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Abstract
We develop a detailed analysis of edge bifurcations of standing waves in the
nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a
semi-infinite line subject to the Kirchhoff boundary conditions at the junction).
It is shown in the recent work [7] by using explicit Jacobi elliptic functions that
the cubic NLS equation on a tadpole graph admits a rich structure of standing
waves. Among these, there are different branches of localized waves bifurcating
from the edge of the essential spectrum of an associated Schrödinger operator.

We show by using a modified Lyapunov-Schmidt reduction method that
the bifurcation of localized standing waves occurs for every positive power
nonlinearity. We distinguish a primary branch of never vanishing standing
waves bifurcating from the trivial solution and an infinite sequence of higher
branches with oscillating behavior in the ring. The higher branches bifurcate
from the branches of degenerate standing waves with vanishing tail outside the
ring.

Moreover, we analyze stability of bifurcating standing waves. Namely,
we show that the primary branch is composed by orbitally stable standing
waves for subcritical power nonlinearities, while all nontrivial higher branches
are linearly unstable near the bifurcation point. The stability character of
the degenerate branches remains inconclusive at the analytical level, whereas
heuristic arguments based on analysis of embedded eigenvalues of negative
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Krein signatures support the conjecture of their linear instability at least near
the bifurcation point. Numerical results for the cubic NLS equation show that
this conjecture is valid and that the degenerate branches become spectrally
stable far away from the bifurcation point.

Keywords: nonlinear Schrödinger equation, quantum graphs, standing wave
solutions, existence and stability, edge bifurcation
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1. Introduction

The study of existence and properties of standing waves of the nonlinear Schrödinger (NLS)
equation constitutes a continuously developing subject. The NLS equation has potential
applications to many realistic problems such as signal propagation in optical fibers or Bose–
Einstein condensation. Standing waves are usually considered in unbounded homogeneous
media [6] or in the periodically modulated media [22]. Nevertheless, real systems can exhibit
strong inhomogeneities, due to different nonlinear coefficients in different regions of the spatial
domain or a specific geometry of the spatial domain.

A problem of general interest is the interaction between standing waves in spatially
confined systems and those in large or unbounded reservoirs. Here we develop a rigorous
analysis of bifurcation and stability of standing waves for the NLS equation with power
nonlinearity in the simplest geometry given by a ring attached to a semi-infinite line. We
refer to this model geometry as to the tadpole graph. At the junction between the ring and
the half line, suitable boundary conditions (referred typically to as the Kirchhoff boundary
conditions) are given to define the coupling. These boundary conditions ensure conservation
of the current flow through the network junction. The tadpole graph is an example of quantum
graphs, a much studied subject in the last decades (see [4] and references therein) with many
relevant physical applications.

The linear counterpart of this model, even in the presence of a magnetic field, was studied
by Exner [10]. If the ring is placed on the interval [−L, L] and the semi-infinite interval is
[L, ∞), then we define the Laplacian operator by

�� =
[
u′′(x), x ∈ (−L, L)

v′′(x), x ∈ (L, ∞)

]
, (1.1)

acting on functions in the form

� =
[
u(x), x ∈ (−L, L)

v(x), x ∈ (L, ∞)

]
,

where the primes stand for spatial derivatives. We equip the Laplacian operator (1.1) with the
domain

D(�) =
{(u, v) ∈ H 2(−L, L) × H 2(L, ∞) :
u(L) = u(−L) = v(L), u′(L) − u′(−L) = v′(L)

}
, (1.2)

where the Kirchhoff boundary conditions have been used.

2344



Nonlinearity 28 (2015) 2343 D Noja et al

Let us show that � is a symmetric operator from D(�) to L2(−L, L) × L2(L, ∞).
Indeed, let �1 = (u1, v1) and �2 = (u2, v2) be two elements in D(�). The bilinear form for
the Laplacian operator satisfies

〈u1, u
′′
2〉L2(−L,L) + 〈v1, v

′′
2 〉L2(L,∞) = 〈u′′

1, u2〉L2(−L,L) + 〈v′′
1 , v2〉L2(L,∞)

if

u1(L)u′
2(L) − u′

1(L)u2(L) + v′
1(L)v2(L) − v1(L)v′

2(L)

= u1(−L)u′
2(−L) + u′

1(−L)u2(−L).

The above constraint is indeed satisfied under the Kirchhoff boundary conditions in (1.2). It
further follows (see, e.g. theorem 1.4.4 in [4]) that the operator � is in fact self-adjoint on its
domain D(�).

The linear Schrödinger equation on the tadpole graph can be written in the compact form

i
∂

∂t
� = ��, (1.3)

where � = �(t, x). We are interested in the nonlinear Schrödinger equation on the tadpole
graph, which is the natural generalization of the linear Schrödinger equation (1.3),

i
∂

∂t
� = �� + (p + 1)|�|2p�, (1.4)

where the nonlinear term |�|2p� is interpreted as a symbol for (|u|2pu, |v|2pv) defined
piecewise on (−L, L) and (L, ∞). For p > 0, the power nonlinearity is of the focusing
type and it supports existence of localized waves on the semi-infinite line.

Standard application of the fixed point theory shows that local well posedness holds in the
energy space

E(�) = {(u, v) ∈ H 1(−L, L) × H 1(L, ∞) : u(L) = u(−L) = v(L)} (1.5)

and in the operator domain space D(�) (see [6] for the classical theory and [2] for applications
to the NLS equation on quantum graphs). In the case of subcritical power nonlinearities with
p ∈ (0, 2), local solutions can also be extended to global solutions either in E(�) or in D(�).

Standing waves of the focusing NLS equation (1.4) on the tadpole graph are given by the
solutions of the form

�(t, x) = eiωt�(x),

where ω and � ∈ D(�) are considered to be real. This pair satisfies the stationary NLS
equation

− �� − (p + 1)|�|2p� = ω� ω ∈ R , � ∈ D(�). (1.6)

More explicitly, using u and v as components of the vector �, we can write the stationary NLS
equation (1.6) as a system of two NLS equations, one on the ring and the other one on the half
line, coupled by the Kirchhoff boundary conditions:


−u′′(x) − (p + 1)|u|2pu = ωu, x ∈ (−L, L),

−v′′(x) − (p + 1)|v|2pv = ωv, x ∈ (L, ∞),

u(L) = u(−L) = v(L),

u′(L) − u′(−L) = v′(L).

(1.7)

The subject of NLS equations on quantum graphs has seen many developments in
the recent years. From the physical point of view, the most promising interest is in the
experimental creation and management of various kinds of traps for Bose–Einstein condensates
(see [8, 12, 23, 24] and reference therein). Various types of junctions have been modeled to
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show formation and trapping of localized waves and existence of coherent structures with
symmetry breaking [5, 17, 25, 26, 28].

At the rigorous mathematical level, the emphasis has been placed on the case of Y-junctions
or more generally on star graphs, where existence, variational properties, stability of standing
waves, and scattering of localized waves have been studied, e.g. in [1, 2, 20]. Very little is
known about propagation or formation of standing waves in more complex structures, where
oscillations of waves can be present. For example, the authors of [13] demonstrate numerically
that a complex set of broad and narrow resonances shows up after inserting a single nonlinear
edge in a network, where linear Schrödinger propagation occurs. A result on the absence of
nonlinear ground states in networks with closed cycles is given in [3] under a set of certain
topological conditions.

A classification of standing waves in the present model (1.7) of the NLS equation on
the tadpole graph is given in [7] for the cubic case p = 1. The authors of [7] showed a
rather unexpected and rich structure of the nonlinear waves of the system. Several interesting
bifurcations appear, giving rise to nonlinear standing waves embedded in the essential spectrum
of �, a countable set of families of localized waves bifurcating from the edge of the essential
spectrum of �, and a wealth of families of standing waves which have no linear analogues.
Standing waves were constructed explicitly in [7], thanks to the known properties of Jacobi
elliptic functions related to the cubic NLS equation.

The task of the present work is to extend these results to the NLS equation with the
generalized power nonlinearity (1.4). Our particular emphasis is on the existence and stability
of standing localized waves bifurcating from the edge of the essential spectrum of �. In contrast
to the previous work in [7], we prove the existence and bifurcation results without relying on the
known exact solutions but using a modification of the Lyapunov–Schmidt reduction method.
We also address the linear and orbital stability of the bifurcating standing waves near the
bifurcation threshold, which was not considered in [7] even in the case of cubic nonlinearities.

As is well-known (see, e.g. chapter 4 in [22] for review), spectral and orbital stability of
the stationary solutions in the time evolution of the NLS equation (1.4) is determined by the
spectra of the self-adjoint operators L+ and L−, which defines the energy quadratic form near
the stationary solution. In our context, the spectral problem for operator L− is defined by the
boundary-value problem


−U ′′(x) − ωU − (p + 1)|u|2pU = λU, x ∈ (−L, L),

−V ′′(x) − ωV − (p + 1)|v|2pV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L),

(1.8)

where (u, v) represents any stationary solution of the boundary-value problem (1.7). The
spectral problem for operator L+ is defined by the boundary-value problem


−U ′′(x) − ωU − (2p + 1)(p + 1)|u|2pU = λU, x ∈ (−L, L),

−V ′′(x) − ωV − (2p + 1)(p + 1)|v|2pV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L).

(1.9)

Similarly to the operator �, operators L± are self-adjoint in L2(−L, L) × L2(L, ∞) with the
domain D(�) given in (1.2).

Our main result is that a countable set of standing localized waves bifurcates from the end
point of the essential spectrum of � at ω = 0. This bifurcation, known as the edge bifurcation,
was previously studied in the context of linear eigenvalue problems [18]. A primary branch of
standing waves has no nodes and it bifurcates from the vanishing state. The subsequent families
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of standing waves, or higher branches, can be ordered according to the increasing number of
nodes and each family bifurcates from one of the standing waves which are identically zero
outside the ring (−L, L).

For small ω < 0 and subcritical power nonlinearities with p ∈ (0, 2), we show that the
primary branch is composed by orbitally stable standing waves, whereas the higher branches
with non-vanishing localized tails are spectrally unstable. The spectral analysis is inconclusive
for the higher branches with the vanishing tail outside the ring. Numerical analysis is developed
for the cubic NLS equation with p = 1 to show linear instability of these higher branches near
the bifurcation point ω = 0 and their spectral stability in the limit of large negative ω. At the
same time, conclusions on the orbital stability of the standing waves along the primary branch
and the spectral instability of the higher branches with nonvanishing localized tails remain true
for all negative ω. We note that orbital stability of the nodeless primary branch supports the
idea that it represents the ground state of the system, that is, it minimizes energy at constant
mass, as conjectured in [7].

The paper is organized as follows. In section 2 we prove existence of a countable set
of standing waves which vanish on the tail of the tadpole graph. This set is the basis for the
subsequent analysis of bifurcation and stability of new standing waves.

In section 3 we show the existence of the primary branch of standing waves, which
bifurcates from the trivial solution at ω = 0. In section 4 we construct the higher branches of
standing waves, which bifurcate at ω = 0 from each solution in the countable set constructed
in section 2, the bifurcating solutions have non-vanishing localized tail outside the ring. Note
that both perturbative results are based on a non-trivial adaptation of the Lyapunov–Schmidt
reduction method, which holds near the edge bifurcation.

In section 5 we consider orbital stability of primary branch near the bifurcation point,
using the general theory of Grillakis–Shatah–Strauss [15, 16] and Grillakis [14]. We count
multiplicities of the negative and zero eigenvalues of the linearized operators L− and L+ and
verify the slope condition, which indicates if the number of negative eigenvalues of L+ is
reduced by one on an orthogonal complement of the eigenvector of L−.

In section 6 we prove the linear instability of higher branches of standing waves with
non-vanishing localized tails outside the ring. We note that the count of negative and zero
eigenvalues of the linearized operators L− and L+ is more difficult for the higher branches
and it involves eigenvalue problems with nonlinear dependence of the spectral problem on
the spectral parameter. We also show that the eigenvalue count is inconclusive for the higher
branches with vanishing tails outside the ring. Using heuristic arguments, we conjecture that
these higher branches are also unstable at least for small values of ω.

Finally, in section 7, we develop numerical approximations for the cubic case p = 1.
Numerical findings illustrate our analytical results near ω = 0 and give a complete picture
on existence and stability of standing waves on the tadpole graphs for larger values of the
parameter ω.

We use the following notations throughout the paper:

• H 2 denotes the usual Sobolev space of square integrable functions with square integrable
second derivatives;

• Cm denotes the space of m-times continuously differentiable functions with bounded
derivatives up to the order m;

• O(ε) denotes a quantity that converges to zero at the same rate as ε as ε → 0;

• o(ε) denotes a quantity that converges to zero faster than ε as ε → 0;

• primes always denote derivatives with respect to the spatial variable.
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2. Standing waves prior to bifurcations

Here we consider standing waves of the stationary NLS equation (1.7), which are identically
zero on the tail of the tadpole graph. The decoupled stationary solutions with v(x) ≡ 0 for all
x ∈ [L, ∞) satisfy the nonlinear boundary value problem on the ring:


−u′′(x) − (p + 1)|u|2pu = ωu, x ∈ (−L, L),

u(L) = u(−L) = 0,

u′(L) = u′(−L).

