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We consider the initial-value problem for the regularized Boussinesq-type
equation in the class of periodic functions. Validity of the weakly nonlinear
solution, given in terms of two counterpropagating waves satisfying the
uncoupled Ostrovsky equations, is examined. We prove analytically and illustrate
numerically that the improved accuracy of the solution can be achieved at the
timescales of the Ostrovsky equation if solutions of the linearized Ostrovsky
equations are incorporated into the asymptotic solution. Compared to the
previous literature, we show that the approximation error can be controlled in
the energy space of periodic functions and the nonzero mean values of the
periodic functions can be naturally incorporated in the justification analysis.

1. Introduction

Validity of the long-wave approximation for shallow water waves has been
considered in many recent works. Unbounded spatial domains and classes
of decaying initial data were typically considered. The first results in this
direction were found in the context of water waves by Craig [1], Schneider
[2], Schneider and Wayne [3, 4], Ben Youssef and Colin [5], and Lannes [6].
Rigorous justification analysis was developed to control the approximation
error, and the bounds on the error terms were typically found to be larger than
those in the formal asymptotic theory.

Wayne and Wright [7] extended this analysis to the regularized Boussinesq
equation to incorporate the first-order correction to the leading-order
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approximation and to control the error term in Sobolev spaces (see [8] for a
similar treatment of the original water-wave equations). They also reported
numerical approximations that illustrated the validity of the main result, where
the bounds on the approximation error were controlled to be of the same size
as in the formal asymptotic theory.

Comprehensive treatment of the Boussinesq systems was developed by
Bona et al. [9], who explored the case of symmetric Boussinesq systems and
justified the long-wave approximation (where the first-order correction term
was added to the leading-order term) in a number of physical models that
included the water-wave equations and the regularized Boussinesq system. A
priori energy estimates and Gronwall’s inequalities were used to control the
error term in Sobolev spaces and to recover the error bounds of the formal
asymptotic theory. Initial data on the infinite line with sufficient decay at
infinity were treated on equal footing with the periodic initial data under the
zero mean-value assumption. The approximation error for the periodic data
with a nonzero mean value was found to be significantly larger.

Recently, in the framework of a system of coupled Boussinesq equations [10],
the long-wave approximation was extended to the regularized Boussinesq-type
equation

uττ − uξξ + δu = 1

2
(u2)ξξ + uττξξ , (1)

where δ > 0 and the subscripts denote partial differentiation. Equation (1) with
δ > 0 arises also in the context of oceanic waves, which takes into account
the effect of background rotation [11]. Therefore, it is sometimes called the
rotation-modified Boussinesq equation. This equation is a two-directional
version of the Ostrovsky equation [12], which constitutes a modification of the
Korteweg–de Vries (KdV) equation with an additional term for δ �= 0. More
recently, regularized Boussinesq-type equations with δ > 0 have appeared in
the context of a modified Toda lattice on an elastic substrate [13] and a layered
solid waveguide with the soft bonding layer [14,15]. For brevity, we will call the
Equation (1) the regularized Boussinesq equation regardless of the value of δ.

We shall note in passing that, in the water-wave context, the accuracy of the
Equation (1) does not exceed the accuracy of the KdV or Ostrovsky equations,
because the one-way propagation is assumed in order to derive this equation
from the Boussinesq system. However, we would like to emphasize that
Equation (1) with both δ = 0 and δ > 0 is a valid two-directional model in the
context of the waves in various solid waveguides (see, for example, [16,17] and
[13–15]). In particular, Equation (1) with δ > 0 constitutes a reduction of the
system of coupled regularized Boussinesq equations describing waves in layered
elastic waveguides with the soft bonding layer (see [15]) in the limit when the
bonding coefficient in one of the layers is much smaller than in the other.
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A formal weakly nonlinear solution of the initial-value problem for a
system of coupled regularized Boussinesq equations on the infinite interval has
been constructed in terms of solutions of coupled and uncoupled Ostrovsky
equations for unidirectional counterpropagating waves in the recent work [10].
Numerical simulations showed generation of a radiating solitary wave (in the
case of strong interactions) and strongly nonlinear wave packets (in the case
of weak interactions) from localized initial data. Radiating solitary waves in
coupled KdV equations were previously observed in [18]. The emergence of
the strongly nonlinear wave packets for the Ostrovsky equation was reported
in [19]. A discrete version of the same phenomenon was studied in [13].
The weak interaction scenario leading to two uncoupled Ostrovsky equations
remains valid in the case of the scalar regularized Boussinesq equation (1) with
δ > 0.

Explicit analytical solutions and more detailed numerical simulations were
developed in the follow-up work [20] in the context of the regularized
Boussinesq equation with δ = 0. In particular, the explicit weakly nonlinear
solution of the regularized Boussinesq equation was constructed for the
initial data corresponding to the soliton solution of the KdV equation.
The solution shows generation of a small counterpropagating solitary wave,
which agrees with the numerical simulations. Explicit analytical solutions
have also been constructed for the initial data in the form of the N -soliton
solutions of the KdV equation and their perturbations. It was shown
in [20] that the error term is significantly smaller when the first-order
correction term is taken into account, but it grows with the time. No
detailed studies of the convergence rate for the error term were reported in
[10, 20].

The purpose of this work is to develop a systematic approach to the
derivation and justification of the error terms of the weakly nonlinear solutions
for the regularized Boussinesq equation (1) when the first-order correction is
added to the leading-order term. We will also give a systematic comparison
of the convergence rates predicted by the theory and observed in numerical
simulations.

Our analytical results are obtained in the periodic domain, where derivation
and justification of the reduced equations become easy with the use of
Fourier series (see [21] for similar derivations). Our numerical examples
resemble localized waves on a long but fixed period, which still fits
well to the analytical theory. Additional assumptions on the spatial decay
of initial data are required to work in the infinite domains. See [22, 23]
for recent works on justifications of the uncoupled KdV equations in the
context of the defocussing nonlinear Schrödinger equations in the infinite
domain.

The novelties of our paper (compared to the results obtained in [9], [10, 20],
and [7]) are the following. First, we discuss in details the role of the nonzero
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mean value of the periodic solutions in the justification analysis. For δ = 0,
nonzero mean values were found to degrade the accuracy of the long-wave
approximation [9] because no corrections to the wave speeds were introduced
in the uncoupled KdV equations. For δ > 0, all solutions of the Ostrovsky
equations must satisfy the zero-mean constraint [24] but the zero-mean
constraint does not have to be assumed for the regularized Boussinesq equation
(1). We will show how the mean value can be incorporated naturally in the
long-wave approximation for the regularized Boussinesq equation (1) both for
δ = 0 and δ > 0.

The other novelty of our work is that we extend the analysis to justify
the first-order correction terms to the long-wave approximation on the
timescale of the Ostrovsky equation. The first-order correction terms were
written explicitly in the previous works [10, 20] but the validity of these
terms at times greater than order one can only be achieved if these terms
satisfy the linearized Ostrovsky equation. The linearized KdV equations
have also appeared in [7] in the framework of the regularized Boussinesq
equation (with δ = 0). Compared to this work, we give precise expressions
in terms of solutions of the leading-order equations to solve the associated
initial-value problem up to the first-order correction terms and develop the
justification analysis in the energy space of the regularized Boussinesq
equation.

