Bifurcation of Bloch Waves in the Gross-Pitaevskii Equation

PHYSICS 4P06

MATT COLES
SUPERVISED BY: DMITRY PELINOVSKY

Gross-Pitaevskii Equation

• Let us study the time-independent GPE in a periodic potential in one dimension

$$-\frac{d^2\psi}{dx^2} + V(x)\psi + c|\psi|^2\psi = \mu\psi$$

- ψ is a wave function
- μ is the chemical potential
- c determines the strength of the nonlinear term
- V is the periodic potential, say V(x) = cos(x)

Bloch Waves

Bloch waves are plane waves in lattices

$$\psi(x) = e^{ikx} \phi_k(x)$$

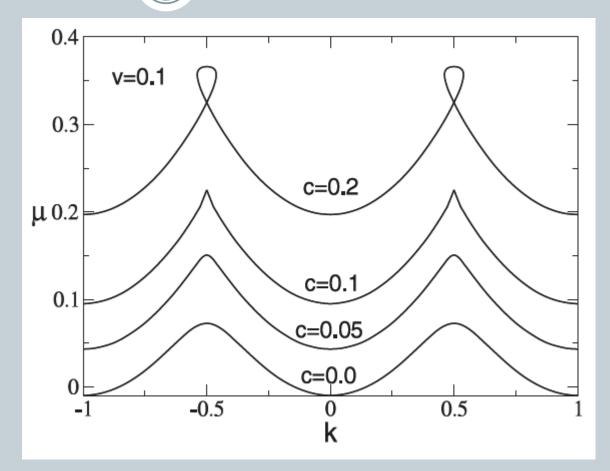
with

$$\phi(x+2\pi) = \phi(x)$$

- k-quasi-momentum
- ψ is periodic for k=0
- ψ is anti-periodic for k=1/2

Lowest Energy Band

- Bifurcation at c=c*=0.1
- Brillouin zone $k \in \left[-\frac{1}{2}, \frac{1}{2}\right]$



Biao Wu and Qian Niu (2003) Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability. New Journal of Physics. 5: 104.

Goal

 Can we justify qualitative behaviour observed numerically using analytical methods?

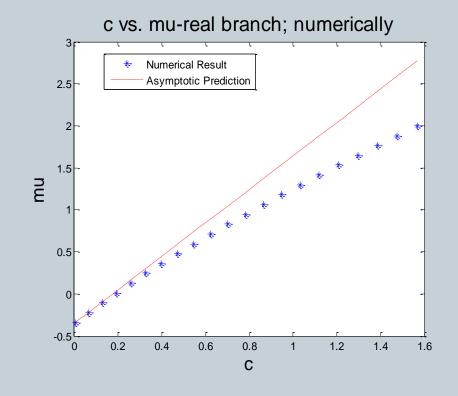
Can we recover the loops in the Bloch bands

 Can we analyse the stability of these steady state solutions

Stationary Real Branch

- Take k=1/2, so ψ is anti-periodic $\psi(x+2\pi) = -\psi(x)$
- For c>o we can numerically solve for real ψ

$$-\frac{d^2\psi}{dx^2} + V(x)\psi + c\psi^3 = \mu\psi$$



Linearization Operators

 Linearization operator with respect to real perturbations

$$L_{+} = -\partial_{x}^{2} + V(x) + 3c\psi^{2}(x) - \mu$$

Linearization operator with respect to imaginary perturbations

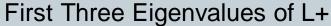
$$L_{-} = -\partial_x^2 + V(x) + c \psi^2(x) - \mu$$

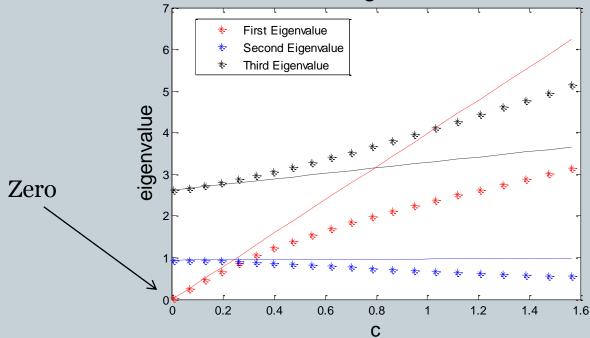
Finding the Bifurcation

Linearization operators:

$$L_{+} = -\partial_x^2 + V(x) + 3c\psi^2(x) - \mu$$

$$L_{-} = -\partial_x^2 + V(x) + c\psi^2(x) - \mu$$



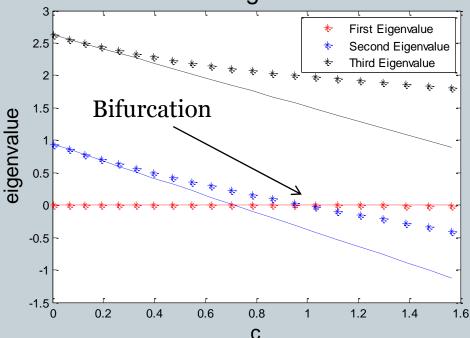


Finding the Bifurcation

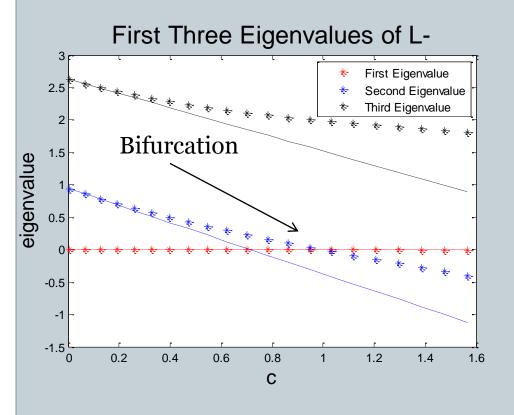
Linearization operators:

$$L_{+} = -\partial_x^2 + V(x) + 3c\psi^2(x) - \mu$$

$$L_{-} = -\partial_x^2 + V(x) + c \psi^2(x) - \mu$$



Finding the Bifurcation



$$L_{-}\psi = 0$$

For all ψ by construction

$$L_{-}^{*}\varphi_{*}=0$$

At the bifurcation point

$$\langle \varphi_*, \psi_* \rangle_{L^2} = 0$$

Local Bifurcation Analysis

$$\psi_*, \mu_*$$
 Solution at $c=c_*$

$$c = c_* + \varepsilon$$
 $\mu = \mu_* + M$

Let us decompose

$$\psi(x) = \psi_*(x) + ia\varphi_* + u(x) + iw(x)$$

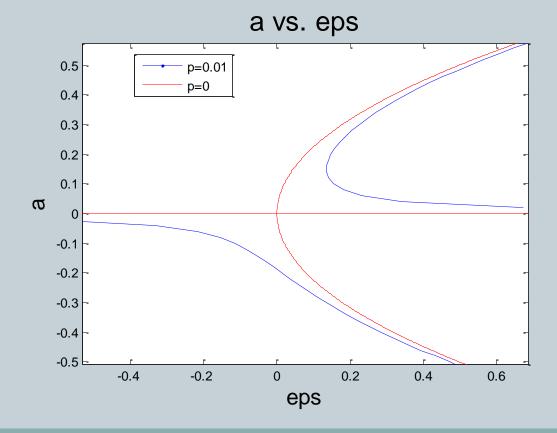
We seek relationships between parameters ε, a and M

Normal Form Equations

$$\varepsilon a P_0 + a^3 Q_0 + p R_0 = 0$$

P_o, Q_o, R_o are numerical constants

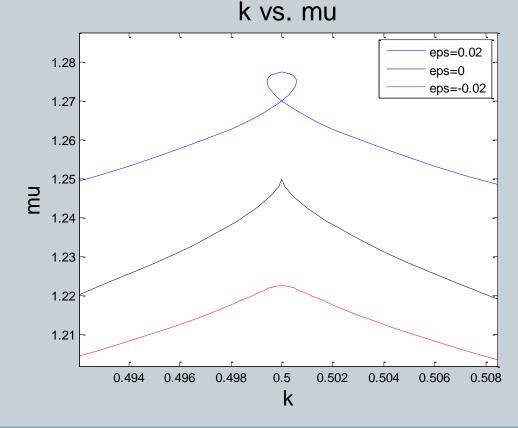
$$p = 1/2 - k$$



Normal Form Equations

$$\varepsilon a P_0 + a^3 Q_0 + p R_0 = 0$$

$$M = \alpha_0 \varepsilon + \beta_0 a^2$$



Stability

To expose the stability of the stationary solutions we consider the full time-dependent Gross-Pitaevskii equation,

