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Abstract
In the present paper, we revisit nonlinearity management of the time-periodic
nonlinear Schrödinger equation and the related averaging procedure. By
means of rigorous estimates, we show that the averaged nonlinear Schrödinger
equation does not blow up in the higher dimensional case so long as the
corresponding solution remains smooth. In particular, we show that the H 1

norm remains bounded, in contrast with the usual blow-up mechanism for the
focusing Schrödinger equation. This conclusion agrees with earlier works in
the case of strong nonlinearity management but contradicts those in the case
of weak nonlinearity management. The apparent discrepancy is explained by
the divergence of the averaging procedure in the limit of weak nonlinearity
management.

PACS number: 05.45.−a

1. Introduction

In the past few years, there has been a large volume of literature regarding applications
of the nonlinear Schrödinger equation (NLS) in the presence of the so-called nonlinearity
management (often referred to also as Feshbach resonance management). The NLS is a
prototypical dispersive nonlinear wave equation of the form

iut = −�u + �(t)|u|2u + V (x)u, (1)

where u(x, t) is a complex envelope field, V (x) � 0 is an external potential, �(t) is a
time-periodic nonlinearity coefficient and � is the Laplacian operator with x ∈ R

d , d � 1.
Nonlinearity management arises in optics for transverse beam propagation in layered

optical media [1], as well as in atomic physics for the Feshbach resonance of the scattering
length of inter-atomic interactions in Bose–Einstein condensates (BECs) [2]. In the latter case,
the periodic variation of �(t) through an external magnetic field has been used as a means of
producing robust matter-wave breathers in quasi-one-dimensional BECs [3]. It has also been
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suggested that the nonlinearity management may prevent collapse-type phenomena in higher
dimensions [4]. Theoretical studies of the collapse-type behaviour were performed with a
reduction of the time-periodic PDE problem (1) to a time-periodic ODE problem using the
variational method [5] and the method of moments [6]. Recent work [7] presented a rigorous
proof that the NLS equation (1) with �(t) < 0 for all t � 0 may have a blow-up in three
dimensions (d = 3) depending on parameters of the initial condition.

The physical relevance of the time-periodic NLS equation, as evidenced by the above
works led to further developments in analysis of the evolution problem (1). As an example,
the success of the averaging theory [8] for optical solitons in the presence of strong dispersion
management led to an analogous development for strong nonlinearity management produced
originally in [9] and systematized in [10]. Let ε be a small parameter that measures a short
period and large variations of �(t) in the form

� = γ0 +
1

ε
γ

(
t

ε

)
, (2)

where γ (τ), τ = t/ε has a unit period and zero mean. The time-periodic NLS equation (1)
is averaged in the limit ε → 0. The averaging procedure is based on the transformation of
solutions of the NLS equation (1),

u = eiγ−1(τ )|v|2v(x, t),

where γ−1(τ ) is the mean-zero anti-derivative of γ (τ), and subsequent expansion of v(x, t)

into an asymptotic series,

v = w(x, t) + εv1(x, τ, t) + O(ε2).

The secular growth of v1(x, τ, t) in τ is removed if w(x, t) satisfies the averaged NLS equation,

iwt = −�w + γ0|w|2w + V (x)w − σ 2(|∇|w|2|2 + 2|w|2�|w|2)w, (3)

where

σ 2 =
∫ 1

0
γ 2

−1(τ ) dτ.

Our paper addresses the question whether the averaged NLS equation (3) with γ0 < 0
and σ �= 0 arrests the blow-up of solutions of the NLS equation in all dimensions. We remind
readers that the averaged NLS equation (3) with γ0 < 0 and σ = 0 may have blow-up in
d � 2 depending on the initial condition [11]. A similar question was addressed recently in
[12] in the context of the cubic-quintic NLS equation in one dimension (d = 1).