Before closing the introduction, we shall also discuss the reductive
perturbation schemes, which were used to obtain the integrable KdV hierarchy
from the shallow water-wave and Boussinesq equations [25–27]. It was later
shown in [28, 29] that there are obstacles to the asymptotic integrability of the
original physical equations reduced to the integrable KdV hierarchy in the
sense that the formal asymptotic expansions become nonuniform at higher
orders of ε. Within the framework of our approach, we do not need to set up
the time evolution along higher flows of the KdV hierarchy if we are only
interested in the validity of the first-order correction terms at the timescale of
the KdV equation. In other words, we can fully control the approximation error
within the required order of accuracy of the asymptotic expansions without
analyzing the secular terms in the linearized KdV equations and the related
difference between asymptotically integrable and nonintegrable perturbation
terms.

This paper is organized as follows. In Section 2, we set up the long-wave
scaling and analyze dynamics of the nonzero mean value of periodic functions.
In Section 3, we describe the formal asymptotic theory and prove the
justification result about the approximation error of the asymptotic expansion,
in the framework of the regularized Boussinesq equation with δ = 0. Section 4
extends analysis to the case of the regularized Boussinesq equation with δ > 0.
Section 5 illustrates the main results with numerical computations. Section 6
concludes the paper.
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2. Long-wave scaling and dynamics of the mean value

Using the scaling transformation,

u(ξ, τ ) = εU (x, t), x = √
εξ, t = √

ετ, δ = ε2γ, ε > 0,

we rewrite the regularized Boussinesq equation (1) in the equivalent form:

Utt − Uxx = ε

(
1

2
(U 2)xx + Uttxx − γU

)
. (2)

Throughout this paper, we will interpret the right-hand side as a O(ε)
perturbation and develop the asymptotic theory in the limit of small ε. In
physical settings, the perturbed wave equation (2) has also the O(ε2) correction
terms, which need to be incorporated in the asymptotic theory. However, these
modifications are technically straightforward and obey the same justification
analysis, hence we are going to neglect the O(ε2) terms in the Boussinesq
equation (2).

We consider the initial-value problem with the initial data

U |t=0 = F(x), Ut |t=0 = V (x), (3)

where the given functions F and V are in the class of squared integrable
(2L)-periodic functions. We can expand them into the Fourier series

F(x) =
∑
n∈Z

Fne
iπnx

L , V (x) =
∑
n∈Z

Vne
iπnx

L . (4)

For the sake of simplification, we assume that F and V are ε-independent,
although extension to a general case is also straightforward.

The following local existence result is similar to the local well-posedness
theory for regularized Boussinesq systems [30, 31].

PROPOSITION 1. Fix s > 1
2 . For any (F, V ) ∈ H s

per(−L , L) × H s
per(−L , L),

there exists an ε-independent t0 > 0 and a unique solution U (t) ∈ C1([0, t0],
H s

per(−L , L)) of the regularized Boussinesq equation (2) with any ε > 0 and
γ ≥ 0.

Proof: The evolution problem can be written in the operator form:

Utt − LεUxx + εγ LεU = MεU
2, (5)

where

Lε := (1 − ε∂2
x )−1, Mε := 1

2
ε∂2

x Lε.

By using Fourier series, we realize that both operators Lε and Mε are bounded
for any ε > 0 and γ ≥ 0 with the ε-independent bounds:

‖LεU‖L2
per

≤ ‖U‖L2
per
, ‖MεU‖L2

per
≤ 1

2
‖U‖L2

per
.
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Using Duhamel’s principle, we rewrite the evolution problem (5) with the initial
data (3) in the equivalent integral form:

U (t) = St (t) 	 F + S(t) 	 V +
∫ t

0
S(t − τ ) 	

(
MεU

2(τ ) − εγ LεU (τ )
)

dτ,

(6)
where the star denotes the convolution operator and S(t) is the fundamental
solution operator with the Fourier image:

Ŝ(t) = sin(k
̂(k)t)

k
̂(k)
, 
(k) := 1√

1 + εk2
.

Because S(t) and St (t) are bounded operators from L2
per(−L , L) to L2

per(−L , L)
for any t ∈ R, the fixed-point iteration method (see, e.g., [32]) implies that
there exists a unique local solution of the integral equation (6) in the class

U (t) ∈ C([0, t0], H s
per(−L , L)), (7)

for any (F, V ) ∈ H s
per(−L , L) × H s

per(−L , L) and any s > 1
2 , where t0 > 0 is

an ε-independent local existence time. On the other hand, Ut (t) is defined by
differentiation of the integral equation (6):

Ut (t) = Stt (t) 	 F + St (t) 	 V +
∫ t

0
St (t − τ ) 	

(
MεU

2(τ ) − εγ LεU (τ )
)

dτ.

Because Stt (t) satisfies the bound

‖Stt (t) 	 F‖L2
per

≤ 1√
ε
‖F‖L2

per
, ε > 0

and U (t) is defined in the class (7), we have Ut (t) ∈ C([0, t0], H s
per(−L , L))

for any ε > 0. As a result, U (t) ∈ C1([0, t0], H s
per(−L , L)). �

In the long-wave approximation, we will need to extend local solutions of
the Boussinesq equation (2) in the energy space to the time intervals with
t0 = O(ε−1). This continuation is achieved with energy methods resulting in
the following wave breaking criterion.

PROPOSITION 2. Let U (t) ∈ C1([0, t0], H 1
per(−L , L)) be a local solution in

Proposition 1. The solution is extended to the time interval [0, t ′
0] with t ′

0 > t0 if

M := sup
t∈[0,t ′

0]
‖U (t)‖L∞

per
+ sup

t∈[0,t ′
0]

‖Ut (t)‖L∞
per
< ∞. (8)

Proof: Let us define the energy function

E(U ) :=
∫ L

−L

(
U 2

t + U 2
x + εγU 2 + εU 2

t x + εUU 2
x

)
dx, (9)
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for any local solution U (t) ∈ C1([0, t0], H 1
per(−L , L)). Multiplying the

Boussinesq equation (2) by Ut and integrating by parts, we obtain

d E(U )

dt
= ε

∫ L

−L
UtU

2
x dx + 2 (UtUx + εUtUttx + εUUtUx )

∣∣∣∣
x=L

x=−L

.

By standard approximation arguments in Sobolev space H 2
per(−L , L), the trace

of the boundary values is zero and we obtain a priori energy estimate

d E(U )

dt
= ε

∫ L

−L
UtU

2
x dx ≤ ε‖Ut‖L∞

per
‖Ux‖2

L2
per
.

Under the condition (8), there is a positive constant C(εM) that depends on
εM such that

‖Ux‖2
L2

per
≤ C(εM)E(U ).

