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Chapter 8

Asymptotic methods in soliton stability theory
Dimitry E. Pelinovsky and Roger H. J Grimshaw
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Australia

Abstract

We describe asymptotic methods for the analysis of soliton stability and related
long-term dynamics in nonlinear evolution equations which conserve energy. For
these equations there exists a Lyapunov functional which generates stationary
soliton solutions through a constrained variational principle. We show that the
stability of soliton solutions is determined in many cases by a potential function
given by this functional at the stationary soliton solutions. When the potential
function has a local minimum in the space of the soliton parameters the soliton
solutions are stable. In the opposite case, instability of the soliton solutions
takes place and we investigate the structure of the eigenvalues and unstable
eigenmodes through a modification of bifurcation analysis. In an extension of
this analysis, We propose an asymptotic multi-scale expansion technique and
derive several universal finite-dimensional asymptotic equations governing the
long-term evolution of unstable solitons of different types. Using these equa-
tions, we describe typical scenarios of this instability-induced soliton dynamics
and present approximate solutions for the soliton transformation.
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8.1 Introduction

In modern nonlinear dynamics, the existence and stability of equilibrium
states is the primary starting point for the analysis of dynamical processes
described by finite-dimensional systems. Indeed, if the equilibrium states exist
and are stable with respect to small perturbations, they can attract certain
ranges of initial conditions. However, if an equilibrium state is unstable, small
perturbations can lead the dynamical system to other stable stationary or non-
stationary attractors, e.g. to periodic orbits or to chaotic motion.

Similar problems are also of crucial importance when dealing with infinite-
dimensional systems possesing special steady-state solutions. In particular, we
are concerned here with continuous systems describing wave propagation in
nonlinear dispersive wave media. For these systems it is known that special
localized solutions (solitary waves or solitons) play the role of equilibrium states
which realize a balance between the dispersive and nonlinear properties of the
wave field. In the last 30 years solitons have been under intense investigation
in various branches of contemporary physics and it is unnecessary to mention
here the extensive literature devoted to this topic. For our purpose, we recall
only the basic and universal fact that whenever solitons are stable with respect
to small perturbations, an arbitrary initial localized pulse evolves into a finite
sequence of solitons and an oscillatory tail decaying due to dispersive effects
(see, e.g., [1]). In the opposite case when the solitons are unstable, there is
no universal scenario describing soliton transformations. For instance, in this
situation collapse (formation of singularities in finite time) can occur in the
framework of the underlying evolution equations (see, e.g., [2]). Thus, the
study of soliton stability is a fundamental step in analysing the evolution of
localized nonlinear perturbations in such wave systems.

Because of its fundamental importance, the theory of soliton stability began
to develop in parallel with the discovery of the remarkable properties of soliton
solutions (see, e.g., [3-5]). To the present time, several methods have been
shown to be effective in the analysis of soliton stability and they are described
in detail in many papers and reviews (see, e.g., [6-13]). We will mention here
only the basic ideas and methods used.

First of all, one should separate the problem of solitary wave stability into
several different classes according to whether (i) the perturbations have the same
spatial dimension as the soliton (longitudinal stability), (ii) they have a larger
spatial dimension being located along the soliton front (transverse stability),
or (iii) they are induced by other (e.g. nonconservative) effects resulting in
additional external terms to the underlying equations (structural stability). In
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this Chapter we confine ourselves to the first group of problems although the
others can be studied by similar methods. Also we consider only conservative
wave models which have some integrals of motion (e.g. mass, momentum, power
and energy) leaving other classes of models, such as diffusive systems, for review
elsewhere (see, e.g., [14]). -

It is well-known (see, e.g., [15]) that there are generally three different but
interrelated definitions of stability, namely (i) linearized or spectral, (ii) ener-
getic or formal, and (iii) nonlinear or Lyapunov stability. Below we give these
definitions and review some results which were commonly used in soliton sta-
bility problems.

Definition 1.1. Let u(z,t) satisfy a nonlinear evolution equation in the form
u; = F[u] so that an infinitesimal variation §u satisfies the linearized problem
bu; = F'[u}éu, where F'[u] is the Frechet derivative of F[u]. Then, the soliton
solution u = u, is called linearized stable if the variation 6u does not grow for
t > 0 faster than O(2).

In this definition we have taken into account that in conservative evolution
equations the soliton solutions form one- or many-parameter families and, as
a result, the linearized problem admits eigenfunctions which grow linearly in
time. For example, if u, = u,(z — Vt; V) is the travelling-wave soliton solution
the linearized problem has an eigenfunction,

du, &m:u

oV oz
ie. du ~ O(t) for t — oo. It is obvious that this linear growth can be easily
removed by a renormalization of the soliton parameters, and hence it does not
cause real soliton instabilities [4].

Usually, the problem of linearized stability can be reduced with the help of
the substitution du = 1 exp[A¢] to study the spectral problem Ly = M), where
L = F'lu,] is generally a non-self-adjoint operator with variable coefficients.
If this spectral problem possesses a (localized) eigenmode 1 corresponding to
the eigenvalue A with a positive real part, then the infinitesimal perturbation
éu grows exponentially in time and instability of the soliton solution occurs.
Moreover, even in the case when the zero eigenvalue A = 0 is degenerate, solitons
are linearly unstable but this instability results in power-like growth of the
perturbation, i.e. du ~ O(t?) for t — co. We would like to mention that the
degeneration of the eigenvalue A might occur also for nonzero but imaginary
values, and this results in linear growth of the perturbation, i.e. du ~ O(¢)
for ¢ — oco. This special case represents an exception from Definition 1.1 but,

¥

bu ~
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throughout this Chapter, we will discuss only simple cases for soliton stability
problems, when the degeneration of the eigenvalue at the imaginary axis is not
possible (see also discussion in Section 8.2.3).

To estimate the eigenvalue with a positive real part, different techniques
have been applied in some particular problems. For instance, in studying the
eigenvalue problem for the nonlinear Schrédinger (NLS) equations Vakhitov
and Kolokolov [5] applied a Lagrange multiplier method which has been subse-
quently used by many others. This method allowed them to reduce the original
spectral problem to a constrained Sturm-Liouville problem and then find the
conditions when the maximum eigenvalue passes through zero and acquires a
positive real part. On the other hand, using known functional inequalities (e.g.
the Schwartz inequality), Laedke and Spatschek [6] applied a suitable varia-
tional principle to the same class of problems in order to estimate domains of
linearized stability and instability. Recently, Pego and Weinstein [7] investigated
another type of the linearized problem which is related to the generalizations of
the Korteweg-de Vries (KdV) and Boussinesq (Bs) equations. They developed
new analytical methods suitable for linear differential equations with asymptot-
ically constant coefficients. However, a general method to analyze the linearized
stability problem has not yet been proposed.

Definition 1.2. Let a soliton solution u = u, be a stationary point in the
variational problem §A[u] = 0, where A[u] is a Lyapunov functional which is
presented by a superposition of a Hamiltonian H[u] and the other constants
of motion Nj[u] for j = 1,2,...,n in the form A = H + 2y wilN;, and w =
(wi,wa,...,wy,) is a set of parameters of the soliton solutions. Then, the soliton
solution is called energetically stable if the second variation of the Lyapunov
functional at the soliton solution is strictly positive (or strictly negative).

Indeed, if the second variation of the Lyapunov functional is strictly pos-
itive a soliton solution realizes a local minimum in a functional space and a
small perturbation to the soliton shape will not change drastically the soliton
evolution. Energetic stability also implies linearized stability, because the sec-
ond variation is preserved by the linearized equations. In soliton theory, the
introduction of the Lyapunov functional follows directly from the constrained
variational problem which produces stationary soliton solutions to the given
evolution equation. We mention that the same form of Lyapunov functional
is often used to prove nonlinear stability of fluid and plasma equilibria but, in
these problems, the search for the (Casimir) functionals N; can be sometimes
rather difficult (see [15]).

The variational principle for soliton solutions was widely used by Kuznetsov
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and coauthors (see [8] and references therein) to prove the global boundedness
from below of the Lyapunov functional at the soliton solution. In some simple
cases, when the evolution equations have some scaling symmetries, this can be
easily done by means of a method of the functional estimates (see [8]) but this
technique does not work in more complicated cases when the soliton solutions
are stable only in a local rather than in a global sense.

Definition 1.3. Let operator 7; denote translations of the family of soliton
solutions u, along parameters of the J-stationary phase. Define the e-vicinity of
the soliton orbit as U, = {u : inf [|u— =1Tius|| < €}, where [|u|] is a quadratic
Sobolev norm. The soliton solution u = u, is called nonlinearly stable if for
every € > ( there exists § > 0 such that if u(z,0) € Us then u(z,t) € U, for
all t > 0.

In other words, this definition implies that the solution being initially near
the soliton orbit remains at all later times near this orbit. To extend energetic
stability to nonlinear stability it is necessary to take into account nonlinear
terms in the Lyapunov functional beyond the second variation terms and then
to evaluate them using appropriate norms. For example, using analysis based
on the properties of the linearized operators, Weinstein [9] proved for the gen-
eralized NLS and KdV equations that the Lyapunov functional has a strict
minimum at the soliton solution in the stability domain of a parameter space.
Genera] theorems on nonlinear soliton stability were proved by Grillakis et al.
(10, 11] for a wide but not a general class of evolution equations including the
generalized Klein-Gordon equations. These results applied to equations occur-
ing in field theory were recently reviewed by Makhankov et al. [12].

These three definitions of soliton stability require different levels of the per-
turbation amplitudes to preserve the stability of the soliton dynamics, from in-
finitesimal to small and finite amplitudes. However, for all aforementioned soli-
ton equations it was found that the linearized, energetic and nonlinear stability
of the soliton solutions is determined by concavity of the function Ulw) = Alu,]
in the parameter space w, where Alus] is the Lyapunov functional expressed
at the stationary soliton solution. This universal result was also obtained by
means of catastrophe theory [13].

The main objectives of the present Chapter are to review the known re-
sults of the linear stability theory through an asymptotic ( bifurcation) approach
and to describe a novel uniform asymptotic multi-scale method for analysis of
nonlinear rather than linear stages of solitary wave instabilities. Recently this
method was elaborated in a number of papers [16-19] and its applicability seems



250 Nonlinear Instability Analysis

to be very powerful not only in the problems where the linear stability theory
has been considered but also in new problems.

Our approach can be regarded as a ‘finite-dimensional analysis’ of soli-
ton instabilities because it uses many results of the stability theory for finite-
dimensional Hamiltonian and dissipative systems. As a basis for our analysis,
we use a modified soliton perturbation theory to reduce description of the soliton
instability development to a finite-dimensional system for an equivalent particle
motion.

The fact that solitons are analogous to particles in some dynamical pro-
cesses is well known. For example, collisions of solitons [20], their dynamics in
smooth inhomogeneous fields [21] as well as the internal oscillations of soliton
shapes [22] can be approximately described by finite-dimensional Hamiltonian
systems. Furthermore, a regular soliton perturbation theory has been elabo-
rated and applied to an approximate description of soliton dynamics under the
action of various small perturbations [23]. According to this theory, the action
of the perturbations can be reduced in the leading-order (adiabatic) approxi-
mation to a finite-dimensional system for the variable parameters of the soliton
solutions. However, to apply the soliton perturbation theory it is supposed that
the solitons are stable in the framework of the nonperturbed problem. As soon
as this assumption is not fulfilled and the solitons are unstable, the adiabatic
perturbation theory breaks down [24]. In this case, one needs to find higher-
order approximations to the equations of the perturbation theory. The latter
problem is subject for our studies described in this Chapter.

In the linear approximation, the modified soliton perturbation theory re-
duces to a bifurcation analysis of the linear eigenvalue problem. The origin
of this approach can be found in several previous works. Thus, Zakharov and
Rubenchik [25] first used expansions with respect to the small eigenvalue to
study the transverse instability of solitons (waveguides) in nonlinear dispersive
media. In the two-dimensional case when a cylindrical waveguide was weakly
unstable, they modified the asymptotic expansions to take into account a lon-
gitudinal instability comparable to a transverse instability. Next, Laedke and

Spatschek [6] found the exact but implicit solutions of the linear eigenvalue -

problem in the so-called critical case which arises at the edge of the stability
and instability domains. In this case, the unstable perturbation can be repre-
sented by a finite Taylor expansion with respect to the evolution time ¢. Again,
quite recently, Pego and Weinstein [26] studied transitions to instability in the
generalized KdV and Bs equations applying the Taylor expansions with respect

to the small eigenvalue for the analytical functions used in their analysis. Asa -

matter of fact, all these results are closely related to the asymptotic multi-scale
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expansion method which we apply here to investigate the soliton stability.

Although our method is rather general, it is best demonstrated through its
applications to a number of typical and physically relevant examples. In the
following, we present different classes of solitary wave solutions to nonlinear
evolution equations including those well known already (e.g. kinks, long-wave
and bright solitons) and some new classes, whose study has begun only recently
(e-g., dark and coupled solitons).

