.16) passes through w = π/2 and w = 3π/2

for all (y, t) ∈ R2 (cf. (1.12)).

Consider now the breather solution to the sine-Gordon equation (1.3)

in the form

w = −4 arctan

(
m sinψ

n coshφ

)
, (1.18)

where

φ = m(y + t), ψ = n(y − t), n =
√

1−m2, (1.19)

15
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Figure 1.2: The pulse solution (1.20) to the short-pulse equation (1.1) with

m = 0.32

and 0 < m < 1. Since

|w(y, t)| < π

2
for m < mcr = sin

π

8
≈ 0.383,

this breather solution can generate a non-singular solution of the short-pulse

equation (1.1) in the parametric form
u = 4mn

m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
,

x = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
.

(1.20)

This formula represents a smooth pulse solution for 0 < m < mcr (Figure 1.2,

left) and a singular pulse solution for m > mcr (Figure 1.3).

We note that the pulse solution (1.20) is periodic on the (x, t)-plane,

according to the following property
u(y, t) = u

(
y − π

m
, t+ π

m

)
,

x(y, t) = x
(
y − π

m
, t+ π

m

)
+ π

m
,

∀(y, t) ∈ R2.
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Figure 1.3: A singular solution (1.20) to the short-pulse equation (1.1) with

m = 0.80

On the other hand, the solution is localized in any other direction on the (x, t)-

plane. The solution surface of the pulse solution (1.20) with m < mcr is shown

on Figure 1.2, right.

1.5 Conserved quantities

An infinite hierarchy of conserved quantities of the short-pulse equation (1.1)

was derived by Brunelli in [7]. This was accomplished by using a bi-Hamiltonian

representation of the system. Some results from [7] are reviewed below. The

first few conserved quantities will be needed in Chapter 2 to prove global

well-posedness of the short-pulse equation.

The short-pulse equation (1.1) can be represented in the bi-Hamiltonian

form

ut = D1
δH0

δu
= D2

δH−1

δu
, (1.21)

where

D1 = ∂−1
x + ux∂

−1
x ux, D2 = ∂x,

17
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and

H0 =
1

2

∫
R
u2dx, H−1 =

∫
R

(
1

24
u4 − 1

2
(∂−1
x u)2

)
dx.

Here H0, H−1 are conserved quantities (Hamiltonians) of the short-pulse equa-

tion and δ
δu

stands for the functional derivative given by

∀ v ∈ L2, u ∈ Dom(f) :

(
v,
δf

δu

)
L2

=
d

dε
f(u+ εv)

∣∣∣∣
ε=0

,

where (·, ·)L2 denotes the inner product in L2 space. Two hierarchies of con-

served quantities arise from the bi-Hamiltonian form (1.21).

The first hierarchy is generated by the recursion formula

δHn

δu
= R

δHn+1

δu
, n = −1,−2 . . . ,

where

R = D−1
2 D1 = ∂−2

x + ∂−1ux∂
−1
x ux = ∂−2

x

(
1 + u2

x + uxx∂
−1ux

)
.

The first few conserved quantities are

H0 =
1

2

∫
R
u2dx,

H−1 =

∫
R

(
1

24
u4 − 1

2
(∂−1
x u)2

)
dx,

H−2 =

∫
R

(
1

720
u6 +

1

2
(∂−1
x u)2 +

1

6
(∂−2
x u3)u− 1

4
(∂−1
x u)2u2

)
dx,

. . . .

The second hierarchy of conservation laws is given recursively by

δHn+1

δu
= R−1 δHn

δu
, n = 0, 1, 2 . . . ,

where

R−1 = D−1
1 D2 = ∂2

x

(
1

F 2
+ A∂−1

x Ax

)
= ∂2

x

1

uxx
∂xF∂

−1
x

uxx
F 3

,

18
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and

F =
√

1 + u2
x, A =

ux√
1 + u2

x

.

The first few conserved quantities are

H1 = −
∫

R
Fdx,

H2 =
1

2

∫
R
FA2

xdx,

H3 =
1

8

∫
R

(
FA4

x − 4
A2
xx

F

)
dx,

H4 =
1

16

∫
R

(
FA6

x + 8
AA3

xx

F
− 12

A2
xA

2
xx

F
+ 8

A2
xxx

F 3

)
dx,

. . . .

Conserved quantities H0, H1 and H2 will be used in Chapter 2.
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Chapter 2

Well-posedness of the

sine-Gordon and short-pulse

equations

In this chapter, we prove local and global well-posedness of the sine-Gordon

equation in characteristic coordinates (1.3) using the contraction arguments

and conserved quantities. We also establish a sufficient condition on global

well-posedness of the short-pulse equation (1.1). This is accomplished by us-

ing local well-posedness results of Schäfer and Wayne [27], the hierarchy of

conserved quantities found by Brunelli [7] and transformation (1.11) between

the sine-Gordon equation in characteristic coordinates (1.3) and the short-

pulse equation (1.1) [24,26].
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2.1 Function spaces

• Let p ≥ 1 and f : R 7→ R. The standard Lp space is defined by the norm

‖f‖Lp =

(∫
R
|f(x)|pdx

)1/p

.

We also define L∞ norm by

‖f‖L∞ = sup
x∈R
|f(x)|.

• Let s ≥ 1 be an integer. The L2-based Sobolev space Hs is defined by

the squared norm

‖f‖2Hs =
s∑
j=0

‖f (j)‖2L2 =

∫
R
(1 + k2 + · · ·+ k2s)|f̂(k)|2dk,

where f̂ is the Fourier transform of a function f given by

f̂(k) =
1√
2π

∫
R
f(x)e−ikxdx

and the equality follows from the Plancherel’s identity.

Here we list some properties of Sobolev space Hs that play an essential

role in our computations (refer to e.g. [28] for details).

– Sobolev embedding: If f ∈ Hs, then the functions f , f ′,...,f (s−1) are

bounded uniformly continuous functions that converge to 0 at ±∞.

In particular, there is a constant Bs, such that the following bound

holds:

∀f ∈ Hs : ‖f‖L∞ ≤ Bs‖f‖Hs . (2.1)

– Banach Algebra Property: There is another constant Cs > 0 such

that

∀f, g ∈ Hs : ‖fg‖Hs ≤ Cs‖f‖Hs‖g‖Hs . (2.2)
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We note that

‖f‖L∞ ≤
1√
2
‖f‖H1 ,

which is obtained by using the triangle inequality for integrals and the

Cauchy-Schwartz inequality as follows

|f(x)| =
∣∣∣∣ 1√

2π

∫
R
f̂(k)eikxdk

∣∣∣∣ ≤ 1√
2π

∫
R

∣∣∣f̂(k)
∣∣∣ dk

≤ 1√
2π

√∫
R
(1 + k2)−1dk

√∫
R
(1 + k2)

∣∣∣f̂(k)
∣∣∣2 dk =

1√
2
‖f‖H1 .

We also note that

‖fg‖H1 ≤ ‖f‖H1‖g‖H1

‖fg‖H2 ≤ ‖f‖H2‖g‖H2 ,

as follows from recent paper [20].

• Let
∫

R f(x)dx = 0 then f̂(0) = 0. We define

‖f‖2
Ḣ−1 =

∫
R

|f̂(k)|2

k2
dk = ‖∂−1

x f‖2L2 ,

where

∂−1
x f(x) = −

∫ ∞
x

f(x′)dx′ =

∫ x

−∞
f(x′)dx′ =

1

2

(∫ x

−∞
−
∫ ∞
x

)
f(x′)dx′.

Let us define the space Xs by the squared norm

‖f‖2Xs = ‖f‖2Hs + ‖f‖2
Ḣ−1 . (2.3)

For a given f0 ∈ (0, 1), a constrained version of the space Xs
c is then

defined by

Xs
c = {f ∈ Xs : ‖f‖L∞ < f0} . (2.4)
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• Hölder’s inequality : Let 0 < p, q ≤ ∞ such that 1 = 1/p+ 1/q, then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq . (2.5)

For p = q = 2 formula (2.5) is known as the Cauchy-Schwartz inequality.

• Hausdorff-Young inequality : Let 0 < p, q, r ≤ ∞ such that 1 + p−1 =

q−1 + r−1, then

‖f ? g‖Lp ≤ ‖f‖Lq‖g‖Lr , (2.6)

where the star denotes convolution operator (f ? g)(x) =
∫

R f(x′)g(x −

x′)dx′.

• To analyze the properties of a solution to the linear wave equation Qxt =

Q we will need the following kernel functions for x, t > 0:

Kt(x) =

√
t

x
J ′0

(
2
√
tx
)

= −
√
t

x
J1

(
2
√
tx
)
, (2.7)

and

Jt(x) = J0

(
2
√
tx
)
, (2.8)

where J0, J1 stand for the Bessel functions of the first kind.

For a subsequent integral estimates it is important to determine the

asymptotic behaviour of these kernel functions. Since J1(x) = x
2

+O(x3)

for small x > 0 and J1(x) ∼ 1√
x

cos(x − 3π
4

) for large x � 1, the kernel

function Kt enjoys the following properties

– Kt(x) = −t+O(xt2) for small xt > 0,

– Kt(x) = O(x−3/4t1/4) for large xt� 1,

– there is a constant C > 0 such that ‖Kt‖L∞ ≤ Ct and ‖Kt‖L2 ≤

C
√
t uniformly on t ∈ R+.
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– Kt /∈ L1 for any t > 0.