(2.1)

Although the boundary conditions over-determine the second-order boundary-value problem,
we can look for odd 2L-periodic solutions in H 2

per,odd(−L, L), which satisfy the Dirichlet
boundary conditions at x = ±L as well as at x = 0. For each solution with u′(0) > 0, we
have also another solution with u′(0) < 0 because both u and −u satisfy the same boundary-
value problem (2.1).

First, we characterize trajectories of the second-order differential equation in the system
(2.1) on the phase plane (u, u′). For any ω ∈ R, the differential equation is integrable thanks
to the energy invariant

E =
(

du

dx

)2

+
(
ω + |u|2p

)
u2 = const. (2.2)

For every ω � 0, the level set (2.2) determines closed trajectories on the phase plane (u, u′),
which correspond to periodic solutions with a minimal period, say 2T . We claim the following.

Lemma 2.1. For every p > 0 and every ω � 0, the period-to-energy map(
0,

π√
ω

)
	 T → E ∈ (0, ∞) (2.3)

associated with the closed periodic trajectories that surrounds the zero critical point of the
energy invariant (2.2) is a C1 diffeomorphism with

E′(T ) < 0, for all T ∈
(

0,
π√
ω

)
. (2.4)

Proof. By integrating the trajectory of the first-order equation (2.2) from the point

u(−T ) = 0 and u′(−T ) =
√

E

to the point

u(−T/2) = u0 and u′(−T/2) = 0,

where u0 is the positive root of the algebraic equation

(ω + u
2p

0 )u2
0 = E, (2.5)

we obtain the explicit representation of the half period T in terms of E,

T = 2
∫ u0

0

du√
E − (ω + u2p)u2

. (2.6)

Substituting E from (2.5) and using the change of variables u = u0x with x ∈ (0, 1), we
rewrite (2.6) in the equivalent form

T = 2
∫ 1

0

dx√
ω(1 − x2) + u

2p

0 (1 − x2p+2)

. (2.7)
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Thus, E and T are parameterized by u0 in equations (2.5) and (2.7). For every ω � 0, we use
these equations and obtain the asymptotic representations of E and T in the limits u0 → 0
and u0 → ∞, namely

T = π√
ω

+ O(u
2p

0 ), E = ωu2
0 + O(u

2p+2
0 ), as u0 → 0,

and

T = 2

u
p

0

∫ 1

0

dx√
1 − x2p+2

+ O
(

1

u
3p

0

)
, E = u

2p+2
0 + O(u2

0), as u0 → ∞,

where the integral returns a finite value and we have used the fact that x = 1 is a simple root
of both 1 − x2 and 1 − x2p+2.

Now we show that the period-to-energy map (2.3) is C1 and satisfies (2.4). We use the
chain rule, since the map (0, ∞) 	 u0 
→ E ∈ (0, ∞) is monotonically increasing for every

ω � 0. Therefore, we only need to show that the map (0, ∞) 	 u0 
→ T ∈
(

0, π√
ω

)
is

monotonically decreasing for every ω � 0. This follows from the explicit computation,

dT

du0
= −2pu

2p−1
0

∫ 1

0

(1 − x2p+2)dx√
(ω(1 − x2) + u

2p

0 (1 − x2p+2))3
< 0, (2.8)

where the integral returns a finite value because again x = 1 is a simple root of both 1 − x2

and 1 − x2p+2. The assertion of the lemma is proved. �

Lemma 2.2. For every p > 0 and every ω < 0, the period-to-energy map

(0, ∞) 	 T → E ∈ (0, ∞) (2.9)

associated with the closed periodic trajectories that surround all critical points of the energy
invariant (2.2) is a C1 diffeomorphism with

E′(T ) < 0, for all T ∈ (0, ∞) . (2.10)

Proof. For ω < 0, the phase-plane topology of the energy invariant (2.2) changes near the
origin (for small values of E), where the zero critical point of E becomes a saddle point and
a pair of homoclinic orbits connecting the zero critical point arise. The homoclinic orbits

correspond to the zero value of E and a finite value of u0, denoted by u∗ = |ω| 1
2p . Outside

of the homoclinic orbits, for E > 0 and u0 > u∗, a family of closed periodic trajectories
surrounding all three critical points of E exists, which correspond to the periodic solution with
a minimal period 2T . As E → 0, we have T → ∞, because the homoclinic orbits have
infinite period. The rest of the proof repeats the proof of lemma 2.1. �

Remark 2.3. The period-to-energy map T → E in lemmas 2.1 and 2.2 depends on the
parameter ω. We omit this parameter dependence, when we simply write E(T ).

Using lemmas 2.1 and 2.2, we prove the existence of suitable solutions to the homogeneous
problem (2.1). The following proposition gives the relevant result.

Proposition 2.4. For every p > 0, the boundary-value problem (2.1) with ω ∈ (−∞, ωn)

admits two solutions u±
n,ω in H 2

per,odd(−L, L), where ωn := π2n2

L2 and n ∈ N. Each pair of u±
n,ω

is uniquely defined by the conditions u+′
n,ω(0) > 0 and u−′

n,ω(0) < 0. In fact, u−
n,ω = −u+

n,ω.
Moreover, the map ω 
→ u±

n,ω ∈ H 2
per,odd(−L, L) is C1 in ω.
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Proof. For ω = ωn := π2n2

L2 , there exists a solution of the linear version of the boundary-value
problem (2.1) in H 2

per,odd(−L, L) given by

u(x) = un(x) := sin
(πnx

L

)
. (2.11)

The eigenvalue ω = ωn is simple in the space of odd (2L)-periodic solutions. By the standard
Lyapunov–Schmidt reduction method, there exists a unique C1 continuation of the solution
u ∈ H 2

per,odd(−L, L) of the nonlinear boundary-value problem (2.1) with u′(0) > 0 with
respect to the parameter ω near ωn. Moreover, a relatively straightforward computation shows
that the continuation exists for ω � ωn. Let us denote this solution as u+

n,ω. By the invariance
of the boundary-value problem (2.1) with respect to the transformation u 
→ −u, we can also
construct another solution u−

n,ω = −u+
n,ω, which satisfies the condition u′(0) < 0.

In order to prove that the solution branches u±
n,ω persist for any ω < ωn and remain C1 in

ω, we use the result of lemmas 2.1 and 2.2. If ω ∈ [0, ωn), then Tn := L/n belongs to the range(
0, π√

ω

)
, hence, two odd 2L-periodic solutions u±

n,ω exist for the energy level En = E(Tn) > 0.

If ω ∈ (−∞, 0), we can still find two odd 2L-periodic solutions u±
n,ω for the given energy level

En = E(Tn) > 0. Consequently, the solutions u±
n,ω are uniquely continued with respect to

parameter ω for every ω ∈ (−∞, ωn). Moreover, from monotonicity of the period-to-energy
maps (2.3) and (2.9), as well as C1 smoothness of the nonlinear terms in the boundary-value
problem (2.1) for p > 0, it follows that the map (−∞, ωn) 	 ω 
→ u±

n,ω ∈ H 2
per,odd(−L, L) is

C1 in ω. �

Remark 2.5. In the cubic case p = 1, one can obtain the explicit form of the family u±
n,ω.

The solutions are expressed by the Jacobian elliptic functions with parameters depending on
ω. See [7] and expressions (7.5) below.

Remark 2.6. The above construction of the countable double set of solutions {u±
n,ω}n∈N can be

extended to more general nonlinearities. The only property needed is the topological structure
of the level set E for trajectories on the phase plane (u, u′).

Remark 2.7. The smooth families of solutions {u±
n,ω}n∈N bifurcate from the linear eigenstates

of the operator � in the space of odd (2L)-periodic solutions. The bifurcation branches so
obtained are then globally extended to ω ∈ (−∞, ωn).

Remark 2.8. The boundary-value problem (2.1) in the space of odd 2L-periodic solutions
gives a subset of all solutions of the stationary NLS equation (1.6) on the interval [−L, L]
subject to the Dirichlet boundary conditions at x = ±L. Existence and stability of the latter
solutions are considered in [11].

In what follows, we are concerned with bifurcations of new branches of solutions of the
coupled boundary–value problem (1.7) with nonzero component v. First, we observe that the
spectrum of the linear operator −� with the domain D(�) given by (1.1) and (1.2) is located
on [0, ∞) and includes the essential spectrum and the set of embedded simple eigenvalues
{ωn}n∈N. As a result, for ω � 0, the only square integrable solution (u, v) of the coupled
boundary–value problem (1.7) is the solution with vanishing v = 0, that is, the solution of
proposition 2.4.

At ω = 0, the edge bifurcation takes place, when new branches of solutions can bifurcate
off the trivial solution u = 0 or the countable double set of solutions {u±

n,ω}n∈N. The new
solutions occur for small negative ω. Correspondingly, we refer to the primary branch for
solutions of the coupled problem (1.7) bifurcating from the trivial solution and to the higher
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branches for solutions of the coupled problem (1.7) bifurcating from the nontrivial solutions
in the set {u±

n,ω}n∈N.
To study bifurcations of both the primary and higher branches, we can set ω = −ε2 and

consider small values of ε. Without loss of generality, we restrict ε to positive values. For
the v component, we use the scaling transformation for the stationary NLS equation (1.7) and
express explicitly the dependence of the solution on ε:

v(x) = ε
1
p φ(z), z = ε(x − L), (2.12)

where φ is a decaying solution of the second-order equation

− φ′′(z) + φ − (p + 1)|φ|2pφ = 0, z > 0. (2.13)

Let φ0 be a unique solitary wave of the second-order equation (2.13) such that φ0(0) > 0
and φ′

0(0) = 0. In fact, the unique solitary wave is known in the explicit form,

φ0(z) = sech
1
p (pz). (2.14)

Then, there exists a one-parameter family of positive decaying solutions φ(z) = φ0(z + a),
parameterized by the translation parameter a ∈ R. The bifurcation problem for stationary
solutions with nonzerov can now be reduced to the closed, over-determined system of equations


−u′′(x) + ε2u − (p + 1)|u|2pu = 0, x ∈ (−L, L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L) − u′(−L) = ε
1+ 1

p φ′
0(a).

(2.15)

The additional boundary condition on the tadpole graph is supposed to specify uniquely
the additional parameter a in terms of ε. Solutions to the boundary-value problem (2.15) are
different between the primary and higher branches. Therefore, we proceed differently with
the primary and higher branches in the next two sections.

3. Primary branch

To study solutions of the boundary-value problem (2.15) near zero, we make use of the scaling
transformation

u(x) = ε
1
p ψ(z), z = εx, (3.1)

and rewrite the boundary-value problem (2.15) in the form


−ψ ′′(z) + ψ − (p + 1)|ψ |2pψ = 0, z ∈ (−εL, εL),

ψ(εL) = ψ(−εL) = φ0(a),

ψ ′(εL) − ψ ′(−εL) = φ′
0(a).

(3.2)

The following theorem specifies a unique primary branch of stationary solutions to the
boundary-value problem (2.15) with ε > 0 such that u = 0 as ε = 0.

Theorem 1. For every p > 0 and every ε > 0 sufficiently small, there exists a unique positive
solution u ∈ C∞(−L, L) and a ∈ R of the boundary-value problem (2.15) such that

‖u‖L∞(−L,L) = O
(
ε

1
p

)
and a = O(ε) as ε → 0.

Moreover, a is a smooth function of ε at ε = 0 satisfying the asymptotic expansion

a = 2Lε + O(ε3), (3.3)

whereas the solution u is represented in the form (3.1) with ψ being a smooth function of ε at
ε = 0 and z on [−εL, εL] satisfying the asymptotic expansion

ψ(z) = 1 + O(ε2) + O(z2), z ∈ (−εL, εL). (3.4)
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Proof. Let us consider the initial-value problem for the second-order differential equation in
system (3.2) starting with the initial data (ψ, ψ ′) = (ψ0, ψ

′
0), where ψ0 > 0. By bootstrapping

arguments, ψ ∈ C3 near z = 0 if p > 0. From the boundary condition ψ(εL) = ψ(−εL), we
realize that ψ ′

0 → 0 as ε → 0. Now, for fixed L > 0 and small ε > 0, the interval (−εL, εL) is
narrow and the initial point is close to (ψ0, 0), where ψ0 > 0. From symmetry of trajectories
on the phase plane (ψ, ψ ′), it follows that for every small ε > 0, the boundary condition
ψ(εL) = ψ(−εL) can be satisfied if and only if the function ψ is even in z. Therefore,
we can consider an initial-value problem starting with the initial data at (ψ, ψ ′) = (ψ0, 0)

parameterized by ψ0 > 0.
By the existence and uniqueness theory, for any ψ0 > 0, there exists a finite z0 > 0 and

a unique local solution ψ ∈ C1(−z0, z0) such that ψ(0) = ψ0 and ψ ′(0) = 0. Note that
z0 depends on ψ0 and it can be chosen to guarantee that ψ(z) > 0 for all z ∈ (−z0, z0).
Since L > 0 is fixed, we have εL < z0 for sufficiently small ε, so that the unique positive
local solution exists on the interval [−εL, εL]. By the bootstrapping arguments, because the
nonlinear vector field in system (3.2) is smooth for positive ψ , the unique local solution is
ψ ∈ C∞(−εL, εL).