Example 1.1. Kinks and long-wave solitons

These soliton structures can be described in the framework of the generalized
KdV and Boussinesq equations. Typical representatives of these equations are
given by

wy + Wy + QUugey — Buges = (1.1)

Ut ~ Collaz + [f() + tsa],, = 0 (1.2)

where « and § are non-negative, ¢ is the limiting long-wave speed, the function
f(u) has the properties f(0) = f/(0) = 0, and f'(u) = df/du. For o =
1 and B = 0 equation (1.1) can be regarded as the nonlinear generalization
of the KdV equation [27] while for &« = 8 = 1 it is a generalization of the
Benjamin-Bona-Mahoney (BBM) equation [28]. The generalized KdV (gKdV)
equation (1.1) describes Rossby waves supported by a weak shear flow [29] and
long internal waves in a fluid with weakly nonuniform stratification (30], as
well as being generally used for the approximate modelling of propagation of
strongly nonlinear waves in weakly dispersive media [27]. On the other hand,
the generalized Boussinesq (gBs) equation (1.2) describes interaction of two
counter-propagating nonlinear waves in a nonlinear medium with weak positive
dispersion.

The kink and soliton solutions to (1.1) and (1.2) can be found by means of
a direct reduction using a travelling-wave coordinate, u = us(z — Vt), where
V is the velocity. We call the solutions u, kinks if u, tends to nonzero and
different boundary conditions at infinity (e.g., us — +g as z — Foo, where
q is constant). If u, approaches the same boundary conditions at infinity we
call such solutions long-wave solitons. Without loss of generality we consider
zero boundary conditions for the long-wave soliton solutions so that us — 0 as
¢ — *o0o. The stability of such soliton solutions was considered in (7,26,31-34].
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Example 1.2. Bright and dark solitons

These soliton solutions can be described in the framework of the generalized

v

NLS (gNLS) and complex Klein-Gordon (¢KG) equations which are given by
(L3)

(1.4)

where we suppose that F(0) = 0. In nonlinear optics, equation (1.3) describes
propagation of self-guided beams in dielectric waveguides and the function F(I),
I = |¥|? is proportional to a nonlinear correction to the refractive index of the
optical material [35]. On the other hand, equation (1.4) describes localized
structures in field theory (see [12] and references therein). :

The soliton solutions are given by a function involving two parameters,
U = W,(z — 2Vt) exp[ifdt], where 2V is the soliton velocity and € is the soli
ton propagation constant. We call these solutions bright solitons if |¥,[*
approaches zero as |z| — oo and dark solitons if |U[> — ¢, where ¢ is th
intensity of the continuous-wave background. The stability of bright soliton
has been considered in details in many papers [5,9-10,36-38] while the study o
stability of dark solitons started only recently [18,39-41].

i + Wy + F(UR)T =0

Vo~ Voo + [wf — F(IE)] T =0

Example 1.3. Coupled solitons

Coupled solitons are described by models consisting of two and more compo
nents which support individually one of the soliton solutions described above
Here we consider only one example of these models, the coupled NLS equas
tions given by :

Wt + Yran + 200 (0] + o T[2) ©; = 0

W + Wopg + 20 ?_eﬂ_w + _ew“wv Uy =0 (1.50)

where p is a coupling parameter and ¢y,0, = +1. These equations describé
interaction between two optical pulses with different polarizations or different
carrier frequencies in a birefrigent fibre [42]. The coefficient p usually takes
values from 2/3 to 2, while the signs of oy and oy are positive (negative) i
the corresponding pulses propagate in the anomalous (normal) regime of the.
birefrigent fibre.

The coupled solitons to (1.5) are expressed by the three-parameter su
stitution, ¥; = W;,(z — 2V1)exp[iQt] for j = 1,2. According to the signs
o1 and oy there are possible coupled states of bright-bright, dark-bright and
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dark-dark solitons [43-45]. Only the stability of coupled bright-bright solitons
has been previously considered [46-48]. We mention also that similar coupled
(multiply-charged) solitons were mvestigated for coupled complex Klein—Gordon
(many-component field) equations [11, 12, 49].

8.2 Linear stability theory

8.2.1 Stability of equilibrium states in finite dimensions

In this Section we recall the well-known results of linear stability theory for
finite-dimensional conservative or dissipative systems [50, 51). First, we consider
a system of n particles with the conserved energy,

E=K(q,¢)+U(q) = W.ME@.SK,,.ﬁ. +U(q) (2.1)

where ¢ = (q1,¢2,...;¢,) are generalized coordinates, ¢ (¢1, 42,y .-y §n) are
generalized velocities, K(g,¢) stands for the kinetic energy, and U(q) is the
potential energy. In nonrelativistic mechanics, the kinetic energy is usually
supposed to be a positive definite quadratic form in the velocities [50, 51].

The system of particles can form an equilibrium state if the potential function
U(q) has a local extremum for some ¢ = qo, so that

ou

QS 9=go

0, forally

The stability of this equilibrium state is determined by the following theorem.

Theorem 2.1. Let a system of particles be defined by the energy (2.1) with
positive definite kinetic energy and have an equilibrium state at the point ¢ =
go- (i) The equilibrium state is nonlinearly stable if the function U(q) bhas a
strict minimum at the point ¢ = gq. (ii) The equilibrium state is linearized
and energetically stable if the quadratic form generated by the matrix with the
coefficients

o*U

- 3q;0q;

U5

9=90

1s positive definite.

Indeed, the second variation of the energy at the equilibrium state is given

by a superposition of the kinetic energy and potential energy quadratic forms,

1 Lo 1
§°E = 3 MU mi;0¢:6¢; + 5 MU u;;6¢;:0; (2.2)
i, SAg
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where 8¢; = ¢;—q¢jo and m;; = M;;(go). Then, if the potential energy quadratic
form is positive definite (as the kinetic energy quadratic form is supposed to be)
the positive definite property of the second variation §2E follows. In this case,
the function U(q) has a local minimum in the equilibrium state and the equa-
tions for the particle motion describe small-amplitude oscillations of n particles
with n real frequencies [50]. Furthermore, if the second quadratic form in (2.2)
is only non-negative definite (i.e. it can take zero values for certain nonzero
8q;), the equilibrium state is linearized and energetically unstable because of
solutions which grow secularly in time. However, even in this case, nonlinear
stability can still be proved if the potential energy function has a strict minimum
at the extremal point.

Next, we also include certain dissipative effects described by Rayleigh’s dis-
sipative function F(q,¢). In the quasi-linear approximation, this function can
also be presented by a quadratic form with respect to the generalized velocities

[50],
1 . ..
F =53 Kij(a)id; (23)
R

The equations of motion are now

4oL oL _ oF (2.4)

di dg;  dq; 94;

where L is the Lagrangian given by L = K(g,q) — U(q). The dissipative

function F' is proportional to the rate of energy damping according to the
balance equation following from (2.1),(2.3) and (2.4),

dE

—_— = =2F
di

Therefore, we suppose for global dissipation that the quadratic form in (2.3) is

positive definite. Then, one can prove (see [51]) that the existence and stability

of equilibrium states are given by the same conditions as above. Thus, we

conclude that both in conservative and certain dissipative finite-dimensional

systems with positive definite K(q,q) and F(q,q) the stability of equilibrium
states is uniquely determined by concavity of the potential function {/ (g). This:

main result has a direct analogy in the stability theory of solitons.

8.2.2 Stability of soliton solutions of evolution equations

In this Section we review some results for soliton stability theory. Let us consider

a nonlinear evolution equation with a conserved energy written in the abstract
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Hamiltonian form [10, 11},
uy = JH'[u] (2.5)

where H[u] is an energy functional (Hamiltonian), H'[u] is the variational
(Frechet) derivative of H[u], and J is a skew-symmetric linear operator. As
we mentioned in the Introduction (see Definition 1.2), soliton solutions u = u,
of equations of this type depend on one or more parameters w; (j = 1,2,...,n)
which are associated with additional integrals of motion N;. These solutions
are stationary points of the Hamiltonian H for fixed invariants N; which can
be written as the following constrained variational problem,

6A[u] =6 | H[u] + W:&\/ﬁ& =0 for u=uy, (2.6)

1=1

Here Alu] is a Lyapunov functional while the parameters w; play the role of La-
grangian multipliers. The variational problem (2.6) leads to differential relations
between the integral invariants H and N; evaluated at the stationary soliton
solutions. We adopt the subscript ‘s’ for these invariants. Indeed, varying (2.6)
with respect to the soliton parameters we obtain the differential relations,

0H, & OJN;,
Deo; +2ow %EM =0 (2.7a)

J=1

Then, symmetric relations between N;, and Njs follow from (2.7a) after elimi-
nation of H,,
N, ON;

s = B (2.7b)

The theory of soliton stability is based on a study of the properties of the
second variation §2A = Afu, + 6u] ~ Afu,] = 3 (6, A"[ug)6u) + o(||6ul|?), where
(4,w) is a proper inner product (see, e.g., formula (2.12) below). This second
variation %A generates the linearized equations,

Sus = JA"[u,)éu (2.8)

Usually the operator A”[u,] is a self-adjoint operator of Sturm-Liouville type.
Then, the first and important step is to study the eigenfunctions to the spectral
problem A”[u,]¢ = pu¢ which generally contains a set of neutral modes (i.e.
eigenfunctions for 4 = 0) generated by translational symmetries of the soliton
solutions. For different evolution equations there are known the following three
general types of spectrum of the operator A” [us]. They are shown schematically
in Fig.1.
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Fig.1. Three characteristic types of spectrum of the operator A”[u,]. Here
@ is a real eigenvalue for the corresponding spectral problem, stars Tnv and
dashed (///) regions depict localized modes and branches of the continuous

spectrum, respectively.
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A. The neutral modes are ground states (i.e. even and nodeless solutions of the
spectral problem) and the rest of the spectrum has only positive values for p.

B. There exist only one mode for negative y, neutral modes for i =0 and the
test of the spectrum has positive values for .

C. For negative y there.exist two or more modes or even an infinite-dimensional
subspace of eigenfunctions.

The case A occurs, for example, for kink solutions to nonlinear evolu-
tion equations and, in this case, it is easy to prove that the quadratic form
{6u, A"[u,])6u) is always positive, i.e. the soliton solutions are absolutely stable
[8,10]. The case B is well-known for long-wave and bright solitons [9, 10] which
have effectively only one parameter, say w =w; and N = N;. In this case, the
following theorem was proved by Grillakis et al, [10,Theorem 2.

Theorem 2.2. Define functions of w of the form U(w) = Afu,] and N,(w) =
Nlu,] and let the spectral problem A"[u,]¢ = pg satisfy condition B. Then, (i)
the soliton solution u = u, with the parameter w = wp is nonlinearly stable
if the function U(w) has a strict minimum at the point w = wo and (ii) the
soliton solution is linearized and energetically stable if the concavity of U is
positive, i.e.

d*U

dw?

_dn,

w=wg dw >0

w=wp

In the last formula we have used the differential relations (2.7a). Thus,
it follows from Theorem 2.2 that the Lyapunov functional evaluated at the
soliton solution serves as an effective potential function which determines the
stability of soliton solutions by its concavity at the extremal point. We would
like to mention that there are some examples when the spectrum of A”[u,] has
only one mode for negative u but the rest of the spectrum is located in u > 0
starting from a neutral nonlocalized mode with 4 = 0. For instance, this occurs
for dark soliton solutions [52]. Although the rigorous stability theory for this
case has not yet been completely studied, our preliminary results (see Example
2.3.2) indicate that Theorem 2.2 seems to be valid even for this modification of
condition B.

Finally, the case C is known, for example, for coupled solitons [11], ‘higher-
order’ solitons with a number of nodes [54] as well as for long-wave solitons
n some systems of generalized Bs equations [55]. Under certain restrictions
ee [11] for details) Theorem 2.2 can be generalized for this case as well so
hat a strict minimum of the function U(w) = Alu,] defined now in a space of
n parameters w; (j = 1,2,...,n) determines the nonlinear stability of soliton
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solutions. However, when the restrictions described in [11] are not satisfied the
simple criteria based on the function U(w) may not work and instability might
arise even if this function has a strict minimum in the parameter space [54, 55].

In the rest of this Section we describe briefly some examples of soliton sta-
bility problems.

Example 2.2.1. Kinks and long-wave solitons

Soliton solutions to the gKdV equation (1.1) can be found through the substi-
tution u = u,(z — Vt), where u, satisfies the stationary-wave equation,

(@ + BV )toze — Vu, + f(u,) =0 (2.9)

The existence of kink and/or long-wave soliton solutions is determined by the
particular form of the function f(u) and the values of the parameter V. For
instance, the following assumptions provide some sufficient conditions for their
existence.