By Gronwall’s inequality, we then obtain

E(U ) ≤ E(U0)eεMC(εM)t , t ∈ [0, t ′
0],

such that the solution is extended to the time t ′
0 > t0 in the energy space, that

is, in the class U (t) ∈ C1([0, t ′
0], H 1

per(−L , L)). �

Remark 1. By Sobolev embedding of H 1
per(−L , L) to L∞

per(−L , L), we
have M = O(ε−1/2) and C(εM) = O(1) as ε → 0. The energy method of
Proposition 2 guarantees continuation of the local solution of Proposition 1
to the time intervals of t0 = O(ε−1/2). However, this is not sufficient as the
long-wave approximation requires us to continue the solution to the time
intervals of t0 = O(ε−1). We achieve this goal by controlling M with the O(1)
bound as ε → 0 (see the proof of Theorem 1 below).

Remark 2. D’Alembert solution of the wave equation Utt − Uxx = 0 (for
ε = 0) only requires us to set

(F, V ) ∈ H 1
per(−L , L) × L2

per(−L , L)

to have U ∈ C(R, H 1
per(−L , L)) ∩ C1(R, L2

per(−L , L)). However, we actually
need to find a solution in the class U ∈ C1(R, H 1

per(−L , L)) in order to bound
all terms in the energy (9). This is achieved in Proposition 1, which gives an
improved local well-posedness result for the regularized Boussinesq equation
(2).

We shall now study the dynamics of the mean value of the (2L)-periodic
solution U (t) ∈ C1([0, t0], H 1

per(−L , L)). Integrating Equation (2) in x over
the period (2L) in the class of sufficiently smooth (2L)-periodic functions, we
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obtain the evolution equation for the mean value:

d2

dt2

∫ L

−L
U (x, t)dx = −εγ

∫ L

−L
U (x, t)dx, (10)

which shows that

〈U 〉(t) := 1

2L

∫ L

−L
U (x, t)dx = F0 cos(

√
εγ t) + V0

sin(
√
εγ t)√
εγ

, (11)

where F0 and V0 are mean values of the Fourier series (4).
To eliminate the linear growth of the mean value 〈U 〉 in t for γ = 0, we

should assume that V0 = 0 (that is, V has zero mean value). If γ > 0, the
mean value 〈U 〉 is oscillating with the frequency ω = (εγ )1/2, and hence F0

and V0 can be nonzero in general. However, for any t ∈ R, the mean value 〈U 〉
diverges as O(ε−1/2) if V0 �= 0. Therefore, in both cases γ = 0 and γ > 0, we
would like to eliminate the growth of the mean value 〈U 〉 by requiring that

V0 = 1

2L

∫ L

−L
V (x)dx = 0. (12)

In this case, the mean value 〈U 〉 is bounded in t ∈ R and ε ∈ R+ with a
uniform limit as ε → 0 for any γ ≥ 0. For many physical applications, the
constraint V0 = 0 is rather natural in the physical contexts of the regularized
Boussinesq equation (2) both for γ = 0 and γ > 0.

3. Long-wave approximation for γ = 0

We shall consider the initial-value problem for the regularized Boussinesq
equation,

Utt − Uxx = ε

(
1

2
(U 2)xx + Uttxx

)
. (13)

The initial data are given by (3) and (4) subject to the zero-mean velocity
constraint (12). By the exact solution (11), the mean value of the solution U is
constant in t with 〈U 〉 = F0.

Substituting U (x, t) = c0 + Ũ (x, t) into the regularized Boussinesq equation
(13), where c0 := F0 and Ũ is the zero-mean part of the 2L-periodic function
U , we obtain the evolution equation

Ũ tt − Ũ xx = ε

(
c0Ũ xx + 1

2
(Ũ 2)xx + Ũ tt xx

)
. (14)

ByProposition1,thereexistsauniquelocalsolutionŨ ∈ C1([0, t0], H s
per(−L , L))

of the evolution equation (14) for any (F̃, Ṽ ) ∈ H s
per(−L , L) × H s

per(−L , L)
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with s > 1
2 , where t0 > 0 is a local existence time and the tilded variables

denote the zero-mean part of the (2L)-periodic functions.

3.1. Derivation

We shall look for a formal asymptotic solution of the evolution equation (14)
up to and including the O(ε2) terms:

Ũ (x, t) = U0(x, t) + εU1(x, t) + ε2U2(x, t) + O(ε3). (15)

In the formal theory, we collect together terms at each order.
Order O(ε0): The leading-order U0 satisfies the initial-value problem for

the wave equation: ⎧⎨
⎩

(∂2
t − ∂2

x )U0 = 0,
U0|t=0 = F̃,
∂tU0|t=0 = Ṽ .

(16)

The d’Alembert solution of the wave equation (16) consists of a superposition
of two counterpropagating waves of zero mean:

U0(x, t) = f −(ξ−) + f +(ξ+), ξ± = x ± t, (17)

where

f ±(ξ±) = 1

2
F̃(ξ±) ± 1

2
∂−1
ξ± Ṽ (ξ±) = 1

2

∑
n∈Z\{0}

(
Fn ± LVn

π in

)
e

iπnξ±
L , (18)

and ∂−1
ξ± denote the zero-mean antiderivative of the zero-mean periodic functions.

Order O(ε): At this point, we should realize that the next-order correction
terms are going to grow linearly in time t unless we will modify the
leading-order solution on a slow timescale T = εt . Therefore, we modify the
leading-order solution (17) with the slow time variable:

U0(x, t) = f −(ξ−, T ) + f +(ξ+, T ), f ±(ξ±, T ) =
∑

n∈Z\{0}
a±

n (T )e
iπnξ±

L ,

(19)
where

a±
n |T =0 = 1

2

(
Fn ± LVn

π in

)
, n ∈ Z\{0}. (20)

We know the initial data for f ± in slow time T = εt , but we do not know yet
the evolution equations for f ±(ξ±, T ). To derive these equations, we consider
the first-order correction terms:⎧⎨

⎩
(∂2

t − ∂2
x )U1 = −2∂2

tT U0 + c0∂
2
x U0 + 1

2∂
2
x (U 2

0 ) + ∂4
t t xxU0,

U1|t=0 = 0,
∂tU1|t=0 = −∂T U0|t=0.

(21)
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Using the Fourier series, U1(x, t) = ∑
n∈Z\{0} gn(t)e

iπnx
L , we reduce the evolution

equation in the system (21) to the uncoupled system of differential equations:

d2gn

dt2
+
(πn

L

)2
gn = hn(t), (22)

where

hn(t) = −2π in

L

(
da+

n

dT
e

iπnt
L − da−

n

dT
e− iπnt

L

)
+ π4n4

L4

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)

−π
2n2

L2
c0

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)
− π2n2

L2

⎛
⎝ ∑

k∈Z\{0,n}
a+

k a−
n−ke

iπ(2k−n)t
L

⎞
⎠

−π
2n2

2L2

⎛
⎝ ∑

k∈Z\{0,n}
a+

k a+
n−k

⎞
⎠ e

iπnt
L − π2n2

2L2

⎛
⎝ ∑

k∈Z\{0,n}
a−

k a−
n−k

⎞
⎠ e− iπnt

L .