The boundary condition ψ(εL) = φ0(a) in system (3.2) yields the following algebraic
equation for the solution ψ parameterized by ψ0 = ψ(0):

φ0(a) = ψ(εL) = ψ0 +
1

2
ψ ′′(0)ε2L2 + O(ε4), (3.5)

where ψ ′′(0) is expressed in terms of ψ0 by the differential equation in system (3.2). For ε = 0
and any a ∈ R, the algebraic equation (3.5) has a unique solution ψ0 = φ0(a). Moreover, the
derivative of ψ(εL) with respect to ψ0 is 1+O(ε2). By the implicit function theorem, for ε ∈ R

sufficiently small and any a ∈ R, there exists a unique root of the algebraic equation (3.5) for
ψ0 such that ψ0 = φ0(a) + O(ε2).

The last boundary condition ψ ′(εL) − ψ ′(−εL) = φ′
0(a) in system (3.2) yields another

algebraic equation

φ′
0(a) = 2ψ ′(εL) = 2ψ ′′(0)εL + O(ε3). (3.6)

Since φ′
0(0) = 0 and φ′′

0 (0) 
= 0, the implicit function theorem implies that for every ε ∈ R

sufficiently small, there exists a unique root a of the algebraic equation (3.6) such that

a = 2εLψ ′′(0)

φ′′
0 (0)

+ O(ε3) = 2εL(1 − (p + 1)ψ
2p

0 )ψ0

(1 − (p + 1)φ0(0)2p)φ0(0)
+ O(ε3) = 2εL + O(ε3),

where the second-order differential equations (2.13) and (3.2) are used as well as the expansion
ψ0 = φ0(a) + O(ε2) = 1 + O(ε2) since φ0(0) = 1 and φ′

0(0) = 0. Hence, we obtain (3.3) and
(3.4). Both a and ψ0 are smooth in ε at ε = 0. The theorem is proved by using the scaling
transformation (3.1). �

4. Higher branches

Here we consider bifurcations of stationary solutions of the perturbed problem (2.15) from
nontrivial solutions of the homogeneous boundary-value problem (2.1) with ω = −ε2. By
proposition 2.4, there exists a countable double set {u±

n,ω}n∈N of these solutions for every ω < 0,
that is, for every ε > 0. In what follows, we take one solution from the countable double set
and denote it by uε .

Note that uε is odd and (2L)-periodic. The scaling transformation (3.1) cannot be used
because uε does not vanish in the limit ε → 0. Nevertheless, we can immediately construct a
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suitable solution of the inhomogeneous boundary-value problem (2.15) from the solution uε

of the homogeneous boundary-value problem (2.1) with ω = −ε2. The following theorem
gives the relevant result.

Theorem 2. Let p > 0 be fixed and ε > 0 be sufficiently small. For each uε ∈ H 2
per,odd(−L, L)

that solves the homogeneous problem (2.1) with ω = −ε2, there exists a solution u ∈
H 2

per(−L, L) to the boundary-value problem (2.15) with a = 0 and u(x) = uε(x + b), where
b is uniquely determined from the boundary condition

uε(L + b) = ε
1
p . (4.1)

In particular, the following asymptotic expansion holds

b = ε
1
p

[
1

u′
0(L)

+ O
(

ε
min

{
2, 2

p

})]
. (4.2)

Proof. By proposition 2.4, uε ∈ H 2
per,odd(−L, L) exists and is C1 in ε2. By bootstrapping

arguments, uε ∈ C3(−L, L) if p > 0. The translation of this solution u = uε(x + b) for
every b ∈ R satisfies the second-order differential equation in system (2.15). If a = 0, it
also satisfies the boundary conditions in system (2.15) if and only if b can be found from the
boundary condition (4.1), where we recall that φ0(0) = 1 and φ′

0(0) = 0. Since uε(L) = 0,
u′

ε(L) 
= 0, and ε is small, a unique solution for b exists by the implicit function theorem such
that

b = ε
1
p

[
1

u′
ε(L)

+ O
(
ε

2
p

)]
. (4.3)

where we have used u′′
ε (L) = 0, and the C3 smoothness of uε in x. Furthermore, from the C1

smoothness of uε in ε2, we have

u′
ε(L) = u′

0(L) + O(ε2). (4.4)

Expansions (4.3) and (4.4) yield the asymptotic expansion (4.2). �

Remark 4.1. The sign of b coincides with the sign of u′
0(L), which is different between the

two members of the double family {u±
n,ω}n∈N. More precisely, since we use u+′

n,ω(0) > 0 for
convention, it follows that sign b+

n = (−1)n and sign b−
n = (−1)n+1. Correspondingly, having

fixed the sign of the solution φ of the differential equation (2.13) on the half line as positive
by convention, the two different solutions on the tadpole graph are approximately related for
small negative ω as follows:

(u−
n,ω(x + b−

n ), ε
1
p φ0) = (−u+

n,ω(x + b−
n ), ε

1
p φ0) ≈ (−u+

n,ω(x − b+
n), ε

1
p φ0).

Notice that the two solutions in the set {u±
n,ω}n∈N for a fixed n ∈ N belong to the same U(1)

orbit of the stationary NLS equation (1.6), while the two new solutions (u, v) bifurcating from
(u±

n,ω, 0) do not belong to the same U(1) orbit of the stationary NLS equation (1.6) because
sign(b+

n) = −sign(b−
n ).

Remark 4.2. For the same value of ω = −ε2 < 0, all four solutions mentioned in remark 4.1
have the same L2(−L, L) norm for the component u because the mean value of periodic
functions does not depend on the initial point of integration over the period. At the same time,
the L2(L, ∞) norm for the component v is zero for the two solutions in {u±

n,ω}n∈N and nonzero
for the two bifurcating solutions in theorem 2.
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In the rest of this section, we will prove that the solution to the perturbed problem (2.15)
near uε is uniquely continued for small values of ε. By uniqueness, this continuation coincides
with the solution given in theorem 2.

Let us consider the associated linearized operator

Mε := − d2

dx2
+ ε2 − (2p + 1)(p + 1)|uε(x)|2p : H 2

per(−L, L) → L2
per(−L, L),

where uε ∈ H 2
per,odd(−L, L) is a solution of the boundary-value problem (2.1) with ω = −ε2.

For every ε � 0 sufficiently small, let us continue uε in a family of odd functions with
u′(0) > 0, which are parameterized by the energy level E given by the energy invariant (2.2),
that is,

E =
(

du

dx

)2

− ε2u2 + |u|2pu2 = const. (4.5)

Denote the continuation byUε(x; E) and the half-period of this family byTε(E). By lemma 2.2,
both Uε and Tε are C1 in E and T ′

ε (E) < 0 for every small ε � 0 and every E ∈ (0, ∞). Let
Eε be the level such that L = Tε(Eε) and uε(x) = Uε(x; Eε). The level Eε is unique due to
the monotonicity of the period-to-energy map (2.9).

By taking the derivatives of the second-order equation

−U ′′
ε (x; E) + ε2Uε(x; E) − (p + 1)|Uε(x; E)|2pUε(x; E) = 0,

with respect to x and E at E = Eε , we verify that

Mεu
′
ε = 0 and Mε∂EUε |E=Eε

= 0,

where the prime denotes the derivative of uε in x. We note that u′
ε is even and (2L)-periodic,

whereas ∂EUε |E=Eε
is odd but not (2L)-periodic if T ′

ε (Eε) < 0, since

∂EUε(±L; Eε) = ∓T ′
ε (Eε)u

′
ε(L) 
= 0. (4.6)

Since the Wronskian between the two particular solutions of the homogeneous equation
Mεu = 0 is x-independent, we have

Wε :=
∣∣∣∣u′

ε ∂EUε |E=Eε

u′′
ε ∂EU ′

ε |E=Eε

∣∣∣∣ = const. (4.7)

Because the two particular solutions of Mεu = 0 are linearly independent, we also have
Wε 
= 0 for every ε � 0.

Let us now decompose solution of the perturbed problem (2.15) near uε by posing
u = uε + w, where the perturbation w satisfies the nonlinear boundary-value problem


Mεw = (p + 1)

(|uε + w|2p(uε + w) − |uε |2puε − (2p + 1)|uε |2pw
)

w(L) = w(−L) = ε
1
p φ0(a),

w′(L) − w′(−L) = ε
1+ 1

p φ′
0(a).

(4.8)

For ε = 0, there exists a trivial solution w = 0 of the boundary-value problem (4.8). The
following results specify a unique continuation of the small solution w to the boundary-value
problem (4.8) with respect to small ε.

Lemma 4.3. Let p > 0 be fixed and ε > 0 be sufficiently small. There exists a unique solution
w ∈ C1(−L, L) and a ∈ R to the boundary-value problem (4.8) such that a = 0 and

w(x) = ε
1
p

u′
ε(x)

u′
ε(L)

+ w̃(x), (4.9)

where w̃ ∈ C1(−L, L) and ‖w̃‖C1(−L,L) = o
(
ε

1
p

)
as ε → 0. Consequently, the solution in

theorem 2 is unique.
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Proof. Because ker(Mε) = span{u′
ε} in L2

per(−L, L), we consider the Lyapunov–Schmidt
decomposition

w(x) = cu′
ε(x) + ψ(x), (4.10)

where c ∈ R and ψ ∈ H 2(−L, L) are to be uniquely defined in what follows. In the
standard Lyapunov–Schmidt reduction method, the orthogonal projection 〈u′

ε, ψ〉L2
per(−L,L) = 0

is typically used. However, because the boundary conditions in the problem (4.8) are not
periodic, we will modify the conditions by requiring

ψ(L) = ψ(−L) = 0. (4.11)

Although it may seem that the two boundary conditions for ψ over-determine the
decomposition (4.10) with only one parameter c, we shall recall here that w is required to
satisfy the boundary condition w(−L) = w(L), whereas u′

ε is even in x. Therefore, c is
uniquely determined by the boundary conditions (4.11) for every solution w of the boundary-
value problem (4.8). To be precise, for given small a ∈ R and ε ∈ R, parameter c is uniquely
determined by

c = ε
1
p

φ0(a)

u′
ε(L)

, (4.12)

where we recall that u′
ε(L) 
= 0.

There exists a unique solution of the inhomogeneous equation Mεw = F subject to the
boundary conditions (4.11), where F is a given function in L2(−L, L), which does not need
to be 2L-periodic. Indeed, by the variation of constant formula, we obtain

ψ(x) = c1u
′
ε(x) + c2∂EUε(x; Eε)

+
1

Wε

∫ x

0
F(y)

[
u′

ε(y)∂EUε(x; Eε) − u′
ε(x)∂EUε(y; Eε)

]
dy.

The coefficients c1 and c2 are uniquely found from the boundary conditions (4.11). After
routine computations involving relations (4.6) and (4.7), we obtain a unique representation for
ψ in the form

ψ(x) = 1

2Wε

(∫ x

−L

−
∫ L

x

)
F(y)

[
u′

ε(y)∂EUε(x; Eε) − u′
ε(x)∂EUε(y; Eε)

]
dy

+
T ′

ε (Eε)

2Wε

〈u′
ε, F 〉L2(−L,L)u

′
ε(x)

− 1

2WεT ′
ε (Eε)

〈∂EUε |E=Eε
, F 〉L2(−L,L)∂EUε(x; Eε). (4.13)

Note that ψ is not a (2L)-periodic function in H 2
per(−L, L) unless F satisfies the Fredholm

solvability condition 〈u′
ε, F 〉L2(−L,L) = 0. Substituting the decomposition (4.10) to the

differential equation in system (4.8), we obtain Mεψ = F with

F(c, ψ) := (p + 1)
(|uε + cu′

ε + ψ |2p(uε + cu′
ε + ψ) − |uε |2puε − (2p + 1)|uε |2p(cu′

ε + ψ)
)
.

Using this expression for F = F(c, ψ), we can interpret (4.13) as an integral equation for
ψ for a given c. Note that F is C1 in c and ψ if p > 0 and that F and its first partial derivatives
are zero at c = 0 and ψ = 0. By the implicit function theorem, for all c ∈ R sufficiently
small, there exists a unique solution ψ ∈ C1(−L, L) of the integral equation (4.13), which is
C1 in c and satisfies ψ = ∂cψ |c=0 = 0.

It follows from (4.12) that for every a ∈ R, we have c → 0 as ε → 0. Consequently,
‖ψ‖C1(−L,L) = o(c) → 0 as ε → 0.
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Let us now recall that u = uε +cu′
ε +ψ satisfies the homogeneous second-order differential

equation with the energy invariant (4.5). Thanks to the boundary conditions (4.11), we have

u(±L) = cu′
ε(L), u′(±L) = u′

ε(L) + ψ ′(±L), (4.14)

where |c| + |ψ ′(±L)| → 0 as ε → 0. We shall now prove that ψ ′(L) = ψ ′(−L).
Assume ψ ′(L) 
= ψ ′(−L) so that u′(L) 
= u′(−L) for small ε > 0. Thanks to the energy

invariant (4.5), each orbit on the phase plane (u, u′) intersects any vertical curve u = u0 for a
fixed small u0 only twice, symmetrically in the upper and lower half planes. If u′(L) 
= u′(−L),
then u′(L) = −u′(L). However, this contradicts (4.14) with u′

ε(L) 
= 0 and ψ ′(L) → 0 as
ε → 0. Therefore, u′(L) = u′(−L), which implies that ψ ′(L) = ψ ′(−L).