Assumption 2.1. (eristence of kinks). Equation (2.9) admits solutions with
the boundary conditions u; — +¢ as 2 — +oo if:
i) V.=V(q) = ¢ 'f(q) and V is confined to the interval (—af~1,0); _
ii) the function f(u) is odd and satisfies the condition ¢f'(¢) < f(g) < 0. Qm_r Ov Us _7 Q.v
Assumption 2.2. (ezistence of long-wave solitons). Equation (2.9) admits 11 w
solutions with the boundary conditions u, — 0 as z — +oo if:
i) V is either positive or negative but bounded from above as V < —af™!;
ii) there exists at least one value u = u* such that [ f(u)du — FVur? =0 0

81

The geometrical meaning of these conditions is obvious from the construction |
of an equivalent potential W(u,) = —1Vul + [3* f(u)du. We present this
potential in Figs.2(a,b) for the nonlinear function f(u) = ou®, where o =
+1. The kink solutions shown in Fig.2(c) correspond to the trajectory ‘s’ [see
Fig.2(a)] connecting two saddle points in the potential W (u,). These solutions

exist for 0 = —1 and are described by the explicit function,

g

uy = ¢ tanh[xz]

where & = ¢q/\/2(a —f¢?) and V = V(q) = —¢?. The long-wave solitons
shown in Fig.2(d) for & = +1 correspond to a homoclinic orbit [see Fig.2(b),
trajectory ‘s’]. These long-wave solitons exist for o = +1 and are expressed by
the function,

Fig.2. An equivalent potential W (u,) for the stationary-wave equation (2.9)
with f(u) = ou®, where o = ~1 (a) and o = 41 (b), as well as the kink (c)
nd long-wave soliton (d) solutions corresponding to the separatrix trajectories
" Parameters u* and ¢ stand for soliton amplitude and boundary conditions
r the kink solutions, respectively.

us = V2V sech|xz]
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determined by a concavity of the function U = U/ (V) = Alu,) and, therefore, the
mosm-éwﬁw soliton is nonlinearly stable if the momentum Py = P(V) = MFL
is increasing [31, 33]. A similar result can be obtained for the gBs equation
(1.2) and also for some other models supporting I-parameter long-wave soliton
solutions [7, 26]. For the example of the nonlinear function flu) = u®, the
- momentum Fy(V) [see (2.10b)] is given by

where & = vV/\/a+ BV and V is strictly positive. We note that in the
general case the function u,(z) is odd for kink solutions and even for long-wave
solitons.

The stationary-wave equation (2.9) can be obtained from the variational
problem (2.6) for n = 1 and the Lyapunov functional has the form A = H[u]+
V Plu}, where the energy H and momentum P are given by

H = W\.Hooo AQ:W - m.\ag \A:v&:v dz (2.10a) = M«M AQ + W.m«\v

sw.mnv is an increasing function of V for V > 0. Therefore, the long-wave
solitons for the gKdV equation (1.1) with the nonlinear function flu) =4 are
stable.

P, =2

= W\+8 A:w - g%+ mﬁwv dz (2.106)

2J-

&

The linearized problem (2.8) can be written in the operator form,

du), — B (6 = (LS 2.1
(u), = B (6u)y,, = (Lbu), ( Example 2.2.2. Bright and dark solitons

where £ = —(a + BV)02 — f'(us) + V. The second variation §2A can b
expressed as a quadratic form §2A = w@:vhm:vq where the inner product i

defined by

The stationary solutions to the gNLS equation (1.3) are given by the two-
parameter substitution ¥ = W,(z — 2Vt) exp[iQlt] which reduces (1.3) to the
. equation,

A\ngv “\ uwdz Awuw

B Vozo = 25V, + (F(IT,) - )T, =0 (2.14)
Using separation of variables ¥, = Pexp[iO], where & and © are real, we find

A neutral mode of the operator £ is given by the spatial translation u,,. Fo
from (2.14) a simple equation for ©(z)

the kink solutions this translation is a nodeless function and, therefore, th
operator L satisfies condition A (see Fig.1). As a result, the quadratic form
8%A is positive definite, which follows also from the explicit representation,

?

Q

S.mem v is the integration constant. The function ® satisfies the second-order
differential equation,

bu

\gmH

2
dz >0

—~
o
i
<2

1 oo
L ——
m>lmAQ+m<v\c8 Usg )
2
oot [F(97) 4 V2 =02 — 0 § 4 12 T% ®=0 (2.16)

Thus, the kink solutions to (1.1) are absolutely stable with respect to smal
perturbations. The same conclusion also follows for kinks in other evolutidn
equations such as the gBs equation (1.2) or the (scalar) Klein—Gordon equatio
[8, 10]. . As a matter of fact, the kink solutions to (1.1) or (1.2) have no freg
parameters because the parameter ¢ is fixed by the boundary conditions anc
V = V(q). Such (stable) solutions can be regarded as 0-parameter solitons.
In the case of long-wave solitons, the neutral mode w,, has one node an
the representation (2.13) is no longer valid because the integral is divergent
z = 0. According to the oscillation theorem, there exists only one eigenfuncti
with a negative eigenvalue for the spectrum of £ which is nodeless. Therefo
the operator L for long-wave solitons satisfies the condition B (see Fig.1) ¢
Theorem 2.2. According to this theorem, stability of the long-wave solitons i

éxmr boundary conditions 2 — 0 for bright solitons and ®? — ¢ for dark
morﬁwm as |z| — oco. Sufficient conditions for the existence of these soliton
solutions are given by the following assumptions.

Assumption 2.3. (ezistence of bright solitons). Equation (2.16) admits solu-
tions with the boundary conditions ®2 — 0 as [z] — oo if:

i)v=0and Q=w+ V2, where w is positive;

ii) there exists at least one value I = J* > 0 such that T F(Ddl-wI* = 0.
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Assumption 2.4. (ezistence of dark solitons). Equation (2.16) admits solu-
tions with the boundary conditions * — ¢ as |z| — oo if:
i) Q=F(g)+V? - %
ii) ¥? < ¢ = —1¢F'(q) and, therefore, F'(q) < 0;
ili) there exists at least one value I = I* > 0 such that

\QN.E: ~ F(q)ldl + v*(I" — q)*/I* =0

The separatrix trajectories representing the bright and dark soliton solutions
are denoted as ‘s’ in Figs.3(a,b) for the equivalent potential W([I) = bNHmAC -
F(q)ldI + v*(I — ¢)*/I, where I = ®2. We have evaluated this potential for
the nonlinear function, F'(I) = oI, where o = £1. The bright (for ¢ = +1)
and dark (for o = —1) soliton solutions are shown in Figs.3(c,d), respectively.

For the given nonlinear function, these solutions can be found from (2.16) in

the analytical form,
® = V2w sech|\/wz]

‘N-*

~

I* q I

for bright solitons and
- Lo o 2 1
o= AQ -3 An —v menw Tﬂ&v
for dark solitons, where x = ve? — »? and % = WQ.

The bright and dark soliton solutions can be generally found from the vari-
ational problem (2.6) for n = 3 with the Lyapunov functional in the form

A = H[U] + VP[U] + QN{[T] + qvS[¥] (217).
*
Here the energy H and the constants of motion P (momentum), N (power), -~ I -
and S (phase shift) are defined as 0 T 0 M
1 ftoe e
H = m\.g _ea_wf\h~ F(I)dI ) do (2.180)

Fig.3. An equivalent potential W(I), where I = &2, for the stationary-
wave equation (2.16) with F(I) = o], where o = -1 (a) and o = —1 (b), as
well as the bright soliton (c) and dark soliton (d) solutions corresponding to
the separatrix trajectories ‘s’. Parameters J* and ¢ stand for soliton amplitude
and intensity of the continuous-wave background, respectively.

P=11"pw, - vu)d 8)
=5 [ - (2180

N=g [T (up-g)ae (2.18)

and .
S=_L [ ﬁe a%e*v% (2.184)
2/ \UTT P '




264 Nonlinear Instability Analysis

We note that the last constant of motion is a Casimir functional, i.e. it does
not affect the variational problem (2.6) written for the variable ¥ [i.e. (2.14)].
Nevertheless, the Lyapunov functional A can be expressed in the variables ®
and x = O, and, then, variations of (2.17) with respect to these new variables

produce (2.15) and (2.16).

Although the Lyapunov functional (2.17) involves three parameters Q, V
and v both the bright and dark solitons are effectively I-parameter soliton
solutions. Indeed, for bright solitons v = 0 and we apply the transformation

U= U(z — 2Vt t)expliVa + i(w — VHi) (2.19a)
Then, the invariants and the Lyapunov functional transform as follows,

]
] — 2V N[ ]

U] — VP[¥] + VEN[J]
; + wN[¥]

¥

N = N
P = P|
H = H 7
A = H| 1
For dark solitons we apply a different transformation,

U =U(z — 2V, t)exp[i(V — v)z + iF(q)t — i(V — v)%] (2.19b)

Then, neglecting the background (vacuum) values of the invariants (2.18) we
find a new (renormalized) Lyapunov functional (see [53] for a physical motiva-
tion),
A= H'[¥] + vPT[]

where H" = H+F(¢)N and P™ = P+¢S. Theintroduction of the renormalized
energy H" and momentum P" becomes possible because the parameter g is
specified by the boundary conditions and can be considered as a constant.

Now we consider the linearized problem for the bright soliton solutions.
After a substitution ¥(z,t) = &(z)+ [6ui(z) +28uz(z)] exp[At] into (2.19a) and
then to (1.3), the linearized problem has the form

Libuy = —Abuy, Lobug = Nu, (2.20a)

where Lo = —02— F(®%)+w and £y = Lo—20?F'(®?). Using these operators
we present the second variation §?A as a superposition of two quadratic forms
§A = WAQS,NEEV + w@:fhom:wv. The second quadratic form is positive
definite because the neutral mode §u; ~ ® is even and nodeless (ground state).
On the other hand, the operator £; has a one-node neutral mode §u; ~ @, and,
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according to the oscillation theorem, satisfies condition B (see Fig.1). There-
fore, Theorem 2.2 can be applied and the stability of bright soliton solutions
follows from concavity of the function U = U (w) = A[®] with respect to the
renormalized parameter w [5, 9, 36]. The latter condition is equivalent to the
condition for the power N, = N,(w) = N[®] to be increasing. The same con-
clusion was found for the bright solitons in the cKG equation (1.4) [37]. Using
(2.18¢) we find the function N,(w) for the example of bright solitons shown in
Fig.3(c), Ny = 2y/w. Therefore, the bright solitons are stable in the framework
of the NLS equation (1.3) for F(I)=1I.

The linearized problem for dark solitons is more complicated. After the
substitution W(z,t) = W,(z)+68%(z) exp[At] into (2.19b) and (1.3) the linearized
problem can be written in the complex representation

L& = iN&p (2.205)

where £ = —02 +2iv0, + F(q) — F(|¥,*) — F/(]T,]?) (19,2 + W2(*)). The sec-
ond variation is given by §2A = 1 [(§y=, L6¢) + (6v, L*69™)]. The spectrum of
the operator £ in (2.20b) includes a neutral mode 8§t ~ V.., a unique localized
eigenfunction for negative eigenvalues and also a branch of continuous spectrum
starting from the nonlocalized neutral mode, 3 ~ 5, (see [52] for the par-
ticular case F(I) = —I). In the case v = 0 the linearized problem (2.20b)
reduces to (2.20a) with real and odd function ¥, (excepting some special cases
discussed in [18, 40]). In this case, the operator L; is positive definite, while
the operator Lo possesses a discrete-spectrum mode with a negative eigenvalue
and a continuous-spectrum branch starting from the zero eigenvalue. Thus, the
linearized operator £ belongs to an extension of condition B for which Theorem
2.2 cannot be directly applied. Nevertheless, our results reported in Example
2.3.2 indicate that the function U = U(v) = A[¥,] or, equivalently, the renor-
malized momentum P} = PI(v) = P"[¥,] still determines the stability of dark
solitons in agreement with the result of Theorem 2.2. For the dark solitons
shown in Fig.3(d) we can evaluate the slope dP{/dv in a simple form,

dPr
&tm =8VeZ -2 >0

Therefore, the dark solitons are stable in the NLS equation (1.3) for F(I) = —~1.

Example 2.2.3. Coupled solitons

The soliton solutions are given by the substitution,

U; = V(2 —2Viyexp[i(V — v;)z — i(V - vt +iQ5t], j=1,2
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which reduces (1.5) to ordinary differential equations,

0

l

e:.ﬁs - MN.N\HG:H — bwﬂH\: + MQH A_e:_w + \;emm_wv @: AMMHQV

I

0 (2.215)

Ewmes - w\:\ueuus - bmewu + wQ.m Ab_e:_w + _Quu_wv fH\mn

This system is not generally integrable and, moreover, it describes several Ha.mB-
ilies of soliton solutions which differ in the numbers Om. nodes for the mo_;.ou
profiles. Only the nodeless (fundamental) soliton solutions are usually of in-
terest because the others can be regarded as bound states of the fundamental
solitons. Therefore, in this Chapter we confine ourselves only ﬂo. the fundamen-
tal soliton solutions. Let us summarize the known results for different types of

these solutions.

Case I: 01 = 0y = +1 (bright-bright solitons). These solitons have zero
boundary conditions at infinity, i.e. [¥;[2 — 0. .é?wocﬁ loss of mabmwmr.am
we can put v; = 0, Q; = w; (§ = 1,2) and consider ¥;, = e.ﬂ..?v as a rea
function. A two-parameter (w;,w;) family of fundamental solutions exists in
the parameter interval min (s72,s?) < w;/w; < max(s~2,s?), where s = .m?w
is the positive root of the quadratic equation s(s+1) = 2p Th& >n.§m edges M
this interval the coupled solitons degenerate to uncoupled bright mor.ﬁOSm Om.wm.o
component while for the case w; = w, they become the symmetrical solitons

with @H = ew.

Case IL: 0y = —o0, = —1 (dark-bright solitons). These solitons exist for
the following boundary conditions, |¥1,|? — ¢ and |¥y)* — 0 as |z| — co.
The set of parameters can be chosen in the form v = 1, = V, & = —2¢ and
23 = 2pg + w. The fundamental soliton solutions have now two v.wBBmﬂ.mwm Vv
and w. Two branches of these solutions were found numerically in [44] in the
parameter domain, 0 < w < w*(V) and |V| < ¢ = /g, where the dependence
w = w*(V) has been evaluated numerically.