Similarly, since J0(x) = 1+O(x2) for small x > 0 and J0(x) ∼ 1√
x

cos(x−
π
4
) for large x� 1, the function Jt satisfies

– Jt(x) = 1 +O(xt)→ 1 for small xt > 0,

– Jt(x) = O(x−1/4t−1/4) for large xt� 1.

– ‖Jt‖L∞ ≤ 1 uniformly on t ∈ R+.

– Jt /∈ L1 ∪ L2 for any t ∈ R+.

The graphs of functions Kt and Jt for some values of t > 0 are shown

on Figure 2.1. The slow decay of the functions Jt and Kt introduces a

delicate problem in the well-posedness analysis of the sine-Gordon and

short-pulse equations.

2.2 Preliminaries

The problem of global well-posedness for nonlinear equations in characteristic

coordinates has been studied in a number of recent publications [13,18,32] in

the context of Ostrovsky equation

uxt = u+
(
u2
)
xx

+ βuxxxx, (2.9)

which has some similarity to the short-pulse equation (1.1). The Ostrovsky

equation (2.9) models small-amplitude long waves in a rotating fluid. Liu and

Varlamov [32] proved local well-posedness in space Hs ∩ Ḣ−1 for s > 3
2
. The

space H1∩ Ḣ−1 is the energy space of the Ostrovsky equation (2.9), where the

mass V (u) = ‖u‖2L2 and the energy

E(u) =

∫
R

(
β(∂xu)2 +

1

2

(
∂−1
x u
)2 − 1

3
u3

)
dx
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conserve in time t. Using conserved quantities and local existence in H1∩Ḣ−1,

Linares and Milanes [18], and Gui and Liu [13] proved global well-posedness

of the Ostrovsky equation (2.9) in the energy space. However, their proof is

only valid for β > 0 and it is not applicable to the short-pulse equation (1.1).

To understand the long-term dynamics of solutions to the short-pulse

equation (1.1) it is instructive to prove local and global existence of solutions

to the sine-Gordon equation (1.3) in a space where the constraint

‖w(·, t)‖L∞ <
π

2
(2.10)

is kept global in time. According to the transformation (1.11) this would

imply that a small initial data of the short-pulse equation (1.1) would evolve

no singularities in a finite time. Together with integrability of the short-pulse

equation (1.1), global well-posedness may suggest asymptotic stability of the

modulated pulse solutions (1.20).

The sine-Gordon equation in characteristic coordinates was considered

long ago by Kaup and Newell [15] using formal applications of the stationary

phase method. Local well-posedness of this equation is a non-trivial problem

due to the presence of the constraint∫
R

sin(w(y, t))dy = 0, (2.11)

which does not guarantee that condition (2.10) is satisfied for all t ∈ R+. Our

treatment of this equation is rigorous and we shall prove that the sine-Gordon

equation (1.3) is locally well-posed in space Hs ∩ Ḣ−1 for an integer s ≥ 1 in

the new variable q = sinw. Global well-posedness is proved in H1 ∩ Ḣ−1 with

the help of three conserved quantities of the sine-Gordon equation. The result

can be extended in Hs∩ Ḣ−1 for an integer s > 1 if more conserved quantities

are incorporated into analysis.
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The sine-Gordon equation in the laboratory coordinates

wττ − wξξ = sinw

is known to be locally well-posed in a weaker space Lp(R) for any p ≥ 2, see

Appendix B of Buckingham and Miller [8]. Similarly to this work, our analysis

is also based on the conventional method of Picard iterations to prove local

well-posedness of the sine-Gordon equation in characteristic coordinates (1.3).

2.3 Klein-Gordon equation in characteristic co-

ordinates

To analyze the Cauchy problem for the sine-Gordon equation (1.3), we obtain

information on the fundamental solution of the underlying linear problem Qt = ∂−1
y Q,

Q|t=0 = Q0.
(2.12)

Let us denote L = ∂−1
y and Q(t) = etLQ0. The solution operator can be

represented in the Fourier transform form by

F(etL) = e−
it
k ,

which involves a bounded oscillatory integral on k ∈ R with a singular be-

haviour as k → 0. By the Fourier representation, the solution operator etL is

a norm-preserving map from Hs to Hs for any s ≥ 0, so that

‖Q(t)‖Hs = ‖etLQ0‖Hs = ‖Q0‖Hs , ∀t ∈ R. (2.13)

In particular, if Q0 ∈ L2, then Q(·, t) ∈ L2, for all t ∈ R. In the following

statement we shall specify an explicit representation of Q(t) in the physical

space.
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Lemma 2.1 Let Kt(y) be defined by (2.7) with t, y ∈ R+. For any Q0 ∈

L2 ∩ L∞ the linear Cauchy problem (2.12) has a solution in the form

Q(y, t) = Q0(y) +

∫ ∞
y

Kt(y
′ − y)Q0(y

′)dy′, (y, t) ∈ R× R+, (2.14)

so that Q(·, t) ∈ L∞ for any t ∈ R+

Proof. Applying the Laplace transform defined as

f̃(s) := Lf(t) =

∫ ∞
0

e−stf(t)dt,

with Re(s) > 0, we reduce the linear Cauchy problem (2.12) to the form

s
∂Q̃

∂y
(y, s)−Q′0(y) = Q̃(y, s).

By the method of undetermined coefficients, we find a solution

Q̃(y, s) = c(y, s) exp(y/s),

where c(y, s) solves scy(y, s) = Q′0(y). Since Re(s) > 0, we integrate this

equation from y to∞ subject to the boundary condition c(y, s)→ 0 as y →∞

and arrive to the solution

c(y, s) = −1

s

∫ ∞
y

e−y
′/sQ′0(y

′)dy′.

Inverting the Laplace transform, we complete computation of the solution

operator as follows

Q(y, t) = L−1Q̃(y, s)

= −
∫ ∞
y

L−1

(
1

s
e(y−y

′)/s

)
Q′0(y

′)dy′

= −
∫ ∞
y

J0(2
√
t(y′ − y))Q′0(y

′)dy′,

(2.15)
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which gives the explicit formula (2.14) after integration by parts since J0(0) =

1, limz→∞ J0(z) = 0, and Q0 ∈ L∞(R). Convergence of the integral in the

explicit formula (2.14) can be easily shown by the Cauchy-Schwarz inequality

(2.5):

|Q(y, t)| ≤ |Q0(y)|+
∫ ∞
y

|Kt(y
′ − y)Q0(y

′)|dy′

≤ |Q0(y)|+ ‖Kt‖L2(R+)‖Q0‖L2 <∞,

so that Q(·, t) ∈ L∞, for any t ∈ R+. �

Remark 2.2 For well-posedness analysis of the sine-Gordon equation we will

need to keep track of both dependent variable and its definite integral with

variable upper (lower) boundary. In particular, the variable

P (y, t) = −
∫ ∞
y

Q(y′, t)dy′,

also solves the Cauchy problem: Pt = ∂−1
y P,

P |t=0 = P0.
(2.16)

Evidently, Lemma 2.1 holds for P (y, t) provided P0 ∈ L2 ∩ L∞.

Remark 2.3 If Q(·, t) ∈ Hs and P (·, t) ∈ L2, then P (·, t) ∈ Hs+1 for an

integer s ≥ 0. By Sobolev embedding, P (·, t) ∈ L∞ and lim|y|→∞ P (y, t) = 0,

or equivalently, ∫
R
Q(y, t)dy = 0 (2.17)

for any t ≥ 0. Therefore, the constraint (2.17) is automatically satisfied if

Q(t) ∈ C(R, Hs) and P (t) ∈ C(R, L2) for a fixed s ≥ 0. We recall that, if∫
RQ0(y)dy 6= 0, the solution Q(y, t) still satisfies constraint (2.17) for t > 0

but is not smooth at t = 0, see Ablowitz & Villaroel [3] for analysis of a similar

Kadomtsev–Petviashvili equation.
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Remark 2.4 If P0 ∈ L2 ∩ L∞, upon replacing Q 7→ P and Q′ 7→ Q equation

(2.15) gives a new representation of P (y, t):

P (y, t) = −
∫ ∞
y

Jt(y
′ − y)Q0(y

′)dy′, (2.18)

where (t, y) ∈ R+ × R, and a kernel function Jt is defined by (2.8).

2.4 Local well-posedness of the sine-Gordon

equation

To simplify the constraint (2.11) for solutions of the sine-Gordon equation

(1.3), we introduce a new variable

q = sinw,

so that (2.11) becomes a linear constraint∫
R
q(y, t)dy = 0. (2.19)

The sine-Gordon equation (1.3) transforms to the evolution equation

qt =
√

1− q2∂−1
y q, (2.20)

where the operator ∂−1
y acts on an element of Hs under the constraint (2.19):

∂−1
y q :=

∫ y

−∞
q(y′, t)dy′ = −

∫ ∞
y

q(y′, t)dy′ =
1

2

(∫ y

−∞
−
∫ ∞
y

)
q(y′, t)dy′.