$$i\frac{d\Psi}{dt} = -\frac{d^2\Psi}{dx^2} + c|\Psi|^2\Psi + V(x)\Psi$$

where,

$$\Psi = \Psi(x,t) = e^{-i\mu t} \psi(x)$$

 $\psi(x)$ – stationary state

Stability Analysis

Again consider a neighbourhood of the bifurcation,

$$c = c_* + \varepsilon$$
 $\mu = \mu_* + M(t)$

Parameters are now functions of time,

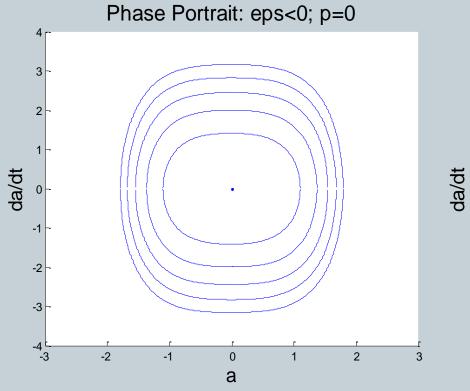
$$M=M(t)$$
 $a=a(t)$

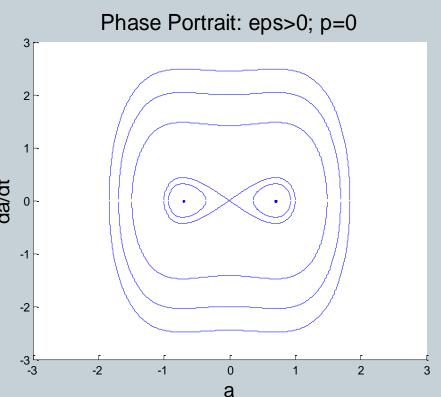
Analysis yields the time-dependent normal form equation,

$$\ddot{a}N_0 + \varepsilon aP_0 + a^3Q_0 + pR_0 = 0$$

Phase Portraits

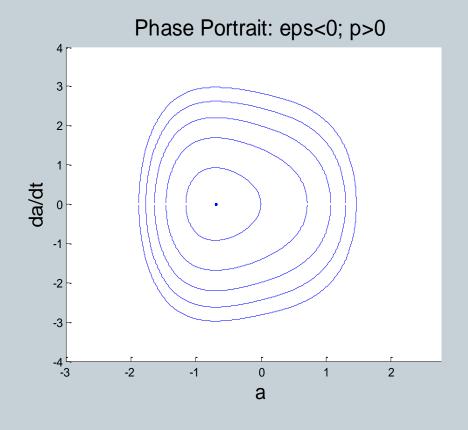
• Phase portraits for p=0, k=1/2,

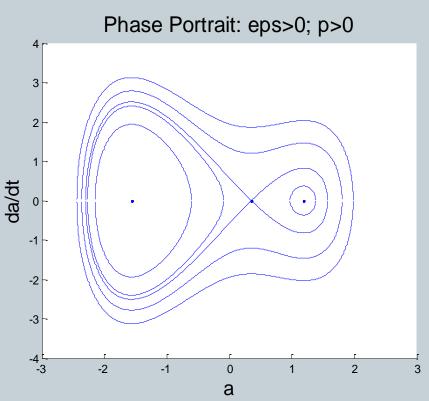




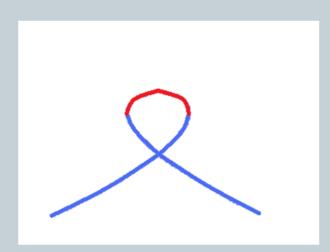
Phase Portraits

Phase portraits for p≠o (small), k=1/2-p



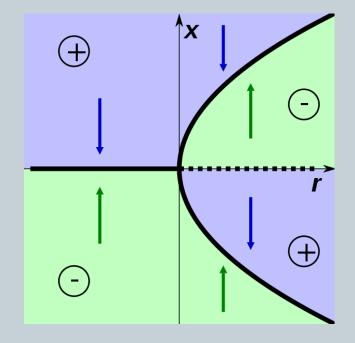


Stability



- Unstable solutions are shown in red
- Stable solutions are shown in blue

Bifurcation is a supercritical pitchfork bifurcation.



Summary

 Bifurcation analysis recovers qualitative behaviour of solutions

Analysis is valid for any excited state and both for c>o and c<o

