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We show that, under the effect of rotation, symmetric vortices located at the center of

a two-dimensional harmonic potential are subject to a pitchfork bifurcation with radial

symmetry. This bifurcation leads to the family of asymmetric vortices, which precess

constantly along an orbit enclosing the center of symmetry. The radius of the orbit

depends monotonically on the difference between the rotation frequency and the eigen-

frequency of negative Krein signature associated with the symmetric vortex. We show

that both symmetric and asymmetric vortices are spectrally and orbitally stable with

respect to small time-dependent perturbations for rotation frequencies exceeding the

bifurcation eigenfrequency. At the same time, the symmetric vortex is a local minimizer

of energy for supercritical rotation frequencies, whereas the asymmetric vortex corre-

sponds to a saddle point of energy. For subcritical rotation frequencies, the symmetric

vortex is a saddle point of the energy.

1 Introduction

In the context of physics of Bose–Einstein condensation, rotating vortices in symmetric

harmonic traps have been reported both theoretically [2, 4, 6, 13] and experimentally

[1, 7, 27]. Theoretical studies in the physics literature rely on the qualitative approxima-

tion obtained from the Rayleigh–Ritz variational method. These approximations have

been used to predict frequencies of precession of a single vortex about the center of the
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harmonic trap as well as frequencies of the effective dynamics of dipole, tripole, and

quadrupole configurations [26, 28, 31, 34].

Numerical approximations of precessional frequencies for vortex configurations

were obtained by Middelkamp et al. [29, 30]. Similar numerical results were computed

by Kollar and Pego [24] for the spectrum of a single vortex located at the center of the

harmonic potential, using shooting methods and Evans function computations.

Recently, vortex-free states and vortex configurations in the symmetric

harmonic traps were studied rigorously in the Thomas–Fermi limit of large density

states. The Painlevé-II equation for spatially uniform approximation of the vortex-free

state was justified by Gallo and Pelinovsky [10]. Minimization of energy was considered

by Ignat and Millot [15, 16] with the method of variational calculus. These authors jus-

tified earlier computations [2, 4] that the vortex-free state is the global minimizer of

energy for small frequencies of the rotating Bose–Einstein condensate, whereas a sin-

gle vortex of charge 1 is the global minimizer of energy for a frequency above a critical

value. Seiringer [36] proved that multiple vortex configurations become the global min-

imizers of energy for larger rotation frequencies and obtained bounds on the critical

values of the rotation frequencies, when a vortex of charge (n+ 1) becomes energeti-

cally favorable to a vortex of charge n. He also proved that radially symmetric vortices

cannot be global minimizers of energy for large frequencies (or for fixed frequency but

in the Thomas–Fermi limit), which implies that the vortex configurations of charge n� 2

break into a superposition of n individual vortices of charge 1. He refers to this case as

the breakdown of the rotational symmetry, although the superposition of n individual

vortices can still be rotated on the plane under any angle.

Variational approximations of Castin and Dum [4] (generalized in the anisotropic

setting in [28]) suggest that there exist actually two critical frequencies for a vortex of

charge 1. When the frequency parameter is increased across the first critical frequency,

the single vortex of charge 1 placed at the center of the harmonic potential becomes a

local minimizer of energy (it is a saddle point of energy for small frequencies). This vor-

tex becomes the global minimizer of energy when the frequency parameter is increased

across the second critical frequency (which is roughly twice of the first one). Figure 4 in

[4] also suggests that, for frequencies above the first critical value, there exists a vortex

of charge 1 placed at a distance from the center of the harmonic potential, and it is a

saddle point of energy. This bifurcation at the first critical frequency and the onset of

the asymmetric rotating vortices are considered in the present work.

In particular, we give a rigorous proof of the existence of the first critical

frequency for the local bifurcation of the symmetric vortex of charge 1. This critical
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frequency coincides with the nonzero eigenfrequency of negative Krein signature in the

spectrum of linearization of the symmetric vortex in the absence of rotation [24, 29].

This smallest eigenvalue gives a frequency of the vortex precession about the cen-

ter of symmetry of the harmonic potential at an infinitesimal small distance, stud-

ied in our earlier work [34]. It is beyond the linear approximation to decide whether

this rotation is free of any radiation and is observed for infinite times. We clarify

this question throughout this article, where we prove the birth of an asymmetric vor-

tex that performs steady precession about the center of symmetry of the harmonic

potential.

Our results are based on the method of Lyapunov–Schmidt reductions for a local

bifurcation problem imposed on the family of symmetric vortices centered at the ori-

gin in the rotating coordinate frame. These results do not rely on the Thomas–Fermi

limit for large density states or on the variational methods used earlier. (Note that the

entire bifurcation at the first critical frequency, as well as the crucial difference between

symmetric and asymmetric vortices were missing in previous works [2, 15, 16, 36] that

relied on the calculus of variations and functional analysis.) We show that the family

of symmetric vortices becomes subject to a pitchfork bifurcation, where the underlying

parameter is the precessional frequency. This parameter determines uniquely the radius

of the orbit, which the new asymmetric vortex precesses along. The bifurcating asym-

metric vortex can be placed at any point along the orbit, hence the pitchfork bifurcation

exhibits a radial symmetry.

We also prove that both the symmetric vortex and the new asymmetric vortex are

spectrally and orbitally stable with respect to small time-dependent perturbations for

supercritical rotation frequencies. This is expected on the basis of the previous theoret-

ical and experimental observations of constantly precessing vortices in the symmetric

harmonic potential. Moreover, our results agree with the previous variational approx-

imations [4] suggesting that the symmetric vortex is a local minimizer of energy for

supercritical rotation frequencies, whereas the asymmetric vortex is a saddle point of

energy (still spectrally and orbitally stable).

For completeness, we also mention recent mathematical works, which are in

subjects near the one of our study. The method of Lyapunov–Schmidt reductions has

been widely used in a series of recent works of Kapitula et al. [17, 18, 20] devoted to sim-

ilar problems. In [17], rings, multi-poles, soliton necklaces, and vortex necklaces were

constructed for the Gross–Pitaevskii equation with a two-dimensional radially symmet-

ric harmonic potential in the weak interaction limit. A superposition of harmonic and

small periodic potentials was considered in [18], also in the weak interaction limit. The
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nonradially symmetric vortices were constructed for a coupled system of two Gross–

Pitaevskii equations in [20].

Another but similar bifurcation analysis was developed for a pair of rotat-

ing solitary waves in harmonic potentials by Selvitella [37]. Existence and stability of

both symmetric and asymmetric vortices were studied by Gallay et al. [8, 9] for the

Navier–Stokes equations. A similar problem of symmetric and asymmetric vortices in

two-component Ginzburg–Landau energy functional was considered by Alama et al. [3].

Bifurcations of periodic solutions in the system of relative equilibria of vortex configu-

rations were considered by Garcia–Azpeitia and Ize [11, 12].

The paper is organized as follows. Section 2 reviews the existence and sta-

bility of symmetric vortices of charge 1 in the stationary Gross–Pitaevskii equation.

In Section 3, we consider symmetric vortices of charge 1 in the rotational coordinate

frame and discover a relationship between spectral stability and bifurcation problems

in the rotational and nonrotational cases. Section 4 presents the main results on the

symmetry-breaking bifurcation of stable vortices of charge 1 in the rotating coordinate

frame and offers some numerical illustrations. The normal form for the pitchfork bifur-

cation with radial symmetry is derived and justified in Section 5. Orbital stability of

asymmetric vortices is proved in Section 6. Section 7 concludes the paper.

We set some notations in the rest of this section. The Hilbert–Sobolev space of

squared integrable functions on R
2 with square integrable derivatives up to the kth

order is denoted by Hk(R2). If f ∈ Hk(R2) and there is m � 0 such that e−imθ f(x)= ϕ(r) is

radially symmetric in polar coordinates (r, θ), we say that ϕ ∈ Hk
r,m(R+).

The Hilbert–Lebesgue spaces of square integrable functions and their radially

symmetric restrictions are denoted by L2(R2) and L2
r (R+), respectively. The correspond-

ing inner products are defined by

∀ f , g ∈ L2(R2) : 〈 f , g〉L2 :=
∫

R2
f(x, y)g(x, y)dx dy,

∀ f , g ∈ L2
r (R+) : 〈 f , g〉L2

r
:=
∫ ∞

0
f(r)g(r)r dr.

Similar notations are introduced for Lebesgue spaces L p(R2) and L p
r (R+) for any

p� 1.

Finally, we say that A=O(ε) as ε→ 0 if there is ε0 > 0 such that for every ε ∈
(−ε0, ε0) there is a positive constant C such that |A| � C |ε|. If X is a Banach space and

A∈ X, then the notation A=O(ε) implies that for small ε, there is a positive constant C

such that ‖A‖X � C |ε|.
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Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps 131

2 Symmetric Vortex at the Center of the Harmonic Potential

We consider the Gross–Pitaevskii equation with the symmetric harmonic potential and

repulsive nonlinear interactions,

iεut + ε2(uxx + uyy)+ (1 − x2 − y2 − |u|2)u= 0, (1)

where parameter ε > 0 is inversely proportional to the chemical potential, (x, y) ∈ R
2 are

spatial coordinates, t ∈ R+ is the evolution time, and u(x, y, t) ∈ C is the wave function.

Let (r, θ) be the polar coordinates on the plane (x, y) ∈ R
2. We denote the Laplace

operator for the mth azimuthal mode by

Δm = d2

dr2
+ 1

r

d

dr
− m2

r2
. (2)

In particular, Δ0 =Δm=0 and Δ1 =Δm=1.

Two stationary solutions of the Gross–Pitaevskii equation (1) are of our interest.

One solution u(x, y, t)= ηε(r) is referred to as the vortex-free state if ηε : R+ → R is a

radially symmetric, positive solution of the differential equation,

ε2Δ0ηε + (1 − r2 − η2
ε )ηε = 0, ηε(r) > 0, r ∈ R+. (3)

The other solution u(x, y, t)=ψε(r) eiθ is referred to as the symmetric vortex of charge 1

if ψε : R+ → R is a radially symmetric, positive solution of the differential equation,

ε2Δ1ψε + (1 − r2 − ψ2
ε )ψε = 0, ψε(r) > 0, r ∈ R+. (4)

The vortex is symmetric because its center of symmetry is located at the origin (0, 0) ∈ R
2

owing to polar coordinates (r, θ). Note that ψε(0)= 0 because r = 0 is a regular singular

point of the differential equation (4).