Before we explain our results in more detail, let us take a moment to review the usual
blow-up mechanism in the context of a semilinear focusing Schrödinger equation. That is,
take V (x) = 0 and σ = 0 in the NLS equation (3). It is well known (see chapter 5 in [13])
that whenever d � 2 and γ0 < 0, and for some (smooth) initial data w0(x) in H 1, there exists
a time T ∗ < ∞, so that

lim
t→T ∗

sup
0<t<T ∗

∫
R

d

|∇w(x, t)|2 dx → ∞ and lim
t→T ∗

sup
0<t<T ∗

∫
R

d

|w(x, t)|4 dx → ∞, (4)

while the solution is sufficiently smooth in t ∈ (0, T ∗), and thus for 0 � t < T ∗,

H(w) =
∫

R
d

(
1

2
|∇w(x, t)|2 +

γ0

4
|w(x, t)|4

)
dx = H(w0).

In our work, we show that no such blow-up of solutions occurs in the averaged NLS
equation (3) with γ0 < 0 and σ �= 0. That is, assuming that the solution exists and satisfies
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the conservation law H(w) = H(w0) and P(w) = ‖w‖2
L2 = ‖w0‖2

L2 , one can in fact control
a priori ‖w‖H 1 and ‖w‖L4 .

Unfortunately, our arguments do not allow to rigorously justify the global (and in fact even
the local) existence of solutions, satisfying the physical conservation laws. In other words, the
solutions may still blow up due to eventual loss of smoothness (and a subsequent failure to
obey the conservation laws), although we consider that to be an unlikely scenario, especially
for sufficiently smooth initial data u0(x).

We demonstrate our claims initially, in section 2, from the point of view of scaling
arguments. Then using rigorous estimates in section 3, we show that the H 1 and the L4 norm
of the solution w(x, t) are controlled by H(w) and P(w). In section 4, we compare the
above conclusion and earlier works where blow-up of solutions of the full time-periodic NLS
equation (1) have been reported. Section 5 summarizes our findings.

2. Formal scaling arguments

The averaged NLS equation (3) has a standard Hamiltonian form (see [10]) with the
Hamiltonian functional:

H(w) =
∫

R
d

(|∇w|2 +
γ0

2
|w|4 + V (x)|w|2 + σ 2|w|2|∇|w|2|2) dx. (5)

Due to the gauge invariance, the averaged NLS equation (3) also conserves the squared L2

norm:

P(w) =
∫

R
d

|w|2 dx. (6)

Solitary wave solutions of the averaged NLS equation (3) are critical points of H(w) at the
level set of fixed values of P(w).

Using formal scaling arguments [14] (see also [11]), we consider a two-parameter family
of dilatations:

w = bW(ax), (7)

where (a, b) are parameters and W(ξ) is a suitable function of ξ = ax. The squared L2

norm (6) is preserved by the dilatations (7) whenever b = ad/2. The Hamiltonian (5) at the
dilatations (7) is scaled as a function of parameter a > 0:

H(a) = I0(a) + a2I1 + γ0a
dI2 + σ 2a2d+2I3, (8)

where

I1 =
∫

R
d

|∇W |2 dξ, I2 = 1

2

∫
R

d

|W |4 dξ, I3 =
∫

R
d

|W |2|∇|W |2|2 dξ.

and

I0(a) =
∫

R
d

V

(
ξ

a

)
|W |2 dξ.

Let us consider the case of no nonlinearity management and no external potential, when σ 2 = 0
and V (x) = 0. It follows from (8) that the Hamiltonian function H(a) is positive definite
in the defocusing case, when γ0 > 0. In the focusing case, when γ0 < 0, the Hamiltonian
function H(a) is bounded from below for d = 1 and d = 2, γcr < γ0 < 0 and is unbounded
from below for d = 2, γ0 < γcr and d � 3, where

γcr = −I1

I2
.
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When H(a) is unbounded from below as a → ∞, the critical points of H(w) at a fixed value
of P(w) (i.e., solitary wave solutions) cannot be stable for small width a−1 and instability of
solitary waves implies a blow-up of localized initial data in the time evolution of the cubic
NLS equation (see [11] for details).