Case I1I: 01 = 03 = —1 (dark-dark solitons). For these solutions we impose
the boundary conditions |¥;]? — ¢; as |z] — co and put bu.
and —2(pg1 + ¢2). Some particular fundamental mo.FSoum were found
analytically in [45] but a general two-parameter (v, v; ) family of the dark-dark
solitons has not yet been considered.

Thus, we conclude that coupled soliton solutions form 2-parameter families.
Although rigorous stability analysis has not been developed yet for these coupled

—2(q1 + pga)
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solitons, we show that the asymptotic methods described in this Chapter can

be successfully applied to cases I and IL. Case III is more technically difficult
and it is not considered here.

8.2.3 Bifurcation analysis for the onset of instability

The global criteria for soliton stability or instability have an important role in
predictions of typical soliton dynamics. However, characteristic features of these
dynamics should be extracted from an analysis of the spectrum of the linearized
problem rather than from the global stability criteria. For example, in the
case when the solitons are stable there may exist some localized eigenfunctions
with imaginary values for the eigenvalue A (the so-called internal modes) which
- make the dynamics of soliton interaction much more complicated [22]. The
global criteria for soliton stability theory cannot predict the existence of these
solutions to the linearized problem.

In this section we show that a bifurcation approach can be a regular tool to
find stability and instability domains and to determine the existence and the pa-
rameters for both internal and unstable localized modes. The bifurcation theory

is based on an asymptotic multi-scale expansion of the localized eigenfunction
with respect to a small eigenvalue A. This expansion is valid only under the
assumption that the unstable eigenvalues can bifurcate from the origin of the
complex plane. In the general case, this is not true. For example, in dissipative
systems the unstable eigenvalues can pass the axis Re()) = 0 with a nonzero
imaginary part (see [14, 26, 56]). However, in Hamiltonian systems eigenvalues
¢an appear only in the form of either symimetrical pairs on the real or imaginary
aXes or as a quartet in the complex plane. Therefore, in Hamiltonian systems
the following four cases shown in F igs.4(a-d) are typical for the onset of soliton
instability.

In the type I instability bifurcation the unstable eigenvalues A arise on the
real axis as a result of merging of two imaginary eigenvalues [see Fig.4( 1.
On the other hand, if the existence of localized eigenfunctions with imaginary
eigenvalues is impossible, the unstable eigenvalues can still arise by emerging
from the origin as in the type II instability bifurcation [see Fig.4(b)]. These
two instabilities can be referred to as translational. In the other two types, 111
and IV [Fig.4(c,d)], the unstable eigenvalues arise similarly to the types I and II
but they have nonzero imaginary values and form a quartet. These instabilities
are referred to as oscillatory. Examples of the translational bifurcations were
onsidered in [26, 49], while those of the oscillatory ones were discussed in
54, 55].
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Then, on truncating the series (2.25), we obtain an approximation for the eigen-
value A of this localized mode, A\* = ~M~'N!(w). For N/(w) > 0 the pair of
eigenvalues lies at the imaginary axis and the series (2.23) describes an internal
oscillatory mode for the bright solitons. For N!(w) < 0 the eigenvalues are
located at the real axis, which indicates the solitary wave instability according
to the rigorous stability analysis. This case for soliton instability is type I and
it is displayed in Fig.4(a).

Next, we consider the critical case w = w, when N!(w) = 0. In this case,
we have a degenerate zero eigenvalue which leads to a weak secular instability
[6]. In the time-dependent linearized problem arising after the substitution
¥(z,t) = &(z) + 6¢(z,t) into (2.19a) and (1.3) this instability is associated
with the (éimplicit) solution,

s = iulP () + hm. + wme (2.27)

&

where :%Xav is given by (2.24).

Example 2.3.2. Dark solitons

Here we consider the spectral problem (2.20b) for the dark solitons to the gNLS
equation (1.3) and put v = V for convenience. This spectral problem possesses
only one solvability condition, given by

40
) \; (U8 — Wby du = 0 (2.28)

Let us look for solutions to (2.20b) in the form of an asymptotic series generated
by the neutral mode 6y ~ ¥,

§ip = =2, + > Ay (2.29)
n=1
The first-order correction can be also found explicitly,

av, .
@E = 57 + \»Qemv

Here we have added the secular neutral eigenfunction 83 ~ ¢ ¥, with a factor
A because the induced solution, ~ d¥,/dV, has nonzero asymptotics as & —
+00. Then, at the leading order the constraint (2.28) determines the bifurcation
criterion for the dark solitons,

dP; —0
dv

>w
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II Im(A)

VAV AV

Y

Re())

AN ANANNNNGS £ 7 7

IV oy d)

Re())

Em.ﬁmv-av. Four characteristic types of instability bifurcation of soliton
solutions. Here A is a complex eigenvalue for the linearized soliton problem,
stars (*) and dashed (///) regions depict localized modes and branches of

continuous spectrum, respectively.




272 Nonlinear Instability Analysis Nonlinear Instability An alysis 273

MEE@ the coeflicients u, and w, are related by a simple expression which is not
mportant for our analysis. Equation (2.33) admits four possible solutions for
p. However, two solutions are not small in the limit A — 0. They represent
ﬁ.rm exponentially growing and decaying modes which can be neglected in the
limit  — Zoco subject to the condition that the eigenfunction §¢(z) is not
exponentially diverging. The other two solutions of (2.33) are small in the limit
A — 0 and they have the form y ~ LA, where

where P] = P](V) = P"[¥,] [see (2.18b)]. Therefore, according to the varia-
tional problem for dark solitons, instabilities can arise only if P!’ vanishes for

a critical value V = V,, where P!’ = dPT/dV .
Next, we express the second-order correction implicitly,
ov, ov, q¢Vou,

@ _ @ _ L . _
¥ ¥H(e) mnm\» dq + B el av ¢ Oq

(2.30)

where ¢? is given in Assumption 2.4(ii) and ¥ (z) is an induced solution to
the linearized problem (2.20b). It can be shown (see [18]) that the function
2 grows linearly at infinity and, as a result, we have to add the secular
neutral eigenfunction of the operator £ which is described by the last term
in (2.30) with the factor B. It is remarkable that the function %(* does not
affect the condition (2.28) up to the third-order terms while the nonlocalized
eigenfunctions produce a nontrivial contribution to the third order. Therefore,
assuming now that P;’(V) ~ O(e) [or, equivalently, V — V., ~ O(e)] we find the
expansion of (2.28) with respect to small A [18],

1
2(cx V)

by = £ Aw.w%v
sothat uy > 0 and p_ < 0. We are interested in localized solutions to the
problem (2.20b) in the limit z — +oo0. Let the eigenvalue A\ have a positive
real part. Then, because of the neglect of the fast-varying modes with nonsmall
#, the localized solutions to (2.32) can be represented only by the unique form
BE ~ expiza] ~ [1 + Az + 0(A2)]. v
 Let us display the representation of §¢E following from the asymptotic
series (2.29) in the limit @ — +oo (see [18]),

dpPr dN;, ¢V dS dN. ds
2885 | 3 L A -9V ) Vi s =
Yt v Taeay ) A BIH (Vg —agy ) B0 =0
(2.31) PEO =0, g2 = (42180 e (2.354)
where N, = N,(V) = N[¥,] and S, = S,(V) = S[¥,] [see (2.18¢,d)]. Here we 2dv e
have used the relations following from (2.7),
2
dPr Ss IN, £2) - L JedN,  VdS.T),
av T = QMN:\ |m<ﬂw PR [Tt ) (2.355)
opr e <&.wm _ mmmm;m The mo:mmﬂwmo% for the limiting asymptotic series to be convergent leads to the
EP s v 7 av equation $E = pzapEM which determines the constants A and B as

In order to close (2.31) we have to find the constants A and B. To do this, cdN, c AN, qdS
we consider the problem (2.20b) in the limit z — dco, when A= g dv’ B= T 3g(ct - 2 |4 5\“ + B RA\« (2.36)
i
U, —» 0% = /gexp THNUL As a result, the expansion (2.31) has the explicit form,
In this limit, the problem (2.20b) reduces to the linear system with constant- 2dPs 3 4
coeflicients, A av T XK +0() =0 (2.37)
LE8YE = iA6Y%, (2.32) R here
where £ = —82 + 2V, + 2¢*[1 + exp[+i5,] (*)]. The general solution to . ¢ (dN\® ¢ [dS,\?
K= + = >0 (2.38)

g\ av 4c\dV | [lva,

this problem is given by the superposition of four exponential functions, §% =
4 —1(Un+1w,) explp.z], where p, (n =1,2,3,4) are the roots of the equation,

(B2 =262 +(2Vp — A2 —dc* = 0 (2.33)

Therefore, the instability follows from (2.37) for PI(V) < 0. Further, we can
also construct the symmetrical solution with negative real A. Thus, inside the
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instability domain the eigenvalues A are located at the real axis in the form of a
symmetrical pair and they are given approximately by A ~ FK~1PI(V). For
the stable case P7(V) > 0 the asymptotic expansions do not produce a con-
vergent eigenfunction to the linearized problem because the functions 832 are
slowly divergent. This situation corresponds to a type II bifurcation [Fig.4(b)].

For the critical case P'(V) = 0, the time-dependent linearized problem
arising after the substitution ¥(z,t) = ¥,(z) + 6¢(z,t) into (2.19b) and (1.3)
produces an implicit solution which is, however, secularly divergent,

§p = v I(z) + tp V() 4 120, (2.39)

where ¥()(z) and 4(?)(z) are found in the analysis above.

Thus, we conclude that there are two cardinally different types of the bi-
furcation technique whether the spectral problem generates weakly converging
eigenfunctions or not. As a matter of fact, this difference is caused by the
different structure of the continuous spectrum which is usually located along
the imaginary axis of A. The continuous spectrum is shown in Figs.4(a-d) by
dashed regions. If the continuous spectrum is bounded away from the zero value
of A [see Fig.4(a)] the corrections to the asymptotic expansions converge ex-
ponentially. In the opposite case, when the continuous spectrum emerges m.oa.s
the zero value [see Fig.4(b)], the corrections are secular and the asymptotic
series is weakly converging. As a result, the type I and II instability bifurca-
tions have different characteristic features for the construction of a spectrum to
the linearized problem. In one case, which is inherent to bright solitons in the
gNLS and c¢KG equations, a pair of two imaginary eigenvalues located inside
the gap for the continuous spectrum merge and bifurcate to the real axis Tm”m
Fig.4(a)]. In the other case, which is met for long-wave and dark solitons, a pair
of real eigenvalues exist only inside the instability domain and it disappears at
the critical value, being merged with a branch of the continuous spectrum [see

Fig.4(b)].

8.3 Asymptotic multi-scale expansion methods

8.3.1 General technique

In this part we show that the linear bifurcation analysis for translational insta-
bilities can be further generalized to describe the nonlinear stability or insta-
bility development of the solitary waves. This can be done in the framework of
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soliton perturbation theory which is based on the assumption of a slow (adia-
batic) evolution of the solitary wave shape so that only the (free) parameters
of the soliton are varying. Indeed, we have seen in Section 8.2.3 that near the
instability threshold the leading order of the unstable eigenfunction leads to
just renormalizing translations of the solitary wave solutions along their phase
and free parameters. Therefore, we can define the soliton orbit according to
Definition 1.3 and include these leading-order terms in the varying profile of
the soliton solutions. Then, we present small corrections to the solitary wave
shape in the form of an asymptotic series and find from analysis of the correc-
tions to this series a system of asymptotic equations describing the nonlinear
dynamics of stable and unstable solitons. These nonlinear equations generalize
the linear algebraic equation for the instability eigenvalue A.

It is remarkable that the asymptotic equations for the soliton dynamics can
also be found from analysis of the conserved quantities for the given evolution
equation. As a result, the system of asymptotic equations may resemble the
equations for motion for an equivalent finite-dimensional system of particles
which was discussed in Section 8.2.1. However, for different types of transla-
tional instabilities we find different finite-dimensional systems. For the type I
instability bifurcation the system of dynamical equations is conservative because
radiation-induced effects are very weak compared to other (e.g. inertial) effects.
On the other hand, for the type II instability bifurcation the radiation-induced
effects are dominating and, in this case, the governing equations become com-

pletely dissipative. Thus, the two types of the translational instabilities should

be treated differently.

In the rest of this Sectlon, let us summarize the formal scheme for the
asymptotic multi-scale expansion technique.
1. Assume the (free) soliton parameters are slowly varying functions of the time
T = et, where € < 1, and define the soliton orbit phases as integrals of the free

parameters with respect to the time 7.

2. Look for solutions of a given evolution equation in the form of an asymptotic

series and impose the stationary soliton solution as a leading-order term of this

series.

3. Find the first-order correction to the soliton shape from the inhomogeneous

linearized problem under the bifurcation condition.

4(a). If the first-order correction is localized, find the finite-dimensional conser-
vative system for the soliton parameters by means of an asymptotic expansion

of the Lyapunov functional.