Let us define the Schrödinger operator for the quantum harmonic oscillator,

H(ε) := −ε2(∂2
x + ∂2

y)+ x2 + y2 − 1, (5)

with the domain

Dom(H(ε)) := {u∈ H2(R2) : |x|2u∈ L2(R2)}.

The spectrum of H(ε) in L2(R2) is purely discrete. The eigenvalues are known exactly

σ(H(ε))= {λn,m(ε)= −1 + 2ε(n+ m + 1), (n, m) ∈ N
2
0}, (6)

where N0 denotes the set of all natural numbers counting from 0.
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When ε = 1
2 , the lowest eigenvalue λ0,0(ε) crosses 0 and induces a local

bifurcation of the vortex-free state ηε satisfying (3). For small |ε − 1
2 |, the ground state

is close to the linear eigenmode f0,0 = e−r2
.

When ε = 1
4 , the next double eigenvalue λ1,0(ε)= λ0,1(ε) crosses 0 and induces a

local bifurcation of the symmetric vortex ψε satisfying (4). For small |ε − 1
4 |, the sym-

metric vortex is close to the linear eigenmode f1,0 + i f0,1 = (x + iy) e−2r2
. This bifurcation

is well known and was recently studied by Kapitula et al. [18]. Standard arguments of

the local bifurcation theory give the following.

Lemma 1. Let μ := 1
16 − ε2. There exists a positive μ0 such that for all μ ∈ (0,μ0), there

exist a positive constant C and a solution ψε ∈ H2
r,1(R+) of the differential equation (4)

such that

sup
r∈R+

|ψε(r)− (128μ)1/2r e−2r2 | � Cμ3/2. (7)

The map (0,μ0) 
μ→ψε ∈ H2
r,1(R+) is continuously differentiable for any μ ∈ (0,μ0). �

Proof. We shall derive bound (7) by the standard method of Lyapunov–Schmidt reduc-

tions. We rewrite the existence problem (4) as the local bifurcation problem

(L1 + μΔ1)ψε = −ψ3
ε , ε2 = 1

16 − μ,

where L1 = − 1
16Δ1 + r2 − 1. We note that Ker(L1)= span{ψ0}, where ψ0(r)= r e−2r2

. Using

the orthogonal decomposition,

ψε =μ1/2(aψ0 + ϕε), 〈ψ0,ϕε〉L2
r
= 0,

the local bifurcation problem is decoupled into a pair of two equations:

〈ψ0,Δ1(aψ0 + ϕε)+ (aψ0 + ϕε)
3〉L2

r
= 0 (8)

and

P0L1 P0ϕε = −μP0(Δ1(aψ0 + ϕε)+ (aψ0 + ϕε)
3), (9)

where P0 is the orthogonal projection operator from L2
r (R+) to Ran(L1)⊂ L2

r (R+). By a

standard application of the Implicit Function Theorem, for every a∈ R and small μ ∈ R,

there is a unique ϕε ∈ H2
r,1(R+) that solves Equation (9) and satisfies the bound ‖ϕε‖H2

r,1
�
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Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps 133

C |aμ| for some C > 0. Then, the bifurcation equation (8) gives the root-finding equation:

a(〈ψ0,Δ1ψ0〉L2
r
+ a2‖ψ0‖4

L4
r
+ O(μ))= 0.

Explicit evaluation of the inner products show that this equation is equivalent to

a(− 1
4 + 1

512a2 + O(μ))= 0,

which admits a nonzero positive root a= √
128 + O(μ) as μ→ 0. These brief arguments

justify bound (7) of the lemma. �

Let us consider the reduced energy functional,

Em(ϕ)=
∫ ∞

0

[
ε2

(
dϕ

dr

)2

+ ε2m2ϕ2

r2
+ (r2 − 1)ϕ2 + 1

2
ϕ4

]
r dr. (10)

Euler–Lagrange equations for the reduced energy (10) yield the differential equations (3)

for m = 0 and (4) for m = 1. The energy space is Xm := {ϕ ∈ H1
r,m(R+) : rϕ ∈ L2

r (R+)}. The

reduced energy functional (10) can be written in the form

Em(ϕ)= Qm(ϕ)+ 1
2‖ϕ‖4

L4
r
,

where Qm(ϕ)= 〈ϕ, H(ε)|Xmϕ〉L2
r

is the quadratic form associated with the operator H(ε) in

(5) restricted on the space Xm, that is, H(ε)|Xm acts on functions in the form f = ϕ(r) eimθ .

Because the smallest eigenvalue of H(ε) is λ0,0(ε)= −1 + 2ε, the quadratic form

Q0(ϕ) is positive for ε > 1
2 and sign indefinite for ε < 1

2 . Therefore, the global minimizer of

E0(ϕ) in X0 is zero for ε > 1
2 and nonzero for ε < 1

2 . By Ignat and Millot [15, Theorem 2.1],

there exists a unique nonzero global minimizer of E0(ϕ) in X0 for every ε ∈ (0, 1
2 ) and this

minimizer ϕ = ηε is the unique classical solution of the Euler–Lagrange equation (3).

Similarly, because the smallest eigenvalue of H(ε)|X1 is λ1,0 = −1 + 4ε and using

the similar arguments (see [36, Lemma 1]), we deduce the following proposition.

Proposition 1. For every ε ∈ (0, 1
4 ), there exists a unique nonzero global minimizer

of E1(ϕ) in X1, which yields a unique classical solution ϕ =ψε of the differential

equation (4). �

Let us now define the full energy functional,

E(u)=
∫

R2

(
ε2|∇u|2 + (|x|2 − 1)|u|2 + 1

2
|u|4

)
dx, (11)

in the energy space X = {u∈ H1(R2) : |x|u∈ L2(R2)}.
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Theorems 1.1(i) in [15] states that the vortex-free state u= ηε(r) is the unique

global minimizer of E(u) for ε ∈ (0, 1
2 ), up to a complex multiplier of modulus 1. On the

other hand, Proposition 1 implies that the vortex solution u=ψε(r) eiθ is a critical point

of E(u) for ε ∈ (0, 1
4 ). This critical point is actually a saddle point if the functional E(u) is

not convex near the vortex solution. To study convexity of E(u) near the vortex solution,

we substitute

u(x, y)=ψε(r) eiθ + U (x, y),

and obtain the quadratic form associated with the perturbation vector U = [U , Ū ]T:

E(u)− E(ψε eiθ )= 〈U,H(ε)U〉L2 + O(‖U‖3
H1), (12)

where H(ε) is the matrix Schrödinger operator in the form:

H(ε)=
[
−ε2(∂2

x + ∂2
y)+ x2 + y2 − 1 + 2ψ2

ε ψ2
ε e2iθ

ψ2
ε e−2iθ −ε2(∂2

x + ∂2
y)+ x2 + y2 − 1 + 2ψ2

ε

]
.

The matrix Schrödinger operator H(ε) can be block-diagonalized in polar coor-

dinates [5, 24]. Let us consider the eigenvalue problem H(ε)U = ελU, where the spectral

parameter is scaled as ελ for convenience of notations. Using the decomposition in nor-

mal modes,

U (x, y)=
∑
m∈Z

Vm(r) eimθ , Ū (x, y)=
∑
m∈Z

Wm(r) eimθ ,

we obtain an uncoupled eigenvalue problem for components (Vm, Wm−2):

Hm(ε)

[
Vm

Wm−2

]
= ελ

[
Vm

Wm−2

]
, m ∈ Z, (13)

where

Hm(ε)=
[
−ε2Δm + r2 − 1 + 2ψ2

ε ψ2
ε

ψ2
ε −ε2Δm−2 + r2 − 1 + 2ψ2

ε

]
. (14)

We are particularly interested in negative and zero eigenvalues of operators

Hm(ε) for m ∈ Z. The count of negative and zero eigenvalues is given in the following

lemma.

Lemma 2. There exists an ε0 ∈ (0, 1
4 ) such that for every ε ∈ (ε0, 1

4 ), there exists exactly

one negative eigenvalue λ0(ε) of the spectral problems (13), which has algebraic multi-

plicity two and is associated to the eigenvectors of H2(ε) and H0(ε). Moreover, λ0 is a
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Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps 135

C 1 function of ε in (ε0, 1
4 ) satisfying

lim
ε↑ 1

4

λ0(ε)= −2 and lim
ε↑ 1

4

λ′
0(ε)= −16. (15)

The zero eigenvalue of the spectral problems (13) is simple and is associated with the

eigenvector of H1(ε). All other eigenvalues of the spectral problems (13) are strictly pos-

itive. �

Proof. Proposition 4.3 in [24] states that eigenvalues of Hm(ε) are strictly positive for

m � 3 (and m � −1 by symmetry). For m = 1, the spectral problem (13) reduces further

to the uncoupled eigenvalue problems for scalar Schrödinger operators:

L+(ε)(V1 + W−1)= ελ(V1 + W−1),

L−(ε)(V1 − W−1)= ελ(V1 − W−1),

where

L+(ε)= −ε2Δ1 + r2 − 1 + 3ψ2
ε ,

L−(ε)= −ε2Δ1 + r2 − 1 + ψ2
ε .

Since L−(ε)ψε = 0 and ψε(r) > 0 for r > 0, Sturm’s Oscillation Theorem implies that the

operator L−(ε) has a simple zero eigenvalue and the rest of its spectrum is strictly pos-

itive. Since L+(ε)= L−(ε)+ 2ψ2
ε , the operator L+(ε) is strictly positive.