Let us introduce the nonlinear function

f(q) := 1−
√

1− q2 =
q2

1 +
√

1− q2
(2.21)
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and write the Cauchy problem for equation (2.20) in the equivalent form qt = (1− f(q))∂−1
y q,

q|t=0 = q0.
(2.22)

The nonlinear function f(q) is squeezed by the quadratic functions

∀|q| < 1 :
q2

2
≤ f(q) ≤ q2,

which allows us to interpret the term f(q)∂−1
y q as a nonlinear perturbation to

the linear evolution induced by ∂−1
y q.

The local well-posedness analysis is based on the integral equation

q(t) = Q(t)−
∫ t

0

e(t−t
′)Lf(q(t′))p(t′)dt′, (2.23)

which follows from Duhamel’s principle for the Cauchy problem (2.22). Here

q(t) := q(y, t), p(t) := p(y, t) = −
∫ ∞
y

q(y′, t)dy′,

Q(t) = etLq0 is the solution of the linear problem (2.12) with Q0 = q0, and

f(q) is defined by (2.21). We shall work with initial data q0 from the space Xs
c

in (2.4) for an integer s ≥ 1. Since py = q, it is clear that p ∈ Hs+1 if p ∈ L2

and q ∈ Hs. We need to show that the vector field of the integral equation

(2.23) is a Lipschitz map in the vector space Xs with the squared norm (2.3)

rewritten as

‖q‖2Xs := ‖q‖2Hs + ‖p‖2L2 (2.24)

for any t ∈ [0, T ] and it is a contraction operator for a sufficiently small

T > 0. If ‖q0‖L∞ < 1 and q(t) is continuous in Hs for a fixed s ≥ 1, then

the constraint ‖q(t)‖L∞ < 1 is satisfied on [0, T0] ⊂ [0, T ] for some T0 > 0

thanks to Sobolev’s embedding Hs ↪→ L∞ for any integer s ≥ 1. Using this

construction, we formulate and prove the local well-posedness theorem for the

sine-Gordon equation (1.3).
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Theorem 2.5 Assume that q0 ∈ Xs
c for an integer s ≥ 1. There exist a

T > 0 such that the Cauchy problem (2.22) admits a unique local solution

q(t) ∈ C([0, T ], Xs
c ) satisfying q(0) = q0.

Proof. We prove this statement in two steps. First, we show that the vector

field of the integral equation (2.23) is a closed map of a finite-radius ball in

Xs
c that includes q0 ∈ Xs

c to itself on a nonempty time interval. In other

words, we prove that for any δ ∈ (0,min(B−1
s , C−1

s )), and α ∈ (0, 1) we can

find a small T∗ = T∗(α, δ) > 0 such that if ‖q0‖Xs ≤ αδ and ‖q0‖L∞ ≤ α,

then ‖q(t)‖Xs ≤ δ and ‖q(t)‖L∞ < 1 for any t ∈ [0, T∗] (see (2.1) and (2.2) for

definitions of Bs and Cs). Second, using the quadratic behaviour of f(q), we

prove that the map given by the integral term in (2.23) is Lipschitz with respect

to the field variable q, and it is a contraction if the interval [0, T ] for T ∈ (0, T∗)

is sufficiently small. Existence of a unique fixed point of the integral equation

(2.23) in a Banach space C([0, T ], Xs
c ) follows by the contraction mapping

principle (see e.g. [35]).

With the above scheme in mind, we start with with the bounds for

‖q(t)‖Xs for some t > 0. By the triangle inequality and the norm-preserving

property (2.13), we bound the Hs norm of q(t) in the integral equation (2.23)

for any integer s ≥ 1 by

‖q(t)‖Hs ≤ ‖Q(t)‖Hs +

∫ t

0

‖e(t−t′)Lf(q(t′))p(t′)‖Hsdt′

≤ ‖q0‖Hs + Cs

∫ t

0

‖f(q(t′))‖Hs‖p(t′)‖Hsdt′,

where we recall that Hs forms a Banach algebra with respect to multiplication

for any integer s ≥ 1. To deal with nonlinear function f(q), we expand it in

the Taylor series

f(q) = 1−
√

1− q2 =
∞∑
n=1

(2n− 3)!!

n!2n
q2n,
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which converges if ‖q‖L∞ < 1 and involves only positive coefficients. By in-

voking again the Banach algebra property, we obtain

‖f(q)‖Hs ≤
∞∑
n=1

(2n− 3)!!

n!2n
‖q2n‖Hs ≤

∞∑
n=1

(2n− 3)!!

n!2n
C2n−1
s ‖q‖2nHs

=
1

Cs
f(Cs‖q‖Hs) ≤ Cs‖q‖2Xs ,

if Cs‖q‖Hs < 1, thanks to the definition (2.4) and the representation (2.21).

As a result, we have

‖q(t)‖Hs ≤ ‖q0‖Hs + Cs

∫ t

0

‖q(t′)‖3Xs
c
dt′

To estimate the L2 norm of p(t), we use the integral representation

p(t) = P (t)−
∫ t

0

Le(t−t
′)Lf(q(t′))p(t′)dt′,

where P (t) = LQ(t) is defined by solution of the linear problem (2.16). Now

use the triangle inequality and the norm-preservation property, to derive

‖p(t)‖L2 ≤ ‖P (t)‖L2 +

∫ t

0

‖Le(t−t′)Lf(q(t′))p(t′)‖L2dt′,

≤ ‖p0‖L2 +

∫ t

0

‖Le(t−t′)Lf(q(t′))p(t′)‖L2dt′.

The norm preservation is not useful for the second term because Lf(q(t))p(t)

may not be in L2. Since Jt(y) = J0(2
√
ty) is bounded for any t, y ∈ R+ and

‖f(q)p‖L1 ≤ ‖f(q)‖L1‖p‖L∞ ≤ ‖q‖2L2‖p‖H1 ,

we represent the operator LetL acting on f(q)p ∈ L1 in the convolution form

(2.18), or explicitly by

Le(t−t
′)Lf(q(t′))p(t′) = −

∫ ∞
y

Jt−t′(y
′ − y)f(q(y′, t′))p(y′, t′)dy′. (2.25)
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Using the Hausdorf-Young inequality (2.6), we obtain

‖Le(t−t′)Lf(q(t′))p(t′)‖L2 ≤ ‖Jt−t′‖L∞‖f(q(t′))p(t′)‖L2/3 ≤ ‖f(q(t′))p(t′)‖L2/3 .

Using the Hölder inequality (2.5), we obtain

‖f(q(t))p(t)‖L1 ≤ ‖f(q(t))‖Lρ‖p(t)‖Lr ,

with ρ−1 + r−1 = 1, so that

‖Le(t−t′)Lf(q(t′))p(t′)‖L2 ≤ ‖f(q(t′))‖L2ρ/3‖p(t′)‖L2r/3 .

If we choose r = 3, then we have ρ = 3
2

and ‖f(q)‖L1 ≤ ‖q‖2L2 . Thus, we

conclude that

‖p(t)‖L2 ≤ ‖p0‖L2 +

∫ t

0

‖q(t′)‖3Xsdt′,

for some C > 0. Altogether the above estimates give a bound on the solution

norm

‖q(t)‖Xs ≤ ‖q0‖Xs + C

∫ t

0

‖q(t′)‖3Xsdt′, (2.26)

where C > 0. By continuity of ‖q(t)‖Xs , for any α ∈ (0, 1), there is a T > 0

such that if ‖q0‖Hs < αmin(B−1
s , C−1

s ), then ‖q(t)‖Xs < min(B−1
s , C−1

s ) for

any t ∈ [0, T ].

We also need to prove that the constraint ‖q(t)‖L∞ < 1 is satisfied for

some 0 < t <∞. Estimating the L∞ norm of q(t) from the integral equation

(2.23) we obtain

‖q(t)‖L∞ ≤ ‖Q(t)‖L∞ +

∫ t

0

‖e(t−t′)Lf(q(t′))p(t′)‖L∞dt′.

Using the convolution formula (2.14) and the Hausdorff-Young inequality (2.6),

the free term is estimated by

‖Q(t)‖L∞ ≤ ‖q0‖L∞ + ‖Kt‖L2‖q0‖L2 ≤ ‖q0‖L∞ + C1t
1/2‖q0‖Xs ,
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for some C1 > 0. The nonlinear term is estimated by

‖e(t−t′)Lf(q(t′))p(t′)‖L∞ ≤ ‖f(q(t′))p(t′)‖L∞ + ‖Kt−t′‖L∞‖f(q(t′))p(t′)‖L1

≤ C2(1 + t− t′)‖q(t′)‖3Xs ,

for some C2 > 0. Finally, we conclude that

‖q(t)‖L∞ ≤ ‖q0‖L∞ + C1t
1/2‖q0‖Xs + C2

∫ t

0

(1 + t− t′)‖q(t′)‖3Xsdt′. (2.27)

One can derive some explicit estimates for T∗ = T∗(α, δ), defined above,

using the inequalities (2.26) and (2.27). That is, if we require that the solution

to Cauchy problem for (2.23), with the initial norm ‖q0‖Xs ≤ αδ and ‖q0‖L∞ <

α for some α ∈ (0, 1) and δ ∈ (0,min(B−1
s , C−1

s )), remains in the Xs
c with

‖q(t)‖Xs ≤ δ and ‖q(t)‖L∞ < 1 for any t ∈ [0, T∗(α, δ)] then the bounds

αδ + CT∗δ
3 ≤ δ,

α + C1T
1/2
∗ αδ + C2T∗

(
1 +

1

2
T∗

)
δ3 < 1

would give the range of values for T∗.