4(b). If the first-order correction is secular (e.g. contains a trailing shelf or
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grows slowly in space), then

(i) introduce the (secular) eigenfunctions of the homogeneous linearized problem
to the first-order correction;

(i1) solve the radiation problem outside the solitary wave core;

(iii) find the finite-dimensional dissipative system for the soliton parameters
from the balance equations written for the densities of the conserved quantities.

8.3.2 ‘Conservative’ equations for soliton instabilities

In this Section we consider the finite-dimensional conservative system describ-
ing variations of parameters of soliton solutions which are supposed to satisfy
the variational problem (2.6). This system governs soliton instabilities in the
vicinity of a type I bifurcation [see Fig.4(a)]. In the general case, this system
can be represented through the conserved energy E given by

&Em &Eg.

1 1
where an effective potential energy U is defined by
U= Hy(w)+ > wj [Njs(w) = N] (3.2)
J=1

Here T = ¢t, e € 1, w = (w1,ws, ...,wy) is a set of soliton parameters, N; is a
constant value of the integral invariant N;[u] associated with the parameter w;,
E is a constant value for the Hamiltonian H[u], and the subscripts ‘s’ stand for
these invariants evaluated at the soliton solutions. Below we give two examples
of the derivation of the conservative system (3.1),(3.2) for n = 1 and n =2
according to the general asymptotic scheme applied with the step 4(a).

Example 3.2.1. Bright solitons

Here we consider the cKG equation (1.4) which possesses Bright soliton solutions
according to the analysis described in Example 2.2.2. These solutions have two
parameters V and ). However, the parameter V can be removed from the
stability problem by means of a simple Lorentz transformation,

z -Vt
A =1 - V2
¢ 7 T 1 -V,

which reduces (1.4) to the form,
(1 =VHT,, =2V, — Vee + w2 — F(|U|H)T =0 (3.4)

Vl<1 (3.3)

Nonlinear Instability Analysis 277

The bright soliton solutions are given now by the substitution
¥ =U,(¢)expliwr], W, =8(¢)exp[—iVwe]
where the real function @ satisfies the equation,

Bee + [F(2?) +w? —wl] @ =0 (3.5)

The bright-soliton solutions to this equation exist if the function F(I) satis-
fies condition (ii) in Assumption 2.3 and |w| < wyp. We define the Lyapunov
functional in the form,

A = H[¥, Y]+ wN[T, Y] (3.6)

where H and N are given by

1 rtoo [}
mum\,g _em_ﬁ&_e_wn\o F(I)dI+(1-V?)|T]*|de  (3.6a)

i e
N=z \.8 (1= V(U T = 0T) = V(U T, — ;)] de (3.6b)

and T = ¥,. According to the general asymptotic scheme described in Section
8.3.1, we assume that the soliton parameter w is a function of 7' = er, where
¢ < 1, and introduce the following asymptotic series,

¥ = [B(&w) + epD(&T) + O(e?)] exp[~iVuwe + i0)] (3.7)

where § = ¢! [T w(T")dT" represents the soliton orbit. Then it follows from
(3.4) that the first-order correction @ = u{t) + iul") satisfies the inhomoge-
neous linearized problem,

1) _ I dw
huﬁ& =12V I%.N\,. m|wa\8m0 m Awmﬂv
Loul) = |-2022 _ (1 1 viye — ovree, | s
oty = |=2wam — (14 V)@ - 2V7(P, T (3.8)

where operators £, and Lo are defined below (2.20a) by replacing w to (w? —
w?). Localized solutions to both equations (3.8a,b) exist under the following
bifurcation equation,

dN,
=0 (3.9)

dw
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where N, = N,(w) = N[U,,T,] and T, = iw¥,. Because a weak (secular)
growth of the first-order correction %! is absent under the bifurcation condition
(3.9) we proceed to use the general asymptotic scheme according to step 4(a)
and expand the Lyapunov functional (3.6) under the asymptotic series (3.7).
After some calculations carried out with the help of the linearized equations
(3.8a,b) we find the conservative model (3.1),(3.2) for n = 1 with the coefficient
M = Mj;(w) given by

2

e [ [0 1 ¢ 9(wd?)  \*
El\.s =) + M\o =g’ ) | de >0 (3.10)

Applying the same analysis to the gNLS equation (1.3) (see [17] for details),
we find the same model (3.1),(3.2) but with the integral invariants H and N
given by (2.18a,c) and the coefficient M in the form [cf.(2.26)],

teo[1 r2 98 12
M= [N (e uw a 1
|3, Yot z>0 (3.11)
where ®(z) satisfies (2.16) under Assumption 2.3.

Example 3.2.2. Bright-bright solitons

Here we consider the coupled NLS equations (1.5) for oy = o2 = +1 and impose
zero boundary conditions at infinity for the functions ¥, and ¥;. Then, the
system (2.21) for bright-bright soliton solutions at vi=0and Q; =w; (j =
1,2) is equivalent to the variational problem (2.6) for the following Lyapunov
functional,

> = .NN.TH\: .,H\M_ +E~\<HTH\L +€w>.\mmemg Aw.wwv
where
1 oo
H= M \Moo T@:ﬂ_m + _@we_w - _eu_n . Mb_@u_w_ew_m . _@ia_ dz AwHMQV
and —
Ni=5 \ | da (3.126)

Using the same analysis as in Example 3.2.1, we represent solutions to (1.5) in
the form of an asymptotic series,

Uj = [85(m501,w2) + e (a; T) + O(e2)] explit] (3.13)
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where ¢ < 1, T = et, w; = w;(T), and ; = ¢! JF w;(T)dT’. The functions
®;(z) represent the bright-bright soliton solutions, while A&.: can be found from
a linearized problem. The fundamental soliton solutions are described by the
nodeless even functions ®; (see Example 2.2.3: Case I). Using this fact and the
system (1.5), we present the first-order corrections ﬁ&.: = EM% explicitly [cf.
(2.24)],

A L (9
M — _p. [ Rl 7 P4
Usy Bb\o ew\o Q; e dz (3.14)
where
.&mf 2 %Gu&b&.
dT - @c&. &NJ

i=1
It follows from (3.14) that the first-order corrections are localized under the
following bifurcation condition,

%2: %2&& _ %2: m:/\‘m.m
Ow; Owsy dwy Oy

=0 (3.15)

where Nj; = Nj,(wi,wz) = N;[®;] for j = 1,2. Near this instability threshold,
the soliton dynamics can be described by the conservative model (3.1),(3.2) for
n =2 with the coefficients M;; given by

m +oo“— H@@» a%@»
,._u !e?\e.g,\& w.m
gg \m\éo o7 \o s o dw; * * (3.16)
We would like to point out that the same system can also be obtained for the
coupled NLS equations (1.5) with generalized nonlinear functions.

For both the examples presented above we have found that the quadratic
form generated by the coefficients M;; is positive definite [see (3.10),(3.11), and
(3.16)] so that A — Afw,] > 0. This result corresponds to Theorem 5.2 proved
in [10] for this class of stability problems. Further, the values of N; and E are
constant in time. Thus, the parameters w; resemble the generalized coordinates
¢; in a conservative finite-dimensional system with the energy {2.1) while the
Lyapunov functional produces an effective potential energy U{w) in this system
according to (3.2).

Let us apply Theorem 2.1 to the stability of soliton solutions in the frame-
work of this finite-dimensional system. Denote the parameters of a soliton
solution as w; = wjo. Then, the potential energy U(w) is extremal at this point
if the constants N; are related to the values w = wy according to N; = Njs(wo).
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Expanding U(w) up to the quadratic terms and using the relations (2.7) we find
the potential energy quadratic form,

%2_..@
%Eu.

BU =13

N - %En.%ﬁh. Awuﬂv
L%)

w=wp

where dw; = w; — wjo.
First, we consider the case n = 1. In this case, it follows from (3.17) that
the soliton solution corresponds to a local minimum of Ulw) if

dN;

o >0 (3.18)

W=k

This result completely corresponds to the general stability theorem (see Theo-
rem 2.2). When the first derivative of N, vanishes, a type I bifurcation occurs
[see Fig.4(a)] and the soliton becomes a local maximum of U(w).

Let us consider now the case n = 2. Then, the soliton corresponds to a
local minimum of U(w;,w,) if the quadratic form (3.17) is positive definite.
The latter condition is equivalent to

. Nl Lo =12 (3.19a)
@E.N W=ty
and ONw, 0N,y DNy, ON.
1s 2s 1s 2s
- >0 196
Ow; Ow, Owy 0wy [lumw, (3.190)

The first condition (3.19a) implies that the two-component solitons are sta-
ble in the framework of each partial component, while the second one (3.19b)
determines the stability of the solitons under the action of cross-component in-
teractions. When the second condition is violated, a bifurcation (3.15) takes
place which generates a pair of real eigenvalues to the linearized problem. In
this case, the soliton realizes a saddle point of the potential energy U(wy,w,).
Finally, if the first condition is violated for all components but the second one
is valid, two pairs of eigenvalues lie on the real axis and the soliton realizes a
local maximum of U(wy,w,).

Obviously the analysis presented above can be generalized for an arbitrary
value of n according to Theorem 2.1. We note that Theorem 2.1 js valid if the
quadratic form standing on the right-hand side of (3.1) is positive definite. In
this case, the instability of the soliton solutions can arise only according to the
type I (translational) bifurcation [see Fig.4(a)]. Indeed, it was proved [10-12]
that only this translational instability is possible for the examples presented
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above. We suppose that for other examples where the (kinetic) quadratic form
is not positive definite, the type III (oscillatory) bifurcation [see Fig.4(c)] might
occur even in the region where Theorem 2.2 predicts stability of soliton solu-
tions, i.e. conditions (3.18) or (3.19) are satisfied (see [54]). In those cases, the
criterion of soliton stability as well as the underlying finite-dimensional conser-
vative model should be somehow modified.

8.3.3 ‘Dissipative’ equations for soliton instabilities

In this Section we consider the dissipative finite-dimensijonal equations which
can be derived for the type II bifurcation [see Fig.4(b)]. As earlier, we suppose
that the stationary soliton solutions satisfy the variational problem (2.6) but,
for convenience, we change the notation w; for the soliton parameters to V;, and
N; for the associated integral invariants to P;. The set of dissipative equations
is given in terms of the energy E(T) of the system,

B(T)=U(V;T) = H(V) + LV (P(V) = BT (3.20)

and by balance equations for the varying quantities P;(T) and E(T),

1dP; - . .

—_— = 9. ) = s .
e F;(V,V) forj=1,2,..,n (3.21q)
1dE

—— (3.21b)

e N VA Mﬁx ViFy(V, M.\;
Vi)

Here the set of the soliton parameters V = (Vi,Va, .., depends on time
T = et, where € < 1, the subscript ‘s’ denotes the integral invariants evaluated
at the stationary soliton solutions, and the functions F and F; are quadratic
with respect to dV/dT,

1 e AVi dV;
4
1 . dV; dV;
F= 5 M .N,a:\.vwﬂglﬂw (3.220)
4

This system resembles the dissipative system (2.1),(2.3) for the motion of parti-
cles with generalized coordinates V; in the potential U(V;T) under the action
of Rayleigh’s dissipative function F°. However, the inertial effects are beyond



282 Nonlinear Instability Analysis

the leading-order approximation because the kinetic energy terms are of O(e?)
while the system (3.20)-(3.22) appears in the order of O(e). Using the Lagrange
equations (2.4) with L = —e~'U we obtain dynamical equations in the form,

LB - B V)] = 3 Ky (V)2

(3.23)
=1 &MJ

forj=1,2,...,n

Because the local values of the quantitues P;(T) and E (T') are not conservative
the system of dynamical equations (3.23) is not closed and should be considered
together with the balance equations (3.21a). This fact causes our system of
equations to differ from the closed dissipative model considered in Section 8.2.1.

The finite-dimensional dissipative system (3.20)-(3.23) can be derived for
the type II bifurcation using the general asymptotic scheme with the step 4(b)
induced due to nonlocalized corrections to the asymptotic series. The basic
element of this step is a solution of the radiation problem which is related to
the existence of nonzero Casimir functionals evaluated at the soliton solutions.
In the two examples given below we explain how to solve the radiation problem
for some particular cases and derive the dissipative system (3.20)-(3.23) for
n=1and n=2.

Example 3.3.1. Long-wave solitons

Here we consider the gBs equation (1.2) which possesses long-wave soliton so-
lutions in the form u = w,(z — Vt). These solutions satisfy (2.9) for a =1,
B =0, and V replaced by (c — V2). Therefore, the long-wave solitons to the
gBs equation exist if the nonlinear function f(u) satisfies the condition (it) of
Assumption 2.2 and |V| < ¢p. Let us define the Lyapunov functional in the
form A = Hlu,w]+ V Plu,w], where the Hamiltonian H][u, w] and momentum
Plu, w] are given by

+oo u
H = w\ Tw - w\o flw)du + c2u® + 8& dz

2/

(3.24a)

+co
P= \ uwdz (3.24b)

and w; = u,;. Besides these two invariants, the gBs equation (1.2) has two
additional (Casimir) functionals M,[u] and M,,[w],

400 +oo
M, = \ ude, M, =— \ wdz (3.24¢)

—00 —co
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Now we apply the general asymptotic scheme described in Section 8.3.1 and
consider the soliton parameter V to depend on T = et, where € < 1. Further-
more, we introduce the asymptotic series,

us(& V) + eua (& T) + O(e?)

w=ws(& V) + ew (& T) + O(?) (3.250)

where £ = z — ¢! [T V(T)dT’ and w, = —Vu,. Using (1.2) we find the
linearized system for the first-order corrections uy and wy,

U

(3.25a)

Ou,\ dV
Wy = :Ia\s:m + @N\ MNIm AWMQQV
du, dV
Ah:Lm = — m<®< -+ zm. ¥ (3.268)

where the operator £ is given below (2.11) with @ =1, 8 = 0, and V is
replaced there by (c§ — V?). First, we note that a bounded solution to these
equations exists under the following bifurcation condition,

dP;
dVv

=0 (3.27)

where P, = P,(V) = P|u,, w,]. However, the first-order corrections still contain
secular terms (a trailing shelf) in the limit & — Foo,

1 dMys | dM,,\ dV
+ — us ws
R e A Uk b (3.28a)
1 dM,s | dM,,\ dV
+ _ _ 2 us ws
Mo V=G Vot sy G V) (8280

where My, = M,[u,], M,, = My[w,], and C, and C, are integration con-
stants.