By the arguments above, negative and additional zero eigenvalues of the spec-

tral problems (13) may only occur for m = 2 (and m = 0 by symmetry). For ε = 1
4 , there

exists only one negative eigenvalue − 1
2 of H2(ε), which corresponds to λ0 = −2 and the

eigenvector [
V2

W0

]
=
[

0

ϕ0

]
, ϕ0(r)= e−2r2

. (16)

The rest of the spectrum of H2(ε) is strictly positive for ε = 1
4 . The simple negative eigen-

value λ0(ε) persists as a C 1 function of ε for ε < 1
4 with small |ε − 1

4 | by the asymptotic

perturbation theory [21, Section 8.2.3]. Using the asymptotic expansion (7) in Lemma 1,

we write

H2(ε)=
[
− 1

16Δ2 + r2 − 1 0

0 − 1
16Δ0 + r2 − 1

]
+ μ

[
Δ2 + 256ψ2

0 128ψ2
0

128ψ2
0 Δ0 + 256ψ2

0

]
+ O(μ2),
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136 D. E. Pelinovsky and P. G. Kevrekidis

where μ= 1
16 − ε2 is a small positive parameter and ψ0(r)= r e−2r2

. Using the orthogonal

decomposition, [
V2

W0

]
=
[

0

ϕ0

]
+ μ

[
Ṽ2

W̃0

]
, 〈ϕ0, W̃0〉L2

r
= 0,

and the rescaling of the eigenvalue λ=μλ̃, we obtain that for small μ ∈ R there is a

positive constant C such that

‖Ṽ2‖H2
r,2

+ ‖W̃0‖H2
r,0

� C |μ|

if and only if λ̃ is found from the equation,

ελ̃‖ϕ0‖2
L2

r
= 〈ϕ0, (Δ0 + 256ψ2

0 )ϕ0〉L2
r
+ O(μ).

Since d
dε = −2ε d

dμ and λ0(ε) is a C 1 function for ε < 1
4 , this perturbation theory for

the eigenvector (16) yields

lim
ε↑ 1

4

d

dε
(ελ0(ε))= −〈ϕ0, (Δ0 + 256ψ2

0 )ϕ0〉L2
r

2‖ϕ0‖2
L2

r

= −6,

which is equivalent to (15). The proof of the lemma is complete. �

By Lemma 2, it follows that the vortex solution is indeed a saddle point of the

energy functional E(u) in the energy space X with exactly two directions, for which

E(u) < E(ψε eiθ ). Note that in the Thomas–Fermi limit ε→ 0, [34, Lemma 2] (similar com-

putations are reported in [2, 4]) shows that

E(ux0,y0)− E(ψε eiθ )= −πεωa(ε)(x
2
0 + y2

0)(1 + O(ε1/3 + x2
0 + y2

0)), (17)

where ux0,y0 is a vortex solution ψε(r) eiθ shifted from (0, 0) ∈ R
2 to the point (x0, y0) ∈ R

2

for small (x0, y0). The coefficient ωa(ε) was found to satisfy the asymptotic expansion,

ωa(ε)= 2ε log
(

1

ε

)
+ O(ε) as ε→ 0. (18)

Finally, we address the spectral stability of symmetric vortices of charge 1 in

the Gross–Pitaevskii equation (1). Spectral stability is determined by eigenvalues of the

non-self-adjoint spectral problem:

Hm(ε)

[
Vm

Wm−2

]
= εγ

[
1 0

0 −1

][
Vm

Wm−2

]
, m ∈ Z, (19)
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Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps 137

where γ is an eigenfrequency of the perturbation of the vortex. The vortex is spectrally

stable if no γ exists with Im(γ ) �= 0. Compared with the standard formulation of spectral

stability, the spectrum of γ is rotated on the complex plane along 90◦.

We shall prove that the eigenvalues γ of the spectral problem (19) are all real and

semi-simple (i.e., they have equal algebraic and geometric multiplicities) except for the

double zero eigenvalue. The main attention is drawn to a pair of real eigenvalues for m =
2 and m = 0 that correspond to the eigenvectors with negative values of the quadratic

form associated with the operators H2(ε) and H0(ε). These eigenvalues are known as the

eigenvalues of negative Krein signature [5, 32] (see Remark 1). The corresponding result

is formulated in the following lemma.

Lemma 3. There exists a ε0 ∈ (0, 1
4 ) such that for every ε ∈ (ε0, 1

4 ) and m ∈ Z, the spectral

problem (19) admits only real eigenvalues γ of equal algebraic and geometric multiplic-

ities, in addition to the double zero eigenvalue for m = 1.

The smallest nonzero eigenvalue for m = 2 is γ = +ω0(ε) and for m = 0 is

γ = −ω0(ε), where ω0(ε) > 0. These eigenvalues are simple and correspond to the

eigenvectors

V+(ε)=
[

V2

W0

]
, V−(ε)=

[
V0

W−2

]
(20)

such that V2 = W−2, V0 = W0, ‖W0‖L2
r
> ‖V2‖L2

r
, and

〈V+(ε), H2(ε)V+(ε)〉L2
r
= 〈V−(ε), H0(ε)V−(ε)〉L2

r
< 0. (21)

Moreover, ω0 is a C 1 function of ε in (ε0, 1
4 ) satisfying

lim
ε↑ 1

4

ω0(ε)= 2 and lim
ε↑ 1

4

ω′
0(ε)= 8. (22)

The quadratic form associated with operators Hm(ε) is strictly positive for the

eigenvectors corresponding to any other eigenvalue γ of the spectral problems (19). �

Proof. The result follows from the negative index theory [5, 32] and the count of

negative eigenvalues of operators Hm(ε) in Lemma 2 (see also [33, Chapter 4.2]). Because

operators Hm(ε) for m � 3 and m � −1 are strictly positive, [5, Theorem 6] implies that

the spectral stability problem (19) admits only real semi-simple eigenvalues and the

quadratic form associated with these operators is strictly positive at the corresponding

eigenvectors.
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For m = 1, the algebraic multiplicity of the zero eigenvalue of H1(ε) is at least

two, because of the existence of the eigenvector V1 and the generalized eigenvector Ṽ1

in the form

V1(ε)=
[
ψε

−ψε

]
, Ṽ1(ε)=

[
L+(ε)−1ψε

L+(ε)−1ψε

]
,

where L+(ε) is strictly positive and thus invertible. We need to show that the algebraic

multiplicity is exactly two, which is equivalent to the condition 〈ψε , L+(ε)−1ψε〉L2
r
�= 0. To

show this constraint, we let Ψμ : R+ → R be a classical solution of the vortex equation

Δ1Ψμ + (μ− r2 − Ψ 2
μ )Ψμ = 0, Ψμ(r) > 0, r ∈ R+, μ> 0. (23)

A scaling transformation for Equation (23) implies that

Ψμ(r)= √
μψε(R), ε = 1

μ
, R= r√

μ
, (24)

where ψε is a classical solution of Equation (4), existence of which is stated in

Proposition 1.

Differentiating equation (23) with respect to μ, we obtain

(−Δ1 + r2 − μ+ 3Ψ 2
μ )

∂

∂μ
Ψμ =Ψμ,

which yields by the scaling transformation (24):

(L+(ε)−1ψε)(R)= √
μ
∂

∂μ

√
μψ 1

μ

(
r√
μ

)
= 1

2
ψε(R)− R

2
ψ ′
ε(R)− ε

∂

∂ε
ψε(R).

As a result, we have

〈ψε , L+(ε)−1ψε〉L2
r
= ‖ψε‖2

L2
r
− ε

2

∂

∂ε
‖ψε‖2

L2
r
.

It follows from Lemma 1 that

‖ψε‖2
L2

r
= (8 − 128ε2)‖ψ0‖2

L2
r
+ O(8 − 128ε2)2 as ε ↑ 1

4
,

where ψ0(r)= re−2r2
. Therefore, ‖ψε‖2

L2
r

is a decreasing function of ε near ε = 1
4 so that

〈ψε , L+(ε)−1ψε〉L2
r
> 0 at least for small |ε − 1

4 |. Hence the algebraic multiplicity of the

zero eigenvalue of H1(ε) is two.

Finally, for m = 2 and m = 0, there is only one negative eigenvalue of operators

H2(ε) and H0(ε) and no zero eigenvalues for small |ε − 1
4 | (Lemma 2). At ε = 1

4 , the spec-

tral stability problem (19) admits a double eigenvalue γ = +2 for m = 2 and a double

eigenvalue γ = −2 for m = 0 (by symmetry).

We shall prove that the double eigenvalue γ = 2 of the spectral problem (19)

for m = 2 splits for small |ε − 1
4 | �= 0 into two real eigenvalues, the smallest of which

is denoted as γ =ω0(ε). From the spectrum of the Schrödinger operator H(ε) in (6), we
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know that the double eigenvalue γ = 2 of the spectral problem (19) for m = 2 and ε = 1
4

corresponds to the following two eigenvectors:

V0 =
[

0

χ2

]
, Ṽ0 =

[
χ1

0

]
, χ1(r)= r2 e−2r2

, χ2(r)= e−2r2
. (25)

Therefore, the double eigenvalue γ = 2 is semi-simple. By the asymptotic perturbation

theory [21, Section 8.2.3], the semi-simple eigenvalues persist as real eigenvalues for

ε < 1
4 with small |ε − 1

4 | and are C 1 functions of ε. The actual values of these eigenvalues

for small |ε − 1
4 | can be approximated from the asymptotic expansions similar to the

ones used in the proof of Lemma 2. Using the expansion of H2(ε) in μ= 1
16 − ε2 and the

decomposition

V2 = c1χ1(r)+ μṼ2, W0 = c2χ2(r)+ μW̃0, γ =μγ̃ , (26)

we compute the projection equations

εγ̃

[
‖χ1‖2

L2
r
c1

−‖χ2‖2
L2

r
c2

]
=
[
〈χ1, (Δ2 + 256ψ2

0 )χ1〉L2
r

128〈χ1,ψ2
0χ2〉L2

r

128〈χ2,ψ2
0χ1〉L2

r
〈χ2, (Δ0 + 256ψ2

0 )χ2〉L2
r

][
c1

c2

]
+ O(μ).

Truncating this expansion, using d
dε = −2ε d

dμ , and computing the inner products

explicitly, we obtain

lim
ε↑ 1

4

d

dε
(εγ (ε))

[
c1

c2

]
=
[

0 −8

1 6

][
c1

c2

]
. (27)

Two eigenvalues {2, 4} of the reduced eigenvalue problem (27) give two slopes of the

eigenvalues γ as a function of ε:

lim
ε↑ 1

4

γ ′(ε)= 0 :

[
c1

c2

]
=
[
−4

1

]
(28)

and

lim
ε↑ 1

4

γ ′(ε)= 8 :

[
c1

c2

]
=
[
−2

1

]
. (29)

The first eigenvalue remains at γ = 2 for all values of ε < 1
4 by the symmetry of the spec-

tral problem (19) for m = 2 (see [24, Appendix] or [22, Equation (28)]). The second eigen-

value detaches from the first eigenvalue as a simple eigenvalue γ =ω0(ε) < 2 for ε < 1
4 .