When the nonlinearity management is applied, the last term in the decomposition (8)
always dominates and it preserves the boundness of H(a) from below for any σ 2 > 0. This
indicates on the level of formal scaling arguments that the blow-up of solutions is arrested by
the nonlinearity management term in the averaged NLS equation (3).

We note that the first term in the decomposition (8) does not change the conclusions above
if V (x) is a smooth non-negative potential, such that I0(a) � 0. Typical examples of V (x)

are parabolic magnetic traps, when V ∼ x2, and periodic optical lattices, when V ∼ sin2(x).

3. On global solutions to the averaged equation

The rigorous analysis of local well-posedness of the averaged NLS equation (3) is not a trivial
task. In fact, to the best of our knowledge, one cannot verify even the local existence and
uniqueness of solutions to this problem. The problem has been considered in one dimension
d = 1 by Poppenberg where existence and uniqueness of local solutions with initial data in
H∞ was established [15]. In higher dimensions d � 2, one needs to require [16] that the
initial data be in Hs,m for sufficiently large values of s,m, where

Hs,m =
{
f ∈ Cs(Rd; C) :

∫
R

d

(1 + |x|)2m(|f |2 + |∂sf |2) dx < ∞
}

.

In addition, one needs to assume a ‘non-trapping’ geometric condition on the symbol of the
second-order operator, which depends on the profile of the initial data (see [16] for details).

In contrast, the local well-posedness of the time-periodic NLS equation (1) can be proved
with the standard tool in the energy space H 1 ≡ H 1,0 (see section 2 in [17]). Therefore, one
is tempted to assume that solutions of the averaged NLS equation (3), derived from the time-
periodic NLS equation (1) with a regular asymptotic procedure, inherit local well-posedness.
However, we cannot state a precise condition under which the averaged NLS equation (3) has
a (local) solution that conserves constant values of P and H in time.

Thus, as we have explained in section 1, we will focus our attention on the
following problem: assuming the existence of a local solution in space H 1 ∩ L4 ∩ {w :∫ |w|2|∇|w|2|2 dx < ∞} and in a time interval t ∈ (0, T ), we will show that

sup
0<t<T

(‖∇u(·, t)‖L2 + ‖u‖L4) < ∞.

In other words, the standard blow-up mechanism (4) for the cubic focusing Schrödinger
equation does not occur.

To that end, we represent the Hamiltonian H(w) in the form

H(w) = H1(w) + γ0H2(w), (9)

where

H1(w) =
∫

R
d

(|∇w|2 + V (x)|w|2 + σ 2|w|2|∇|w|2|2) dx � 0

and

H2(w) = 1

2

∫
R

d

|w|4 dx � 0.

We consider the focusing case γ0 < 0 and prove that H1(w) and H2(w) are bounded by the
two conserved quantities H(w) and P(w).
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First, we quote a variant of the Gagliardo–Nirenberg inequality (see section 1.1.16 on
p 15 in [18]).

Lemma 1. For all 1 � p, q, r � ∞, θ ∈ (0, 1) and r−1 = θp−1 + (1 − θ)q−1, it is true for
every function f (x) on x ∈ R

d that

‖f ‖Lr � ‖f ‖θ
Lp‖f ‖1−θ

Lq . (10)

Next, we quote a modification of the Sobolev embedding theorem (see (19) on p 26 in
[19]).

Lemma 2. There exists a constant Cd > 0, which depends only on the dimension d � 1, so
that it is true for every function f (x) on x ∈ R

d that

‖f ‖L2 � Cd(‖∇f ‖L2 + ‖f ‖L1). (11)

The main result of our analysis is the following theorem.