The terms e± iπnt
L in the right-hand side of differential equations (22) are

resonant (that is, they induce a linear growth of gn(t) in a fast time t). To
remove these resonant terms, we define uniquely the evolution problem for the
Fourier coefficients of the leading-order solution (19):

∓ 2π in

L

da±
n

dT
+ π4n4

L4
a±

n − π2n2

L2
c0a±

n − π2n2

2L2

∑
k∈Z\{0,n}

a±
k a±

n−k = 0, (23)

subject to the initial conditions (20).
In the equivalent differential form, the evolution problem (23) coincides

with the two uncoupled KdV equations

∂

∂ξ±

(
∓2
∂ f ±

∂T
+ ∂3 f ±

∂ξ 3±
+ c0

∂ f ±

∂ξ±
+ f ± ∂ f ±

∂ξ±

)
= 0. (24)

We consider the initial-value problem for the uncoupled KdV equations
(24) starting with the initial values f ±|T =0 given by (18). By the local and
global well-posedness theory for the KdV equation [33], there exist unique
global solutions f ± ∈ C(R+, H s

per(−L , L)) of the KdV equations (24) for any

f ±|T =0 ∈ H s
per(−L , L) with s ≥ − 1

2 .
After the constraints (23) are substituted back into the differential equations

(22), we obtain the linear inhomogeneous equations

d2gn

dt2
+
(πn

L

)2
gn = −π

2n2

L2

∑
k∈Z\{0,n}

a+
k a−

n−ke
iπ(2k−n)t

L ,

subject to the initial conditions

gn(0) = 0, ∂t gn(0) = −∂T a+
n (0) − ∂T a−

n (0).
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This initial-value problem admits the following bounded solution:

gn(t) =
∑

k∈Z\{0,n}

n2

4k(k − n)
a+

k a−
n−ke

iπ(2k−n)t
L + Gn cos

(
πnt

L

)
+ Hn sin

(
πnt

L

)
,

where Gn and Hn are constants of integrations to be found from the initial
conditions for gn . Using the previous expression for gn , we rewrite the
first-order correction term in the implicit form:

U1(x, t) = fc(x, t) + φ−(ξ−, T ) + φ+(ξ+, T ), (25)

where fc is uniquely defined by

fc(x, t) =
∑

n∈Z\{0}

∑
k∈Z\{0,n}

n2

4k(k − n)
a+

k (T )a−
n−k(T )e

iπ(2k−n)t
L + iπnx

L (26)

and φ± are counterpropagating waves of the wave equation given by

φ±(ξ±, T ) =
∑

n∈Z\{0}
b±

n (T )e
iπnξ±

L . (27)

An explicit expression for the first-order correction term was derived recently
in [10,20] by averaging the differential equations with respect to the fast time
in characteristic coordinates. We check that our expression (26) coincides with
the one derived in [10, 20]:

fc(x, t) = −1

4

(
2 f + f − + (∂ξ+ f +)(∂−1

ξ− f −) + (∂ξ− f −)(∂−1
ξ+ f +)

)
, (28)

where ∂−1
ξ± f ± denote again the zero-mean antiderivatives of the zero-mean

periodic functions f ±.
Using the initial conditions for gn , we can express the initial data for the

amplitudes b±
n explicitly:

b±
n |T =0 = −

∑
k∈Z\{0,n}

n(n ± (2k − n))

8k(k − n)

(
a+

k a−
n−k

) |T =0

∓ L

2iπn

(
da+

n

dT
+ da−

n

dT

)∣∣∣∣
T =0

. (29)

Order O(ε2): The time evolution of φ± with respect to the slow time T is
not defined at the O(ε) order. To derive the time evolution, we consider the
second-order correction terms:⎧⎪⎪⎨

⎪⎪⎩
(∂2

t − ∂2
x )U2 = −2∂2

tT U1 − ∂2
T U0 + c0∂

2
x U1 + ∂2

x (U0U1)
+ ∂4

t t xxU1 + 2∂4
tT xxU0,

U2|t=0 = 0,
∂tU2|t=0 = −∂T U1|t=0.

(30)
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Repeating the procedure of removing the resonant terms e± iπnt
L , we define

uniquely the evolution problem for the Fourier coefficients of the first-order
solution (25):

− d2a±
n

dT 2
∓ 2π in

L

db±
n

dT
+ π4n4

L4
b±

n ∓ 2iπ3n3

L3

da±
n

dT
− π2n2

L2
c0b±

n (31)

−π
2n2

L2

∑
k∈Z\{0,n}

a±
k b±

n−k − π2n2

L2

∑
k∈Z\{0,n}

(n − k)2

4nk
a±

n |a∓
k |2 = 0,

subject to the initial conditions (29).
In the equivalent differential form, the evolution equations (31) coincide

with the linearized KdV equations

∂

∂ξ±

(
∓2
∂φ±

∂T
+ ∂3φ±

∂ξ 3±
+ c0

∂φ±

∂ξ±
+ ∂

∂ξ±
f ±φ±

)

= ∂2 f ±

∂T 2
∓ 2

∂4 f ±

∂ξ 3±T
+ ∂2 f ±

s

∂ξ 2±
, (32)

where

f ±
s (ξ±, T ) = −

∑
n∈Z\{0}

∑
k∈Z\{0,n}

(n − k)2

4nk
|a∓

k (T )|2a±
n (T )e

iπnξ±
L

= 1

2
f ±(ξ±, T )

⎛
⎝ ∑

k∈Z\{0}
|a∓

k (T )|2
⎞
⎠ (33)

= 1

4L
f ±(ξ±, T )

∫ L

−L
| f ∓(ξ, T )|2dξ.

The initial-value problem for the linearized KdV equations (32) starts with
the initial values φ±|T =0 given by (27) and (29) (the closed-form expressions
in terms of the leading-order solutions f ± can be found in [10, 20]).
There exists a unique global solution φ± ∈ C(R+, H s

per(−L , L)) for any

φ±|T =0 ∈ H s
per(−L , L) with s ≥ − 1

2 provided that the source term on the
right-hand side of (32) is sufficiently smooth in T and ξ±.

After the constraints (31) are substituted back into the differential equations,
we can obtain a bounded solution for U2(x, t). This completes the construction
of the formal asymptotic expansion (15) up to and including the O(ε2) terms.