Finally, the boundary conditions in system (4.8) yield expression (4.12) for c and the
following equation for a:

ε
1+ 1

p φ′
0(a) = ψ ′(L) − ψ ′(−L) = 0. (4.15)

There is only one solution for a such that φ′
0(a) = 0 and this is a = 0. Hence c is uniquely

defined by (4.12) with φ0(0) = 1, after which w is uniquely defined by the solution of the
integral equation (4.13) with F = F(c, ψ). This yields the asymptotic expression (4.9).
By uniqueness, this constructed solution with small c and ψ corresponds to the solution of
theorem 2. �

Remark 4.4. By the construction of ψ in lemma 4.3, the parameters b and c in theorem 2
and lemma 4.3 are different from each other. However, it follows from (4.3) and (4.12) that

b = c + O
(
ε

3
p

)
, where c = O

(
ε

1
p

)
.

To illustrate remark 4.4 with an example, let us consider the particular case of the cubic
nonlinearity with p = 1. Then, F(c, φ) is a smooth function near c = 0 and ψ = 0 with the
expansion

F(c, ψ) = 6uε(cu
′
ε + ψ)2 + 2c3(cu′

ε + ψ)3.

In this case, uε is a smooth function in x and the derivatives of uε satisfies the linear
inhomogeneous equations

Mεu
′′
ε = 12uε(u

′
ε)

2

and

Mεu
′′′
ε = 36uεu

′
εu

′′
ε + 12(u′

ε)
3.

Therefore, we can construct a near-identity transformation for the solution ψ of the integral
equation (4.13) with F = F(c, ψ) such that

ψ = 1

2
c2u′′

ε +
1

6
c3(u′′′

ε − ε2u′
ε) + ψ̃, (4.16)

where ψ̃ ∈ C1(−L, L) is uniquely determined and satisfies the bound ‖ψ̃‖C1(−L,L) = O(c4).
Note that we have used u′′

ε (±L) = 0 and u′′′
ε (±L) = ε2u′

ε(L) to satisfy the boundary conditions
(4.11) for the solution (4.16). By comparing the solution u(x) = uε(x + b) and the solution
given by (4.10) and (4.16), we obtain the correspondence between b and c:

b = c − 1

6
c3ε2 + O(c4) = c + O(ε4),

because c = O(ε).
In the next two sections, we consider spectral and orbital stability of the bifurcating

standing wave solutions of the NLS equation (1.6) along the primary and higher branches.

2356



Nonlinearity 28 (2015) 2343 D Noja et al

5. Stability of the primary branch

Here we consider the orbital stability of the primary branch, the existence of which is given
by theorem 1 for ω = −ε2 with ε > 0 sufficiently small. To this end, we shall count the
number of negative eigenvalues in the operators L− and L+ given by the spectral problems
(1.8) and (1.9), where (u, v) is the solution of the boundary-value problem (1.7) along the
primary branch. After counting of the number of negative eigenvalues, it is straightforward to
apply the orbital stability theory from [15]. The main result of this section is formulated in the
following theorem.

Theorem 3. For ω = −ε2 with ε > 0 sufficiently small, the primary branch of theorem 1 is
orbitally stable with respect to the time evolution of the NLS equation for every p ∈ (0, 2) and
orbitally unstable for every p ∈ (2, ∞).

Recall that L± are self-adjoint operator on L2(−L, L) × L2(L, ∞) with the domain
D(�) given by (1.2). Since L± differs from L0 := −� − ω by a bounded potential with the
exponential decay to zero as x → ∞ (hence, it is a relatively compact perturbation to L0), the
absolutely continuous spectra of L± and L0 (denoted by σc) coincide. Moreover, the spectrum
of L0 is purely continuous, so that σc(L±) = σc(L0) = σ(L0) = [−ω, ∞). Since the primary
branch is defined for ω < 0, the absolutely continuous spectrum of L± is bounded from below
by the number −ω > 0. Thus, for every ω < 0, negative and zero eigenvalues of L± are
isolated from σc(L±), hence we can count the number of these eigenvalues. The following
lemma reports the corresponding result for the operator L−.

Lemma 5.1. Let ω = −ε2 and ε > 0 be sufficiently small. Operator L− is positive and 0 is
a simple isolated eigenvalue with eigenfunction (U, V ) = (u, v).

Proof. By comparing (1.7) and (1.8), we find that (U, V ) = (u, v) is an eigenvector of the
spectral problem (1.8) for λ = 0. Theorem 1 implies that for ε > 0 sufficiently small, u(x) > 0
for all x ∈ [−L, L] and v(x) > 0 for all x � L.

To show that 0 is a simple isolated eigenvalue at the bottom of the spectrum of L−, we
consider the energy quadratic form associated with L−:

E(U, V ) =
∫ L

−L

[(
dU

dx

)2

+ ε2U 2 − (p + 1)|u|2pU 2

]
dx

+
∫ ∞

L

[(
dV

dx

)2

+ ε2V 2 − (p + 1)|v|2pV 2

]
dx.

Let us use the representation

U(x) = a(x)u(x), V (x) = b(x)v(x). (5.1)

It is well-defined because u and v are positive for all admissible x. If (U, V ) ∈ D(�) is an
eigenvector of L− for λ < 0, then b(x) and b′(x) decay exponentially to zero as x → ∞,
whereas if (U, V ) ∈ D(�) is an eigenvector of L− for λ ∈ [0, ε2), then b(x) and b′(x) may
grow but b(x)v(x) and b′(x)v(x) still decay exponentially to zero as x → ∞.

Substituting (5.1) into E(U, V ), integrating by parts for any (U, V ) ∈ D(�), and using
the stationary system (1.7), we obtain

E(U, V ) =
∫ L

−L

(
da

dx

)2

u2dx +
∫ ∞

L

(
db

dx

)2

v2dx � 0.
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Therefore, no negative eigenvalues of L− exists and the zero eigenvalue occurs if and only
if a and b are constant in x. Thus, the eigenvector (U, V ) = (u, v) for the zero eigenvalue is
unique up to the constant multiplication factor. �

To deal with the spectral problem (1.9) for the operator L+, we use the scaling
transformation ω = −ε2 and λ = ε2� together with the representations (2.12) and (3.1)
for the stationary solution (u, v). As a result, the spectral problem (1.9) is rewritten in the
equivalent form


−U ′′(z) + U(z) − (2p + 1)(p + 1)|ψ(z)|2pU(z) = �U(z), z ∈ (−εL, εL),

−V ′′(z) + V (z) − (2p + 1)(p + 1)|φ(z)|2pV (z) = �V (z), z ∈ (0, ∞),

U(εL) = U(−εL) = V (0),

U ′(εL) − U ′(−εL) = V ′(0),

(5.2)

where we use the same notations (U, V ) for rescaled functions U(εx) and V (ε(x − L)).
The absolute continuous spectrum of the operator L+ for σc(L+) = [ε2, ∞) is now scaled

to the absolutely continuous spectrum of the spectral problem (5.2) for � ∈ [1, ∞). Therefore,
we shall focus on isolated eigenvalues of the spectral problem (5.2) for � < 1.

Recall that φ(z) = φ0(z + a), where φ0(z) = sech
1
p (pz), see (2.14). It is well known that

the scalar Schrödinger spectral problem on the line

− V ′′(z) + V (z) − (2p + 1)(p + 1)sech2(pz)V (z) = �V (z), z ∈ R, (5.3)

admits a finite number of isolated eigenvalues (see, e.g. pp 103–5 in [27]). Because
V (z) = φ′

0(z) is the eigenfunction of the spectral problem (5.3) for � = 0 and φ′
0 has only

one zero on the real line, Sturm’s nodal theorem (see, e.g. lemma 4.2 on p 201 in [22]) implies
that the spectral problem (5.3) has exactly one negative eigenvalue, say �0 < 0, a simple zero
eigenvalue, and the rest of the spectrum is bounded from below by a positive number �1 (which
coincides with either the next positive eigenvalue or the bottom of the absolutely continuous
spectrum at 1). The eigenfunction for the negative eigenvalue �0 is even and strictly positive
and the eigenfunction for the zero eigenvalue is odd. Given these preliminary facts, we prove
the following technical result.

Lemma 5.2. For every � ∈ (−∞, 1), there exists a unique C∞ solution of the differential
equation (5.3) on (z0, ∞) for every z0 ∈ R that decays to zero as z → ∞ and satisfies the
boundary condition

lim
z→∞ V (z)e

√
1−�z = 1. (5.4)

Denote this solution by V∞(z; �). Then, the function

F(�) := V ′
∞(0; �)

V∞(0; �)
, (5.5)

where V ′
∞ is the derivative of V∞ with respect to the first argument, is C∞ for every

� ∈ (−∞, 0) and admits a unique simple zero on (−∞, 0) at � = �0 < 0.

Proof. Using Green’s function, we look for the decaying solution of the differential
equation (5.3) satisfying the boundary condition (5.4) for any � < 1 from a suitable solution
of the inhomogeneous integral equation

V (z) = e−√
1−�z − (2p + 1)(p + 1)√

1 − �

∫ +∞

z

sinh
(√

1 − �(z − y)
)

sech2(py)V (y)dy. (5.6)
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Denoting W(z) := V (z)e
√

1−�z, we rewrite the integral equation in the form

W(z) = 1 +
(2p + 1)(p + 1)

2
√

1 − �

∫ +∞

z

(
1 − e−2

√
1−�(y−z)

)
sech2(py)W(y)dy. (5.7)

Since the kernel of the integral equation is bounded for every y � z and the potential
term sech2(py) is absolutely integrable, existence and uniqueness of a bounded solution
W ∈ L∞(z0, ∞) for every fixed z0 ∈ R follows by the standard methods (see, e.g. lemma 4.1
on pp 199–200 in [22]). The solution is C∞ for all z on (z0, ∞) and all � on (−∞, 1).
Therefore, the unique smooth solution V∞ of the differential equation (5.3) satisfying the
boundary condition (5.4) exists.

Next, we consider the function F(�) defined by (5.5). This function is C∞ on (−∞, 0)

if and only if V∞(0; �) is nonzero. Assume that V∞(0; �) = 0 for some � < 1. Since the
differential equation (5.3) has even potential, the decaying function V∞(z; �) for z ∈ [0, ∞)

is extended as the odd solution of the spectral problem (5.3) decaying at both z → ±∞.
Therefore, it is an odd eigenfunction. However, as explained above, the smallest eigenvalue
with odd eigenfunction is located at � = 0. Therefore, V∞(0; �) 
= 0 for every � ∈ (−∞, 0)

and F ∈ C∞(−∞, 0).
Finally, we prove that F(�) = 0 has only one simple zero on (−∞, 0) and this zero

coincides with the negative eigenvalue �0. Assume that V ′
∞(0; �) = 0 for some � ∈ (−∞, 0).

Then, the decaying function V∞(z; �) for z ∈ [0, ∞) is extended as the even solution of the
spectral problem (5.3) decaying at both z → ±∞. Therefore, it is an even eigenfunction
and � is an eigenvalue. As explained above, there is only one negative eigenvalue �0 of the
spectral problem (5.3). Therefore, the zero of V ′

∞(0; �) = 0 occurs at � = �0.
To prove that �0 is a simple zero of F , we assume that F ′(�0) = 0 and obtain

a contradiction. Since F(�0) = 0, the condition F ′(�0) = 0 is true if and only if
∂�V ′

∞(0; �0) = 0. Define �(z) := ∂�V∞(z; �0). From the boundary condition at z = 0
and the decay behavior (5.4), we have � ′(0) = 0 and �(z) → 0 as z → ∞. Simultaneously,
differentiating the spectral problem (5.3) in �, we obtain the inhomogeneous problem for �:

− � ′′(z) + �(z) − (2p + 1)(p + 1)sech2(pz)�(z) = �0�(z) + V∞(z; �0), z ∈ R.

(5.8)

Since V∞(z; �0) is even in L2(R) and � ′(0) = 0, � is extended as the even solution of the
inhomogeneous equation (5.8) decaying at both z → ±∞. Therefore, � ∈ L2(R). However,
existence of such solution contradicts to the Fredholm theory for the self-adjoint spectral
problem (5.3) with a simple eigenvalue �0. Therefore, no � ∈ L2(R) exists, and F ′(�0) = 0
is impossible. Thus, �0 is a simple zero of F . �

We are now ready to count the negative and zero eigenvalue of the operator L+ in the
spectral problem (1.9), which is rescaled as the spectral problem (5.2).

Lemma 5.3. Let ω = −ε2 and ε > 0 be sufficiently small. Operator L+ has exactly one
negative eigenvalue and no zero eigenvalues.

Proof. We prove that the negative eigenvalue of the scalar spectral problem (5.3) on the line
persists in the spectral problem (5.2), whereas the zero eigenvalue of (5.3) disappears for any
ε > 0 sufficiently small. Our proof relies on several claims.
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Claim 1: For every � ∈ R, there exists a unique even solution of the first equation in
system (5.2) normalized by U(0) = 1. Denote it by U1(z; �). The solution U1 is C∞ both in
z and �.