Now we consider the radiation problem for the gBs equation (1.2) in the
asymptotic limit £ — Zoo and u — UX(X,T), w — eW*(X,T), where
X = ezx. It follows from (1.2) that U* and W# are related in the leading order
as follows,

Ui = Wg,

WE = 23Ut (3.29)

These equations describe two counter-propagating waves which move to the
left and to the right with the limiting long-wave velocity ¢o. The long-wave

- solitons have velocities smaller than ¢, i.e. |V| < co, and, therefore, both
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waves are excited by an evolving soliton according to U* = U*(X ¢ coT),
W* = W(X F ¢T). Then, the radiation conditions are given by

W* = FeU* (3.30)

These equations enable us to specify the constants C, and C,, as

1 JdMay dM,,] AV
= av 31
= @y | TV | @ (3:31a)
1 dMy, dV
Cu=50"av ar (3.310)

Finally, we find from the balance equations for the energy I and momentum
P of the gBs equation (1.2) the finite-dimensional dissipative system (3.20)-
(3.23) for n =1 with the coefficients N = K;; and K, = K1, in the form,

1 M\ 1 (dMy,\?
N.\ — us el ws D . w
PRyl ) ety ) 17 (3.320)
1 M, \*? dM,, dM. V [dM,,\?
N. — _ us w us ws _ ws . M@
“=smo Vel ) T T e (3.32)

Applying the same analysis to the gKdV equation (1.1) (see [19] for details)
we find the same dissipative model but with the integral quantities H and P
given by (2.10) and the coefficients,

2

1 [dMy\° dM,,
K= d >0, K= L d <0 (3.33)

2\ av oV \ av

where M, is the same as above [see (3.24¢c)] and we have confined ourselves
to the case of positive V' [see Assumption 2.2(i)]. We note that for the gKdVv
equation there exists only one Casimir functional M, and only one component
for the radiation field U*(X,T). Besides, for this particular case, the energy
E is a constant of motion because F' + VI = 0 [see (3.21D)].

Example 3.3.2. Dark-bright solitons

Here we consider the coupled NLS equations (1.5) for o1 = —oy = —1 and
impose the following boundary conditions, |¥;[2 — ¢ and [T2> = 0 as |z| =
0o. The dark-bright soliton solutions satisfy 2 for vy =1, =V, O = -,
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and 0 = 2pg + w. These solitons are stationary points for the variational

E problem (2.6) with the Lyapunov functional

A= NNQ.TH\T @m_ -+ —\.wﬂ—éf @L + E.\/NM_HFH\NH_
where H™ = H — 29N, + 2pqN,, P = P + gS1,

(3.34)

mnw+8emlem o, 4 . 2112 1_ 2
5o [MWrel® = 1Wael? + 1A+ 200 2|0 4 |0off - ¢?] de (3.340)
1 oo
M nm\é [19:]* — ¢ do (3.34b)
1 [Hoo
Ny = -3 A\Moo |0, %dz (3.34¢)
i e
wum\.s (U500 — 0, 05,) — (T30, — 0,03, )] do (3.34d)
and
i oo [ 1 1,
rww ”lm . ﬂewhlﬂ;euﬂ &.ﬁ Awwﬁmv

- Using the same analysis as in Example 3.3.1 we represent solutions to (1.5) in

the form of an asymptotic series,

U = [Tja(& V) + (& T) + O(e?)] explity] (3.35)

where

T T
=z — 92! \o V(T')dT", 6, = —2gt+ Cy, and 0 = 2pqt + -1 \ W(T")dT"

0

Here Cy = Cy(T') is a varying constant, the functions U, represent the station-
ary (fundamental) soliton solutions while the first-order corrections &: can be
found from the linearized problem in the form [cf. (2.30)],

&Q% q @6? %@?

M) _ M el .
¥ ¥i(e)+ dT | 2¢® dq te Jw
. | . %G? Qa\%G? 9 %G?
+C, QPN Ei% & oq -2V(1 + bvl@c\' Awwmv

 where Cp = Cy(T) and ¢ = ,/g. The induced solution M is not exponentially
divergent under the following bifurcation condition,

OP; ONa, 0PI ON,,
oV v Bw oV

=0 (3.37)
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where P/(V,w) and Nas(V,w) stand for the functionals (3.34c,d) evaluated at

the soliton solutions. However, the function QM: is secularly (linearily) growing
and we need to consider the radiation problem in the limit £ — 400 and

U - [V7+eQ(X, T)| exp[~2iqt + i0*(X, T)]
em — 0

_ C &\/\wu q &rm.um

Ca= C2(2 = V7) VI toar

Finally, analyzing the balance equations for the quantities P™ and N, [see
(3.34c,d)], we obtain the dissipative system (3.20)-(3.23) for n = 2, V; = v,
Vi=w, P=P, P = N3, and the coefficients IK;, Nﬁw, and Nmm. are given

(3.41b)

0%2: QZ: q %.mm.w %mum

where X = ez and Q* 0% and, additionally, ©F are generated at the moving Kyj=S a4 (3.424)
soliton according to the limiting relations [cf. (2.35)], g 0V, aV; ' 4c OV av;
1 eV ON, 0N, | 0Ny, 3Sy, qV 85y, 51,
+_ V4 _dC 1 dNys | qdSy, Kl = — +c — (3.420)
QF = 102 2V G, ar | T N ) 4 ar T 3T (3.38a) 7=V ¢ 0V 9V, Vi aV; * 4c 9V, 8V,
) and
0* = Gy -5, (3.380) Kj5=0 (3.42¢)
- The last identity implies that the value of Py = N, is conservative. We mention
and
+ 1 cdNy,  V dS,, that the same form of dissipative equations can be obtained for the dark-bright
Ox =Gy ¥ 22 = V?) | q dT + 04T (3.38¢) solitons in the coupled NLS equations (1.5) with generalized nonlinear functions.

Here Ni,(V,w) and Sy,(V, w) are functionals (3.34b,e) evaluated at the soliton .
solutions and the derivatjve dNys[dT [and, similarly, dSy,/dT] is defined by

ANy, _ ONy dV ONy, dw

dT OV dT " Pw dT

In the asymptotic limit £ — *00, the coupled NLS equations (1.5) reduce
to the radiation problem,

We have found for both the examples presented above that the quadratic
form for the dissipative function F (3.22b) generated by the coefficients I
is positive definite [see (3.32a),(3.33), and (3.42a)]. Under this condition, the
stability of soliton solutions for the type II bifurcation is again determined by
concavity of the potential energy function U given by (3.20) in the parameter
space V similarly to the analysis presented for the type I bifurcation. Indeed,
in the linear approximation, variations of P; in time can be neglected and the
function U(V) has the quadratic form (3.17) with the replacement of Njs by Pj,
and w; by V;. Then, the stability of soliton solutions is described by Theorem
2.1,

However, in those cases where the quadratic form generated by K;; is not
positive definite the simple criterion for the soliton stability does not work. For
example, for some modifications of the gBs equations (see [26, 55]) the type
IV (oscillatory) bifurcation [see Fig.4(d)] of the long-wave solitons can occur
in the parameter region where the potential energy quadratic form (3.17) is
still positive definite. We leave the detailed study of this special oscillatory
bifurcation for further work.

Q* = L\!m@% (3.39a)

4c?
and
OF; — 4c0%, = 0 (3.395)
The dark-bright solitons propagate with the velocities V' smaller than the limit-
ing speed ¢, i.e. |V| < c [see Example 2.2.3: Case II]. Therefore, a dark soliton
generates two counter-propagating waves according to Q* = QX T 2T )
Ot =0*(Xx x 2¢T'), and the conditions for the radiation fields are

Q* = H%@w (3.40)
Using formulas (3.38) and (3.40) we find the constants Co(T) and C,(T) as
follows [cf. (2.36)],
Co= <Ny, (3.41a)
q
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8.4 Scenarios of instability-induced dynamics

8.4.1 Weakly nonlinear approximation and solutions

In this part we analyse the nonlinear dynamics of soliton instabilities described
by the conservative and dissipative finite-dimensional systems which were de-
rived in Sections 8.3.2 and 8.3.3 for translational stability bifurcations. In both
cases we confine ourselves to the simple case n = 1 when the solitons have only
one effective parameter.

For the type I instability bifurcation at n = 1 the conservative system
(3.1),(8.2) can be written in the form of the energy integral,

2

w IE - U(w)] = WES mw. (4.1)
where
U = Hy(w) + w[N;(w) — N] (4.2)

N is a constant value of the integral invariant N{u] associated with the param-
eter w, E is a constant value for the Hamiltonian H[u], N, = N,(w) = N|u,],
H, = H,(w) = Hlu,], and we assume that the coefficient M(w) is positive.
Equation (4.1) coincides with the energy conservation law for an effective parti-
cle of mass M with the coordinate w in the potential field U(w). The potential
energy U(w) is determined by the soliton invariant N,(w) according to the
following differential equation [see (2.7a) for a proof],

dU

==
To determine the stability and instability domains for a given evolution equa-
tion, we evaluate the function Ny(w) and analyse the turning points of this
function, w = w,, where the first derivative N/{w.) vanishes. In these points
the type I (translational) bifurcation occurs according to Theorem 2.2. In this
Section we consider the general case when the function N,(w) is not a con-
stant. The special case, when this function is constant, is considered in the
next Section.

Some general types for the function N;(w) are displayed in Figs.5(a)-8(a).
The corresponding phase planes (w,w), where w = dw/dT, deduced from (4.1)
are presented in Figs.5(b)-8(b). Let us discuss these cases separately.

When the second derivative N at the turning point w = w, does not vanish,
the asymptotic model (4.1) can be simplified further in the small-amplitude
approximation when the soliton parameter w is close to w,. This approximation

Niw) = N (4.3)
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a)

Fig.5. A typical two-branch curve for the functions N,(w) or P,(V) with
Ny A€L. >0 (a) and the corresponding phase plane (w,w) for the conservative
dynamical system described by (4.1) (b). Here wq (wy) stands for the parameter
w of an unstable (stable) soliton corresponding to the value of N, while w,
denotes the critical (bifurcation) value. Parameters Vo, V4, and V., ammwmuwdm
the corresponding values for the soliton parameter V. The arrows in (a) display
soliton dynamics according to the dissipative system (4.10).
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Fig.7. A typical three-branch curve for the functions N,(w) or P,(V) with
N(we) > 0 (a) and the corresponding phase plane (w,w) for (4.1) (b). .Zo-
tation is the same as in Fig.5 but wy; and wy, designate two stable soliton
solutions.

Fig.6. A typical two-branch curve for the functions N,(w) or P,(V) with

NJ(we) < 0(a) and the corresponding phase plane (w,w) for (4.1) (b). Notation
is the same as in Fig.5.
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N; (Fy)
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O wot wy Woa M‘
Vin Vi Voz 1%
A b)
\
O wWo wy Good E\

Fig.8. A typical three-branch curve for the functions N,(w) or P,(V) with
N"(w:) < 0 (a) and the corresponding phase plane (w,w) for (4.1) (b). No-
tation is the same as in Fig.5 but wg and woz designate two unstable soliton
solutions.
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s based on the existence of the small parameter ¢ in (4.1) which allows us to
- define the small-amplitude asymptotic expansion,

_ w = wy + %SQ&, E = H,(wo) + SE (4.4)

Here and henceforth wq corresponds to a certain value of the soliton parameter
chosen on the branch of the function N, (w) with negative slope near the turning
point w, so that (wo — w.) ~ O(€?) and we specify N = N,(wp). Then, in the
asymptotic limit € — 0, equation (4.1) reduces to the form

2

dw
+

- (4.5)

H H\
oz Vs(wo)w® + 5 Ve (we)w?®

A 1

The equilibrium state w = wy (or, equivalently, w = 0) corresponding to an
unstable soliton (for which N!(ws) < 0) is a saddle point of the dynamical
system (4.5). For E = 0 we find from (4.5) an analytical solution for the
separatrix loop connecting the saddle equilibrium state. This analytical solution

has the form
3N, (wo)

. lmw\/\%AEmv
where A is-the growth rate of the linear instability (A > 0) given by

(4.6)

w =

!
n2 Ti
secn M

_ Ni(wo)

2
A e2M(w,) >0

- The separatrix loop described by (4.6) separates two different dynamical regimes
of soliton instability. These separatrix trajectories are shown in Figs.5(b)-8(b)
- by bold lines.
For the case when N!(w,) > 0 [sce Figs.5(a,b)], the perturbations inside
- the separatrix loop oscillate around the other equilibrium state w = wy > wy
located on the stable branch of the function Ny(w) with the same value of
N = Ny(wo) = Ny(wy). Outside the separatrix loop, the perturbations result
in the vanishing of the soliton parameter w in finite time. For the other case,
~when NJ(w.) < 0 [see Figs.6(a,b)], the perturbations bounded by the separatrix
loop also oscillate near the stable equilibrium state w = w; < wp, while the
unbounded perturbations lead to infinite growth of the soliton parameter w in
finite time.