3.2. Justification

We shall now justify the long-wave approximation. The following theorem
gives the main result of the justification analysis.
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THEOREM 1. Assume that (F, V ) ∈ H 1
per(−L , L) × H 1

per(−L , L) subject to
the zero-mean constraint (12) on V . Fix s ≥ 10 and let f ± ∈ C(R, H s

per(−L , L))
be global solutions of the KdV equations (24) starting with the initial data
(18). Let U0 and U1 be given by (19) and (25) with (26), (27), and (29). There
is ε0 > 0 such that for all ε ∈ (0, ε0) and all ε-independent T0 > 0, there is
an ε-independent constant C > 0 such that for all t0 ∈ [0, T0/ε], the local
solution of the regularized Boussinesq equation (13) satisfies

sup
t∈[0,t0]

‖U − c0 − U0 − εU1‖H 1
per

≤ Cε2t0. (34)

If, in addition, φ± in (27) satisfies the linearized KdV equations (32) subject to
the initial data (29) and s is sufficiently large, then for all ε ∈ (0, ε0) and all
ε-independent T0 > 0, there is an ε-independent constant C > 0 such that

sup
t∈[0,T0/ε]

‖U − c0 − U0 − εU1‖H 1
per

≤ Cε2. (35)

Before proving the theorem, we make some relevant remarks.

Remark 3. The bound (34) of Theorem 1 generalizes the result of theorem
7 in [9] obtained in the context of Boussinesq systems. However, if the authors
of [9] restrict their consideration to the zero mean value for the initial data
(case (ii’) in theorem 7) and show that the nonzero mean values do not
produce good long-wave approximations (cases (ii) and (iii) in theorem 7), we
show that the mean value in the initial data for U |t=0 = F can be naturally
incorporated in the justification analysis by modifying the velocity term of the
uncoupled KdV equations (24).

Remark 4. The difference between bounds (34) and (35) of Theorem 1 is in
the timescales, for which the first-order correction terms remain valid. Bound
(34) shows that the error of the long-wave approximation is of the O(ε2) order
at the timescale t0 = O(1) but becomes comparable with the O(ε) first-order
correction terms at the timescale t0 = O(ε−1). On the other hand, bound (35)
shows that the error of the long-wave approximation remains of the O(ε2)
order at the timescale t0 = O(ε−1) if the first-order correction terms satisfy the
linearized KdV equations (32). This improved result corresponds to theorem
1.1 in [7] on the infinite line with the only difference that the justification
analysis is performed in the energy space of the regularized Boussinesq
equation (13) compared to the space Hσ ∩ Hσ+8 with σ ≥ 4 used in [7].

Remark 5. Figures 3(c) and 5(c) in [20] illustrate the growth of the
approximation error without the account of the linearized KdV equation (32)
at the timescale t0 = O(ε−1). Despite the fact that the first-order correction
terms were found to give a smaller approximation error, the comparable O(ε)
behavior between the first-order correction terms and the approximation errors
was observed on these figures at the timescale t0 = O(ε−1).
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Remark 6. It is customary to combine (24) and (32) to yields a higher
order KdV equation but the precise form of this higher order KdV equation is
not unique [25–27]. The problem of nonuniqueness does not occur in the
method we are using in our analytical work, where the system of reduced
amplitude equations (24) and (32) is uniquely determined for the Cauchy
problem associated with the regularized Boussinesq equation (13).

PROOF OF THEOREM 1. We shall first prove bound (34) on the approximation
error. We work in energy space of the regularized Boussinesq equation (13)
and write the approximation in the form

U (x, t) = c0 + U0(x, t) + εU1(x, t) + ε2Û (x, t), (36)

where c0 = F0 is the mean value, U0 and U1 are given explicitly by (19) and
(25) with (26), (27), and (29), f ± satisfy the uncoupled KdV equations (24),
and Û is the error term that depends on ε. Substituting the decomposition (36)
into the regularized Boussinesq equation (13), we obtain the time evolution
problem for the error term:

Û tt − (1 + εc0)Û xx − εÛ tt xx = ε∂2
x

(
U0Û + εU1Û + 1

2
ε2Û 2

)
+ Ĥ , (37)

where the initial data are

Û |t=0 = 0, Û t |t=0 = −∂T U1|T =0, (38)

and the source term is

Ĥ = −2∂t∂T U1 − ∂2
T U0 − ε∂2

T U1 + c0∂
2
x U1 + (∂t + ε∂T )2∂2

x U1 + 2∂t∂T ∂
2
x U0

+ ε∂2
T ∂

2
x U0 + ∂2

x (U0U1) + 1

2
ε∂2

x (U 2
1 ).

We use a priori energy estimates (see, e.g., [34,35] for similar applications
of this technique). By an extension of Proposition 1, there exists a unique
solution

Û ∈ C1([0, t0], H 1
per(−L , L))

of the perturbed regularized Boussinesq equation (37) for some ε-independent
t0 > 0 starting with the initial data (38) provided that the source term satisfies

Ĥ ∈ C([0, t0], H 1
per(−L , L)). (39)

By looking at the explicit expression for Ĥ , where U0 and U1 are given by (19)
and (25) and f ± ∈ C(R, H s

per(−L , L)) are global solutions of the uncoupled
KdV equations (24), we realize that the term of the highest regularity is
∂2

T ∂
2
x U1 ∼ ∂9

ξ± f ±, hence Ĥ is from the class (39) if s ≥ 10.
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Let us introduce the energy at the local solution Û ∈ C1([0, t0], H 1
per(−L , L))

of the perturbed regularized Boussinesq equation (37):

Ê =
∫ L

−L

(
Û 2

t + (1 + εc0)Û 2
x + εÛ 2

t x + εU0Û 2
x + 2εU0xÛÛ x

)
dx . (40)

Multiplying (37) by Û t , integrating in x over [−L , L], and using approximation
arguments in Sobolev spaces of higher regularity, we obtain

1

2

d Ê

dt
=
∫ L

−L

[
ĤÛ t + ε

(
U0xt ÛÛ x + U0xÛ tÛ x + 1

2
U0t Û

2
x

)

− ε2Û tx

(
U1Û + 1

2
εÛ 2

)
x

]
dx .

Because x and t derivatives of U0 are ε-independent, for sufficiently small
ε, there is an ε-independent positive constant C such that

‖Û t‖2
L2

per
+ ‖Û x‖2

L2
per

+ ε‖Û xt‖2
L2

per
≤ C Ê .

By Poincaré’s inequality for (2L)-periodic mean-zero functions, there is another
positive constant C such that

‖Û‖2
L2

per
≤ C‖Û x‖2

L2
per

≤ C Ê .

By Cauchy–Schwarz’s inequality, we obtain from the energy balance equation
that

1

2

d Ê

dt
≤ ‖Ĥ‖L2

per
‖Û t‖L2

per
+ Cε

(
‖U0‖L∞

per
+ ε1/2‖U1‖L∞

per
+ ε3/2‖Û‖L∞

per

)
Ê,

(41)
where the positive constant C is ε-independent. Note that the terms ‖U0t‖L∞

per
,

‖U0x‖L∞
per

, ‖U0xt‖L∞
per

, and ‖U1x‖L∞
per

are not listed in the inequality (41) because
they are ε-independent and bounded if f ± ∈ C(R, H s

per(−L , L)) with s ≥ 10.