Proof of Claim 1: Because (5.2) is linear and |ψ(z)|2p is even in z, the boundary condition
U(εL) = U(−εL) can be satisfied if and only if U is even in z. The even solution of the linear
homogeneous equation is uniquely determined by the initial value U(0) = 1 and U ′(0) = 0.
Since ψ(z) > 0 for all z ∈ [−εL, εL], as it follows from the proof of theorem 1, the linear
equation has smooth coefficients, so that the unique even solution U is smooth in z, that is,
U ∈ C∞(−εL, εL). In particular, from ψ(z) = 1 + O(ε2, z2) as ε → 0 and z → 0, we can
find the following approximation for the solution:

U1(z; �) = 1 − 1

2
(� − 1 + (p + 1)(2p + 1))z2 + O(ε2z2, z4) as ε → 0 and z → 0.

(5.9)

The solution U1 is also smooth in � because the linear equation is smooth in �.

Claim 2: For every � ∈ (−∞, 1), there exists a unique solution of the second equation
in system (5.2) that decays to zero as z → +∞ and satisfies the boundary condition (5.4).
Denote it by V1(z; �). The solution is C∞ both in z and �.

Proof of Claim 2: The existence of the unique smooth solution V1(z; �) for all z ∈ R+

that decays to zero as z → +∞ and satisfies (5.4) follows by lemma 5.2 since φ(z) = φ0(z+a)

and z0 in lemma 5.2 is arbitrary.

Claim 3: For every � ∈ (−∞, 1), there exists a unique square-integrable solution of the
spectral problem (5.2) in the form

U = V1(0; �)

U1(εL; �)
U1(z; �), V = V1(z; �), (5.10)

if and only if the value of � satisfies the algebraic equation

V ′
1(0; �)

V1(0; �)
= 2U ′

1(εL; �)

U1(εL; �)
. (5.11)

Proof of Claim 3: The solution of the first three equations of system (5.2) in the form (5.10)
follows from Claims 1 and 2. It follows from expansion (5.9) that U1(εL; �) = 1+O(ε2) 
= 0
as ε → 0, hence the solution (5.10) is bounded and exponentially decaying as z → ∞, that is,
it is square integrable. Finally, the algebraic equation (5.11) is obtained from the last equation
in system (5.2).

We shall now use the construction in claim 3 and prove that the spectral problem (5.2) has
a unique negative eigenvalue and no zero eigenvalues. It follows from expansion (5.9) and the
algebraic equation (5.11) that

V ′
1(0; �)

V1(0; �)
= −2L(� − 1 + (p + 1)(2p + 1))ε + O(ε3) as ε → 0. (5.12)

Therefore, V ′
1(0; �) → 0 as ε → 0. Also recall that φ(z) = φ0(z + a) and a = 2Lε + O(ε3)

from theorem 1 so that a → 0 as ε → 0. In the limit ε → 0, the condition V ′
1(0; �) = 0

is satisfied for the only value of � on (−∞, �1), where �1 ∈ (0, 1) is defined above, and
this value coincides with the negative eigenvalue �0 < 0 of the scalar spectral problem (5.3)
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on the line (in which case, the eigenfunction of (5.3) denoted by V0 is even in z and strictly
positive for all z ∈ R). Hence, no zero eigenvalue exists in the spectral problem (5.2).

To prove persistence of the negative eigenvalue, we note again that φ(z) = φ0(z + a),
therefore, there exists a positive constant C(a) such that

V1(z; �0) = C(a)V0(z + a), (5.13)

where V0 is the eigenfunction of (5.3) for � = �0. The constant C(a) is determined from the
normalization condition (5.4) for V1(z; �0). Since V0(z) > 0 for every z ∈ R, we note that
for any a0 > 0 there is C0 > 0 such that C(a) � C0 for all a ∈ [−a0, a0].

Now, using smoothness of the unique solution V1 in Claim 2 in � and the representation
(5.13), we obtain

V ′
1(0; �)

V1(0; �)
= V ′

0(a)

V0(a)
+ (� − �0)

∂

∂�

V ′
1(0; �0)

V1(0; �0)
+ O((� − �0)

2) as � → �0, (5.14)

where V0(a) > 0 and V ′
0(a) = O(a) = O(ε) as ε → 0. By lemma 5.2, we have

lim
ε→0

∂

∂�

V ′
1(0; �0)

V1(0; �0)
= F ′(�0) 
= 0.

By the implicit function theorem, for ε > 0 sufficiently small, there exists a unique root
of the algebraic equation (5.12) in � such that � = �0 + O(ε). �

We can now proceed with the proof of theorem 3.

Proof of theorem 3. We apply the standard orbital stability theory from [15]. The eigenvalue
count in lemmas 5.1 and 5.3 gives exactly one negative eigenvalue of operator L+ and a simple
zero eigenvalue of operator L−. The gauge invariance of the NLS equation (1.4) is used to
construct a constrained L2-space given by

L2
c := {

U ∈ L2(−L, L), V ∈ L2(L, ∞) : 〈U, u〉L2(−L,L) = 0, 〈V, v〉L2(L,∞) = 0
}
, (5.15)

where (u, v) is the stationary solution along the primary branch. It is well-known, see [15],
that the negative eigenvalue of L+ in L2 becomes a positive eigenvalue in L2

c if

∂ω(‖u‖2
L2(−L,L) + ‖v‖2

L2(L,∞)) < 0 (5.16)

and remains a negative eigenvalue in L2
c if

∂ω(‖u‖2
L2(−L,L) + ‖v‖2

L2(L,∞)) > 0. (5.17)

The condition expressed in (5.16) and (5.17) is sometimes referred to as the slope condition.
Therefore, we compute the slope condition for the primary branch in theorem 1:

‖u‖2
L2(−L,L) = ε

2
p ‖ψ(ε·)‖2

L2(−L,L) = ε
2
p (2L + O(ε2)) (5.18)

and

‖v‖2
L2(L,∞) = ε

2
p
−1‖φ0‖2

L2(a,∞) = ε
2
p
−1

(
‖φ0‖2

L2(0,∞) + O(ε)
)

, (5.19)

where a = 2Lε + O(ε3) and φ0 is ε-independent. By theorem 1, ψ is smooth in z and ε,
whereas a is smooth in ε. As a result, the remainder terms in (5.18) and (5.19) are smooth
functions of ε at ε = 0.

If p ∈ (0, 2), then ∂ε(‖u‖2
L2(−L,L)

+ ‖v‖2
L2(L,∞)

) > 0 for ε > 0 sufficiently small, which

implies that ∂ω(‖u‖2
L2(−L,L)

+ ‖v‖2
L2(L,∞)

) < 0. This computation yields the assertion on the
orbital stability of the primary branch for p ∈ (0, 2).

If p ∈ (2, ∞), then ∂ε(‖u‖2
L2(−L,L)

+ ‖v‖2
L2(L,∞)

) < 0 for ε > 0 sufficiently small, which

implies that ∂ω(‖u‖2
L2(−L,L)

+ ‖v‖2
L2(L,∞)

) > 0. This computation yields the assertion on the
orbital instability of the primary branch if p ∈ (2, ∞). �

2361



Nonlinearity 28 (2015) 2343 D Noja et al

Remark 5.4. If p = 2, then we have the critical case with ∂ε‖u‖2
L2(−L,L)

= 2L + O(ε2) and

∂ε‖v‖2
L2(L,∞)

= −2L + O(ε2). Therefore, the test for orbital stability is inconclusive without

computations of the O(ε2) corrections in these expansions.

6. Stability of the higher branches

Here we consider the linearized stability of the higher branches, the existence of which is given
by theorem 2 for ω = −ε2 with ε > 0 sufficiently small.

We linearize the NLS equation (1.4) around the standing wave eiωt�, where � = (u, v)

is a suitable solution of the stationary NLS equation (1.6). We write � = eiωt (� + U + iW),
where real-valued functions U and W are defined on the tadpole graph subject to the same
Kirchhoff boundary conditions. This yields the linearized evolution problem in the form

d

dt

[
U

W

]
=

[
0 1

−1 0

] [
L+ 0
0 L−

] [
U

W

]
=

[
0 L−

−L+ 0

] [
U

W

]
,

where the operators L± are the same linear self-adjoint operators as before. The spectral
stability problem can be written as the coupled vector system

L+U = −λW, L−W = λU, U, W ∈ D(�). (6.1)

The stationary solution � = (u, v) is said to be spectrally unstable if there exist an isolated
eigenvalue λ with Re(λ) > 0 for the spectral problem (6.1), in which case the eigenvalue is
referred to as unstable. The stationary solution � = (u, v) is said to be weakly spectrally
stable if the spectrum of the spectral problem (6.1) is contained within the imaginary axis. We
note that isolated eigenvalues of the spectral problem (6.1) are symmetric about the real and
imaginary axes.

The spectral problem (6.1) is not self-adjoint because of the symplectic matrix relating
components U and W . This is a well known source of difficulty but important information
on the unstable eigenvalues in the spectral problem (6.1) can be derived from the spectral
properties of operators L− and L+ (see, e.g. chapter 4 in [22]). To proceed with this analysis,
we count the number of negative eigenvalues of the operators L− and L+ given by the spectral
problems (1.8) and (1.9), where (u, v) is the solution of the boundary-value problem (1.7)
along the higher branches. After counting of the number of negative eigenvalues, we apply
the spectral instability theory from [14] to study eigenvalues of the spectral stability problem
(6.1). The main result of this section is formulated in the following theorem.

Theorem 4. For ω = −ε2 with ε > 0 sufficiently small, all higher branches of theorem 2
are spectrally unstable with at least one pair (two pairs) of real eigenvalues λ in the spectral
stability problem (6.1) for p ∈ (0, 2] (respectively, p ∈ (2, ∞)).

To develop the count of negative eigenvalues associated to the higher branches (u, v) (see
lemma 6.5 below), we need to obtain the analogous count of negative eigenvalues associated
to the stationary solutions (u±

n,ω, 0) described in proposition 2.4. Recall that the higher
branches (u, v) of theorem 2 bifurcate at ω = 0 from the standing wave solutions (u±

n,ω, 0) of
proposition 2.4.

In the following propositions 6.2 and 6.4, we also count the number of negative eigenvalues
in the operators L− and L+ given by the spectral problems (1.8) and (1.9), where (u, v) =
(u±

n,ω, 0). Unfortunately, the count does not give a conclusive stability result for these stationary
states (see remark 6.7 below), therefore, we only formulate the conjecture on their instability
for small negative ω. Motivations for posing this conjecture are explained in the end of this
section.
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Conjecture 6.1. For ω = −ε2 with ε > 0 sufficiently small, the branch (u, v) = (u±
n,ω, 0)

is spectrally unstable for any n ∈ N with at least n quartets of complex eigenvalues λ in the
spectral stability problem (6.1).

Associated with the solution (u, v) = (u±
n,ω, 0), we study negative and zero eigenvalues

of operators L− and L+ given by the spectral problems


−U ′′(x) − ωU − (p + 1)|u±
n,ω|2pU = λU, x ∈ (−L, L),

−V ′′(x) − ωV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L),

(6.2)

and 


−U ′′(x) − ωU − (2p + 1)(p + 1)|u±
n,ω|2pU = λU, x ∈ (−L, L),

−V ′′(x) − ωV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L).

(6.3)

Analysis of eigenvalues of the spectral problems (6.2) and (6.3) relies on the analysis of
Schrödinger operators with 2L-periodic coefficients:

M− := − d2

dx2
− ω − (p + 1)|u±

n,ω|2p : H 2
per(−L, L) → L2

per(−L, L). (6.4)

and

M+ := − d2

dx2
− ω − (2p + 1)(p + 1)|u±

n,ω|2p : H 2
per(−L, L) → L2

per(−L, L). (6.5)

For the operator M−, there exist two fundamental solutions of the second-order differential
equation M−ψ = 0. One solution in the form ψ(x) = u±

n,ω(x) is 2L-periodic in x and the
other solution is available in the explicit form

ψ(x) = u±′
n,ω(x) + pu±

n,ω(x)

∫ x

0
|u±

n,ω(y)|2pdy. (6.6)

It is then obvious that the second solution (6.6) is not 2L-periodic for every ω ∈ (−∞, ωn).
For the operator M+ (which coincides with the operator Mε in section 4 if ω = −ε2), there

exist again two fundamental solutions of the second-order differential equation M+ψ = 0.
One solution in the form ψ(x) = u±′

n,ω(x) is 2L-periodic in x and the other solution is available
in the implicit form

ψ(x) = ∂EU±
n,ω(x; Eω), (6.7)

where U±
n,ω(·; E) is the continuation of u±

n,ω as the odd, 2T (E)-periodic solution of the
boundary–value problem (2.1) with respect to the energy invariant (2.2) for fixed ω ∈
(−∞, ωn) and Eω is defined by the root of T (Eω) = L. Recall from lemmas 2.1 and 2.2 that the
period-to-energy map is a C1 diffeomorphism with T ′(E) < 0 for every fixed ω ∈ (−∞, ωn).
It follows from the boundary conditions (4.6) that the second linear independent solution (6.7)
is not 2L-periodic for every ω ∈ (−∞, ωn).