If the parameter N/(w.) vanishes the quadratic approximation of N,(w)
is no longer valid. In this case, a more complicated (cubic) bifurcation takes
place and the dependence of N,(w) has three branches of soliton solutions.

i
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around the nearest stable soliton state; (i) a vanishing of the soliton parameter
w; or (iil) an infinite growth of this parameter. Only the first type is bounded
and can be completely described by the asymptotic (conservative) equation
(4.1). The other two types are unbounded in the framework of the asymptotic
analysis and they lead to a cardinal transformation of the nonlinear wave field.

To describe this bifurcation we modify the small-amplitude expansion (4.4)
according to

A

w=wo+ew(T), E=H,(w)+c'E (4.7

and reduce the energy integral (4.1) to the form,

| dw\? 1 1 1 Analysis of particular models (see, e.g., (16, 17]) reveals that this transformation
E= MN—\REL aT + MM.ZREDVSN + m.m..\,m\?&éu + MNZM:AELSA (48 3 may result in decay and disappearence of soliton solutions into linear small-

amplitude wave packets or in the formation of singularities in the amplitude of
the wave profile.

Now we consider the type II instability bifurcation for the case n = 1 which
s described by the dissipative equation (3.23) which can be written in the form

The separatrix loop solutions of (4.8) for E =0 can also be found analytically

_ @\/NMAEOV
€[N}(wo) + o cosh[AT]]

(4.9)

w =

1 o dV
where ) is defined below (4.6) and o satisfies the equation, A [P(T) -~ P(V)] = K C\VNMJ (4.10)

of = [N](wo)]* - 3N, (wo) N, (we) - We assume again that the coefficient K is positive. Here variations of P(T') in
time can be neglected in the small-amplitude approximation. Then, equation
(4.10) describes the dynamics of an effective dissipative inertialess particle in
the potential given by the function Py(V). Let us consider again four typical
profiles of this function presented in Figs.5(a)-8(a).

If the function P,(V) has two branches connecting at a turning point V =
Ve, where P)(V.) = 0, we apply a small-amplitude expansion, V = ¥, + ev(T),

and reduce (4.10) to the form,

If the intermediate branch of unstable solitons for the function N,(w) is
bounded by two branches of stable solitons, i.e. N(w,) > 0 [see Figs.7(a,b)],
the soliton instability leads only to periodic oscillations of the soliton parameter
w. These oscillations occur near only one stable equilibrium state w = wypy < wp
Or W = wyry > wp if the initial perturbation lies inside the regions bounded by
one of the separatrix loops given by (4.9) for a certain sign of . In the opposite
case, when the perturbation lies outside both the separatrix loops, the soliton
parameter oscillations surround both the stable states. We would like to point
out here that, if the coefficients Ny(wo) and N(wg) both vanish, the soliton
solution is unstable in the linearized and energetic senses (see Definitions 1.1
and 1.2) while the nonlinear stability still takes place for the case N"(w,) > (
according to Definition 1.3. This corresponds to a bounded regime for the
dynamics of soliton perturbations.

Finally, when the intermediate branch of stable solitons for the function
Ny(w) is bounded by two branches of the unstable solitons, i.e. N(w.) < 0 [see
Figs.8(a,b)], there is only one separatrix loop described by (4.9) for sign(o)
sign(V,'(wo)) which connects one of the unstable equilibrium states, either w =_
Wor < wy Or w = wpy > wy. Inside this separatrix loop, the soliton dynamic
is oscillatory while, outside the separatrix, both an increase and a decrease o
the soliton parameter w are possible depending on initial conditions. Obviously
the analysis presented above can be extended for more complicated bifurcation:
when the function N,(w) has more than three branches of soliton solutions,

Thus, there are generally three types of nonlinear soliton dynamics in the
vicinity of the type I instability bifurcation: (i) periodic soliton oscillation:

N,\c\nvw% + Wm:\% + wm\isa =0 (4.11)
Here again we introduce the value V, for the parameter of a stationary (unsta-
ble) soliton solution located at the branch of P,(V') with negative slope near the
turning point so that V5 — V, ~ O(e) and specify P = Py(Vo). Equation (4.11)
describes a monotonic transformation of the soliton solution under the action
of an initial perturbation away from the unstable equilibrium stable V = ¥,
(or, equivalently, v = 0). This transformation is shown in Figs.5(a) and 6(a)
by arrows and is described by the general solution to (4.11),

VoUy
_ 4.12
v vo + (vy — vg) exp[— AT (4.12)

where vy = v(0),
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If the sign of vy coincides with the sign of vy, the soliton dynamics results in
the formation of a stationary soliton solution with the parameter Vi =V, + evy
which corresponds to a stable soliton with the same value of P = P(W) =
Py(V;). In the opposite case, the soliton dynamics is unbounded and it leads
to a zero or an infinite value of V' in finite time [see Figs.5(a) and 6(a)].

If the function P,(V') has three branches of soliton solutions we apply a
different approximation, V = V, + Veu(T), and reduce (4.10) to the cubi
equation,

k()L

- (4.13)

1 1 1
+=Fi(Vo)o + =P (Vo)o® + gP (Ve =0

2y/e
If P"(V.) > 0 [see Fig.7(a)], the unstable soliton monotonically transforms to
one of the stable solitons depending on the initial perturbation. In the opposite
case, when P"(V;) < 0 [see Fig.8(a)], the soliton dynamics results in formation
of a stable soliton only in the interval between unstable branches of P(V).

Thus, the nonlinear soliton dynamics near the type Il instability bifurcation
leads also to three scenarios: (i) monotonic transition to a stable soliton; (i) 2
vanishing of the soliton parameter V ; or (iii) an infinite growth of this parameter
(see also examples in [18, 19]). We conclude that the last two (unbounded)
scenarios are essentially the same as for the type I bifurcation while the first
(bounded) scenario is different.

This difference is explained by considering the balance between the inertial
and dissipative properties of the soliton dynamics. For the type I bifurcation,
the inertial effects are dominating, while the radiation-induced dissipative effects
are not excited at the leading-order approximation in our asymptotic approach
As a result, the stable solitons near the instability threshold always have a non
trivial internal (oscillating) mode which leads to oscillatory soliton dynamics
under the action of small perturbations. On the other hand, for the type I
bifurcation, the inertial effects can be neglected at the leading-order approxi
mation, while the radiative dissipation leads to monotonic soliton dynamics. .

Only for the long-term soliton dynamics or far from the instability threshold
might the balance between inertial and dissipative effects be changed. For
example, on larger time scales the oscillating solitons might generate small
amplitude radiative waves which result in the gradual decrease of amplitude of
the oscillations. Furthermore, the internal mode might disappear far from the
instability threshold. Nevertheless, the main features of the soliton dynamics
described by these finite-dimensional asymptotic models near the instability
bifurcations remain qualitatively similar for all soliton solutions of the given
type.
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In the rest of this Section we consider an example, where the asymptotic
solutions following from the dissipative equation (4.10) can be compared with
ezact solutions of a nonlinear evolution equation.

Example 4.1.1. The integrable Boussinesq equation

We apply the general results described in this Section to the gBs equation (1.2)
with the nonlinear function f(u) = w?. The long-wave soliton solutions are
given explicitly by

1
uy = WA& — V?)sech? F,\& —-V*z — a\i

where |V| < ¢o. Then, we evaluate the dependence P,(V) from (3.24b) [see
Example 3.3.1],

(4.14)

Py = —6V(c2 — V?)3?

This dependence is shown in Fig.9(a). The turning points are located at
V =4V, = +1c. The long-wave solitons are unstable for [V] < V. and the
nonlinear dynamics of this instability is described by the asymptotic equation
(4.11). Using formulas (3.24c), (3.32a), and (4.14) we evaluate the coefficients
of this equation for the case V5 > 0 [see Fig.9(a)],

(4.15)

K(Vo) =1200, Pi(Vo) = —12V3eo(VZ = V), P/(V.)=12V3  (4.16)
Let us consider the general solution (4.12) of the asymptotic equation (4.11) for
vo = v(0) > 0. In this case, the analytical solution (4.12) describes a monotonic
transition of the unstable soliton with the velocity V = Vj, to the stable one
with the velocity V' = V; given by

Vi=V,+ (V. — V) (4.17a)

With the help of (3.28a) and (3.31a) we are able to find the radiation fields U*
generated by the long-wave soliton evolving according to (4.12). It turns out
that Ut = 0, while the spatial structure of U~ is given by

2] A

——(z+cot)+ ¢

4.18
Ter (4.18)

where A is the growth rate of the soliton instability,

A= V3V -V
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and ! vy — 1o
P, a) ¢ =—3log ﬁlemlg
The profile (4.18) completely corresponds to the stationary soliton solution
” 4.14) with the velocity V = V,, where
® 2
TN Ay Vim =0t o (Vi = Vo) (4.17%)
ANIAC Thus, we conclude that for vy > 0 an unstable soliton with the velocity V4 splits

into two stable solitons with the velocities V; and V, without the generation
of linear dispersive waves. In the opposite case, when vo = v(0) < 0, the
analytical solution (4.12) describes the formation of zero values of the soliton
elocity in finite time which is accompanied by singularities in the structure of
the radiation field U~. This dynamics implies a collapse of the soliton shape
due to the soliton instability.

The gBs equation (1.2) with the nonlinear function f(u) = u? belongs to
the class of integrable equations (see, e.g., [1]) and possesses a broad set of ezact
solutions. It is important that this set includes also particular solutions describ-
ing the nonlinear dynamics of soliton instability which can be compared with
the results of our asymptotic theory. The exact solutions for soliton instabilities
were first constructed by Spector et al. [57], and they have the form

2

H
:H @.@laln Hom AH +mxv?om_+tmﬁu :m\no + \(av £+ \/“C (4.19)

o
-23 10

where § = 2—Vot, ko = /3 — V2, k' = t%x: and A is given below (4.18). As
above, the parameter A corresponds to the growth rate of the linear instability
of the long-wave solitons. Indeed, expanding (4.19) for g —0as u=nu+
buexp[At], we obtain an exact solution (see [57]),

Fig.9. The momentum Py(V) (a) for the gBs equation (1.2) with f(u) = u? P exp TV%S&

given by (4.15) and typical instability-induced soliton dynamics described by . ou~ — (4.20
.E.va for co =1, V5 = 0.2, and the cases ;i = 1 (b) and g = —1 (c). Arrows 1 %\ cosh W. Vet = d\%& !
in (a) correspond to the splitting of an unstable soliton with V = Vo into two

stable solitons with V = ¥, and V = V, shown in (b) for t; = ~30, t, = 0, to the linearized problem [cf.(3.26b)],

and t3 = 15. The arrow 2 in (a) corresponds to the collapse of the unstable

soliton shown in (c) for ¢, = =30, ¢, = 0, and by =1, L(6u)ge = —2AVp(8u)e + A ?6u (4.21)

where the linearized operator £ is given by

L= l%w —2u, + ¢ — V2
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N — N, = €?AN. Then, the asymptotic equation (4.1) transforms to

1 dw\?
== — 4.22
AE+wAN 3 M(w) o7 ( )

Because of scaling invariance of the given evolution equation, the coefficient
M(w) has to possess the form,

We note that the linear instability mode (4.20) is localized only in the inst
bility domain for |Vy| < V.. In the stability domain, where |V5| > V., thi
exact solution diverges exponentially. This is a general feature for the type |
instability bifurcation (see also Example 2.3.2). .

The soliton dynamics described by the exact solution (4.19) for u = 41,
¢ =1, and ¥, = 0.2 is shown in Figs.9(b,c). Obviously the instability of &
long-wave soliton with the parameter V = Vo for p = 41 [see Fig.9(b)] leads
to the splitting of the unstable soliton into two stable solitons propagating in
opposite directions [see arrows 1 in Fig.9(a)]. The velocities ¥; and Vj of these
new solitons can be found from (4.19) as ,,

1
=3 V@) - Vo] ~ 1

m

M= (4.23)

wH
where the constant m is supposed to be positive and 4 is the scaling power.
Using this representation, we are able to investigate behaviour of solutions to
(4.22) in the general case. First, we note that this equation does not describe
any bounded soliton dynamics and the positive parameter w either grows to
infinity or vanishes. The first scenario is usually related with the phenomenon

and of critical collapse (see, e.g., [2, 58] and references therein), while the second one
V, = 1 Ml 3(cZ - V2) — «\g ~ results in spreading and decaying of the solitons into small-amplitude dispersive

‘T2 °e ’ ’ wave packets. Therefore, henceforth we refer to infinite growth of the soliton

For 4 = —1 the soliton instability results in formation of the singularity i parameter w as a soliton collapse. For critical collapse a number of general

results have been rigorously proved in [538] and we reproduce these results in
the framework of the asymptotic equation (4.22).