It is left to prove that the map defined by the integral part of (2.23)

(Aq)(t) =

∫ t

0

e(t−t
′)Lf(q(t′))(∂−1

x q)(t′)dt′

is a contraction in the Xs space on [0, T ] for T ∈ (0, T∗). That is, for

sup
t∈[0,T ]

‖q1(t)‖Xs ≤ δ and sup
t∈[0,T ]

‖q2(t)‖Xs ≤ δ

there is k ∈ (0, 1) such that the inequality

sup
t∈[0,T ]

‖Aq1 − Aq2‖Xs ≤ k sup
t∈[0,T2]

‖q1 − q2‖Xs , (2.28)

is satisfied. We show existence of such a constant k by a direct computation.

The definition of the Xs norm (2.3) yields a convenient bound

‖Aq1 − Aq2‖Xs ≤ ‖Aq1 − Aq2‖Hs︸ ︷︷ ︸
(a)

+ ‖L(Aq1 − Aq2)‖L2︸ ︷︷ ︸
(b)

.
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Let us consider the components (a) and (b) separately.

(a) Using the norm-preserving property (2.13), triangle inequality and Ba-

nach algebra property for the Sobolev space we obtain

‖Aq1 − Aq2‖Hs ≤
∫ t

0

‖e(t−t′)L(f(q1)p1 − f(q2)p2)‖Hsdt′

≤ T sup
t∈[0,T ]

‖f(q1)p1 − f(q2)p2‖Hs

≤ T sup
t∈[0,T ]

‖f(q1)(p1 − p2) + (f(q1)− f(q2))p2‖Hs

≤ CsT sup
t∈[0,T ]

(‖f(q1)‖Hs‖p1 − p2‖Hs + ‖f(q1)− f(q2)‖Hs‖p2‖Hs) .

To estimate these norms we use the inequalities ‖f(q)‖Hs ≤ Cs‖q‖2Hs
and ‖p‖Hs ≤ ‖q‖Xs , where the latter follows from the identity ‖p‖Hs+1 =

‖q‖Xs . By positivity of coefficients ank in Taylor series

1√
1− q2

1 +
√

1− q2
1

=
∞∑

n,k=0

ankq
2n
1 q2k

2

we obtain a bound on the remaining term ‖f(q1)− f(q2)‖Hs :

‖f(q1)− f(q2)‖Hs =

∥∥∥∥∥ q2
1 − q2

2√
1− q2

1 +
√

1− q2
2

∥∥∥∥∥
Hs

≤ Cs

∥∥∥∥∥ 1√
1− q2

1 +
√

1− q2
2

∥∥∥∥∥
Hs

‖q2
1 − q2

2‖Hs

≤ C2
s

(
∞∑

n,k=0

ankC
2n+2k−1
s ‖q1‖2nHs‖q2‖2kHs

)
×‖q1 + q2‖Hs‖q1 − q2‖Hs

≤ C2
s

1

Cs

1√
1− C2

s‖q1‖2Hs +
√

1− C2
s‖q2‖2Hs

2δ‖q1 − q2‖Hs

≤ δCs√
1− C2

s δ
2
‖q1 − q2‖Xs .

As a result, we arrive at the following estimate

‖Aq1 − Aq2‖Hs ≤ Tδ2C2
s

(
1 +

(
1− C2

s δ
2
)−1/2

)
sup
t∈[0,T ]

‖q1 − q2‖XS .
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(b) Here we use the convolution representation (2.18), the Hausdorff-Young

inequality and boundedness of the kernel function Jt:

‖LAq1 − LAq2‖ ≤ T sup
t∈[0,T ]

‖Jt−t′‖L∞‖f(q1)p1 − f(q2)p2‖L2/3

≤ T sup
t∈[0,T ]

‖f(q1)(p1 − p2)‖L2/3 + ‖(f(q1)− f(q2))p2‖L2/3

≤ T sup
t∈[0,T ]

(‖f(q1)‖L1‖p1 − p2‖L2 + ‖f(q1)− f(q2)‖L1‖p2‖L2)

≤ T sup
t∈[0,T ]

‖q1‖2L2‖q1 − q2‖Xs

+ T sup
t∈[0,T ]

‖q2‖Xs

∥∥∥∥∥ 1√
1− q2

1 +
√

1− q2
2

∥∥∥∥∥
L∞

‖q2
1 − q2

2‖L1

≤ Tδ2 sup
t∈[0,T ]

‖q1 − q2‖Xs

+ Tδ sup
t∈[0,T ]

‖q1 + q2‖L2‖q1 − q2‖L2√
1− ‖q1‖2L∞ +

√
1− ‖q2‖2L∞

≤ Tδ2
(

1 +
(
1−B2

sδ
2
)−1/2

)
sup
t∈[0,T ]

‖q1 − q2‖Xs .

As a result, we obtain the following value for the constant k in (2.28) :

k = Tδ2
(
C2
s + C2

s

(
1− C2

s δ
2
)−1/2

+ 1 +
(
1−B2

sδ
2
)−1/2

)
.

So that there exists T > 0 such that k < 1.

�

Corollary 2.6 Under the conditions of Theorem 2.5, we actually have q(t) ∈

C([0, T ], Xs
c ) ∩ C1([0, T ], Hs).

Proof. The assertion follows from the facts that qt =
√

1− q2p with q(t) ∈

C([0, T ], Xs
c ) and p(t) ∈ C([0, T ], Hs+1). �

Remark 2.7 Existence of a unique solution can be proved more easily in a

weaker space C([0, T ], X̃s
c ), where

X̃s
c =

{
q ∈ X̃s : ‖q‖L∞ < 1

}
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and X̃s = {q(t) ∈ Hs, p(t) ∈ L∞}, provided that q0 ∈ Xs
c . Since p ∈ H1 if

q, p ∈ L2, we note that Sobolev’s embedding gives embedding Xs
c ↪→ X̃s

c . The

space Xs
c turns out to be more suitable if we are to use conserved quantities

of the sine-Gordon equation.

2.5 Correspondence between the short-pulse

and sine-Gordon equations

We start by stating the local well-posedness theorem for the short-pulse equa-

tion from [27].

Theorem 2.8 (Schäfer & Wayne, 2004) Let u0 ∈ Hs for a fixed s ≥ 2.

There exists a T > 0 such that the short-pulse equation (1.1) admits a unique

solution

u(t) ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1)

satisfying u(0) = u0. Furthermore, the solution u(t) depends continuously on

u0.

We can now compare the results following from Theorems 2.5 and 2.8.

Using the transformation (1.11) and setting q = sin(w), we have

u(x, t) = wt(y, t) =
qt√

1− q2
= p(y, t),

ux(x, t) =
wty

cos(w)
= tan(w) =

q√
1− q2

.
(2.29)

If q(t) ∈ Xs
c , s ≥ 1, for all t ∈ [0, T ], then there exists a uniform bound

q0 ∈ (0, 1) such that ‖q(t)‖L∞ ≤ q0 for all t ∈ [0, t]. As a result, the Hs norm

of u in x is equivalent to the Hs norm of p in y, or, since, py = q, the Hs−1
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norm on q in y. The following lemma summarizes this correspondence between

the norms.

Lemma 2.9 Assume that ‖q(t)‖L∞ ≤ q0 < 1 uniformly on [0, T ] for some

T > 0 and consider the transformation (2.29). There exist c, C > 0 such that

c‖p(t)‖Hs ≤ ‖u(t)‖Hs ≤ C‖p(t)‖Hs

uniformly on [0, T ].

Proof. The proof is given by direct computations, e.g.√
1− q2

0‖p‖2L2 ≤ ‖u‖2L2 ≤ ‖p‖2L2 ,

‖∂yp‖2L2 ≤ ‖∂xu‖2L2 ≤
1√

1− q2
0

‖∂yp‖2L2 ,

and so on. �

Combining Theorems 2.5 and 2.8 with Lemma 2.9, we obtain a more

precise result on local well-posedness of the short-pulse and sine-Gordon equa-

tions.

Theorem 2.10 Let q(t) ∈ C([0, T1], X
s−1
c ) ∩ C1([0, T1], H

s) be a solution of

the sine-Gordon equation in Theorem 2.5 and Corollary 2.6 for some s ≥ 2

and T1 > 0. Let u(t) ∈ C([0, T2], H
s) ∩ C1([0, T2], H

s−1) be a solution of the

short-pulse equation in Theorem 2.8 for the same s ≥ 2 and some T2 > 0. Let

q0 and u0 be related by the transformations (1.11) and (2.29). Then, in fact,

p(t) ∈ C1([0, T ], Hs) and u(t) ∈ C1([0, T ], Hs) for T = min(T1, T2), where

py = q.