Setting Ê := Q̂2 and using Sobolev’s embedding ‖Û‖L∞
per

≤ Cemb Q̂, we
rewrite a priori energy estimate (41) in the form

d Q̂

dt
≤ ‖Ĥ‖L2

per
+ Cε

(
‖U0‖L∞

per
+ ε1/2‖U1‖L∞

per
+ ε3/2 Q̂

)
Q̂, (42)

for another positive ε-independent constant C . By Gronwall’s inequality, we
integrate the a priori energy estimate (42) to obtain

Q̂(t) ≤
(

Q̂(0) + t0 sup
t∈[0,t0]

‖Ĥ‖L2
per

)
eC0εt , t ∈ [0, t0], (43)

for any t0 > 0, sufficiently small ε, and some (t0, ε)-independent positive
constant C0. Since Q̂(0) = ‖∂T U1‖L2

per
, bound (43) yields the result (34) after
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returning to the original variables (36). By Proposition 2, the solution is
continued from t0 = O(1) to t0 = O(ε−1) thanks to Q̂(t) < ∞ for all t ∈ [0, t0]
and all sufficiently small ε > 0, as well as to Sobolev’s embedding

‖ε2Û‖L∞
per

≤ Cembε
2 Q̂, ‖ε2Û t‖L∞

per
≤ Cembε

3/2 Q̂.

Bound (35) is proved similarly after writing Û = U2 + εǓ , where U2 is a
bounded solution of system (30), whereas φ± in (27) satisfy the linearized
KdV equations (32) subject to the initial data (29). The new error term Ǔ
satisfies a priori energy estimate similar to (42) with the new error term.
This energy estimate yields bound (35) after returning to the original variables
(36) thanks to the triangle inequality and the bound ‖U2‖H 1

per
≤ C , where the

positive constant C is independent of t0 = O(ε−1) and ε. �

4. Long-wave approximation for γ > 0

We shall consider here the case of the regularized Boussinesq equation (2)
with γ > 0. We consider again the initial-value problem starting with the
initial data (3) and (4) satisfying the zero-mean velocity constraint (12). By
the exact solution (11), the mean value of the solution is oscillating in t with
〈U 〉 = F0 cos(

√
εγ t).

Substituting U (x, t) = c0 cos(ωt) + Ũ (x, t) into the evolution equation (2),
where c0 := F0, ω := √

εγ , and Ũ is the zero-mean part of the 2L-periodic
function U , we obtain the evolution equation

Ũ tt − Ũ xx = ε

(
c0 cos(ωt)Ũ xx + 1

2
(Ũ 2)xx + Ũ tt xx − γ Ũ

)
. (44)

ByProposition1,thereexistsauniquelocalsolutionŨ ∈ C1([0, t0], H s
per(−L , L))

of the evolution equation (44) for any (F̃, Ṽ ) ∈ H s
per(−L , L) × H s

per(−L , L)

with s > 1
2 , where t0 > 0 is a local existence time.

4.1. Derivation

We shall repeat steps of the formal asymptotic theory, which relies on the
decomposition (15) and the leading-order approximation (19), with the initial
conditions (20). In what follows, we first work implicitly with ε-dependent
ω and then estimate the size of the correction terms by using the explicit
dependence ω = √

εγ .
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Order O(ε): The first-order correction term satisfies the initial-value
problem:⎧⎨
⎩

(∂2
t − ∂2

x )U1 = −2∂2
tT U0 + c0 cos(ωt)∂2

x U0 + 1
2∂

2
x (U 2

0 ) + ∂4
t t xxU0 − γU0,

U1|t=0 = 0,
∂tU1|t=0 = −∂T U0|t=0.

(45)
Using the Fourier series U1(x, t) = ∑

n∈Z\{0} gn(t)e
iπnx

L , we obtain the uncoupled
system of differential equations

d2gn

dt2
+
(πn

L

)2
gn = hn(t), (46)

where

hn(t) = −2π in

L

(
da+

n

dT
e

iπnt
L − da−

n

dT
e− iπnt

L

)
+ π4n4

L4

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)

−π
2n2

L2
c0 cos(ωt)

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)
− γ

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)

−π
2n2

2L2

⎛
⎝ ∑

k∈Z\{0,n}
a+

k a+
n−k

⎞
⎠ e

iπnt
L − π2n2

2L2

⎛
⎝ ∑

k∈Z\{0,n}
a−

k a−
n−k

⎞
⎠ e− iπnt

L

−π
2n2

L2

⎛
⎝ ∑

k∈Z\{0,n}
a+

k a−
n−ke

iπ(2k−n)t
L

⎞
⎠ .

The resonant terms at e± iπnt
L are removed if the Fourier coefficients satisfy

the evolution equations:

∓ 2π in

L

da±
n

dT
+ π4n4

L4
a±

n − γ a±
n − π2n2

2L2

∑
k∈Z\{0,n}

a±
k a±

n−k = 0, (47)

which are equivalent to the two uncoupled Ostrovsky equations

∂

∂ξ±

(
∓2
∂ f ±

∂T
+ ∂3 f ±

∂ξ 3±
+ f ± ∂ f ±

∂ξ±

)
= γ f ±. (48)

We consider the initial-value problem for the uncoupled Ostrovsky equations
(48) starting with the initial values f ±|T =0 given by (18). By the local and global
well-posedness theory for the Ostrovsky equation [36–39], a unique global
solution f ± ∈ C(R+, H s

per(−L , L)) exists for any f ±|T =0 ∈ H s
per(−L , L) with

s > 3
4 .

Remark 7. If γ �= 0, solutions of the Ostrovsky equations (48) must satisfy
the zero-mean constraints [24]. In our derivation, the zero-mean constraints
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are satisfied automatically because U0 and f ± are the zero-mean parts of the
(2L)-periodic functions. Note that the oscillating term 〈U 〉 = c0 cos(ωt) does
not contribute to the Ostrovsky equations (48). Consequently, as γ → 0, the
limiting KdV equation (48) is different from the KdV equation (24) if c0 �= 0.

After the constraints (47) are substituted back into the differential equations
(46), we obtain the linear inhomogeneous equations

d2gn

dt2
+
(πn

L

)2
gn = −π

2n2

L2
c0 cos(ωt)

(
a+

n e
iπnt

L + a−
n e− iπnt

L

)

−π
2n2

L2

∑
k∈Z\{0,n}

a+
k a−

n−ke
iπ(2k−n)t

L ,

subject to the initial conditions

gn(0) = 0, ∂t gn(0) = −∂T a+
n (0) − ∂T a−

n (0).

This initial-value problem admits the following bounded solution:

gn(t) = c0π
2n2

4π2n2 − ω2L2

[
2πni

L

sin(ωt)

ω

(
a+

n e
iπnt

L − a−
n e

−iπnt
L
)

− cos(ωt)
(
a+

n e
iπnt

L + a−
n e

−iπnt
L
)]+

∑
k∈Z\{0,n}

n2

4k(k − n)
a+

k a−
n−ke

iπ(2k−n)t
L

+ Gn cos

(
πnt

L

)
+ Hn sin

(
πnt

L

)
,

where Gn and Hn are constants of integrations to be found from the initial
conditions for gn .