This eigenvalue corresponds to the eigenvector V+(ε) in (20). We compute

ε = 1
4 : ‖V2‖2

L2
r
= c2

1‖χ1‖2
L2

r
= 1

16 , ‖W0‖2
L2

r
= c2

2‖χ2‖2
L2

r
= 1

8 ,

and hence ‖W0‖L2
r
> ‖V2‖L2

r
and the condition (21) are satisfied for ε = 1

4 and for small

|ε − 1
4 | by continuity. The symmetry of H2(ε) and H0(ε) implies that V2 = W−2 and V0 = W0.
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By Chugunova and Pelinovsky [5, Theorem 6] and Lemma 2, other eigenvalues

of the spectral stability problem (19) for m = 2 and m = 0 are real and semi-simple,

whereas the quadratic form associated with these operators is strictly positive at the

corresponding eigenvectors. To show that ω0(ε) is the smallest eigenvalue of the spectral

problem (19) for m = 2 and small |ε − 1
4 |, we recall again the spectrum of the Schrödinger

operator H(ε) in (6). For ε = 1
4 , the only eigenvalue that has the same absolute value as

ω0 is the simple eigenvalue γ = −2 that correspond to the eigenvector

V̂0 =
[

0

χ̂2

]
, χ̂2(r)= (4r2 − 1) e−2r2

.

The same perturbation theory gives

lim
ε↑ 1

4

d

dε
(εγ )= 〈χ̂2, (Δ0 + 256ψ2

0 )χ̂2〉L2
r

2‖χ̂2‖2
L2

r

= −2 ⇒ lim
ε↑ 1

4

γ ′(ε)= 0.

Hence, this eigenvalue also stays at γ = −2 by the symmetry described above and

γ =ω0(ε) is the smallest eigenvalue for ε < 1
4 of the spectral problem (19) for m = 2. The

proof of the lemma is complete. �

Remark 1. The eigenvalue ω0(ε) of the spectral problem (19) for m = 2 has the negative

Krein signature [19, 32], which is determined by the sign of the symplectic 2-form

[V+(ε), V+(ε)] := ‖V2‖2
L2

r
− ‖W0‖2

L2
r

(30)

and it is the only positive real eigenvalue of the spectral problems (19) with a negative

Krein signature. This symplectic 2-form vanishes when a positive eigenvalue of neg-

ative Krein signature coalesces with another eigenvalue of positive Krein signature to

become the defective eigenvalue that leads ultimately to the instability bifurcations [24].

If the eigenvalue ω0(ε) remains the smallest eigenvalue for m = 2 for ε ∈ (0, 1
4 ) and moves

to 0 as ε→ 0, such a coalescence does not occur and [V+(ε), V+(ε)]< 0 remains for all

ε ∈ (0, 1
4 ). �

Numerical approximations of eigenvalues of the spectral stability problems (19)

were performed in [24, Figure 4; 34, Figure 2]. These figures illustrate that all eigenval-

ues γ are purely real. Among all real eigenvalues, the pair of eigenvalues ±ω0(ε) with

negative Krein signature is distinctive because this pair corresponds to the smallest

nonzero eigenvalues of the spectral stability problems (19) for sufficiently small ε.
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This pair of eigenvalues is associated with the precessional frequency of the

symmetric vortex of charge 1 misplaced from (0, 0) ∈ R
2 to the point (x0, y0) ∈ R

2 for

small (x0, y0). Using the Rayleigh–Ritz variational method based on the computation

(17), it was found in [34] that ω0(ε)≈ωa(ε) as ε→ 0, where ωa(ε) satisfies the asymptotic

expansion (18).

We will show that the eigenvalue ω0(ε) also determines bifurcations of asymmet-

ric vortices from symmetric vortices of charge 1 in rotating Bose–Einstein condensates.

Although the results of Lemmas 2 and 3 are applicable for small |ε − 1
4 |, we will fix the

value of ε arbitrarily in (ε0, 1
4 ) without further restrictions on ε0. Note that because ε

is fixed, we will not indicate the explicit dependence of the eigenvalue ω0 from ε in the

remainder of this article.

3 Rotating Coordinates and the Symmetry-Breaking Bifurcation

We look at the existence of vortex solutions of the Gross–Pitaevskii equation (1) in the

rotating coordinate frame and use the variables,

[
x

y

]
=
[

cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

][
ξ

η

]
, (31)

where ω ∈ R is the rotation frequency in the counterclockwise direction, which is favor-

able to the vortex compared with the rotation in the clockwise direction. In new coordi-

nates, the Gross–Pitaevskii equation (1) takes the form:

iεut + ε2(uξξ + uηη)+ (1 − ξ2 − η2 − |u|2)u− iεω(ξuη − ηuξ )= 0. (32)

In the polar coordinates (r, θ) on the plane (ξ , η) ∈ R
2 (note that we use the same nota-

tions for polar coordinates for simplicity), the solution in the vortex form u= ϕω,ε(r) eiθ

satisfies the differential equation:

ε2Δ1ϕω,ε + (1 + εω − r2 − ϕ2
ω,ε)ϕω,ε = 0, ϕω,ε(r) > 0, r ∈ R+. (33)

Assuming that 1 + εω > 0 and using the scaling transformation,

ϕω,ε(r)=
√

1 + εωψν(R), r = √
1 + εωR, ν = ε

1 + εω
, (34)

we can rewrite the differential equation (33) in the one-parameter form,

ν2

(
d2ψν

dR2
+ 1

R

dψν
dR

− ψν

R2

)
+ (1 − R2 − ψ2

ν )ψν = 0, ψν(R) > 0, R∈ R+, (35)
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which is nothing but Equation (4) with the correspondence ν = ε and R= r. Existence of

vortices of charge 1 for ν ∈ (0, 1
4 ) is guaranteed by Proposition 1. The local bifurcation at

ν = 1
4 corresponds to

ε = ν

1 − νω

∣∣∣∣
ν= 1

4

= 1

4 − ω
,

and we require ω< 4 to have the interval [0, 1
4 ] for ν be mapped to the interval [0, 1

4−ω ]

for ε.

To study stability and bifurcations of symmetric vortices in the rotating coor-

dinate frame, we introduce a linearization of the Gross–Pitaevskii equation (32). We

substitute the decomposition,

u(ξ , η, t)= ϕω,ε(r) eiθ + U (ξ , η, t),

and obtain the linearized evolution problem by neglecting the quadratic terms in U ,

iεUt + ε2(Uξξ + Uηη)+ (1 − ξ2 − η2 − 2ϕ2
ω,ε)U − ϕ2

ω,ε e2iθŪ − iεω(ξUη − ηUξ )= 0. (36)

Using the normal coordinates,

U (ξ , η, t)=
∑
m∈Z

V (m)(r) eimθ e−iσ t, Ū (ξ , η, t)=
∑
m∈Z

W(m)(r) eimθ e−iσ t,

we obtain uncoupled eigenvalue problems for components (V (m), W(m−2)),

H (m)
ω,ε

[
V (m)

W(m−2)

]
= εσ

[
1 0

0 −1

][
V (m)

W(m−2)

]
, m ∈ Z, (37)

where

H (m)
ω,ε =

[
−ε2Δm + r2 − 1 − εωm + 2ϕ2

ω,ε ϕ2
ω,ε

ϕ2
ω,ε −ε2Δm−2 + r2 − 1 + εω(m − 2)+ 2ϕ2

ω,ε

]
. (38)

The eigenvalue problems (37) determine the spectral stability of the symmetric

vortex with respect to the time-dependent perturbations. To consider the bifurcation

of the symmetric vortex, we need to study the linearization of the time-independent

version of the Gross–Pitaevskii equation (32), which results in the self-adjoint version

of the spectral problems (37),

H (m)
ω,ε

[
V (m)

W(m−2)

]
= ελ

[
V (m)

W(m−2)

]
, m ∈ Z. (39)

Using variables (34) and the representation

V (m)(r)= Vm(R), W(m−2)(r)= Wm−2(R), m ∈ Z,

 at M
cM

aster U
niversity L

ibrary on A
pril 5, 2013

http://am
rx.oxfordjournals.org/

D
ow

nloaded from
 

http://amrx.oxfordjournals.org/


Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps 143

we rewrite the eigenvalue problems (37) and (39) in the equivalent forms:

Hm(ν)

[
Vm

Wm−2

]
= ν(σ + ω(m − 1))

[
1 0

0 −1

][
Vm

Wm−2

]
, m ∈ Z (40)

and

Hm(ν)

[
Vm

Wm−2

]
= νλ

[
Vm

Wm−2

]
+ νω(m − 1)

[
1 0

0 −1

][
Vm

Wm−2

]
, m ∈ Z, (41)

where Hm(ν) is given by (14) for ε = ν and r = R.

Let us denote γ = σ + ω(m − 1) and rewrite the spectral stability problems (40)

in the form:

Hm(ν)

[
Vm

Wm−2

]
= νγ

[
1 0

0 −1

][
Vm

Wm−2

]
, m ∈ Z. (42)

The spectral problems (42) coincide with the spectral problems (19) with the correspon-

dence ε = ν. By Lemma 3, all eigenvalues γ of the spectral problems (42) are real and

semi-simple except for the double zero eigenvalue. Therefore, all eigenvalues σ of the

spectral stability problems (37) are real and semi-simple, except for the double zero

eigenvalue. This result implies the spectral stability of symmetric vortices of charge 1

for all values of ω, for which the transformation (34) makes sense, and hence proves the

following.

Proposition 2. Fix ω< 4. There exists ε0 ∈ (0, 1
4 ) such that for every ε ∈ ( ε0

1−ε0ω
, 1

4−ω ), the

symmetric vortex of charge 1 is spectrally stable in the sense that all eigenvalues σ of

the spectral stability problems (37) are real and semi-simple, except for the double zero

eigenvalue. �

We can now address a possibility of bifurcations of the symmetric vortex

u= ϕω,ε(r) eiθ in the rotating coordinate frame (31). These bifurcations are determined

by zero eigenvalues λ of the self-adjoint eigenvalue problems (39). Equivalently, these

bifurcations are determined by zero eigenvalues λ of the self-adjoint eigenvalue prob-

lems (41).