Proof. If q(t) ∈ Xs−1
c on [0, T1], then the bound ‖q(t)‖L∞ ≤ q0 holds on

[0, T1] for some q0 ∈ (0, 1). By Lemma 2.9, if p(t) ∈ C([0, T1], H
s) then u(t) ∈
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C([0, T1], H
s) and if q(t) ∈ C1([0, T1], X

s−1
c ) then ux ∈ C1([0, T1], H

s−1). The

first constraint recovers the result of Theorem 2.8, while if T = min(T1, T2),

the second constraint combing with u(t) ∈ C1([0, T ], Hs−1) implies that u(t) ∈

C1([0, T ], Hs).

In the opposite direction, by Lemma 2.9, if u(t) ∈ C([0, T2], H
s) ∩

C1([0, T2], H
s−1), then p(t) ∈ C([0, T2], H

s)∩C1([0, T2], H
s−1). Combining this

with the condition q(t) ∈ C1([0, T ], Xs−1
c ) in Theorem 2.5 for T = min(T1, T2),

we obtain that p(t) ∈ C1([0, T ], Hs). �

Remark 2.11 Theorem 2.10 shows that the results on the sine-Gordon equa-

tion (1.3) allow us to control the C1 property of ‖∂sxu‖L2 in the short-pulse

equation (1.1), while the results on the short-pulse equation (1.1) allow us to

control the C1 property of ‖p‖L2 in the sine-Gordon equation (1.3).

2.6 Global well-posedness of the short-pulse

equation

The existence time T > 0 in Theorems 2.8 and 2.10 is inverse proportional

to the norm ‖u0‖Hs of the initial data to the short-pulse equation (1.1). In

order to prove the theorem on global well-posedness of the short-pulse equation

(1.1) we need to show the possibility of controlling the norm ‖u(T )‖Hs by a T -

independent constant. This constant will be found from the values of conserved

quantities in Section 1.5. Using Theorem 2.10, we shall make a rigorous use

of the first three conserved quantities.

Lemma 2.12 Let u(t) ∈ C1([0, T ], H2) be a solution of the short-pulse equa-
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tion (1.1). The following integral quantities are constant on [0, T ]:

H0 =

∫
R
u2dx,

H1 =

∫
R

(√
1 + u2

x − 1
)
dx,

H2 =

∫
R

√
1 + u2

x

[
∂x

(
ux√

1 + u2
x

)]2

dx.

Proof. We shall write the balance equations for the densities of H0, H1, and

H2:

∂t
(
u2
)

= ∂x

(
v2 +

1

4
u4

)
,

∂t

(√
1 + u2

x − 1
)

=
1

2
∂x

(
u2
√

1 + u2
x

)
,

∂t

(
u2
xx√

(1 + u2
x)

5

)
= ∂x

(
2u2

x√
1 + u2

x

− u2u2
xx

2
√

(1 + u2
x)

5

)
,

where v = ∂−1
x u = ut − 1

2
u2ux thanks to the short-pulse equation (1.1). If

u(t) ∈ C1([0, T ], H2), then v(t) ∈ C([0, T ], H1). By Sobolev’s embedding,

we have v(t), u(t), ux(t) ∈ L∞ and v(t), u(t), ux(t) → 0 as |x| → ∞ for

any t ∈ [0, T ]. Integrating the first two balance equations on R, we confirm

conservation of H0 and H1. To prove conservation of H2, we need to show that

uuxx → 0 as |x| → ∞ for any t ∈ [0, T ]. Using (1.1) and (1.11), we obtain

1

2
uuxx − u2

x =
uxt
u
− 1 = tan2(w) =

q2

1− q2
,

where ux → 0 as |x| → ∞ and q = q(y, t). If ‖q‖L∞ ≤ q0 < 1, then

∂x

∂y
= cos(w) =

√
1− q2 ≥

√
1− q2

0,

for any t ∈ [0, T ]. As a result, the limits y → ±∞ correspond to the limits

x→ ±∞ and uuxx → 0 as |x| → ∞ follows from q → 0 as |y| → ∞. �
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Theorem 2.13 Assume that u0 ∈ H2 and the conserved quantities satisfy

2H1 + H2 < 1. Then the short-pulse equation (1.1) admits a unique solution

u(t) ∈ C(R+, H
2) with u(0) = u0.

Proof. The values of H0, H1 and H2 computed at initial data u0 ∈ H2 are

finite thanks to the explicit estimates

H0 =

∫
R
u2dx ≤ ‖u0‖2H2 ,

H1 =

∫
R

u2
x

1 +
√

1 + u2
x

dx ≤ 1

2
‖u0‖2H2 ,

H2 =

∫
R

u2
xx

(1 + u2
x)

5/2
dx ≤ ‖u0‖2H2 .

By Lemma 2.12, these quantities remain constant on [0, T ]. We will show that

the quantities H1 and H2 give an upper bound for H1 norm of the variable

q̃ =
ux√

1 + u2
x

. (2.30)

Note that q̃(x, t) = q(y, t) = sin(w(y, t)), where x = x(y, t) is defined by the

transformation (1.11). To control ‖q̃‖H1 , we obtain∫
R
q̃2dx =

∫
R

u2
x

1 + u2
x

dx =

∫
R

u2
x

1 +
√

1 + u2
x

1 +
√

1 + u2
x

1 + u2
x

dx

≤ 2

∫
R

u2
x

1 +
√

1 + u2
x

dx = 2H1

and∫
R
q̃2
xdx =

∫
R

[
∂x

(
ux√

1 + u2
x

)]2

dx ≤
∫

R

√
1 + u2

x

[
∂x

(
ux√

1 + u2
x

)]2

dx = H2.

If u(t) ∈ C([0, T ], H2), then q̃(t) ∈ C([0, T ], H1) and q̃(t) satisfies the T -

independent bound

‖q̃(t)‖H1 ≤
√

2H1 +H2,
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for any t ∈ [0, T ]. Let us assume that 2H1 +H2 < 1. Thanks to Sobolev’s em-

bedding ‖q̃‖L∞ ≤ 1√
2
‖q̃‖H1 , we have ‖q̃(t)‖L∞ ≤ 1√

2

√
2H1 +H2 < 1. Inverting

the map (2.30), we obtain

ux =
q̃√

1− q̃2
.

Since ‖q̃(t)‖2H1 < 2H1 +H2 < 1 we can derive an estimate

‖ux‖H1 ≤ ‖q̃‖H1√
1− ‖q̃‖2H1

using a Taylor series expansion and Banach algebra property for Sobolev space

H1 with constant C1 = 1. This results in the T -independent bound

‖u(T )‖H2 ≤
(
H0 +

2H1 +H2

1− (2H1 +H2)2

)1/2

The constraint 2H1 +H2 < 1 guarantees boundedness of the above expression.

This allows us to choose a constant time step T0 such that the solution u(T0)

can be continued on the interval [T0, 2T0] in space C1([T0, 2T0], H
2) using the

same Theorems 2.8 and 2.10. Continuing the solution with a uniform time

step T0 > 0, we obtain global existence of solutions in space u(t) ∈ C(R+, H
2),

which completes the proof of Theorem 2.13. �

Remark 2.14 Using the whole infinite hierarchy of conserved quantitie in

Section 1.5 it might be possible to extend Theorem 2.13 for u0 ∈ Hs for an

integer s ≥ 2. The proof would be similar for any integer s > 2 but more

conserved quantities will be needed. If s = 2 is fixed, however, we need only

three conserved quantities described in Lemma 2.12.

Corollary 2.15 Assume that u0 ∈ H2 and the conserved quantities satisfy

2
√

2H1H2 < 1. Then the short-pulse equation (1.1) admits a unique solution

u(t) ∈ C(R+, H
2) with u(0) = u0.
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Proof. Suppose u(x, t) is a solution to the short-pulse equation (1.1), then

scaling invariance (1.2) gives a one-parameter family of solutions U(X,T ):

U(X,T ) = αu(x, t), X = αx, T = α−1t,

where α ∈ R+. This yields the following transformation for the conserved

quantities

H̃1 =

∫
R

U2
X

1 +
√

1 + U2
X

dX = α

∫
R

u2
x

1 +
√

1 + u2
x

dx = αH1

H̃2 =

∫
R

U2
XX

(1 + U2
X)5/2

dX = α−1

∫
R

u2
xx

(1 + u2
x)

5/2
dx = α−1H2.

Therefore

2H̃1 + H̃2 = 2αH1 + α−1H2.

Function φ(α) = 2αH1 + α−1H2 achieves its minimum of 2
√

2H1H2 at α =√
H2

2H1
, so that 2H̃1 + H̃2 ≥ 2

√
2H1H2 for all α ∈ R+. If

2
√

2H1H2 < 1

there exists some α near
√
H2/(2H1) so that 2H̃1+H̃2 < 1 (even if 2H1+H2 >

1). By Theorem 2.13 the corresponding solution is U(T ) ∈ C(R+, H
2), so that

by scaling transformation u(t) ∈ C(R+, H
2). �

Corollary 2.16 Assume u0 ∈ H2 and the solution u(t) to the short-pulse

equation (1.1) breaks at a finite time t∗ > 0, so that limt↑t∗ ‖u(t)‖H2 = ∞.