Theorem 1. There exist µ(d) > 0 and C(µ, d, σ ) > 0, so that for every 0 < µ < µ(d) and
every function φ(x) on x ∈ R

d , it is true that

‖φ‖4
L4 � µH1(φ) + C(µ, d, σ )

(‖φ‖2
L2 + ‖φ‖4

L2

)
. (12)

Proof. Let f = h3/2 with h(x) > 0 in (11) and obtain∫
R

d

h3 dx � C2
d

[
3

2

(∫
R

d

h|∇h|2 dx

)1/2

+
∫

R
d

h3/2 dx

]2

.

Next, we set h = |φ|2 and obtain∫
R

d

|φ|6 dx � C2
d

[
3

2

(∫
R

d

|φ|2|∇|φ|2|2 dx

)1/2

+
∫

R
d

|φ|3 dx

]2

� C2
d

[
9

2

∫
R

d

|φ|2|∇|φ|2|2 dx + 2

(∫
R

d

|φ|3 dx

)2
]

� Cd,σ

[
H1(φ) + ‖φ‖6

L3

]
,

for some positive constant Cd,σ . We have used here that

(
√

a + b)2 � 2(a + b2).

By the Gagliardo–Nirenberg inequality (10), we have ‖φ‖L3 � ‖φ‖1/2
L2 ‖φ‖1/2

L6 , such that the
estimate for ‖φ‖L6 is rewritten in the form

‖φ‖6
L6 � Cd,σH1(φ) + C2

d‖φ‖3
L6‖φ‖3

L2

� Cd,σH1(φ) + C2
d

[
µ‖φ‖6

L6 +
1

4µ
‖φ‖6

L2

]
, (13)

where we have used the Cauchy–Schwartz inequality:

∀µ > 0 : ab � µa2 +
b2

4µ
. (14)

Let µ < µ(d), where 2C2
dµ(d) = 1. The term ‖φ‖6

L6 can be estimated from the bound (13)
as follows:

‖φ‖6
L6 � C̃d,σ H1(φ) + C̃d‖φ‖6

L2 (15)
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for some constants C̃d,σ > 0 and C̃d > 0. By the Gagliardo–Nirenberg inequality (10), we
have ‖φ‖L4 � ‖φ‖3/4

L6 ‖φ‖1/4
L2 , such that the upper bound for ‖φ‖L4 follows from (14) and (15):

‖φ‖4
L4 � ‖φ‖L2

[
Ĉd,σ

√
H1(φ) + Ĉd‖φ‖3

L2

]
� Ĉd,σ

4µ
‖φ‖2

L2 + Ĉd‖φ‖4
L2 + µH1(φ),

which is the desired upper bound (12). �

As a corollary of the main theorem, we pick µ = µ(d)/2 and immediately obtain the
following bounds on the two parts of the energy functionals (9).

Corollary 1. There exist constants C1 > 0 and C2 > 0 that depend on d, γ0, σ , so that

H1(w) � C1(H(w) + P(w) + P 2(w)) (16)

and

H2(w) � C2(H(w) + P(w) + P 2(w)). (17)

Thus, if H(w) and P(w) are conserved by the time evolution, the Cauchy problem for the
averaged NLS equation (3) has global solutions in H 1. Therefore, assuming that physically
relevant solutions conserve Hamiltonian H and charge P, we conclude that the blow-up of
solutions of the cubic NLS equation (3) with γ0 < 0 in d � 2 is arrested by the nonlinearity
management for any σ �= 0.

4. Averaged equation versus full dynamics

As we have shown in section 3, solutions of the averaged NLS equation (3) with γ0 < 0
and σ �= 0, which preserve H(w) and P(w), do not blow up in higher dimensions. This
result raises the question whether the blow-up of solutions is arrested in the time-periodic
NLS equation (1) for any non-zero variance of the nonlinearity coefficient �(t). We address
this question within the ODE reduction of the time-periodic problem, which was considered
recently through the variational method [4, 5] and the method of moments [6]. We note that
the ODE reductions imply that the solution u(x, t) remains infinitely smooth and the blow-up
may only occur due to infinite increase in certain norms. Therefore, the blow-up in the ODE
approach would correspond directly to the blow-up estimates obtained in section 3.