Lemma 4. Let ω0 > 0 be the eigenvalue defined by Lemma 3 with the correspondence

ε ≡ ν. There exists ε0 ∈ (0, 1
2 ) such that for every ε ∈ (ε0, 1

2 ), the eigenvalue problem (39)

for m = 2 admits a zero eigenvalue λ= 0 at ω=ω0. Moreover, the smallest eigenvalue λ

is a C 1 function of ω near ω0 with λ′(ω0) > 0. �
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Proof. Existence of zero eigenvalue λ= 0 in the self-adjoint eigenvalue problem (41) for

any m � 2 is equivalent to the existence of a positive eigenvalue γ =ω(m − 1) in the non-

self-adjoint eigenvalue problem (42). By Lemma 3, the spectral problem (42) for m = 2

has the smallest nonzero eigenvalue γ =ω0(ν) > 0 for ν < 1
4 at least for small |ν − 1

4 |. It

follows from (22) that

lim
ν↑ 1

4

ω0(ν)= 2 and lim
ν↑ 1

4

ω′
0(ν)= 8. (43)

Using the inverse transformation (34) with ω=ω0(ν), that is,

ε(ν)= ν

1 − νω0(ν)
,

we obtain

lim
ν↑ 1

4

ε(ν)= 1

2
and lim

ν↑ 1
4

ε′(ν)= 6. (44)

The positive slope of ε versus ν tells us that the one-sided neighborhood ν < 1
4 is located

for ε < 1
2 if ω=ω0(ν). Therefore, there is ε0 ∈ (0, 1

2 ) such that the self-adjoint eigenvalue

problem (39) for m = 2 and ω=ω0(ν), admits a zero eigenvalue λ= 0 for every ε ∈ (ε0, 1
2 ).

Once this is established, we shall now omit the argument ν in the notation for ω0.

Next we show that the eigenvalue λ of the eigenvalue problem (39) for m = 2

that crosses zero at ω=ω0 becomes positive for ω>ω0. By the asymptotic perturbation

theory [21, Section 8.2.3], λ is a C 1 function of ω near ω0 because the zero eigenvalue

at ω=ω0 is simple. Differentiating the rescaled eigenvalue problem (41) for m = 2 with

respect to ω at a fixed ν < 1
4 , we obtain

H2(ν)
d

dω

[
V2

W0

]
= νλ

d

dω

[
V2

W0

]
+ νω

[
1 0

0 −1

]
d

dω

[
V2

W0

]

+ ν
dλ

dω

[
V2

W0

]
+ ν

[
1 0

0 −1

][
V2

W0

]
.

Projecting this derivative problem at λ= 0 and ω=ω0 to the eigenvector [V2, W0] of the

eigenvalue problem (41), we obtain

λ′(ω0)(‖W0‖2
L2

r
+ ‖V2‖2

L2
r
)= ‖W0‖2

L2
r
− ‖V2‖2

L2
r
> 0, (45)

where the positivity follows from Lemma 3. Hence, λ′(ω0) > 0 and the assertion of the

lemma is proved. �
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Remark 2. On the basis of numerical evidences, we conjecture that ε0 = 0 in Lemmas

2–4. This statement has been clearly illustrated in the numerical studies of [24, 29, 30]

but the mathematical proof of this conjecture is beyond the scope of this article. �

Remark 3. Numerical approximations show that all other eigenvalues of the spectral

problem (42) for m = 2 and m � 3 are located for γ =ω(m − 1)� 1 as ν→ 0 (see [34,

Figure 2]). These eigenvalues produce a countable set of possible bifurcations in the

self-adjoint eigenvalue problem (39) if ε = ν
1−νω > 0. These additional bifurcations may

be related to the fact that for larger rotation frequencies ω, multiple vortex configura-

tions become local and global minimizers of the energy (see [4, Figure 8; 36, Section 3]).

Although we do not study these possible bifurcations in this paper, we note that if these

bifurcations occur, they are related with eigenvalues of positive Krein signature that

become negative when the frequency parameter ω is increased. �

We shall mention two relevant results in connection to Lemma 4. First, the crit-

ical frequency ω0 = 2 in the limit of weak interactions ν ↑ 1
4 coincides with the critical

frequency of the symmetry-breaking bifurcation studied by Seiringer [36, Section 7].

By Seiringer [36, Theorem 4] (modified in our notations), for all ω ∈ (0, 2), there is an

ε0 ∈ (0, 1
2 ) such that for all ε ∈ (0, ε0), the radially symmetric vortex cannot be a global

minimizer of the energy. By Seiringer [36, Theorem 8], all vortices of charge nwith n� 10

are orbitally unstable (in fact, the author conjectured that this theorem remains true for

all n� 2).

The other relevant result is a connection between the sign of λ′(ω0) and the

Krein signature (30) established in (45). The linear interpolation between self-adjoint

and skew-adjoint spectral problems obtained in the rescaled eigenvalue problem (41)

was considered long ago by Krein and Ljubarskii [25], where motion of simple eigenval-

ues was found to be connected to the sign of the Krein signature.

Let us rewrite the full energy functional (11) in the rotating coordinate

frame (31),

Eω,ε(u)=
∫

R2

[
ε2|∇u|2 + (|ξ |2 − 1)|u|2 + 1

2
|u|4 + iεω

2
ξ(ūuη − uūη)− iεω

2
η(ūuξ − uūξ )

]
dξ .

(46)

The symmetric vortex u= ϕω,ε(r) eiθ is a critical point of the energy Eω,ε(u). Eigenvalues

of self-adjoint operators H (m)
ω,ε determine convexity of Eω,ε(u) at the critical point. By

Lemmas 2 and 4, the symmetric vortex of charge 1 is a saddle point of Eω(u) for ω<ω0
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but becomes a local minimizer of Eω(u) for ω>ω0 near ω0. Applying the orbital stability

theory [14] (see also [33, Chapter 4.4.2]), we obtain the following proposition.

Proposition 3. For every ε ∈ (ε0, 1
2 ), let ω0 be the bifurcation value in Lemma 4. For ω>

ω0 near ω0, the symmetric vortex of charge 1 uω,ε = ϕω,ε(r) eiθ is orbitally stable in the

following sense: for any ε > 0 there is a δ > 0, such that if ‖u(0)− uω,ε‖X � δ, then

inf
ζ∈R

‖u(t)− eiζuω,ε‖X � ε, t ∈ R+,

where X = {u∈ H1(R2) : |ξ |u∈ L2(R2)} is the energy space of the Gross–Pitaevskii

equation (32). �

Remark 4. Although the symmetric vortex is spectrally stable for ω<ω0, it is a saddle

point of energy and hence, we cannot conclude that it is orbitally stable for ω<ω0. �

4 Main Results and Illustrations

We formulate now the main results of this article. The results guarantee the existence

and orbital stability of a steadily precessing vortex of charge 1 in the Gross–Pitaevskii

equation (1) with the precessional frequency ω slightly exceeding the bifurcation

value ω0. This vortex is different from the symmetric vortex u= ϕω,ε(r) eiθ , because it

precesses along an orbit enclosing the center of the harmonic potential. Because of

the rotational invariance, the vortex can be placed at any point along the orbit, hence

it has an additional parameter α for the angle along the precessional orbit. We refer

to this solution as to the asymmetric vortex because it has no symmetry about the

origin (0, 0) ∈ R
2. The asymmetric vortex exists and is orbitally stable, according to the

following two theorems.

Theorem 1. For every ε ∈ (ε0, 1
2 ), let ω0 be the bifurcation value in Lemma 4. Besides the

symmetric vortex u= ϕω,ε(r) eiθ , there exists another time-independent vortex solution

u= uω,ε,α(ξ) of the Gross–Pitaevskii equation (32) for ω>ω0 near ω0, where |uω,ε,α| is not

radially symmetric. The center of |uω,ε,α| is placed on the circle of radius |a| centered at

the origin (0, 0) ∈ R
2 at the angle α and there is C > 0 such that |a| � C

√
ε(ω − ω0). �

Theorem 2. Under the conditions of Theorem 1, the asymmetric vortex uω,ε,α is orbitally

stable in the following sense: for any ε > 0 there is a δ > 0, such that if ‖u(0)− uω,ε,0‖X � δ,

then

inf
(ζ ,α)∈R2

‖u(t)− eiζuω,ε,α‖X � ε, t ∈ R+.
�
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Fig. 1. Spatial contour plots of the amplitude (left) and phase (right) of the asymmetric vortex

for ω= 0.365 and ε = 0.035.

We shall now illustrate the results of Theorems 1 and 2 numerically. Figure 1

shows the amplitude |u| and the phase arg(u) (the latter multiplied by |u| for clarity) of

the asymmetric vortex uω,ε,α as the time-independent solution of the Gross–Pitaevskii

equation (32) for ε = 0.035 and ω= 0.365. We can see that the center of the asymmetric

vortex is already distant from the center of the harmonic potential. Figure 2 displays

an approximate measure of the distance (through a smoothed identification of the max-

imum of the vorticity field) as a function of ω − ω0 for ε = 0.035. The curve displays the

characteristic supercritical pitchfork behavior. For ω>ω0, both symmetric and asym-

metric vortices coexist as solutions of the Gross–Pitaevskii equation (32).

Figure 3 shows the smallest positive eigenvalue σ of the spectral stability prob-

lems (37) as a function of ω. The positive eigenvalue for m = 2 crosses zero at ω=ω0 and

becomes negative for ω>ω0. The negative eigenvalue for m = 0 crosses zero at ω=ω0

and becomes positive for ω>ω0. The smallest positive eigenvalue σ has negative Krein

signature (30) for ω<ω0 and positive Krein signature for ω>ω0.

Figure 4 shows eigenvalues of the spectral stability problems (37) for all m ∈ Z

associated to the symmetric vortex u= ϕω,ε(r) eiθ for ε = 0.035 and two values of ω before

(left) and after (right) the pitchfork bifurcation. Note that the real eigenvalues σ are

rotated to purely imaginary eigenvalues λ in the standard formulation of the spectral

stability problem. It is evident that the zero crossing of the smallest eigenvalues does

not lead to the creation of a pair of real unstable eigenvalues. The symmetric vortex is

spectrally stable for both ω<ω0 and ω>ω0.
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Fig. 2. The distance a of the asymmetric vortex from the center of the trap is shown as a function

of ω − ω0 (where ω0 is the frequency at the bifurcation point) for ε = 0.035.
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Fig. 3. The smallest positive eigenvalue σ of the spectral stability problems (37) associated with

the symmetric vortex for ε = 0.035 is shown as a function of the rotation frequency ω. Both fre-

quencies are scaled by the bifurcation frequency ω0.