Then, the corresponding conserved quantities satisfy 2
√

2H1H2 ≥ 1.

Proof. The necessary condition for the wave breaking is the negation to the

sufficient condition for the global well-posedness in Corollary 2.15. �
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2.7 Global well-posedness of the sine-Gordon

equation

The sine-Gordon equation (1.3) has an infinite set of conserved quantities

similarly to the short-pulse equation (1.1). These conserved quantities can be

enumerated by the order j ≥ 0 in the term (∂jyw)2 involving the highest spatial

derivative. We will use only the first two conserved quantities,

E0 =

∫
R
(1− cosw)dy, E1 =

∫
R
w2
ydy,

existence of which follow formally from the balance equations

∂t (1− cosw) = ∂y

(
1

2
w2
t

)
, ∂t

(
1

2
w2
y

)
= ∂y (1− cosw) .

Additionally, the sine-Gordon equation (1.3) has another infinite set of con-

served quantities involving trigonometric functions of w and their integrals

enumerated by −j ≤ 0 in the term (∂jtw)2. Besides E0, we need only one

conserved quantity of this set,

E−1 =

∫
R
w2
t coswdy,

existence of which follows formally from the balance equation

∂t
(
w2
t cosw

)
= ∂y

(
w2
tt −

1

4
w4
t

)
.

Using the transformation q = sin(w), we rewrite the conserved quantities in

the equivalent form

E−1 =

∫
R

√
1− q2p2dy, E0 =

∫
R
f(q)dy, E1 =

∫
R

q2
y

1− q2
dy, (2.31)

where p = ∂−1
y q and f(q) is defined by (2.21). The balance equations are

rewritten in the corresponding forms

∂tf(q) = ∂y

(
1

2
p2

)
, ∂t

(
q2
y

1− q2

)
= ∂yf(q)
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and

∂t

(√
1− q2p2

)
= ∂y

(
p2
t −

1

4
p4

)
.

We shall check if E1, E0, and E−1 are time conserved quantities for the Cauchy

problem (2.22) if s = 2 is fixed in Theorem 2.10. Global well-posedness in H2

follows from analysis of the three conserved quantities. A similar analysis can

be developed for any integer s > 2 but more conserved quantities are needed

in this case.

Lemma 2.17 Let q(t) ∈ C1([0, T ], X1
c ) and p(t) ∈ C1([0, T ], H2) be the solu-

tion of the Cauchy problem (2.22) and q(t) = ∂yp(t). Then, E1, E0, and E−1

are constant for any t ∈ [0, T ].

Proof. By Sobolev’s embedding for p(t) ∈ C1([0, T ], H2), we have q(t), p(t),

pt(t) → 0 as |y| → ∞. Therefore, conservation of E1, E0, and E−1 follows by

integrating the balance equations in y on R. �

Theorem 2.18 Assume that q0 ∈ X1
c and 2E0 + E1 < 1 for the conserved

quantities (2.31). Then there exist a unique global solution q(t) ∈ C(R+, X
1
c )

of the Cauchy problem (2.22) satisfying q(0) = q0.

Proof. Let us show that the values of E−1, E0, E1 are finite if q0 ∈ X1
c . Indeed,

provided that ‖q0‖L∞ < 1, we have

E−1 ≤ ‖p0‖2L2 , |E0| ≤ ‖q0‖2L2 , E1 ≤
1

1− ‖q0‖2L∞
‖∂yq0‖2L2 .

By Lemma 2.17, if q(t) ∈ C1([0, T ], X1
c ) and p(t) ∈ C1([0, T ], H2) is a solution

constructed in Theorems 2.5 and 2.10 for a fixed T > 0, the values of quantities

E−1, E0, E1 are constant on t ∈ [0, T ]. Therefore, we only need to bound from

46



MSc Thesis – A. Sakovich McMaster – Mathematics & StatisticsMSc Thesis – A. Sakovich McMaster – Mathematics & Statistics

above the norm ‖q(t)‖X1 by a combination of values of E−1, E0, E1. This

bound is obtained from the following estimates

E−1 ≥ ‖p(t)‖2L2

√
1− ‖q(t)‖2L∞ , E0 ≥

1

2
‖q(t)‖2L2 , E1 ≥ ‖∂yq(t)‖2L2 .

By Sobolev’s embedding and the bounds above, we have

‖q(t)‖L∞ ≤
1√
2
‖q(t)‖H1 ≤ 1√

2

√
E1 + 2E0 < 1,

since E1 + 2E0 < 1. As a result, we obtain the bound

‖q(t)‖X1 ≤

E1 + 2E0 +
E−1√

1− 1
2
(E1 + 2E0)

1/2

, ∀t ∈ [0, T ].

The time step T > 0 depends on ‖q(0)‖X1 . Since the above norm is bounded

by the T -independent constant, one can choose a non-zero time step T0 such

that the solution can be continued on the interval [T0, 2T0] using the same

Theorems 2.5 and 2.10. Continuing the solution with a uniform time step T0,

we obtain global existence of solutions q(t) ∈ C(R+, X
1
c ). �

Remark 2.19 Theorem 2.18 is almost identical to Theorem 2.13 owing to

the correspondence between the two equations in Lemma 2.9. In particular, it

follows directly that H0 = E−1, H1 = E0 and H2 = E1.
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Chapter 3

Numerical simulations of the

short-pulse equation

We illustrate here our analytical results on global well-posedness of the short-

pulse equation (1.1) by some numerical computations. It is worth recalling

the paper by Kanattšikov & Pietrzyk [17] where the short-pulse equation was

treated numerically through its multisymplectic Hamiltonian form. The au-

thors claim their discretization allows for preservation of multisimplectic con-

servation laws. Our numerical approach is based on the pseudospectral method

which allows us to solve the short-pulse equation in a periodic domain by means

of the discrete Fourier transform. This numerical scheme is described in detail

by Trefethen in [31].

3.1 Pseudospectral method

Let u(x, t) = u(x + 2π, t) be a solution of the short-pulse equation (1.1) and

consider T = [−π, π] as the fundamental interval for u in x. We partition
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this interval into an even number N of subintervals thus obtaining a spatial

discretization at the grid points

xn = h
(
−N

2
+ n
)
, h = 2π

N
, n ∈ {1, 2, . . . , N},

where h is a mesh spacing. We denote the value of the numerical approximation

to a solution u(x, t) at the grid point xn by un(t). A discrete Fourier transform

of {un(t)} is defined componentwise by

ûk(t) = (F{un})k := h

N∑
n=1

eikxnun(t), k ∈
{
−N

2
+ 1,−N

2
+ 2, . . . , N

2

}
.

(3.1)

The inverse discrete Fourier transform is written as

un(t) =
(
F−1{û}

)
n

:=
1

2π

N/2∑
k=−N/2+1

eikxnûk(t), n ∈ {1, 2, . . . , N}. (3.2)

Using the discrete Fourier transform (3.1) we rewrite the short-pulse equation

(1.1) in a discrete Fourier space as follows:

∂

∂t
ûk = − i

k
ûk +

ik2

6
F
[(
F−1û

)3]
k
, k 6= 0, t ∈ R+. (3.3)

On the other hand, we have

û0(t) = 0, ∀t ∈ R+.

We will use the sixth-order Runge-Kutta method to approximate solutions of

the systems of ODEs (3.3). The solution in physical space is obtained by the

inverse discrete Fourier transform (3.2).

3.2 Evolution of Gaussians

We numerically simulate the initial-value problem for the ODE systems (3.3)

using with the initial data in the form of a Gaussian pulse:

u(x, 0) = ae−bx
2 − c, (3.4)
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where a > 0 and b > 0 are arbitrary parameters and c is defined from the

condition

û0(0) = h
N∑
n=1

u(xn, 0) = 0.

Along with parameters a and b governing the amplitude and steepness

of the Gaussian pulse, we also compute numerically parameters

η = 2H1 +H2 = 2

∫ π

−π

u2
x

1 +
√

1 + u2
x

dx+

∫ π

−π

u2
xx

(1 + u2
x)

5/2
dx

and

κ = 2
√

2H1H2.

Theorem 2.13 and Corollary 2.15 on the global well-posedness guar-

antees that if the initial data u0 ∈ H2(T) satisfies η < 1 or κ < 1 then the

solution remains in H2(T) for all times t ∈ R+. However, this is just a suffi-

cient condition on the global well-posedness which may not be sharp. Indeed,

we will show that depending on the shape of u0 ∈ H2(T) with η > 1 or κ > 1

the solution may remain in H2(T) or it may leave this space exhibiting wave

breaking in a finite time. Table 3.1 lists some parameters of Gaussian initial

data (3.4) in numerical simulations.