It follows from the method of moments [6] that the time evolution of the radially symmetric
localized solutions of the full NLS equation (1) is approximated by a time-dependent,
generalized Ermakov–Pinney [20] equation:

R̈(t) = Q1

R3
+ �(t)

Q2

Rd+1
, (18)

where R(t) � 0 is an effective width of a localized solution, while (Q1,Q2) are constants
found from initial data, such that Q2 > 0 (see section 3 in [6] for details). We shall consider
the critical case d = 2 and rewrite the ODE (18) with the nonlinearity coefficient �(t) in (2)
in the explicit form

R̈(t) = α + βγ (t/ε)

R3
, (19)

where α = Q1 + γ0Q2, β = Q2/ε > 0 and γ (τ), τ = t/ε, is a periodic function with zero
mean and unit period. Conditions for blow-up versus existence of bounded oscillations in
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solutions of the ODE (19) were found in [21] (see section 4 in [6]). The sufficient condition
for the blow-up (when R(t) → 0 in a finite time t → t0) is

α + β max
0�τ�1

(γ ) < 0. (20)

The necessary condition for the bounded oscillations (when R(t) > 0 for any t � 0) is

α + β max
0�τ�1

(γ ) > 0. (21)

Numerical simulations in the case α < 0 showed that the condition (21) was also sufficient
for the blow-up arrest for any t � 0 [6].

It is obvious from the definition of α and β that β  |α| in the asymptotic limit ε → 0.
Therefore, the condition (21) is satisfied and solutions of the time-periodic ODE (19) do
not collapse, in agreement with our results derived in the context of the averaged NLS
equation (3).

Previous work [4] (see also the review in [10]) has also addressed the averaged NLS
equation (3) in the limit of weak nonlinearity management, when γ (τ) and σ 2 are rescaled as
γ = εγ̃ (τ ) and σ 2 = ε2σ̃ 2 such that σ 2 is small in the limit ε → 0. Solutions of the averaged
NLS equation (3) with σ 2 = ε2σ̃ 2 blow up in a finite time for ε = 0, but the small ε2-terms
formally stabilize the blow-up for any σ̃ 2 > 0. Although the truncation of the critical NLS
equation by neglecting terms of the order of ε4 has been considered in many applications of
nonlinear optics (see sections 4 and 5 in [22] and references therein), it is clearly insufficient
for a correct identification of the domain, where the blow-up of solutions occurs. Indeed,
while the averaged NLS equation (3) with small σ 2 predicts no blow-up of solutions, the full
NLS equation (1) with �(t) < 0 may have the blow-up, according to recent results [7].

The weak nonlinearity management corresponds to the case β ≈ |α|. Both domains
(20) and (21) for blow-up and bounded oscillations fit to the limit of weak nonlinearity
management. However, we will show that the averaged equation cannot distinguish between
these two different cases of global dynamics in solutions of the ODE problem (19). Following
[5], we consider a simple time-periodic ODE:

R̈(t) = α + β sin(2πτ)

R3
, τ = t

ε
, (22)

where α < 0, β > 0 and (α, β) are order of O(1) in the limit ε → 0. By using the formal
asymptotic multi-scale expansion method (see [10] for details), we construct an asymptotic
solution to the problem (22):

R = r(t) + ε2R2(τ, r) + ε4R4(τ, r) + O(ε6), τ = t

ε
, (23)

where R2 and R4 are recursively found from the set of linear inhomogeneous problems,

R2 = − β

(2π)2r3
sin(2πτ), R4 = − 3αβ

(2π)4r7
sin(2πτ) +

3β2

8(2π)4r7
cos(4πτ).