Figure 5 shows eigenvalues of a spectral stability problem associated with the

asymmetric vortex u= uω,ε,α for ε = 0.035 and ω= 0.365 past the bifurcation value. The

linearization problem has no small nonzero eigenvalues, instead it has a zero eigenvalue

of algebraic multiplicity four and geometric multiplicity two. This feature will be proved

rigorously within the bifurcation setting in Section 6. The zero eigenvalue is induced by
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Fig. 4. Eigenvalues λ= −iσ = λr + iλi of the spectral stability problems (37) associated with the

symmetric vortex for ε = 0.035 for two values of ω before and after the pitchfork bifurcation:

ω= 0.121 (left) and ω= 0.501 (right). The axes are scaled by a factor of 2ε, so that all eigenvalues

but the ones crossing zero are of O(1).
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Fig. 5. Eigenvalues of a spectral stability problem associated with the asymmetric vortex for

ε = 0.035 and ω= 0.365. The zero eigenvalue has algebraic multiplicity four.

the phase invariance of the Gross–Pitaevskii equation (first pair) and by the rotational

invariance of the position of the vortex along its precession orbit (second pair). Asym-

metric vortices can be “pinned” at any point of their precessional orbit parametrized by

the rotation frequency or, equivalently, by the distance from the center of the trap. All
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other eigenvalues are purely imaginary so that the asymmetric vortex is also spectrally

stable with respect to the time evolution of the Gross–Pitaevskii equation (32) for ω>ω0

near ω0.

5 The Birth of the Asymmetric Vortex

The zero eigenvalue of the self-adjoint spectral problem (39) for m = 2 and ω=ω0 exists

by Lemma 4 and signals a bifurcation along the family of symmetric vortex solutions.

This bifurcation gives birth to the family of asymmetric vortices for ω>ω0. To prove

Theorem 1, we work with the local bifurcation method and study the pitchfork bifurca-

tion at ω=ω0.

To develop the algorithm of Lyapunov–Schmidt reductions, we rewrite the exis-

tence problem for the stationary Gross–Pitaevskii equation (32) in the rotating reference

frame (31) as the root-finding problem,

N(u;ω) := −ε2(uξξ + uηη)+ (ξ2 + η2 − 1 + |u|2)u+ iεω(ξuη − ηuξ )= 0. (47)

Because the root-finding problem involves ū, we need to add another equation N(u;ω)=
0. We will use bolded notations for 2-vectors, for example, N = (N, N̄). Note that param-

eter ε is fixed in the interval (ε0, 1
4 ) to guarantee the validity of Lemmas 1, 2, 3, and 4.

Therefore, we do not indicate the explicit dependence of N(u;ω) on ε.

The Jacobian operator of N = (N, N̄) with respect to u = (u, ū) is given by

DuN(u;ω)

=
[
−ε2Δ+ |ξ |2 − 1 + iεω(ξ∂η − η∂ξ )+ 2|u|2 u2

ū2 −ε2Δ+ |ξ |2 − 1 − iεω(ξ∂η − η∂ξ )+ 2|u|2

]
.

We note that N(ϕω,ε eiθ ;ω)= 0 is equivalent to the differential equation (33). Let

us denote ϕ0 ≡ ϕω0,ε and H (m)
0 ≡ H (m)

ω0,ε , m ∈ Z. At the bifurcation value ω0 in Lemma 4, we

know that the kernel of DuN(ϕ0 eiθ ;ω0) is three-dimensional thanks to the gauge invari-

ance and the double degeneracy of the bifurcating mode of the self-adjoint problem (39)

for m = 2 and m = 0,

Ker(DuN(ϕ0 eiθ ;ω0))= span

{[
ϕ0(r) eiθ

−ϕ0(r) e−iθ

]
,

[
V0(r) e2iθ

W0(r)

]
,

[
W0(r)

V0(r) e−2iθ

]}
, (48)

where (V0, W0) is a real-valued solution of the homogeneous system

H (2)
0

[
V0

W0

]
=
[

0

0

]
. (49)
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It follows from (47) that for every fixed ε > 0, the function N(u;ω) : H2(R2)× R →
L2(R2) is smooth with respect to its arguments. We use the decomposition,

u= ϕ0(r) eiθ + aV0(r) e2iθ + āW0(r)+ U , ω=ω0 +Ω, (50)

where a∈ C and Ω ∈ R are parameters of the decomposition and U = (U , Ū ) satisfies the

orthogonality conditions,

〈V, U〉 :=
∫

R2
(V̄U + W̄Ū )dx dy= 0, for every V =

[
V

W

]
∈ Ker(DuN(ϕ0 eiθ ;ω0)). (51)

Note that the constraint on the conjugation of a in (50) follows from representation

(48) and the fact that ū is the complex conjugate of u. The root-finding problem is now

decoupled into algebraic equations

〈V, N(ϕ0 eiθ + aV0 e2iθ + āW0 + U ;ω0 +Ω)〉 = 0 for every V =
[

V

W

]
∈ Ker(DuN(ϕ0 eiθ ;ω0))

(52)

and a differential equation for the error term U. The system of algebraic Equations

(52) gives three equations because of three eigenvectors in Ker(DuN(u0;ω0)). However,

because of the gauge invariance, projection to the first eigenvector in (48) is identically

zero if U satisfies (51). Also projection to the third eigenvector in (48) gives a complex

conjugation of the projection to the second equation. Therefore, the system of algebraic

Equations (52) reduces to the scalar equation,

F (U ;ω, a) :=
∫

R2
( e−2iθV0N(ϕ0 eiθ + aV0 e2iθ + āW0 + U ;ω0 +Ω)

+ W0N(ϕ0 eiθ + aV0 e2iθ + āW0 + U ;ω0 +Ω))dx dy= 0. (53)

We can see that F (U ;ω, a) : H2(R2)× R × C → C is a smooth function with respect to its

variables.

As it often happens for the pitchfork bifurcation [23, 35], we need a near-identity

transformation to remove nonresonant quadratic terms and to compute resonant cubic

terms in amplitude a. Taking into account the decomposition for ω=ω0 +Ω, we set

U = εΩV1(r) eiθ + a2V20(r) e3iθ + |a|2V11(r) eiθ + ā2V02(r) e−iθ + Ũ , (54)
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where Ũ is a new error term, and obtain the linear inhomogeneous equations:

H (1)
0

[
V1

W1

]
=
[
ϕ0

ϕ0

]
, (55)

H (3)
0

[
V20

W20

]
= −

[
ϕ0V0(V0 + 2W0)

ϕ0W0(W0 + 2V0)

]
, (56)

H (1)
0

[
V11

W11

]
= −2

[
ϕ0(V2

0 + V0W0 + W2
0 )

ϕ0(V2
0 + V0W0 + W2

0 )

]
, (57)

H (−1)
0

[
V02

W02

]
= −

[
ϕ0W0(W0 + 2V0)

ϕ0V0(V0 + 2W0)

]
. (58)

By the symmetry of H (3)
0 , H (1)

0 , and H (−1)
0 , we have

V1 = W1, V02 = W20, W02 = V20, W11 = V11. (59)

We note that H (3)
0 and H (−1)

0 are invertible, whereas the Fredholm condition for H (1)
0 is

satisfied. Therefore, there exist unique solutions of the linear homogeneous Equations

(55)–(58) subject to constraints (51).

Using standard fixed-point arguments, it is easy to prove that there exist posi-

tive constants a0, Ω0, and C such that the differential equation for Ũ admits a unique

solution for all |a| � a0 and |Ω| �Ω0 satisfying the bound

‖Ũ‖H2 � C (|Ω| + |a|2)|a|. (60)

Substituting decompositions (50) and (54) into the scalar Equation (53), we obtain the

normal form for the radially symmetric pitchfork bifurcation,

a(2εΩσ + β|a|2 + F̃ )= 0, (61)

where

σ =
∫ ∞

0
[2ϕ0V1(V

2
0 + V0W0 + W2

0 )− V2
0 ]r dr, (62)

β =
∫ ∞

0
[V4

0 + 4V2
0 W2

0 + W4
0 + 4ϕ0(V

2
0 + V0W0 + W2

0 )V11

+ 4ϕ0V0W0(V20 + W20)+ 2ϕ0(V
2
0 V20 + W2

0 W20)]r dr, (63)

and the remainder term is small F̃ =O(Ω2, |a|4).
Nontrivial solutions of the normal-form Equation (61) for small Ω ∈ R with |a| �=

0 exist for sign(Ω)= −sign(σβ). We will show in Lemmas 5 and 6 that σ > 0 and β < 0.
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In this case, the nontrivial solutions of the normal-form Equation (61) exist for Ω > 0,

that is, for ω>ω0, and satisfy the expansion,

|a|2 = −2σ

β
εΩ + O(Ω2). (64)

If a= |a| eiα, then α is an arbitrary parameter of the bifurcating solution, whereas |a| is

uniquely determined as |a| =O(√ε|ω − ω0|). Note that |a| measures the distance of the

vortex center from the center of the harmonic potential, whereas α is an angle along the

circle of the radius |a|. The new asymmetric vortex can be placed at any angle α. The

proof of Theorem 1 is complete.

We prove now the claim that σ > 0 and β < 0.