Remark 8. Since ω = √
εγ , the first term in the explicit solution for gn

grows in t in the limit ε → 0 if c0 �= 0 but it is nevertheless bounded by the
O(ε−1/2) constant for any ε > 0. This fact implies that

‖εU1‖H 1
per

= O(c0ε
1/2) as ε → 0.

If the zero-mean velocity constraint (12) is violated and V0 �= 0, then the
asymptotic procedure will give ‖εU1‖H 1

per
= O(1) as ε → 0 and the first-order

correction term (as well as all higher order correction terms) become
comparable with the leading-order approximation. This will clearly prevent us
from justification of the long-wave approximation. This remark explains why
we have set V0 = 0 for γ > 0 in the constraint (12).

Using the explicit solution for gn , we rewrite the first-order correction term
in the implicit form:

U1(x, t) = fc(x, t) + fm(x, t) + φ−(ξ−, T ) + φ+(ξ+, T ), (49)
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where fc is given by (26) and (28), fm is uniquely defined by

fm(x, t) = sin(ωt)

ω

∑
n∈Z\{0}

c0π
2n2

4π2n2 − ω2L2

2πni

L

(
a+

n (T )e
iπnt

L + iπnx
L

− a−
n (T )e

−iπnt
L + iπnx

L

)
− cos(ωt)

∑
n∈Z\{0}

c0π
2n2

4π2n2 − ω2L2

×
(

a+
n (T )e

iπnt
L + iπnx

L + a−
n (T )e

−iπnt
L + iπnx

L

)
, (50)

and functions φ± are given by

φ±(ξ±, T ) =
∑
n∈Z

b±
n (T )e

iπnξ±
L , (51)

subject to the initial conditions

b±
n |T =0 = c0π

2n2

4π2n2 − ω2L2
a∓

n |T =0 −
∑

k∈Z\{0,n}

n(n ± (2k − n))

8k(k − n)

(
a+

k a−
n−k

) |T =0

∓ L

2iπn

(
da+

n

dT
+ da−

n

dT

)∣∣∣∣
T =0

. (52)

Order O(ε2): The second-order correction term satisfies the initial-value
problem:⎧⎪⎪⎨
⎪⎪⎩

(∂2
t − ∂2

x )U2 = −2∂2
tT U1 − ∂2

T U0 + c0 cos(ωt)∂2
x U1 + ∂2

x (U0U1)
+ ∂4

t t xxU1 + 2∂4
tT xxU0 − γU1,

U2|t=0 = 0,
∂tU2|t=0 = −∂T U1|t=0.

(53)

Repeating the procedure of removing the resonant terms e± iπnt
L and using

again the fact that cos(ωt) and sin(ωt) do not produce the resonant terms,
we define uniquely the evolution problem for the Fourier coefficients of the
functions φ± in (51):

− d2a±
n

dT 2
∓ 2π in

L

db±
n

dT
+ π4n4

L4
b±

n

∓ 2iπ3n3

L3

da±
n

dT
− π2n2

2L2

∑
k∈Z\{0,n}

a±
k b±

n−k − π2n2

L2

∑
k∈Z\{0,n}

(n − k)2

4nk
a±

n |a∓
k |2

− γ b±
n = 0. (54)

These equations are equivalent to the linearized Ostrovsky equations
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∂

∂ξ±

(
∓2
∂φ±

∂T
+ ∂3φ±

∂ξ 3±
+ ∂

∂ξ±
f ±φ±

)
= γφ±

+ ∂2 f ±

∂T 2
∓ 2

∂4 f ±

∂ξ 3±T
+ ∂2 f ±

s

∂ξ 2±
, (55)

with the same definition for f ±
s as in (33). The closed-form expressions for

the initial conditions in terms of the leading-order solutions f ± can be found
in [10].

After the constraints (54) are substituted back to the initial-value problem
(53), we can obtain a bounded solution for U2(x, t). Note that the bounded
solutions satisfies

‖ε2U2‖H 1
per

= O(c0ε) as ε → 0,

because of the oscillatory behavior of the functions cos(ωt) and sin(ωt) with
ω = √

εγ . This completes the construction of the formal asymptotic expansion
(15) up to and including the O(ε2) terms.

4.2. Justification

The following theorem gives the main result on the justification of the long-wave
approximation.

THEOREM 2. Assume that (F, V ) ∈ H 1
per(−L , L) × H 1

per(−L , L) subject to
the zero-mean constraint (12) on V . Fix s ≥ 10 and let f ± ∈ C(R, H s

per(−L , L))
be global solutions of the Ostrovsky equations (48) starting with the initial
conditions (18). Let U0 and U1 be given by (19) and (49) with (28), (50), (51),
and (52). There is ε0 > 0 such that for all ε ∈ (0, ε0) and all ε-independent
T0 > 0, there is ε-independent constant C > 0 such that for all t0 ∈ [0, T0/ε],
the local solution of the regularized Boussinesq equation (2) satisfies

sup
t∈[0,t0]

‖U − c0 cos(ωt) − U0 − εU1‖H 1
per

≤ Cεt0(c0 + ε). (56)

If, in addition, φ± in (51), satisfies the linearized Ostrovsky equations (55)
subject to the initial conditions (52) and s is sufficiently large, then for all
ε ∈ (0, ε0) and all ε-independent T0 > 0, there is an ε-independent constant
C > 0 such that

sup
t∈[0,T0/ε]

‖U − c0 cos(ωt) − U0 − εU1‖H 1
per

≤ Cε(c0 + ε). (57)

Remark 9. The bounds (56) and (57) of Theorem 2 are larger then the
bounds (34) and (35) of Theorem 1 if c0 �= 0 but they still complete justification
of the long-wave approximation up to the first-order correction term because
‖εU1‖H 1

per
= O(c0ε

1/2) as ε → 0.
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Remark 10. If c0 = 0, then bounds (56) and (57) become bounds (34) and
(35) because the periodic driving terms cos(ωt) and sin(ωt) are not present in
all the expansions.

The proof of this justification theorem is similar to the proof of Theorem 1
after the energy of the error term for the formal asymptotic expansion as in
(36) and (40) is modified to include the εγ -term as in the energy function (9).

5. Numerical illustrations

5.1. Boussinesq equation with γ = 0

Let us consider the initial-value problem for the regularized Boussinesq
equation (13) starting with initial data{

U |t=0 = 3k2 sech2
(

kx
2

)
,

Ut |t=0 = 3k3 sech2
(

kx
2

)
tanh

(
kx
2

)
,

(58)

where k > 0 is an arbitrary parameter. The initial data are defined on the
periodic domain −L ≤ x ≤ L and the mean value is given by

c0 = 1

2L

∫ L

−L
U |t=0dx = 6k

L
tanh

(
kL

2

)
.