The mean-value term r(t) satisfies an extended dynamical equation that excludes secular
growth of the correction terms of the series (23) in τ :

r̈ = α

r3
+ ε2 3β2

2r7
+ ε4 15αβ2

2r11
+ O(ε6), ε = ε

2π
. (24)

The averaged ODE problem (24) is an equation of motion for an effective particle with a
coordinate r(t) in the potential field with an effective potential energy:

U(r) = α

2r2
+ ε2 β2

4r6
+ ε4 3αβ2

4r10
+ O(ε6). (25)
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Figure 1. Numerical simulations of the full NLS equation (1) (solid curve) and the averaged NLS
equation (3) (dashed curve) with a fourth order in time scheme, where spacings are dx = 0.075
and dt = 10−5. The half-width of the wavefunction s = x̄/2 is shown as a function of time t.

(This figure is in colour only in the electronic version)

When α < 0 and ε = 0, the particle with r(0) > 0 reaches r = 0 in a finite time t = t0 < ∞,
that indicates the blow-up of a localized solution. When the next ε2-term is taken into account
(as in the approximation of weak nonlinearity management [4, 5]), the blow-up is arrested
and the mean-value term r(t) oscillates in an effective minimum of the potential energy U(r),
truncated at ε2-terms. When the next ε4-term is taken into account (beyond the approximation
of weak nonlinearity management), the potential energy U(r) with α < 0 does not prevent
the blow-up of the localized solution depending on the initial data r(0). Existence versus non-
existence of blow-up depends on the ratio of parameters (α, β) but the difference is detected
within the averaging method only if convergence of the power series (25) is established in a
closed analytical form.

Similarly, the averaged NLS equation (3) cannot be used in the limit of weak nonlinearity
management for an accurate prediction of existence versus non-existence of blow-up of
solutions. In order to illustrate this point, we have performed numerical simulations of
the time-periodic NLS equation (1) in two dimensions (d = 2) with

�(t) = −20 + 8 sin(2πt),

where numerical values in �(t) correspond to the sufficient condition for blow-up (20) to
occur. We have observed numerically that collapse of radially symmetric Gaussian initial data
does occur (see solid curve in figure 1) by monitoring the width of the one-dimensional slice
along y = 0 of the wavefunction,

x̄ =
(∫

x2|u(x, 0, t)|2 dx∫ |u(x, 0, t)|2 dx

)1/2

,

until it becomes comparable to the lattice grid spacing used (at that scale collapse is arrested,
since the numerical scheme cannot resolve scales below the grid spacing). On the other hand,
numerical simulations of the averaged NLS equation (3) with the same parameters show that
the width x̄ never decreased below x̄ < 0.45 (see dashed curve in figure 1) indicating the
absence of collapse in accordance with results of section 3. Similar outcomes of numerical
simulations were observed for other numerical values in �(t), as soon as the sufficient condition
for blow-up (20) was satisfied.
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We summarize that the averaged NLS equation (3) can only be used for modelling of the
blow-up arrest in the limit of strong nonlinearity management of the full NLS equation (1).
The averaged NLS equation cannot distinguish between the blow-up and no blow-up domains
in the limit of weak nonlinearity management.

5. Conclusion

In conclusion, we have studied the question whether solutions of the averaged NLS equation
blow up in finite time. The averaged NLS equation describes strong nonlinearity management
of the time-periodic NLS equation. We have showed with formal scaling arguments and
rigorous analysis that the blow-up of solutions in higher dimensions is arrested within the
averaged NLS equation. We have also discussed the non-applicability of the averaged NLS
equation to the weak nonlinearity management, where the blow-up of solutions can occur
beyond the weak management limit.

It is an open problem to study conditions for blow-up in the time-periodic NLS equation,
depending on parameters of the nonlinearity management and profile of initial data. Rigorous
results on the latter problem are only available within the ODE approximation (18), when
the PDE problem reduces to a dynamical system with 1 degree of freedom. It would be
particularly interesting to study mathematically and to examine numerically whether the
theoretical prediction from the method of moments provides an optimal bound for the full
PDE problem with arbitrary initial data.
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