Equipped with these preliminary facts, we analyze the spectral problems (6.2) and (6.3).
Eigenvalues of these spectral problems can be divided into two groups. The first group is
characterized by the reduction V (x) = 0 for all x � L and the other group has eigenfunctions
with nonzero V . The following two propositions give the relevant counts of negative and zero
eigenvalues in these two groups.
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Proposition 6.2. For any ω < ωn := π2n2

L2 , there exist exactly (n − 1) negative simple
eigenvalues and a zero simple eigenvalue in the spectral problem (6.2) with V ≡ 0 and
exactly n negative simple eigenvalues and no zero eigenvalue in the spectral problem (6.3)
with V ≡ 0. The corresponding eigenfunctions U ∈ H 2(−L, L) are odd and (2L)-periodic,
that is, U ∈ H 2

per,odd(−L, L).

Proof. We use the Sturm theory to identify negative eigenvalues of the operators M− and
M+ given by (6.4) and (6.5). Note that since u−

n,ω = −u+
n,ω, the spectra of these operators

are identical for the two members of the double set. Since u±
n,ω ∈ H 2

per,odd(−L, L), the
operators M− and M+ are invariant under the change x → −x, therefore, their (2L)-periodic
eigenfunctions are either even or odd. If V ≡ 0, then U satisfies the boundary conditions
U(−L) = U(L) = 0, so that we have U ′(−L) = U ′(L) 
= 0 if and only if U is odd and
(2L)-periodic, that is, if U ∈ H 2

per,odd(−L, L). Also note that |u±
n,ω|2p is actually L-periodic,

therefore, the 2L-periodic eigenfunctions are either L-periodic or L-antiperiodic.
Regarding operator M−, we have M−u±

n,ω = 0, where u±
n,ω is (2L)-periodic, odd, and has

2n − 1 zeros on (−L, L). By Floquet–Sturm’s theory (see theorem 1.3.4 in [9]), there exist at
least 2n − 1 and at most 2n negative eigenvalues of the operator M− corresponding to (2L)-
periodic eigenfunctions. The lowest negative eigenvalue corresponds to an even positive state.
The other negative eigenvalues occur in pairs and each pair corresponds to eigenfunctions of
different parity (one even and one odd). Since u±

n,ω is odd, exactly n − 1 negative eigenvalues
correspond to odd eigenfunctions, whereas the other (either n or n + 1) negative eigenvalues
correspond to even eigenfunctions. The assertion of the proposition about the negative and
zero eigenvalues of the spectral problem (6.2) with V ≡ 0 is proved.

Regarding operator M+, we have M+u
±′
n,ω = 0, where u±′

n,ω is (2L)-periodic, even, and has
2n zeros on (−L, L). By the same Floquet–Sturm’s theory (see theorem 1.3.4 in [9]), there
exist exactly n negative eigenvalues with even eigenfunctions and either n − 1 or n negative
eigenvalues with odd eigenfunctions. Therefore, we only need to check in the last pair of
eigenvalues if the eigenvalue for the odd eigenfunction is located to the left or to the right of
the zero eigenvalue for the even eigenfunction u±′

n,ω.
Recall here from proposition 2.4 that the branch (u±

n,ω, 0) originates from the local
bifurcation at ω = ωn with the limiting solution (2.11). Because

M+ = M− − 2p(p + 1)|u±
n,ω|2p

and M−u±
n,ω = 0 with odd u±

n,ω, it is clear that the zero eigenvalue is double at ω = ωn but
it splits for ω � ωn in such a way that the eigenvalue for an odd eigenfunction of M+ in the
corresponding pair is located on the left from the zero eigenvalue for the even eigenfunction
u±′

n,ω.
As argued above, the operator M+ given by (6.5) admits exactly one 2L-periodic

eigenfunction for the zero eigenvalue for every ω ∈ (−∞, ωn). Therefore, once the splitting
happens for ω � ωn, the negative eigenvalue for an odd eigenfunction of M+ cannot cross
the zero eigenvalue and is hence located on the left from the zero eigenvalue for the even
eigenfunction u±′

n,ω for every ω < ωn. As a result, exactly n negative eigenvalues of M+

correspond to odd eigenfunctions. The assertion of the proposition about the negative and zero
eigenvalues of the spectral problem (6.3) with V ≡ 0 is proved. �

Remark 6.3. Recall that the operator M− given by (6.4) has also exactly one (2L)-periodic
eigenfunction for the zero eigenvalue for every ω ∈ (−∞, ωn). Also recall that

M− = M+ + 2p(p + 1)|u±
n,ω|2p
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with M+u
±′
n,ω = 0, where u±′

n,ω is even. Repeating the last argument in the proof of
proposition 6.2 for the operator M−, we also conclude that the double zero eigenvalue of
M− at ω = ωn splits in such a way that the eigenvalue for an even eigenfunction of M−
is located on the right from the zero eigenvalue for the odd eigenfunction u±

n,ω for every
ω ∈ (−∞, ωn). Therefore, exactly n negative eigenvalues of the operator M− correspond to
even eigenfunctions of the spectral problem (6.2) with V ≡ 0.

Proposition 6.4. For every ω < ωn, isolated eigenvalues of the spectral problems (6.2) and
(6.3) with nonzero V correspond to the real eigenvalues λ such that λ + ω < 0 of the following
spectral problems


−U ′′(x) − ωU − (p + 1)|u±

n,ω|2pU = λU, x ∈ (−L, L),

U(L) = U(−L),

U ′(L) − U ′(−L) = −U(L)
√|ω + λ|

(6.8)

and 


−U ′′(x) − ωU − (2p + 1)(p + 1)|u±
n,ω|2pU = λU, x ∈ (−L, L),

U(L) = U(−L),

U ′(L) − U ′(−L) = −U(L)
√|ω + λ|.

(6.9)

The corresponding eigenfunctions U are even but not (2L)-periodic, that is,

U /∈ H 2
per,even(−L, L).

Furthermore, for ω = −ε2 with ε > 0 sufficiently small, there exist exactly n negative
eigenvalues in the spectral problems (6.8) and (6.9). No zero eigenvalues exist in either
spectral problem.

Proof. We recall that the operators L+ and L− are self-adjoint when they are considered
from the domain D(�) to L2(−L, L) × L2(L, ∞). Therefore, the values of λ are real. The
continuous spectrum is located for λ > −ω. In what follows, we shall only consider isolated
eigenvalues λ such that λ+ω < 0. If λ+ω < 0, there exists a one-parameter family of decaying
solutions for the second equation of the spectral problems (6.2) and (6.3) as x → +∞, in fact,
in the explicit form

V (x) = V (L)e−√|ω+λ|(x−L), x � L.

Using the boundary condition V (L) = U(L), we arrive to the spectral problems (6.8) and
(6.9). Since |u±

n,ω|2p is even in x, eigenfunctions of these spectral problems are either even
or odd.

If U(L) = 0, then V (x) = 0 for all x � L and we are back to the case considered in
proposition 6.2. Therefore, U(L) 
= 0. Odd eigenfunctions violate the boundary condition
U(L) = U(−L) 
= 0. Therefore, U is even. Because U(L) 
= 0, it follows that U ′(L) 
=
U ′(−L), therefore, the eigenfunction U is not (2L)-periodic, that is, U /∈ H 2

per,even(−L, L).
Next, we give the precise count of negative and zero eigenvalues of the spectral problems

(6.8) and (6.9) for ω = −ε2 with ε > 0 sufficiently small.
First, we note that for ω = ωn when u±

n,ωn
= 0, there are no eigenvalues of the spectral

problems (6.8) and (6.9) with λ < −ωn. Indeed, in this case, the even solution the differential
equations is known in the explicit form

U(x) = U(0) cosh
(√

|ωn + λ|x
)

, x ∈ (−L, L), (6.10)

whereas the last boundary condition yields the equation 2 tanh
(√|ωn + λ|L) = −1, which

admits no solutions.
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Table 1. Locations of a new isolated eigenvalue λ of the spectral problem (6.8) with
λ < −ω near ω = ω0.

ω � ω0 ω � ω0 Location of λ

µ(ω) < −ω µ(ω) < −ω ω � ω0 and ω � ω0

µ(ω) < −ω µ(ω) > −ω ω � ω0

µ(ω) > −ω µ(ω) < −ω ω � ω0

µ(ω) > −ω µ(ω) > −ω

On the other hand, for ω = ωn, there exist a certain number of negative eigenvalues of
the self-adjoint operators M− and M+ in (6.4) and (6.5), which correspond to even and (2L)-
periodic eigenfunctions. From the proof of proposition 6.2 and remark 6.3, we know that
the operators M− and M+ admit exactly n eigenvalues with even 2L-periodic eigenfunctions.
Because the nonlinear terms in the spectral problems (6.8) and (6.9) areC1 ifp > 0, the negative
eigenvalues of M− and M+ are C1 functions of ω for ω ∈ (−∞, ωn). All n negative eigenvalues
are above the anti-diagonal λ = −ω at ω = ωn, according to the previous result based on
the exact solution (6.10). By continuity, each negative eigenvalue intersects transversely with
the anti-diagonal λ = −ω at least once (and, in any case, an odd number of times) when ω

changes from ωn to 0.
Let µ(ω) denotes a particular negative eigenvalue of either M− or M+ with the

corresponding even eigenfunction U(x; ω). For definiteness, let us consider operator M−.
Let ω0 be the point of a particular intersection µ(ω0) = −ω0 < 0 (which does not need to
be transverse). According to the location of µ(ω) above or below the diagonal λ = −ω, we
claim in table 1 the location of a new isolated eigenvalue λ of the spectral problem (6.8) with
ω in the neighborhood of the intersection point ω = ω0.

Table 1 implies that if a particular eigenvalue µ(ω) of M− has only one transverse inter-
section with the anti-diagonal λ = −ω when ω changes from ωn to 0, then the spectral problem
(6.8) acquires one negative eigenvalue λ at ω = 0. If µ(ω) has an odd number of transverse
intersections with the anti-diagonal λ = −ω, the spectral problem (6.8) still acquires only one
negative eigenvalue λ at ω = 0. The other intermediate intersections lead to an even number
of appearances and disappearances of negative eigenvalues λ below the anti-diagonal λ = −ω.
The tangential intersections, if they occur, do not change the outcome at ω = 0. By continuity
of eigenvalues λ of the spectral problem (6.8) with respect to ω, this argument yields the last
assertion of the lemma for negative eigenvalues of the spectral problem (6.8). A similar count
can be developed for the spectral problem (6.9).

Proof of table 1: Let µ(ω) be a particular negative eigenvalue of M− with the
corresponding even eigenfunction U(·; ω) in L2

per(−L, L). Using C1 smoothness of solutions
of the first equation in system (6.8) in λ, we write

λ = µ(ω) + �, U(x) = U(x; ω) + �Ũ(x; ω) + o(�), (6.11)

where Ũ is an even solution of the inhomogeneous equation

M−Ũ (x; ω) = U(x; ω) (6.12)

subject to the orthogonality condition 〈U(·; ω), Ũ(·; ω)〉L2(−L,L) = 0. Because U(·; ω) is
even in x and C1, we have U(L; ω) 
= 0 and U ′(L; ω) = 0. On the other hand, since
‖U(·; ω)‖2

L2
per


= 0, the even function Ũ is not (2L)-periodic because

Ũ ′(−L; ω) = −Ũ ′(L; ω) 
= 0.

2366



Nonlinearity 28 (2015) 2343 D Noja et al

Indeed, multiplying the inhomogeneous equation (6.12) by U(·; ω) and integrating on
(−L, L), we obtain

− 2U(L; ω)Ũ ′(L; ω) = ‖U(·; ω)‖2
L2

per

= 0. (6.13)

The first boundary condition U(L) = U(−L) in system (6.8) is satisfied by the
construction of even functions. The second boundary condition in system (6.8) leads to the
algebraic equation

2�Ũ ′(L; ω) + o(�) = −
√

|ω + µ(ω) + �| (U(L; ω) + O(�)) . (6.14)

In view of the previous relation (6.13), equation (6.14) yields

�‖U(·; ω)‖2
L2

per
+ o(�) =

√
|ω + µ(ω) + �| (U 2(L; ω) + O(�)

)
. (6.15)

Recall that ω0 + µ(ω0) = 0 and the mapping ω 
→ µ is C1. It follows from the algebraic
equation (6.15) that � = O(ω + µ(ω)) is small if ω − ω0 is small. Expanding � in powers of
ω + µ(ω) by using the algebraic equation (6.15), we obtain

� = −(ω + µ(ω)) − (ω + µ(ω))2
‖U(·; ω)‖4

L2
per

U 4(L; ω)
+ o((ω + µ(ω))2). (6.16)

It follows from (6.15) that the new eigenvalue exists only if � > 0, which implies that
ω + µ(ω) < 0 near ω0 + µ(ω0) = 0. Since

λ + ω = ω + µ(ω) + � = −(ω + µ(ω))2
‖U(·; ω)‖4

L2
per

U 4(L; ω)
+ o((ω + µ(ω))2) < 0,

the new eigenvalue λ is isolated from the continuous spectrum of the spectral problem (6.8).
Thus, a new isolated eigenvalue of the spectral problem (6.8) bifurcates at the intersection
µ(ω0) = −ω0 < 0 near ω = ω0 in the subset of ω, where ω + µ(ω) < 0. This perturbation
argument yields the statement of table 1.