Figure a b η κ H1 H2 ‖u0‖2H2(T)

3.1 0.05 20 0.83 0.21 0.0070 0.82 0.86

3.2 1 3 10.72 7.80 0.84 9.04 22.27

3.3 1 4 14.09 9.49 0.92 12.24 33.09

3.4 0.05 300 36.20 2.68 0.025 36.15 48.90

Table 3.1: Parameters of initial data in the form of the Gaussian pulse (3.4)

If the amplitude a is small and the decay rate b is large with η < 1

(κ < 1), we do not observe formation of singularities (Figure 3.1). As it was
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expected, the Gaussian pulse breaks into a wave packet travelling leftwards.

The conserved quantities guarantee that the solution does not decay to zero

on the circle T.

Even if the parameters η and κ exceed the critical value 1 the solution

can remain smooth. On Figure 3.2 we show evolution of the Gaussian pulse

with moderate values of a and b such that η ≈ 10.72 (κ ≈ 7.80). Although this

initial condition has a greater amplitude and a slower decay rate than that for

Figure 3.1, the numerical approximation exhibits similar behaviour. However,

if we change the decay constant from b = 3 to b = 4, so that η ≈ 14.09

(κ ≈ 9.49) the numerical solution breaks in finite time (Figure 3.3).

The solution can remain nonsingular for some initial conditions with

fairly large values of η but moderate values of κ. On Figure 3.4 we demonstrate

evolution of a very narrow small-amplitude pulse with η ≈ 36.20 which exhibits

nonsingular behaviour. This phenomenon can be explained by the scaling

transformation (1.2) since the value of κ ≈ 2.68 (that gives a minimum of η

along the solution family) is not large.

3.3 Evolution of perturbed pulses

Stability of the exact pulse solutions (1.20) to the short-pulse equation (1.1)

has not been addressed in the literature yet. In this section we describe nu-

merical simulations suggesting stability of pulse solutions.

First of all, it is instructive to evaluate the values of parameters η =

2H1 +H2 (cf. Theorem 2.13) and κ = 2
√

2H1H2 (cf. Corollary 2.15) for exact

pulse solutions (1.20). Using breather solutions of the sine-Gordon equation
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Figure 3.1: Evolution of the Gaussian pulse (3.4) with a = 0.05, b = 20,

η ≈ 0.83 < 1 and κ ≈ 0.21 < 1.
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Figure 3.2: Evolution of the Gaussian pulse (3.4) with a = 1, b = 3, η ≈

10.72 > 1 and κ ≈ 7.79 > 1.
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Figure 3.3: Evolution of the Gaussian pulse (3.4) with a = 1, b = 4, η ≈

14.09 > 1 and κ ≈ 9.49 > 1.
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Figure 3.4: Evolution of the Gaussian pulse (3.4) with a = 0.05, b = 300,

η ≈ 36.20 > 1 and κ ≈ 2.68 > 1.
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Figure m ε η κ H1 H2 ‖u0‖2H2(T)

3.5 0.20 0.1 184.13 7.48 0.038 184.06 276.22

3.6 0.20 -0.1 136.17 5.35 0.026 136.12 184.91

3.7 0.30 0.05 251.18 10.21 0.052 251.07 903.87

3.8 0.30 -0.05 228.10 8.95 0.044 227.81 739.90

Table 3.2: Parameters of perturbed pulses obtained from (1.20) after rescaling

(1.2) with α = 0.02 and multiplication of u by the factor (1 + ε).

with 2E0 = E1 = 16m, we obtain

η = 2H1 +H2 = 2E0 + E1

= 2

∫
R
(1− cosw)dy +

∫
R
w2
ydy = 32m,

where w(y, t) is given by (1.18). Since 2H0 = H1 = 16m, we have κ = η = 32m.

It is clear that η = κ < 1 for m < 1/32 and η = κ > 1 for 1/32 < m < mcr ≈

0.38, so that the terminal value of ηcr = κcr = 32mcr ≈ 12.26. This shows that

the condition η < 1 of Theorem 2.13 and condition κ < 1 of Corollary 2.15

are not sharp enough, as evolution of the short-pulse equation starting with

the pulse solutions does not lead to wave breaking for t ∈ R+.

Using the same numerical scheme as in Section 3.2 we consider evolution

of initial data in the form of the exact pulse solution (1.20) multiplied by a

factor 1 + ε, with ε ∈ R being a sufficiently small number. In addition, we

apply scaling transformation (1.2) with α = 0.02 to make sure that pulses

fit the spatial frame of [−π, π] and vanish to numerical zero on its boundary.

Parameters of the initial data in the form of perturbed pulses are presented

in Table 3.2. We should note that a big difference between values of η and

κ is due to smallness of the scaling factor α = 0.02. On Figure 3.5 we show
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what happens to a perturbed pulse solution with m = 0.20 and ε = 0.1. This

pulse exhibits stability under a perturbation. It moves more rapidly than the

unperturbed pulse due to a higher amplitude. Some radiation propagating

“out of the pulse” is also observed. If we take the same initial data with a

perturbation ε = −0.1 the pulse moves slower then the unperturbed one due

to a lower amplitude and remains stable with respect to the perturbation, see

Figure 3.6. On Figures 3.7–3.8 the evolution of a shorter perturbed pulse

with m = 0.30 and ε = ±0.05 is shown. The perturbation is taken smaller

than in the case of Figures 3.5–3.6 to avoid wave breaking. As a result, both

pulses with a higher and lower amplitude demonstrate stable propagation.
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Figure 3.5: Evolution of the perturbed pulse with m = 0.20, ε = 0.1
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Figure 3.6: Evolution of the perturbed pulse with m = 0.20, ε = −0.1
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Figure 3.7: Evolution of the perturbed pulse with m = 0.30, ε = 0.05
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Figure 3.8: Evolution of the perturbed pulse with m = 0.30, ε = −0.05
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Summary and open problems

We have obtained a sufficient condition on global well-posedness of the short-

pulse equation in its energy space. In accordance with this result, numeri-

cal simulations demonstrated smooth behaviour of a numerical approximation

when the condition is satisfied and the possibility of wave breaking when it is

violated. Some computations suggesting stability of exact pulse solutions were

also presented.

We proved local and global well-posedness of the sine-Gordon equation

in characteristic coordinates for small amplitudes. This gives some control on

regularity of solutions to the short-pulse equation, due to the relation between

these two equations.

It is worth to establish sharper conditions determining well-posedness

of the short-pulse equation and the wave breaking criteria. It is also important

to study regularity and wave breaking criteria for similar but more advanced

models, such as the reduced Ostrovsky equation (2.9) with β = 0.
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MATLAB codes for Chapter 3

This script was used to compute evolution of Gaussian pulses, generate Figures

3.1–3.4 and fill out Table 3.1 in Section 3.2.

%***************************************************************

% Computing evolution of Gaussians *

%***************************************************************

tic; % start stopwatch

clear all; close all;

a = 1; b = 3; % define amplitude and steepness of a Gaussian

% compute parameters of the Gaussian

n = 3000; x = linspace(-pi,pi,n+1);

dx = x(2)-x(1);

u = a*exp(-b*x.^2);

v = fft(u); v(1) = 0; v(n/2 + 1) = 0;

u = ifft(v);

ux = -2*a*b*x.*exp(-b*x.^2);

uxx = 2*a*b*(2*b*x.^2-1).*exp(-b*x.^2);

h22 = u.^2 + ux.^2 + uxx.^2;

63



MSc Thesis – A. Sakovich McMaster – Mathematics & StatisticsMSc Thesis – A. Sakovich McMaster – Mathematics & Statistics

h1 = ux.^2./(1 + sqrt(1 + ux.^2));

h2 = uxx.^2./(1+ux.^2).^(5/2);

% integrate by Simpson’s rule

H22 = (dx/3)*(h22(1)+4*sum(h22(2:2:n))+2*sum(h22(3:2:n-1))+h22(n+1));

H1 = (dx/3)*(h1(1)+4*sum(h1(2:2:n))+2*sum(h1(3:2:n-1))+h1(n+1));

H2 = (dx/3)*(h2(1)+4*sum(h2(2:2:n))+2*sum(h2(3:2:n-1))+h2(n+1));

semilogy(x,u);

fprintf(’eta = %g, kappa = %g\n’, 2*H1+H2, 2*sqrt(2*H1*H2));

fprintf(’H_1 = %g, H_2 = %g, H_2^2 = %g\n’, H1, H2, H22);

% solve the short-pulse equation by pseudospectral method

clear n x dx u ux uxx h0 h1 H0 H1;

tmax = 10;

N = 1024; dt = .01; % number of spatial grid points and time step

x = (2*pi/N)*(-N/2:N/2-1)’;

u = a*exp(-b*x.^2);

v = fft(u); v(1) = 0; v(N/2 + 1) = 0;

u = ifft(v);