Lemma 5. Under the assumptions of Lemma 4, the following statement holds:

σ = 1
2 (‖W0‖2

L2
r
− ‖V0‖2

L2
r
),

hence σ > 0. �

Proof. We look for the small eigenvalue of the self-adjoint spectral problem (39) for

m = 2 and ω near ω0. Using the expansion

ϕω,ε = ϕ0(r)+ εΩV1(r)+ O(Ω2),

we rewrite the eigenvalue problem (39) for m = 2 in the perturbation form,(
H (2)

0 − 2εΩ

[
1 0

0 0

]
+ 2εΩ

[
2 1

1 2

]
ϕ0V1 + O(Ω2)

)[
V (2)

W(0)

]
= ελ

[
V (2)

W(0)

]
. (65)

Let λ(ω) be an eigenvalue of the perturbed spectral problem (65) such that λ(ω0)= 0 at

Ω = 0. The corresponding eigenvector at Ω = 0 is (V (2), W(0))= (V0, W0) by (49). By the

asymptotic perturbation theory [21, Section 8.2.3], λ is a C 1 function of ω near ω0. Writ-

ing the derivative equation,(
H (2)

0 − 2εΩ

[
1 0

0 0

]
+ 2εΩ

[
2 1

1 2

]
ϕ0V1 + O(Ω2)

)
d

dω

[
V (2)

W(0)

]

(
−2ε

[
1 0

0 0

]
+ 2ε

[
2 1

1 2

]
ϕ0V1 + O(Ω)

)[
V (2)

W(0)

]
= ελ

d

dω

[
V (2)

W(0)

]
+ ε

dλ

dω

[
V (2)

W(0)

]
,

and computing projections to the eigenvector (49), we obtain

2σ = λ′(ω0)(‖V0‖2
L2

r
+ ‖W0‖2

L2
r
)= ‖W0‖2

L2
r
− ‖V0‖2

L2
r
, (66)
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where the equality (45) of Lemma 4 is used, subject to the change of notations. Because

the Krein signature (30) of the relevant eigenvalue is negative, we have ‖W0‖2
L2

r
> ‖V0‖2

L2
r
,

hence σ > 0. �

Lemma 6. There exists ε0 ∈ (0, 1
2 ) such that β < 0 for every ε ∈ (ε0, 1

2 ). �

Proof. Using the inhomogeneous Equations (56)–(58) and the symmetry (59), the coeffi-

cient β in (63) can be written in the equivalent form,

β = 〈V2
0, M0V2

0〉L2
r
− 〈V20, H (3)

0 V20〉L2
r
− 〈V11, H (1)

0 V11〉L2
r
− 〈V02, H (−1)

0 V02〉L2
r
, (67)

where

Vi j =
[

Vij

Wij

]
, V2

0 =
[

V2
0

W2
0

]
, and M0 =

[
1 2

2 1

]
.

Because operators H (3)
0 , H (1)

0 , and H (−1)
0 are nonnegative, the last three terms in (67) are

strictly negative, whereas the first term is strictly positive. Therefore, it is impossible

to establish that β < 0 generally, but we can develop perturbation expansions for small

|ε − 1
2 | to show that the three negative terms dominate over the positive term as ε→ 1

2 .

Let us use the scaling transformation (34) to map the point ε = 1
2 to the point

ν = 1
4 , for which ω0 satisfies the limits (43) of Lemma 4. Let ν2 = 1

16 − μ for small positive

μ. It follows from (43) that

ω0(ν)= 2 + 8(ν − 1
4 )+ O(ν − 1

4 )
2 = 2 − 16μ+ O(μ2) as μ→ 0. (68)

On the other hand, the asymptotic expansions (7), (26), and (29) of Lemmas 1 and 3 imply

that

ψν = (128μ)1/2ψ0 + O(μ3/2), ψ0(R)= Re−2R2
(69)

and

V0 = −2χ1 + O(μ), W0 = χ2 + O(μ), χ1(R)= R2 e−2R2
, χ2(R)= e−2R2

. (70)

This allows us to compute the first term in (63):

β1 =
∫ ∞

0
(V4

0 + 4V2
0 W2

0 + W4
0 )RdR= 51

512
+ O(μ).

To compute the next term in (63), we rewrite the linear inhomogeneous Equation

(57) after the scaling transformation (34):

H1(ν)

[
V11

V11

]
= −2ψν(V

2
0 + V0W0 + W2

0 )

[
1

1

]
,
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which is equivalent to the following perturbed equation

(− 1
16Δ1 + R2 − 1 + μ(Δ1 + 384ψ2

0 )+ O(μ2))V11 = −2ψν(V
2
0 + V0W0 + W2

0 ).

Because the zeroth-order operator L1 = − 1
16Δ1 + R2 − 1 has the one-dimensional kernel

spanned by ψ0, the solution of this linear inhomogeneous equation is singular in the

limit μ→ 0 and satisfies the following meromorphic expansion

V11 = 1

μ
(C11ψ0 + O(μ)) as μ→ 0,

where the projection coefficient C11 is computed by

C11〈ψ0, (Δ1 + 384ψ2
0 )ψ0〉L2

r
= −2〈ψ0,ψν(V

2
0 + V0W0 + W2

0 )〉L2
r
.

Substituting this expansion to the second term in (63), we obtain

β2 = 4
∫ ∞

0
ψν(V

2
0 + V0W0 + W2

0 )V11 RdR

= −8 · 128|〈ψ0,ψ0(V2
0 + V0W0 + W2

0 )〉L2
r
|2

〈ψ0, (Δ1 + 384ψ2
0 )ψ0〉L2

r

+ O(μ)

= − 49

512
+ O(μ).

To compute the last term in (63), we rewrite the linear inhomogeneous Equation

(56) after the scaling transformation (34):

H3(ν)

[
V20

W20

]
− 2νω0

[
V20

−W20

]
= −ψν

[
V0(V0 + 2W0)

W0(2V0 + W0)

]
.

With the help of (68) and (69), the inhomogeneous equation is equivalent to the following

perturbed equation:

([
− 1

16Δ3 + R2 − 2 0

0 − 1
16Δ1 + R2

]
+ μ

[
Δ3 + 16 + 256ψ2

0 128ψ2
0

128ψ2
0 Δ1 − 16 + 256ψ2

0

]
+ O(μ2)

)

×
[

V20

W20

]
= −ψν

[
V0(V0 + 2W0)

W0(2V0 + W0)

]
.

Again, the zeroth-order operator has the one-dimensional kernel spanned by

[
χ3

0

]
, χ3(R)= R3 e−2R2

.
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As a result, the solution of this linear inhomogeneous equation is singular in the limit

μ→ 0 and admits the following meromorphic expansion[
V20

W20

]
= 1

μ

(
C20

[
χ3

0

]
+ O(μ)

)
as μ→ 0,

where the projection coefficient C20 is computed by

C20〈χ3, (Δ3 + 16 + 256ψ2
0 )χ3〉L2

r
= −〈χ3,ψνV0(V0 + 2W0)〉L2

r
.

Substituting this expansion to the last term in (63), we obtain

β3 =
∫ ∞

0
ψν(4V0W0(V20 + W20)+ 2V2

0 V20 + 2W2
0 W20)RdR

= −256|〈χ3,ψ0V0(V0 + 2W0)〉L2
r
|2

〈χ3, (Δ3 + 16 + 256ψ2
0 )χ3〉L2

r

+ O(μ)

= − 3

512
+ O(μ).

Combining all together, we obtain β = β1 + β2 + β3 = − 1
512 < 0 and, by continuity in μ, β

remains negative for small |ν − 1
4 |. �

Remark 5. As a by-product of asymptotic computations in Lemmas 3, 5, and 6, we

obtain from (64) that

|a|2 = −2σ

β
εΩ + O(Ω2)= 32εΩ + O(Ω2,μ),

which gives a useful approximation of the displacement distance of the asymmetric

vortex from the center of the harmonic potential for small |ω − ω0| and |ε − 1
2 |. �

6 Stability of Asymmetric Vortices Past the Bifurcation Point

When the pitchfork bifurcation occurs, there is typically a transition from the stable to

unstable solutions [23, 35]. However, we know from Proposition 2 that the symmetric

vortex of charge 1 is spectrally stable both for ω<ω0 and ω>ω0. Moreover, by Lemma 4

and Proposition 3, it is a local minimizer of energy (46) for ω>ω0 near ω0 and hence the

symmetric vortex of charge 1 is orbitally stable with respect to perturbations of finite

amplitude for ω>ω0.

On the other hand, the asymmetric vortex bifurcating for ω>ω0 must have a

negative eigenvalue in the linearized operator DuN(uω,ε,α;ω), where uω,ε,α is the asym-

metric vortex, and hence it is a saddle point of energy (46). This means typically that the
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critical point is not orbitally stable with respect to perturbations of finite amplitude.

Nevertheless, the linearized operator DuN(uω,ε,α;ω) has also a two-dimensional kernel,

Ker(DuN(uω,ε,α;ω))= span{Vg, Vr}, ω>ω0, (71)

where

Vg =
[

uω,ε,α

−ūω,ε,α

]
, Vr =

[
∂αuω,ε,α

∂αūω,ε,α

]
, (72)

thanks to the gauge and rotational symmetries of the Gross–Pitaevskii equation (32). In

what follows, we shall prove Theorem 2 that states orbital stability of the asymmetric

vortex of charge 1 by incorporating the constraints related to the gauge and rotational

symmetries in (71).

First, let us prove the following lemma.

Lemma 7. For every ε ∈ (ε0, 1
2 ), let ω0 > 0 be the bifurcation value in Lemma 4 and uω,ε,α

be the asymmetric vortex in Theorem 1. There exists ω1 >ω0 such that for every ω ∈
(ω0,ω1), the linearized operator DuN(uω,ε,α;ω) has exactly one negative eigenvalue and a

double zero eigenvalue associated with the eigenvectors (71). �

Proof. We use perturbation theory for the triple zero eigenvalue of DuN(ϕ0 eiθ ;ω0) asso-

ciated with the eigenvectors (48). By Lemmas 2 and 4, we know that the only nega-

tive eigenvalue of DuN(ϕω,ε eiθ ;ω) for ω<ω0 becomes zero at ω=ω0 so that the operator

DuN(ϕ0 eiθ ;ω0) is nonnegative.

The following asymptotic expansion for the asymmetric vortex uω,ε,α is obtained

in the proof of Theorem 1 for small a and Ω =ω − ω0:

uω,ε,α = ϕ0 eiθ + aV0 e2iθ + āW0 + +εΩV1(r) eiθ

+ a2V20(r) e3iθ + |a|2V11(r) eiθ + ā2V02(r) e−iθ + O(|a|3),

where a and Ω are related by the normal form equation (61). As a result, we write

Hω,ε := DuN(uω,ε,α;ω)= DuN(ϕ0 eiθ ;ω0)+ aH10 + āH01 + εΩH1

+ a2H20 + |a|2H11 + ā2H02 + O(|a|3),

where correction terms are uniquely computed. We approximate now small eigenvalues

of the self-adjoint eigenvalue problem

Hω,ε

[
V

W

]
= ελ

[
V

W

]
. (73)
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We recall that the eigenvector Vg in (72) persists for all a because of the gauge symmetry.