It remains to consider the zero eigenvalue of the spectral problems (6.8) and (6.9) for
ω = −ε2 for ε > 0 sufficiently small. Since M−u±

n,ω = 0 with the odd (2L)-periodic function
u±

n,ω, no bifurcations of a new isolated eigenvalue λ corresponding to an even eigenfunction
may occur in the spectral problem (6.8) near ω = 0. On the other hand, since M+u

±′
n,ω = 0 with

the even (2L)-periodic function u±′
n,ω, bifurcations of new small negative eigenvalues λ may

occur in the spectral problem (6.9) near ω = 0. This bifurcation can be considered as in the
proof of table 1 but with µ(ω) = 0 and U(x; ω) = u±′

n,ω(x). With parametrization ω = −ε2,
the algebraic equation (6.16) yields now

� = ε2 −
‖u±′

n,ω‖4
L2

per

u±′
n,ω(L)

ε4 + o(ε4), (6.17)

which indicates that a new isolated eigenvalue λ = � > 0 does exists for ω � 0. Since the
new eigenvalue is positive, no zero (or additional negative) eigenvalues in the spectral problem
(6.9) bifurcates near ω = 0. The statement of the lemma is proved. �

Next, we analyze negative and zero eigenvalues of the operators L± associated with the
higher branches of theorem 2. As in theorem 2, we only use uε to denote the selected solution
along the higher branch for ω = −ε2 with small positive ε. Recall that the stationary solution
(u, v) is expressed by

u = uε(x + b), v = ε
1
p φ0(ε(x − L)),

2367



Nonlinearity 28 (2015) 2343 D Noja et al

where b = O(ε
1
p ) is a unique root of uε(L + b) = ε

1
p and φ0 is the normalized (even) solution

given by (2.14). The corresponding spectral problems for the operators L− and L+ are given by


−U ′′(x) + ε2U − (p + 1)|uε(x + b)|2pU = λU, x ∈ (−L, L),

−V ′′(x) + ε2V − ε2(p + 1)|φ0(ε(x − L))|2pV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L),

(6.18)

and 


−U ′′(x) + ε2U − (2p + 1)(p + 1)|uε(x + b)|2pU = λU, x ∈ (−L, L),

−V ′′(x) + ε2V − ε2(2p + 1)(p + 1)|φ0(ε(x − L))|2pV = λV, x ∈ (L, ∞),

U(L) = U(−L) = V (L),

U ′(L) − U ′(−L) = V ′(L).

(6.19)

The following lemma summarizes the main result about the numbers of negative and zero
eigenvalues of operators L− and L+.

Lemma 6.5. For ε > 0 sufficiently small, the negative eigenvalues of propositions 6.2 and 6.4
persist as the negative eigenvalues of the spectral problem (6.18) and (6.19). In addition, the
operator L+ admits one more small negative eigenvalue and the operator L− admits a simple
zero eigenvalue.

Proof. We shall first prove persistence of negative eigenvalues of operators L± given by
propositions 6.2 and 6.4 for the branch (uε, 0). Recall that these negative eigenvalues are
bounded away from zero as ε → 0. We give an argument for L−, the argument for L+ is
identical.

For any λ < 0, the first differential equation of the system (6.18) can be solved with two
linearly independent solutions

U(x) = c1Uodd(x + b; λ) + c2Ueven(x + b; λ), (6.20)

where (c1, c2) are arbitrary constants, Uodd and Ueven are odd and even functions. For
uniqueness, we add the normalization conditions

U ′
odd(0; λ) = 1, Ueven(0; λ) = 1.

For any fixed λ < 0 and sufficiently small ε > 0, the second differential equation of the
system (6.18) has a decaying solution

V (x) = d1Vdec(x − L; λ), (6.21)

where d1 is an arbitrary constant and Vdec is uniquely specified by the decay condition

lim
x→+∞ e

√
ε2−λxVdec(x; λ) = 1.

As ε = 0, we have the unique representation Vdec(x; λ) = e−√−λx for λ < 0, so that
Vdec(0; λ) = 1 for every λ < 0.

Substituting the representations (6.20) and (6.21) to the boundary conditions in the system
(6.18), we obtain d1 = U(L)

Vdec(0;λ)
, use symmetry properties for odd and even functions, and derive

the linear algebraic system for parameters (c1, c2):


c1 [Uodd(L + b; λ) + Uodd(L − b; λ)] + c2 [Ueven(L + b; λ) − Ueven(L − b; λ)] = 0,

c1
[
U ′

odd(L + b; λ) − U ′
odd(L − b; λ)

]
+ c2

[
U ′

even(L + b; λ) + U ′
even(L − b; λ)

]
= V ′

dec(0;λ)

Vdec(0;λ)
[c1Uodd(L + b; λ) + c2Ueven(L + b; λ)] .

Note that b = 0 if ε = 0.
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The homogeneous linear system above at ε = 0 has two groups of solutions, which
correspond to negative eigenvalues described in propositions 6.2 and 6.4. For the first group,
c2 = 0 and Uodd(L; λ0) = 0, where λ0 < 0 is an eigenvalue of proposition 6.2. For the second
group, c1 = 0 and U ′

even(L; λ0) = −√|λ0|Ueven(L; λ0), where λ0 < 0 is an eigenvalue of
proposition 6.4. Since all solutions used in the construction of the homogeneous linear system
above are C1 in λ and ε at λ = λ0 < 0 and ε = 0, persistence of negative eigenvalues follows
from persistence of roots of the characteristic equation associated with the homogeneous linear
system for (c1, c2).

It remains to consider small negative and zero eigenvalues of operators L±, which may
bifurcate as ε → 0 from the zero eigenvalues in propositions 6.2 and 6.4. Here we first consider
the operator L+ and then operator L−.

By using the scaling transformation z = ε(x − L) and λ = ε2�, the second equation of
the system (6.19) can be rewritten in terms of the variable z:

− V ′′(z) + V − (2p + 1)(p + 1)|φ0(z)|2pV = �V, z > 0. (6.22)

By lemma 5.2, there exists a unique C∞ decaying solution of the differential equation (6.22)
for � ∈ (−∞, 1) satisfying the decay condition

lim
z→∞ V (z)e

√
1−�z = 1. (6.23)

Denote this solution by V∞(z; �). Recall that V∞ is also C∞ in � for every � ∈ (−∞, 1).
Also recall from lemma 5.2 that the spectral problem (6.22) with the boundary condition
V ′(0) = 0 has one negative eigenvalue �0 < 0, no zero eigenvalue, and the rest of the
spectrum is bounded from below by a positive number �1 ∈ (0, 1). Therefore, the only root
of V ′

∞(0; �) = 0 on (−∞, �1) occurs at the negative eigenvalue �0 < 0.
Given the unique V, the rest of the system (6.19) is given by


−U ′′(x) + ε2U − (2p + 1)(p + 1)|uε(x + b)|2pU = ε2�U, x ∈ (−L, L),

U(L) = U(−L) = V∞(0; �),

U ′(L) − U ′(−L) = εV ′
∞(0; �).

(6.24)

Small negative and zero eigenvalues of the spectral problem (6.24) such that λ = ε2� → 0 as
ε → 0 bifurcate from the zero eigenvalue of the linear operator

M+ := − d2

dx2
− (2p + 1)(p + 1)|u0(x)|2p : H 2

per(−L, L) → L2
per(−L, L),

whose the only eigenfunction is known because of M+u
′
0 = 0. If � = 0, the (2L)-

periodic eigenfunction u′
0 is continued as u′

ε(· + b) but this eigenfunction does not satisfy
the system (6.24) because V ′

∞(0; 0) 
= 0. Therefore, zero is not an eigenvalue of the spectral
problem (6.24).

Next, for every � ∈ R, there exists a unique solution of the differential equation in system
(6.24) subject to the normalization U(−L) = U(L) = 1. This solution U is C1 in x on
[−L, L] and in � on R. From the solution for � = 0, the unique function is given by

U(x; �) = u′
ε(x + b)

u′
ε(L + b)

+ ε2�Ũ(x; �),

where ‖Ũ (·; �)‖C1(−L,L) = O(1) as ε → 0, for any fixed � ∈ R. Substituting this unique
function to the boundary conditions in system (6.24), we obtain the boundary condition

F(�) := V ′
∞(0; �)

V∞(0; �)
= U ′(L; �) − U ′(−L; �)

ε
= O(ε�), as ε → 0. (6.25)
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By lemma 5.2, the function F is C∞ in � for every � < 0 and it admits only one simple zero at
� = �0. By the implicit function theorem, the simple root persists in algebraic equation (6.25)
near �0 with respect to small parameter ε. Therefore, the spectral problem (6.19) admits no
zero eigenvalue and exactly one negative eigenvalue � near �0 such that � = �0 +O(ε). The
assertion of the lemma about the negative and zero eigenvalues of the spectral problem (6.19)
is proved.

Now we consider the operator L−. With the help of the same scaling transformation, the
second equation of the system (6.18) can be rewritten for the component V as a function of z:

− V ′′(z) + V − (p + 1)|φ0(z)|2pV = �V, z > 0. (6.26)

By the same result as in lemma 5.2, there exists a uniqueC∞ decaying solution of the differential
equation (6.26) for � ∈ (−∞, 1) satisfying the decay condition (6.23). Again, we denote this
solution by V∞(z; �) and recall that V∞ is also C∞ in � for every � ∈ (−∞, 1). Because the
spectral problem (6.26) with the boundary condition V ′(0) = 0 has no negative eigenvalues, a
simple zero eigenvalue, and the rest of the spectrum is bounded away from zero by a positive
number �1 ∈ (0, 1), the only root of V ′

∞(0; �) on (−∞, �1) occurs at the zero eigenvalue
� = 0.

Given the unique V , the rest of the system (6.18) is given by


−U ′′(x) + ε2U − (p + 1)|uε(x + b)|2pU = ε2�U, x ∈ (−L, L),

U(L) = U(−L) = V (0),

U ′(L) − U ′(−L) = εV ′(0).

(6.27)

Small negative and zero eigenvalues of the spectral problem (6.27) with λ = ε2� → 0 as
ε → 0 bifurcate from the zero eigenvalue of the linear operator

M− := − d2

dx2
− (p + 1)|u0(x)|2p : H 2

per(−L, L) → L2
per(−L, L),

whose the only 2L-periodic eigenfunction is known because of M−u0 = 0. If � = 0, the
(2L)-periodic eigenfunction u0 is continued as uε(· + b) and it satisfies (6.27) for any ε > 0
because V ′

∞(0; 0) = 0. The simple zero eigenvalue persists in the spectral problem (6.18) with

the exact solution (U, V ) = (uε(· + b), ε
1
p φ0(ε(· − L))) for λ = 0. No negative eigenvalues

exists in (6.27) because V ′
∞(0; �) 
= 0 for � ∈ (−∞, 0). The assertion of the lemma about

the negative and zero eigenvalues of the spectral problem (6.18) is proved. �

We can now proceed with the proof of theorem 4. We note the following result (see, e.g.
proposition 20 and decomposition (12) in [11]).

Proposition 6.6. For every p ∈ (0, 2] and every n ∈ N, the following slope condition is
satisfied for the entire family of the standing wave solutions u±

n,ω:

d

dω
‖u±

n,ω‖L2(−L,L) < 0, ω ∈ (−∞, ωn). (6.28)

Proof of theorem 4. By lemma 6.5, we have 2n − 1 negative eigenvalues of the operator L−
and 2n + 1 negative eigenvalues of the operator L+, associated with the higher-order branch of
theorem 2. Furthermore, it follows from proposition 2.4 and theorem 2 that

‖u‖2
L2(−L,L) = ‖uε(· + b)‖2

L2(−L,L) = ‖uε‖2
L2(−L,L) = ‖u0‖2

L2(−L,L) + O(ε2) (6.29)

and

‖v‖2
L2(L,∞) = ε

2
p
−1‖φ0‖2

L2(0,∞). (6.30)
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By proposition 2.4, the remainder term in (6.29) is C1 in ε2 at ε = 0. In the constrained
L2-subspace (5.15), the additional small negative eigenvalue of the operator L+ in lemma 6.5
disappears if

∂ε

(
‖u‖2

L2(−L,L) + ‖v‖L2(L,∞)

)
> 0,

which is only true for p ∈ (0, 2). In this case, the difference between the number of negative
eigenvalues of the operators L+ and L− is exactly one and the stationary solution is spectrally
unstable with at least one pair of real eigenvalues in the spectral stability problem (6.1),
according to the spectral instability theory in [14] (see also [16]).

If p ∈ (2, ∞), we have ∂ε

(
‖u‖2

L2(−L,L)
+ ‖v‖L2(L,∞)

)
< 0, so that the difference between

the number of negative eigenvalues of the operators L+ and L− is exactly two. In this case,
the stationary solution is spectrally unstable with at least two pairs of real eigenvalues in the
spectral stability problem (6.1), according to the spectral instability theory in [14].