H = 1.2*a;

xb = pi; L = 2*pi; xa = xb - L; % endpoints on x axis

na = 1;

nb = length(x);

figure(1); plot(x,u,’-k’); grid on;

pbaspect([3 1 1]);

axis([xa xb -H H]);

xlabel(’$x$’,’interpreter’,’latex’);
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ylabel(’$u(x,t)$’,’interpreter’,’latex’);

title(’$t = 0$’,’interpreter’,’latex’);

saveas(gcf,’1.eps’);

nplt = floor((tmax/20)/dt); % number of subplots

nmax = round(tmax/dt); % number of time steps

udata = u; tdata = 0;

h = waitbar(0,’please wait...’);

k = [0.01 1:N/2-1 0.01 -N/2+1:-1]’;

c1 = -i*dt./k; c2 = i*k*dt/6;

v(1) = 0; v(N/2 + 1) = 0;

for n = 1:nmax

t = n*dt;

a = c1.*v + c2.*fft(real( ifft(v) ).^3);

b = c1.*(v+a/2) + c2.*fft(real( ifft(v+a/2) ).^3); % 4th-order

c = c1.*(v+b/2) + c2.*fft(real( ifft(v+b/2) ).^3); % Runge-Kutta

d = c1.*(v+c) + c2.*fft(real( ifft(v+c) ).^3); % method

v = v + (1/6)*(a + 2*(b + c) + d);

v(1) = 0; v(N/2 + 1) = 0;

if mod(n,nplt) == 0

u = real(ifft(v));

udata = [udata u]; tdata = [tdata t];

waitbar(n/nmax);

end

end

close(h);

toc; % stop stopwatch
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figure(2); % plot u at t=T/2

k = size(udata);

nn = round(k(2)/2);

tt = tdata(nn);

plot(x(na:nb),udata(na:nb,nn),’k-’); grid on;

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb -H H]);

title([’$t = $ ’,num2str(tt,’%g’)],’interpreter’,’latex’);

pbaspect([3 1 1]);

saveas(gcf,’2.eps’);

figure(3); % plot u at t=T/2

k = size(udata);

nn = round(k(2)-1);

tt = tdata(nn);

plot(x(na:nb),udata(na:nb,nn),’k-’); grid on;

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb -H H]);

title([’$t = $ ’,num2str(tt,’%g’)],’interpreter’,’latex’);

pbaspect([3 1 1]);

saveas(gcf,’3.eps’);

figure(4); % plot u at t=T

plot(x(na:nb),udata(na:nb,k(2)),’k-’); grid on;
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xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb -H H]);

title([’$t = $ ’,num2str(tmax,’%g’)],’interpreter’,’latex’);

pbaspect([3 1 1]);

saveas(gcf,’4.eps’);

figure(5); % plot solution surface

waterfall(x(na:nb),tdata,udata(na:nb,:)’);

colormap(1e-6*[1 1 1]);

view(-20,35);

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$t$’,’interpreter’,’latex’);

zlabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb 0 tmax -H H]);

pbaspect([1 2 .2]);

This script was used to compute the evolution of perturbed pulses and

generate Figures 3.5–3.8 in Section 3.3.

%***************************************************************

% Computing evolution of perturbed pulses *

%***************************************************************

tic; % start stopwatch

clear all; close all;

r = 0.02; % scaling parameter $\alpha$

x_shift = 1.5; % initial position of center of the pulse
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tmax = 10; x_shift*2/(r^2); % time of travel

N = 3072; dt = .03; % number of spatial grid point and time step

x = (2*pi/N)*(-N/2:N/2-1)’;

% set up initial data

m = .30; nm = sqrt(1-m^2); % geometry of the pulse

y = linspace(-200,200,9007); % a parameter to be eliminated

ph = m*y; ps = nm*y;

A = 1 - 0.05;

denom = m^2*(sin(ps).^2) + nm^2*(cosh(ph)).^2;

uExact = A*r*4*m*nm*(m*sin(ps).*sinh(ph)+nm*cos(ps).*cosh(ph))./denom;

xExact = x_shift + r*(y + 2*m*nm*(m*sin(2*ps)-nm*sinh(2*ph))./denom);

u = spline(xExact, uExact, x); % make spline approximation

L = 5; H = 0.03; % define a window for a graph

xb = 2.5; xa = xb - L; % endpoints on x axis

na = round( (xa+pi)*N/(2*pi) ); % margins in array

nb = round( (xb+pi)*N/(2*pi) );

figure(1); plot(x,u,’-k’); grid on;

pbaspect([3 1 1]); % aspect ratio

axis([xa xb -H H]);

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

title(’$t = 0$’,’interpreter’,’latex’);

saveas(gcf,’1.eps’);

nplt = floor((tmax/10)/dt); % number of subplots

nmax = round(tmax/dt); % number of time steps
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udata = u; tdata = 0; % set up the errays for data

h = waitbar(0,’please wait...’);

v = fft(u);

k = [0.01 1:N/2-1 0.01 -N/2+1:-1]’;

c1 = -i*dt./k; c2 = i*k*dt/6;

v(1) = 0; v(N/2 + 1) = 0;

for n = 1:nmax

t = n*dt;

a = c1.*v + c2.*fft(real( ifft(v) ).^3);

b = c1.*(v+a/2) + c2.*fft(real( ifft(v+a/2) ).^3); % 4th-order

c = c1.*(v+b/2) + c2.*fft(real( ifft(v+b/2) ).^3); % Runge-Kutta

d = c1.*(v+c) + c2.*fft(real( ifft(v+c) ).^3); % method

v = v + (1/6)*(a + 2*(b + c) + d);

v(1) = 0; v(N/2 + 1) = 0;

if mod(n,nplt) == 0

u = real(ifft(v));

udata = [udata u]; tdata = [tdata t];

waitbar(n/nmax);

end

end

close(h);

figure(2); % plot u at t=T/2

k = size(udata);

nn = round(k(2)/2);

tt = tdata(nn);

plot(x(na:nb),udata(na:nb,nn),’k-’); grid on;
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xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb -H H]);

title([’$t = $ ’,num2str(tt,’%g’)],’interpreter’,’latex’);

pbaspect([3 1 1]);

saveas(gcf,’2.eps’);

figure(3); % plot u at t=T

plot(x(na:nb),udata(na:nb,k(2)),’k-’); grid on;

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb -H H]);

title([’$t = $ ’,num2str(tmax,’%g’)],’interpreter’,’latex’);

pbaspect([3 1 1]);

saveas(gcf,’3.eps’);

figure(4); % a solution surface

waterfall(x(na:nb),tdata,udata(na:nb,:)’);

colormap(1e-6*[1 1 1]);

view(-20,35);

xlabel(’$x$’,’interpreter’,’latex’);

ylabel(’$t$’,’interpreter’,’latex’);

zlabel(’$u(x,t)$’,’interpreter’,’latex’);

axis([xa xb 0 tmax -H H]);

pbaspect([1 1 .2]);
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This code was used to compute parameters of perturbed pulses and fill

out Table 3.2 in Section 3.3.

%***************************************************************

% This script computes the values of parameters $\eta$ and *

% $\kappa$ for perturbed pulses *

%***************************************************************

clear all; close all;

r = 0.02; % scaling factor \alpha

epsilon = -0.05; % perturbation

A = 1 + epsilon; % multiplier for the amplitude

N = 4000; % number of mesh points

x = linspace(-pi,pi,N)’;

m = .30; nm = sqrt(1-m^2); % pulse parameters m and n

y = linspace(-400,400,9007); % a parameter to be eliminated

% generate a perturbed pulse solution

ph = m*y; ps = nm*y;

denom = m^2*(sin(ps).^2) + nm^2*(cosh(ph)).^2;

uExact = A*r*4*m*nm*(m*sin(ps).*sinh(ph)+nm*cos(ps).*cosh(ph))./denom;

xExact = r*(y + 2*m*nm*(m*sin(2*ps)-nm*sinh(2*ph))./denom);

% plot for the pulse solution

u = spline(xExact, uExact, x);

plot(x,u,’-k’); grid on;

pbaspect([3 1 1]);
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H = .03;

axis([-1 1 -H H]);

ux = zeros(N,1);

uxx = zeros(N,1);

dx = x(2)-x(1);

% numerical derivatives with error ~ O(h^2)

for k = 2:N-1

ux(k) = (u(k+1)-u(k-1))/(2*dx);

uxx(k) = (u(k+1)-2*u(k)+u(k-1))/(dx^2);

end

h22 = u.^2 + ux.^2 + uxx.^2;

% compute integrals by Simpson’s rule, error ~ O(h^3)

% Sobolev’s H_2 norm squared

H22 = (dx/3)*(h22(1)+4*sum(h22(2:2:N-2))+2*sum(h22(3:2:N-1))+h22(N));

h1 = sqrt(1 + ux.^2) - 1;

h2 = uxx.^2./(1+ux.^2).^(5/2);

H1 = (dx/3)*(h1(1)+4*sum(h1(2:2:N-2))+2*sum(h1(3:2:N-1))+h1(N));

H2 = (dx/3)*(h2(1)+4*sum(h2(2:2:N-2))+2*sum(h2(3:2:N-1))+h2(N));

fprintf(’eta = %g, kappa = %g\n’, 2*H1+H2, 2*sqrt(2*H1*H2));

fprintf(’H_1 = %g, H_2 = %g, H_2^2 = %g\n’, H1, H2, H22);

% for A = 1 the below value must be approximately

% equal to \eta. test of accuracy

fprintf(’16m(r + 1/r) = %g\n’, 16*m*( r + 1/r ));
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