Therefore, we are looking for the splitting of the double zero eigenvalue associated with

the perturbation expansion[
V

W

]
= b1

[
V0(r) e2iθ

W0(r)

]
+ b2

[
W0(r)

V0(r) e−2iθ

]
+
[

Ṽ

W̃

]
, (74)

where (b1, b2) are coordinates of the projections and Ṽ is orthogonal to the eigenvectors

in (48). We now substitute perturbation expansion (74) to the eigenvalue problem (73).

At the order of O(|a|), Fredholm conditions (52) for the residual terms are trivially satis-

fied, so that a solution exists, in fact, in an explicit form. Therefore, we incorporate this

explicit solution to continue the expansion (74) as follows:[
Ṽ

W̃

]
= b1

(
2a

[
V20(r) e3iθ

W20(r) eiθ

]
+ ā

[
V11(r) eiθ

W11(r) e−iθ

])

+ b2

(
a

[
V11(r) eiθ

W11(r) e−iθ

]
+ 2ā

[
V02(r) e−iθ

W02(r) e−3iθ

])
+
[

V̂

Ŵ

]
,

where V20 = W02, V11 = W11, V02 = W20 are determined from solutions of the linear inho-

mogeneous Equations (56)–(58) and V̂ is a new correction term of the order of O(|a|2).
Computing projections of the eigenvalue problem (73) to the eigenvectors in (48) at the

order of O(|a|2), we obtain the following reduced eigenvalue problem:[
2εΩσ + 2β|a|2 βa2

βā2 2εΩσ + 2β|a|2

][
b1

b2

]
= ελ(‖V0‖2

L2
r
+ ‖W0‖2

L2
r
)

[
b1

b2

]
. (75)

Taking into account the normal form Equation (61) that gives 2εΩσ + β|a|2 = 0 at the

order of O(|a|2) and the parametrization a= |a| eiα, we obtain two eigenvalues of the

reduced eigenvalue problem (75):

λ= 0 :

[
b1

b2

]
=
[

eiα

− e−iα

]

and

λ= 2β|a|2
ε(‖V0‖2

L2
r
+ ‖W0‖2

L2
r
)

:

[
b1

b2

]
=
[

eiα

e−iα

]
.

The zero eigenvalue corresponds to the second eigenvector Vr in (72) and is induced

by the rotational symmetry. The nonzero eigenvalue is actually negative because β < 0

by Lemma 6. It persists as a negative eigenvalue for small ω>ω0 by the asymptotic

perturbation theory [21, Section 8.2.3]. �
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To prove Theorem 2, we will show that the linearized operator DuN(uω,ε,α;ω) is

nonnegative in the constrained space

L2
c(R

2)=
{

U ∈ L2(R2) : 〈V, σ3U〉 :=
∫

R2
(V̄U − W̄Ū )dx dy= 0,

for every V =
[

V

W

]
∈ Ker(DuN(uω,ε,α;ω))

}
, (76)

where σ3 = diag(1, −1) is the third Pauli matrix. The orthogonality conditions in (76)

incorporate the symplectic structure of the Gross–Pitaevskii equation (32) resulting in

the non-self-adjoint spectral stability problem,

Hω,ε

[
V

W

]
= iελ

[
1 0

0 −1

][
V

W

]
. (77)

The zero eigenvalue of the spectral stability problem (77) has geometric multiplicity

two and algebraic multiplicity at least four because of the presence of the generalized

eigenvectors

Ṽg =H−1
ω,ε

[
uω,ε,α

ūω,ε,α

]
, Ṽr =H−1

ω,ε

[
∂αuω,ε,α

−∂αūω,ε,α

]
. (78)

Note that Ṽg and Ṽr exist because 〈U, σ3U〉 = 0 for any U ∈ L2(R2) and ‖uω,ε,α‖2
L2 is α-

independent. Also note that the projection algorithm in Lemma 7 applies to the non-

self-adjoint eigenvalue problem (77) and produces the reduced eigenvalue problem:[
2εΩσ + 2β|a|2 βa2

βā2 2εΩσ + 2β|a|2

][
b1

b2

]
= iελ(‖V0‖2

L2
r
− ‖W0‖2

L2
r
)

[
1 0

0 −1

][
b1

b2

]
, (79)

which has zero eigenvalue of geometric multiplicity one and algebraic multiplicity two

because ‖W0‖2
L2

r
> ‖V0‖2

L2
r

by Lemma 3 for the values of ε, where the pitchfork bifurcation

of Theorem 1 is considered.

The algebraic multiplicity of the zero eigenvalue is exactly four if the matrix of

symplectic projections

Dω,ε =
[
〈Vg, σ3Ṽg〉 〈Vr, σ3Ṽg〉
〈Vg, σ3Ṽr〉 〈Vr, σ3Ṽr〉

]

is invertible. The same matrix also determines the number of negative eigenvalues of

Hω,ε restricted to L2
c(R

2) [19, 32] (see also [33, Chapter 4.1.1]). To be precise, let n(Dω,ε)

be the number of negative eigenvalues of Dω,ε and n(Hω,ε) be the number of negative

eigenvalues of Hω,ε in L2(R2). Then, the number of negative eigenvalues of Hω,ε in L2
c(R

2)

is n(Hω,ε)− n(Dω,ε). By Lemma 7, n(Hω,ε)= 1, hence n(Dω,ε)� 1 and we need to prove that
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n(Dω,ε)= 1 to ensure that Hω,ε is nonnegative in the constrained space L2
c(R

2). This is

proved in the following lemma.

Lemma 8. Under the conditions of Lemma 7, for every ω ∈ (ω0,ω1), Dω,ε has one positive

and one negative eigenvalue. �

Proof. We use perturbation expansions of Lemma 7 for small a∈ C andΩ =ω − ω0 ∈ R+
and approximate the eigenvectors Vg and Vr as follows:

Vg =
[
ϕ0(r) eiθ

−ϕ0(r) e−iθ

]
+ a

[
V0(r) e2iθ

−W0(r)

]
+ ā

[
W0(r)

−V0(r) e−2iθ

]
+ O(|a|2) (80)

and

−iVr = a

[
V0(r) e2iθ

W0(r)

]
− ā

[
W0(r)

V0(r) e−2iθ

]
+ 2a2

[
V20(r) e3iθ

W20(r) eiθ

]
− 2ā2

[
V02(r) e−iθ

W02(r) e−3iθ

]
+ O(|a|3).

(81)

To compute 〈Vg, σ3Ṽg〉, we define a solution of the elliptic problem:

− (∂2
ξ + ∂2

η )Uω,μ,α + (ξ2 + η2 − μ+ |Uω,μ,α|2)Uω,μ,α + iω(ξ∂η − η∂ξ )Uω,μ,α = 0. (82)

Using the scaling transformation, we represent

Uω,μ,α(ξ)= √
μuω,ε,α(Ξ), ε = 1

μ
, Ξ = ξ√

μ
, (83)

where uω,ε,α is the asymmetric vortex in Theorem 1. Differentiating (82) with respect to

μ, we obtain

(−∂2
ξ − ∂2

η + ξ2 + η2 − μ+ 2|Uω,μ,α|2 + iω(ξ∂η − η∂ξ ))
∂

∂μ
Uω,μ,α + U2

ω,μ,α
∂

∂μ
Ūω,μ,α = Uω,μ,α,

hence

Ṽg =H−1
ω,ε

[
uω,ε,α

ūω,ε,α

]
= 1

2

[
uω,ε,α

ūω,ε,α

]
− 1

2
ξ · ∇

[
uω,ε,α

ūω,ε,α

]
− ε

∂

∂ε

[
uω,ε,α

ūω,ε,α

]
(84)

and

〈Vg, σ3Ṽg〉 = 2‖uω,ε,α‖2
L2 − ε

∂

∂ε
‖uω,ε,α‖2

L2

= 2π
(

2‖ϕ0‖2
L2

r
− ε

∂

∂ε
‖ϕ0‖2

L2
r

)
+ O(|a|2) > 0,
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where we use the symmetries in the expansion (80) and the previous argument that

‖ϕ0‖2
L2

r
is a decreasing function of ε near the local bifurcation threshold that corresponds

to ε = 1
2 .

From perturbation expansions (80) and (81), we infer that

〈Vr, σ3Ṽg〉 = 〈Vg, σ3Ṽr〉 =O(|a|2) as a→ 0.

On the other hand, we have

〈Vr, σ3Ṽr〉 = 〈σ3Vr,H−1
ω,εσ3Vg〉 =O(|a|2) < 0 as a→ 0

because Hω,ε is nonpositive on the leading-order term of the perturbation expansion (81)

by Lemma 7 and it cannot be zero. Because the off-diagonal terms have the same order

of O(|a|2), one eigenvalue of Dω,ε is positive of the order of O(1) and the other eigenvalue

is negative of the order of O(|a|2) as a→ 0. This computation yields the assertion of the

lemma for small a∈ C, or equivalently, for small |ω − ω0|. �

By Lemma 8, the linearized operator Hω,ε is nonnegative in the constrained space

L2
c(R

2). By Lemma 7, it has a two-dimensional kernel (71) induced by the gauge and

rotational symmetries. Conditions of the orbital stability theory [14] are satisfied and

the result of Theorem 2 follows from this theory [33, Chapter 4.4.2].

7 Conclusion

We have shown that the rotating symmetric vortices at the center of the harmonic poten-

tial become subject to a pitchfork bifurcation with radial symmetry. This bifurcation

occurs at the rotation frequency coinciding with the eigenfrequency of negative Krein

signature in the spectral stability problem associated with the symmetric vortices in

the nonrotating case. As a result of this bifurcation, for supercritical rotation frequen-

cies, the symmetric vortex becomes an orbitally stable local minimizer of the energy

functional in the rotational reference frame. At the same time, a new family of asym-

metric vortices is born and the asymmetric vortices are placed at a circle of small radius

around the center of the harmonic potential. The asymmetric vortices are saddle points

of the energy functional, but nevertheless, they are orbitally stable in the time evolu-

tion of the Gross–Pitaevskii equation. Although our rigorous results are obtained far

from the Thomas–Fermi limit, where the vortex state is close to the linear eigenstate of

the quantum harmonic oscillator, our numerical evidence indicates that the result holds
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true for the entire range of chemical potentials, including the large-density vortex states

near the Thomas–Fermi limit.
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