Finally, if p = 2, then ‖v‖L2(L,∞) is independent of ε, whereas ‖uε‖2
L2(−L,L)

satisfies the
slope condition (6.28) in proposition 6.6. Therefore, the difference between the number of
negative eigenvalues of the operators L+ and L− is exactly one and the stationary solution
is spectrally unstable with exactly one pair of real eigenvalues in the spectral stability
problem (6.1). �
Remark 6.7. By the count of negative eigenvalues in propositions 6.2 and 6.4, we have 2n−1
negative eigenvalues of the operator L− and 2n negative eigenvalues of the operator L+,
associated with the family of the standing wave solutions (u, v) = (u±

n,ω, 0) near ω = 0.
Using the slope condition (6.28) for p ∈ (0, 2], we obtain that in the constrained L2-subspace
(5.15), where (u, v) = (u±

n,ω, 0), the operator L+ has 2n − 1 negative eigenvalues. Hence, the
difference between negative eigenvalues of L+ and L− is exactly zero, and the instability test
for the branch (u, v) = (u±

n,ω, 0) is inconclusive if p ∈ (0, 2].
If p ∈ (2, ∞), the instability test is even more undecided because the slope condition

(6.28) only holds for ω near ωn and is definitely violated if ω → −∞ [11]. When the slope
condition (6.28) is violated, there exists at least one pair of real eigenvalues in the spectral
problem (6.1).

In the rest of this section, we motivate why the unperturbed branch (u, v) = (u±
n,ω, 0) is

expected to be unstable for small negative ω, according to conjecture 6.1. If the slope condition
(6.28) is satisfied (which is the case for every n ∈ N if p ∈ (0, 2] [11]), there exist exactly
2n − 1 negative eigenvalues of the operators L− and L+, the latter operator is considered in
the constrained space (5.15). Nevertheless, the stationary solution can be spectrally stable if
there exist 2n − 1 pairs of purely imaginary eigenvalues λ of negative Krein signature in the
spectral stability problem (6.1) (see, e.g. theorem 4.5 in [22]). Hence, in order to claim the
spectral instability of the stationary solutions, we shall rule out this possibility.

Thanks to the symmetry decompositions of eigenvectors to the even and odd parts on the
interval [−L, L] (the same as in propositions 6.2 and 6.4), one can divide all eigenvalues of the
spectral stability problem (6.1) into two groups corresponding to even and odd eigenfunctions.
The odd eigenvectors satisfy the following spectral stability problem


−U ′′(x) − ωU − (2p + 1)(p + 1)|u±

n,ω|2pU = −λW, x ∈ (0, L),

−W ′′(x) − ωW − (p + 1)|u±
n,ω|2pW = λU, x ∈ (0, L),

U(0) = U(L) = 0,

W(0) = W(L) = 0.

(6.31)

If the slope condition (6.28) is satisfied, the spectral problem (6.31) can have at most 2n − 2
unstable eigenvalues, depending on the parameter ω in (−∞, ωn), according to the count of
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n − 1 negative eigenvalues of the operators L− and L+, the latter operator is considered in
the constrained space (5.15), see proposition 6.2 and remark 6.7. For n = 1, the spectral
stability problem (6.31) produces no unstable eigenvalues. For n � 2, unstable eigenvalues
may appear or disappear for various values of ω and the exact count of unstable eigenvalues
for small negative values of ω is more difficult.

The even eigenvectors satisfy the following spectral stability problem


−U ′′(x) − ωU − (2p + 1)(p + 1)|u±
n,ω|2pU = −λW, x ∈ (0, L),

−W ′′(x) − ωW − (p + 1)|u±
n,ω|2pW = λU, x ∈ (0, L),

−V ′′(x) − ωV = −λZ, x ∈ (L, ∞),

−Z′′(x) − ωZ = λW, x ∈ (L, ∞),

U ′(0) = 0, W ′(0) = 0,

U(L) = V (L), W(L) = Z(L),

2U ′(L) = V ′(L), 2W ′(L) = Z′(L).

(6.32)

The spectral problem (6.32) can have at most 2n unstable eigenvalues for small negative ω,
according to the count of n negative eigenvalues in proposition 6.4, unless n pairs of purely
imaginary eigenvalues λ of negative Krein signature occurs in the spectral stability problem
(6.32). However, the continuous spectrum of the spectral stability problem (6.32) is located
for two symmetric segments ±i
c, where


c = {−ω + k2, k ∈ R}.
Therefore, for ω � 0, 
c ∪ (−
c) = R contains no gap, so that all purely imaginary

eigenvalues λ, if they exist, are embedded into the continuous spectrum. Since pairs of
embedded eigenvalues of negative Krein signature are structurally unstable and bifurcate into
quartets of complex eigenvalues according to the spectral instability theory in [14], the spectral
stability problem (6.32) is expected to have generically n quartets of complex eigenvalues for
small negative ω. This argument is reflected in conjecture 6.1.

Remark 6.8. Since the higher branch of theorem 2 bifurcates off the branch (u, v) = (u±
n,ω, 0)

for ω � 0, the spectral problem (6.1) is expected to have as many quartets of complex
eigenvalues or pairs of purely imaginary eigenvalues of negative Krein signatures as the branch
(u, v) = (u±

n,ω, 0) does near ω = 0. In addition, theorem 4 guarantees that the higher branch
of theorem 2 has one (two) pairs of real unstable eigenvalues λ in the spectral stability problem
(6.1) for p ∈ (0, 2] (respectively, for p ∈ (2, ∞)).

7. Numerical results

In this final section, we study existence and stability of standing waves on the tadpole graph
numerically. We shall confirm the results of theorems 3 and 4. In addition, we shall illustrate
the validity of conjecture 6.1. For the NLS model (1.4), we consider the case p = 1, which
corresponds to the cubic NLS equation on the tadpole.

For p = 1, the second-order differential equation

u′′(x) + ωu + 2u3 = 0 (7.1)

can be solved analytically. Indeed, using the transformation

u(x) = kav(ξ), ξ = ax, a =
√

ω

1 − 2k2
, (7.2)

where k ∈ (0, 1) is a parameter, we transform equation (7.1) to the form

v′′(ξ) + (1 − 2k2)v + 2k2v3 = 0. (7.3)
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Figure 1. Standing wave solutions (u+
n,ω, 0) versus x for n = 1 (a) and n = 2 (b)

corresponding to ω = −1.

The second-order equation (7.3) is satisfied by the Jacobi elliptic function v(ξ) = cn(ξ ; k)

associated with the parameter k [21]. The Jacobi elliptic function cn(·; k) is 4K(k)-periodic,
where K(k) is the complete elliptic integral of the first kind. If u is 2L-periodic, then parameters
k, ω, and L satisfy the relationship

4nK(k) = 2aL ⇒ ωL2 = 4n2(1 − 2k2)K(k)2, (7.4)

where n ∈ N is the index for the corresponding branch of the 2L-periodic solution. As k → 0,
we have K(k) → π

2 , hence ω → ωn = π2n2

L2 , according to the result of proposition 2.4. As
k → 1, we have K(k) → ∞, hence ω → −∞. At k = 1√

2
, we have ω = 0.

Using the relation (7.4) and translating the Jacobi elliptic function cn(ξ ; k) in ξ to satisfy
the boundary condition u(0) = 0, we obtain the exact 2L-periodic solution of the second-order
differential equation (7.1) in the form

u±
n,ω(x) = ±2nkK(k)

L
cn

(
2nK(k)

L
x + K(k); k

)
. (7.5)

The exact solution (7.5) is used as the seed solution for the Newton iterative algorithm
to approximate standing wave solutions of the boundary-value problem (1.7) with p = 1.
We discretize the second-order differential equations with a second-order central difference
method and incorporate the Kirchhoff boundary conditions into the discretization method.
Figure 1 shows the numerical approximations of the standing wave solutions (u+

n,ω, 0) with
n = 1 (a) and n = 2 (b) corresponding to ω = −1. We have set L = π and used N = 100
grid points on the interval [−L, L]. For the same value ω = −1, figure 2 shows the standing
wave solutions (u, v) with nonzero v along the primary branch (a) and two representatives of
the higher branches with n = 1 ((b), (c)) and n = 2 ((d), (e)) bifurcating from the standing
wave solutions (u±

n,ω, 0) at ω = 0. To truncate the semi-infinite line [L, ∞) on the finite
interval [L, L∞], we have used L∞ = 2π and the Dirichlet boundary condition at L∞. The
grid spacing is uniform between [−L, L] and [L, L∞].

We then discretize the spectral problems (1.8) and (1.9) with the same second-order
difference method to obtain the negative and zero eigenvalues of the self-adjoint operators
L− and L+ for ω < 0. For eigenvalue computations, we use the MATLAB eigenvalue solver.
Figure 3 shows the lowest six eigenvalues of these operators versus parameter ω for the standing
wave solutions (u+

n,ω, 0) with n = 1 (a) and n = 2 (b). The results are also identical for the
standing wave solutions (u−

n,ω, 0). In agreement with propositions 6.2 and 6.4, we count 2n−1
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Figure 2. Standing wave solutions (u, v) versus x for ω = −1 along the primary branch
(a) and two representatives of the higher branches for n = 1 ((b), (c)) and n = 2 ((d), (e)).

negative eigenvalues for the operator L− and 2n negative eigenvalues for the operator L+ for
every ω < 0. In addition, the operator L− has a simple zero eigenvalue and the operator L+

admits no zero eigenvalue for ω < 0. Note that the operator L+ has a small positive eigenvalue,
which stays above zero for every ω < 0.

Figure 4 shows similar results for the lowest six eigenvalues of operators L− and L+ versus
parameter ω for the standing wave solutions (u, v) along the higher branches bifurcating from
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Figure 3. Lowest six eigenvalues of operators L− and L+ versus parameter ω for the
standing wave solution (u+

n,ω, 0) with n = 1 (a) and n = 2 (b).
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Figure 4. Lowest six eigenvalues of operators L− and L+ versus parameter ω for the
standing wave solution (u, v) along the higher branches with n = 1 (a) and n = 2 (b).

the solutions (u+
n,ω, 0) with n = 1 (a) and n = 2 (b). The results are not identical but very

similar for the standing wave solutions (u, v) bifurcating from the solutions (u−
n,ω, 0) (not

shown). In agreement with lemma 6.5, we count 2n − 1 negative eigenvalues and one simple
zero eigenvalue for the operator L− and 2n+1 negative eigenvalues for the operator L+ for every
ω < 0. We also checked (not shown) that the operator L− for the standing wave solution (u, v)
along the primary branch has no negative eigenvalues and a simple zero eigenvalue, whereas
the operator L+ has a simple negative eigenvalue and no zero eigenvalues, in accordance with
lemmas 5.1 and 5.3.

Finally, we discretize the spectral stability problem (6.1) with the same second-order
difference method to obtain the unstable eigenvalues associated with the standing wave
solutions for ω < 0. Figure 5 shows all eigenvalues on the complex plane for the standing wave
solutions (u+

n,ω, 0) with n = 1 (a) and n = 2 (b) corresponding to ω = −1. Figure 6 shows
real and imaginary parts of the corresponding unstable eigenvalues versus parameter ω. For
small negative ω, we observe 2n − 1 quartets of complex eigenvalues. Therefore, in addition
to n complex quartets predicted from the spectral problem (6.32), there exists n − 1 complex
quartets in the spectral problem (6.31). These additional eigenvalues do not contradict to the
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Figure 5. Eigenvalues λ of the spectral problem (6.1) in the complex plane for the
standing wave solutions (u+
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Figure 6. Real and imaginary parts of the unstable eigenvalues λ of the spectral problem
(6.1) versus parameter ω for the standing wave solutions (u+

n,ω, 0) with n = 1 (a) and
n = 2 (b).

theory and indicate that conjecture 6.1 is true but the actual number of quartets of complex
eigenvalues exceed n for n � 2.

We also note from figure 6 that all quartets of complex eigenvalues disappear for larger
negative values of ω. The complex eigenvalues coalesce at the imaginary parts in the spectral
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gap away from the continuous spectrum and then split into two pairs of purely imaginary
eigenvalues of opposite Krein signatures. This can be explained from the fact that the standing
wave solution (u+

n,ω, 0) shown on figure 1 look like a sequence of 2n NLS solitary waves
of opposite polarity as ω → −∞. As is well known from the qualitative theory of soliton
interactions [19], pairs of NLS solitary waves of opposite polarity repel each other, so that the
standing wave solution (u+

n,ω, 0) represents an equilibrium configuration under a balance of
repulsive force between solitary waves of opposite polarity (which include 2n solitary waves
on the interval [−L, L] and additional solitary waves outside [−L, L], which are reflected
anti-symmetrically by the Dirichlet boundary conditions at the boundaries). Such equilibrium
configurations are spectrally stable, which may explain disappearance of the complex unstable
eigenvalues in the limit ω → −∞.

Regarding the standing wave solutions along the primary and higher branches, we checked
numerically the validity of theorems 3 and 4 (the corresponding numerical results are not
shown). The standing wave solution (u, v) along the primary branch is stable for every ω < 0,
in agreement with the number of negative eigenvalues and the orbital stability theory in [15].
The standing wave solutions (u, v) along the higher branches have a pair of real unstable
eigenvalues in addition to the (2n − 1) quartets of complex eigenvalues, which are inherited
from the standing wave solutions (u+

n,ω, 0), from which the higher branches bifurcate off. The
pair of real unstable eigenvalues persists for every ω < 0, whereas the complex quartets split
into pairs of purely imaginary eigenvalues for large negative values of ω, similar to what is
observed on figure 6. These numerical results are in agreement with the number of negative
eigenvalues on figure 4 and the spectral instability theory in [14, 16].
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