(i) For AN < 0 (subcritical initial conditions) collapse is not possible and the
soliton pulse always decays.

(ii) For AN = 0 (critical initial conditions) the collapse occurs if the initial
disturbance leads to an increase of w, i.e. &(0) > 0, where w = dw/dT. In this
case, the collapsing spike remains self-similar to the soliton solution with the
parameter w varying according to the scaling law,

w = wy Ammlv: (4.24)

o—1

the profile of the unstable soliton in finite time ¢ ~ 1.73 for @ ~ —0.754 [s
Fig.9(c)]. An initial stage of this unbounded process corresponds to the vanish
ing of the soliton velocity V and growth of the soliton amplitude [see arrow
in Fig.9(a)]. Thus, comparing results predicted by the exact solution (4.19) ani
by the analytic formulas (4.12),(4.17), and (4.18), we conclude that the nonlin
ear instability-induced soliton dynamics in the integrable Boussinesq equation
is asymptotically described by the dissipative finite-dimensional system with
good accuracy.

8.4.2 Strongly nonlinear case: critical collapse

In the general analysis presented in the previous Section we omitted the special where wp = w(0),
case when the functions N,(w) or Py(V) are constant for arbitrary values of
w or V. This special (critical) case exists at the edge between the stability
and instability domains for those evolution equations which have some scaling
invariance (see, e.g., [8]). The weakly nonlinear approximations based on ex.
pansions of the functions Ny(w) and P,(V) into Taylor series are invalid for th
critical, strongly nonlinear case and we have to investigate the general equations
(4.1) or (4.10).

First, let us consider the conservative case. We assume that Ny(w) =N, =

const and H,(w) = H,. = const and re-scale the constants, £ — H, = ?AE,

9

tH:leﬂwu and {5 =
iw—2

(iii) For AN > 0 (supercritical initial conditions) the soliton pulse is always
collapsing if AE < 0. In the opposite case, when AE > 0, collapse occurs
only if w(0) > 0. The formation of singularities in the supercritical case is also
described by (4.24) in the limit ¢ — #; and w — oo but with the different
and o given by
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Example 4.2.1. Critical collapse of bright solitons [17]

We consider the gNLS equation (1.3) for the nonlinear function F(I) = 3P,
where I = |¥|. In this case, the bright soliton solutions are expressed through
the function @ (see Example 2.2.2), which has the explicit form

? = Ew\hmmo_m\ﬁw/\ﬂi (4.25)

Using this explicit formula we find the soliton invariants (2.18a,c), N,(w) =
Ne = 7/4 and H,(w) = H, = 0. Therefore, this gNLS equation represents
the critical, strongly nonlinear case for soliton instability and we apply the
asymptotic equation (4.22) with the coefficient M(w) given by (3.11). After
the integration we find this coefficient in the form (4.23) with the constant
m = 73/512 and the scaling power # = 3. For this scaling power, a general
solution of (4.22) can be found in the analytic form,

B 2mAE
2mAN — (AE)(t — to)?

(4.26)

w =

where o is the integration constant. We find from (4.26) that the singularities
appear for AN > 0 in a time instant ¢ = min (to — 7, to+ 7), where 7 =
V2mAN|AE|™'. The scaling power v of singularity formation is given by
v=2for AN=0and v =1 for AN > 0 according to the general analysis
presented above.

The gNLS equation (1.3) with the nonlinear function F(I) = 3I* has a
family of exact self-similar solutions in the form,

U = [w(®)]* $(X) expli0(X, 1)) (4.27)
where “ L ld
I ! W -
Qu\o&:& -l )X

X = y/w(t)z, the dependence w(t) is given by (4.26), and the real function
¢(X) satisfies the differential equation,

Prx — ¢+36° + 22 X7 — (4.28)

8m
If AN = 0, the latter equation has a localized solution in the form of the
stationary soliton (4.25) for w = 1. In this case, the critical collapse is absolutely
radiationless and it is described by the ezact self-similar solution to the gNLS
equation (see [2]). We have reconstructed this exact solution in the framework
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of the conservative asymptotic equation derived with the help of a formal small
parameter €.

For positive but small AN the last term in (4.28) leads to nonlocalized
(oscillatory-type) behaviour which is important only for large X (and, therefore,
t), |X| ~ 2v2m/VAN. This implies that radiation is generated for large time
intervals outside the soliton core and this radiation is not described by a naive
asymptotic expansion based on smallness of the last term in (4.28). Therefore,
in the supercritical case AN > 0 the solution (4.26) of the asymptotic equation
(or, equivalently, the exact self-similar solution) describes only an initial stage
of collapse of the bright solitons. To describe this collapse at a later stage,
a modification of the asymptotic multi-scale technique has been proposed in
a number of papers (see [59] and references therein). It was shown that the
generation of a radiation field at AN > 0 modifies the scaling law v =1 of the
singularity formations by the double-logaritmic factor,

log log(to — ¢)~!
(to—1)

w as t— g (4.29)

Now we consider the critical collapse for the dissipative asymptotic equation
(4.10) with P(V) = P. = const. This equation is not closed because the
function P(T) cannot be considered as a constant in the strongly nonlinear
approximation. Thus, we have to add to this equation the balance equations
(3-21a) and (3.22a) for n = 1 and K; = KJ,. Then, the governing equation
can be written in the form,

2

% dK dv
(V)= + |— - K — ] =0 4.30
EWVgm + | — 5O &7 (4.30)
where the coefficients X' (V) and K;(V) are supposed to have the form,
.k . ky
K = .al\lmu .Nw~ = Vil me“—v

with the positive constant k. These asymptotic equations can be solved explic-
itly and the general solution is

<u<c mglﬂmlﬂv &.%v
where Vo = V/(0) and %, are constants of integration and
k
(p=1Dk+k

vV =
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reviewed in much detail (see, e.g., [23]). This application of the regular per-
turbation theory is based on a perturbation of the original nonlinear evolution
equation (2.5) to the form

Therefore, similarly to the conservative case, the parameter V either increases
or decreases infinitely, and bounded regimes of the soliton instability are pro-
hibited. We call the infinite growth of V' the collapse of solitons. It follows
from (4.32) that the collapse occurs if V(0) > 0 or P(0) > P,. In the oppo-
site case, when V(0) < 0 and P(0) < P, the solitons decay. For the critical
case P(0) = P, the dissipative asymptotic equations do not describe nontrivial
dynamics of the solitons.

uy = JHglu] + e¢R[u] (5.1)

where Ho[u] represents the energy functional of the unperturbed soliton equa-
tion and R[u] is the functional for the external perturbation multiplied by the
| small parameter €. This perturbed form of the evolution equation is very con-
venient if we know the soliton solutions and their stability properties for the
unperturbed system, (¢ = 0). Thus, we can study the dynamical (stability)
properties of these solitons under the action of the external perturbation using
| multi-scale asymptotic expansions valid for e < 1. To simplify the analysis,
 We suppose here that the soliton solutions of (5.1) for € = 0 have only one
‘parameter V' so that u = u,(x — Vt; V). Then, the asymptotic expansion has
the form

Example 4.2.2. Critical collapse of long-wave solitons [19]

We consider the gKdV equation (1) for a =1, 8 = 0, and the nonlinear
function f(u) = 3u’. The long-wave soliton solutions u = u,(€), where £ =
x — V', are given by the same formula (4.25) but with the replacement z — ¢
and w — V. The dependence P.(V) follows from (2.10b) as P(V)=P. =1x/4
and we apply the asymptotic equation (4.30) with the coefficients & and I
given by (3.33). After simple calculations they can be presented in the form

(4.31) with the parameters y = 5/2, u=uy(§ V) + e (§T) + O(e?) (5.2)

vwhere V = V(T), T = et, and £ = 2 — ¢! I V(T")dTI’'. The first-order
| perturbation u, satisfies the linearized inhomogeneous problem,

: p S, dV
JAQusuy = 3V dT

&)

2567

1] (5.3)

and k; = —k, where T(z) is the Gamma function. Then, the scaling law
of the long-wave soliton collapse is described by the analytical solution (4.32)
with v = 2. The critical collapse of the long-wave solitons is accompanied by
generation of the radiation field U~ behind the soliton which moves as t — ¢,
to infinity. The profile of the radiation field is given by

ere Ao[u] = Holu] + VP[u] is the Lyapunov functional of the unperturbed
system and Plu] is the integral invariant associated with the parameter V.
Using the solvability condition to (5.3) we can find the adiabatic equation for
the varying parameter V in the abstract form,

dP, dV
dv dT

Ug

U= (z 4 20)%/2

for 2>0

= G(V) = (us, Rlu,)) (5.4)

where ug and zy are positive constants. We would like to point out that,
because of the radiation, the dissipative asymptotic system provides the value
of the scaling law v (v = 2) to be different from that of the self-similar solutions,
where v = 2/3 (see discussion in [19]).

where the notation (u,w) stands for a proper inner product (see, e.g., (2.12)
or (5.9b) below). Besides the adiabatic response of an evolving soliton due to
the external perturbation described by (5.4), there may also be nonadiabatic
effects which can be studied after finding the first-order correction wu; from
(5.3). However, to analyse the perturbation-induced soliton dynamics it is often
ufficient to consider (5.4) without reconstruction of the profiles of the first-order
correction.

It follows from (5.4) that the equilibrium state V = Vo for which G(V;) =0
twrresponds to stationary soliton solutions in the full equation (5.1) which are
onstructed approximately here to the first order of the perturbation theory.

8.5 Note on regular soliton perturbation theory

In this last Section we show that soliton stability problems can often be studied
by means of the regular soliton perturbation theory which has already been
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Moreover, we can investigate the stability properties of this stationary soliton

solution to the same order. Suppose that a soliton solution with V = Vo is:
stable in the unperturbed system (5.1) and the stability is determined by th
simple criterion,

dP,
dv

>0 (55
V=V,

Then, we find from (5.4) that the stability criterion for the soliton solution in |

the perturbed system is
dG

dVly=v,
Example 5.1. Perturbed KdV equation
Let us consider the perturbed KdV equation in the form (see [23])
Uy + 6uUy + Upee = eRlu] = e(yyu + YoUzz) 5.1

The perturbation terms in this equation describe linear active or dissipative
effects such that for positive values of the coefficients 7 and 7 the first term
leads to wave growth while the second leads to wave decay. The soliton solution
u = u,(z — V1) of the unperturbed KdV equation (e=0) is given by ,

1 1
Uy = ma\mm&% ﬁm/\ﬂn@ (5.8)

The compatability condition (5.4) holds with the functions P,(V) and G(V)
given by .

1 oo 1
P= / ulde = Y (5.9

oo 2 2
G = \. , UsBlude = 2y VO - =,y (5.9

Using these formulas we can rewrite (5.4) in the form of the adiabatic equation

dv 4 4 2
T w3< - ﬂw3<
It follows from this equation that there is only one equilibrium state V u
Vo = 5v1 /42, where G(Vp) = 0. This unique soliton solution realizes a balance
between active and dissipative effects. Using the criterion (5.5) and (5.6) we
find that

(5.10)

dP, T le: 2
_ = _ /2
Vlyey, 30 >0 =—gmhT <0

<0 (5.6) :
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and, therefore, this soliton is stable. Indeed, the adiabatic equation (5.10)
describes the monotonic transformation of any initial soliton profile with a given
value of the parameter V' to the stable stationary soliton solution with V = V4.
This transformation is described by the analytical solutions (4.12) with the
parameters, A = 4v1/3, vy = ¥, and vo = V(0) > 0.

When the slope dP,/dV approaches a zero value, the adiabatic equation
(5.4) breaks down, as was first found in [24]. In this case, we have to take into
account the internal, instability-induced soliton dynamics to the same order of
perturbation theory as the external, perturbation-induced soliton dynamics. In
other words, we have to extend the adiabatic equation (5.4) to the next-order
approximation described in Section 8.3.3 and reorder the perturbation term as
R = €R[u]. Then, the modified adiabatic equation has the form,

1dP,dvV &V [dK avy’
where the coefficients K and K are introduced in (3.22). If the coeficient
K is positive the stability of the stationary solitons in the perturbed equation
(5.1) is given again by conditions (5.5) and (5.6). However, when the coefficient
K vanishes, the modified asymptotic equation (5.11) breaks down as well and
it is necessary to extend this equation to still higher orders of the asymptotic
equations. It seems that this procedure can be continued further to describe
not only simple but also ‘higher-order’ soliton instabilities.

Finally, we would like to point out that the adiabatic equation (5.4) cannot
be used if the slope dP,/dV does not vanish but is strictly negative. At first
glance it might seem that, in this case, both terms are again of the same order
in the regular perturbation theory while the conditions for soliton stability (5.6)
and other features of the soliton dynamics simply change their ‘sign’. However,
the fact that the slope dP;/dV is negative means that the soliton solutions in
the unperturbed problem are unstable with respect to small perturbations and
this strong instability destroys these solitons before they start to evolve under
the external perturbation. As a result, the regular soliton perturbation theory
leads to wrong conclusions when the solitons, which are supposed to be slowly
evolving, are actually unstable within an unperturbed problem.

(5.11)
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