When L → ∞, c0 → 0, and the initial data (58) correspond at the leading
order to a solitary wave of the KdV equation (24) propagating to the right:

f +(ξ+, T ) = 0, f −(ξ−, T ) = 3k2sech2(z), z = k

2

(
ξ− − k2

2
T

)
. (59)

Combining (19) and (25), we obtain the weakly nonlinear solution in the
form

U = f −(ξ−, T ) + ε
[
φ−(ξ−, T ) + φ+(ξ+, T )

]+ O(ε2) , (60)

where the correction terms φ± satisfy the linearized KdV equations

− 2∂Tφ
+ + ∂3

ξ+φ
+ = 0 (61)

and

∂ξ−
(
2∂Tφ

− + ∂3
ξ−φ

− + ∂ξ−( f −φ−)
) = ∂2

T f − + 2∂T ∂
3
ξ− f −, (62)

subject to the initial data

φ+|T =0 = 3k4

4
sech2

(
kξ+

2

)
, φ−|T =0 = −3k4

4
sech2

(
kξ−

2

)
. (63)

In what follows, we consider simplification of all expressions in the case of
solitary waves with sufficiently large L .
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Because ∂T f − = − k2

2 ∂ξ− f −, we can integrate the linearized KdV equation
(62) in ξ−, subject to the zero boundary conditions, and obtain:

2∂Tφ
− + ∂3

ξ−φ
− + ∂ξ−( f −φ−) = ∂ξ−

(
k4

4
f − − k2∂2

ξ− f −
)
.

Now, we recall that f − solves the stationary KdV equation, which implies that

(k2 − ∂2
ξ− + f −)∂ξ− f − = 0.

Using the decomposition

φ−(ξ−, T ) = ak4T ∂ξ− f − + ψ−(z), z = kξ−
2
,

where a is a constant to be defined, we integrate the linearized equation for
ψ−(z), with zero boundary conditions, to obtain(

4 − ∂2
z − 12sech2(z)

)
ψ− = 3k4

(
(3 + 8a)sech2(z) − 6sech6(z)

)
.

This equation is solved with ψ− = 3k4sech2(z) and a = − 3
8 . Therefore, the

initial-value problem for the linearized inhomogeneous KdV equation (62) is
solved by the function

φ−(ξ−, T ) = φ̃−(ξ−, T ) − 3

8
k4T

∂ f −

∂ξ−
+ k2 f −,

where φ̃−(ξ−, T ) is the solution to the Cauchy problem for the homogeneous
linearized KdV equation:

2∂T φ̃
− + ∂3

ξ− φ̃
− + ∂ξ−( f −φ̃−) = 0, (64)

starting with the initial data

φ̃−|T =0 = −15k4

4
sech2

(
kξ−

2

)
.

Note that the solutions of the linearized homogeneous KdV equations (61) and
(64) disperse to zero, so the effect of nonzero initial data decays in time.

We now compare direct numerical simulations of the Boussinesq equation
(13) with the weakly nonlinear solution (60). We discretize the spatial domain
into N equally spaced points and solve the Boussinesq equation in Matlab
using a pseudo-spectral method, based on the fast Fourier transform (FFT)
[40]. The accuracy of the numerical method is far in excess of what is
required for comparisons with the weakly nonlinear solution (60), nevertheless,
extensions for further more accurate requirements are trivially achieved by
further decreasing the time step and/or increasing the number of harmonics
in the FFT. Similarly, we find the higher order terms φ± numerically using
pseudo-spectral methods based on the FFT algorithm, analogous to the method
used to solve the KdV equation in [41].
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To consider the error of the weakly nonlinear solution, under the initial data
(58), we first introduce some notation. We define the numerical solution of the
Boussinesq equation (13) as Unum and the weakly nonlinear solutions as

U1 = f −, U2 = f − + ε
(
φnum

− + φnum
+
)
, (65)

where φnum
± are numerical solutions of the linearized KdV equations (61) and

(62). When φ± are fixed at their initial condition (63), we denote this solution
as U12. Note that the latter solution was previously studied in [10, 20].

Figure 1 presents numerical solutions for k = 1√
3

and ε = 0.1. The top pane-
ls of Figure 1 depict the evolution of the numerical solution Unum and the
weakly nonlinear solutions U1, U12, and U2 at times t = 1 (left) and t = 1/ε
(right). The middle panels of Figure 1 show the close-up of the area near the
maximum of the right-propagating solitary wave at t = 1 (left) and of the
small left-propagating wave at t = 1/ε (right). Note that the leading-order
approximation U1 does not capture the generation of this left-propagating
wave at all. The bottom panels of Figure 1 also illustrate the error terms for
each of the weakly nonlinear solutions relative to the numerical solution Unum,
for a particular ε. For the time interval considered, it is clear that there is a
significant improvement in the error of the weakly nonlinear solutions U12 and
U2 compared to the leading-order approximation U1.

The important question is now: how does the error of the solutions U1, U12,
and U2 scale with ε? To analyze the error of the weakly nonlinear solutions in
more detail, we consider the maximum absolute error over x defined as

ei
t = max

−L≤x≤L
|Unum(x, t) − Ui (x, t)|, i = 1, 12, 2. (66)

We use a least-squares power fit to determine how the maximum absolute
error of the weakly nonlinear solution at each order varies with the small
parameter ε. First, we write the maximum errors defined in (66) in the form

ei
t = Ciε

αi , for i = 1, 12, 2, (67)

corresponding to each order of ε in the weakly nonlinear solution (65). Taking
logs of the errors in this form and considering a range of ε, one can find the
coefficients Ci and αi , with the latter revealing how the maximum absolute
errors scale with ε. We find the coefficients using Matlab’s “polyfit” command.

In Figure 2, we display double log plots of the maximum absolute errors,
which we find explicitly from simulations against ε, and the log of the errors
as defined in (67), both at times t = 1 (left) and t = 1/ε (right). As depicted
in Figure 2, we find the weakly nonlinear solution U2 dramatically improves
the scaling of the maximum absolute error at the time t = 1/ε, in comparison
with the solution U12. Furthermore, the maximum absolute error of U2 scales
almost precisely as O(ε2), in agreement with the rigorous error estimates of
Theorem 1.
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Figure 1. Comparison of the weakly nonlinear solutions U1, U12, and U2 with the numerical
solution Unum for k = 1/

√
3, ε = 0.1, γ = 0 at (a) t = 1 and (b) t = 1/ε, with the close-up of

some areas (c) and (d) and the error plots (e) and (f) at the respective times. Numerical
parameters: �t = 0.01, �T = 0.00125, and L = 2000, N = 2 × 104.
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Figure 2. Double log plot of absolute errors versus ε at t = 1 and t = 1/ε. Numerical
parameters are the same as in Figure 1. Coefficients α1,12,2 and C1,12,2 are given in Table 1.

Table 1
Maximum Absolute Error Scaling Parameters Corresponding to Results

Illustrated in Figures 2 and 4

γ = 0 γ > 0

t = 1 t = 1/ε t = 1 t = 1/ε

α1 1.0032 0.9906 1.0026 0.9690
α12 1.9870 0.9928 – –
α2 1.9970 2.0103 1.9302 1.9515
C1 0.03576 0.04979 0.1668 0.4851
C12 0.01648 0.02896 – –
C2 0.02407 0.07417 0.5474 9.2062

We note from Figure 2 the strong similarity in the error scalings of the
leading-order solution U1 with the higher order solution U12 at t = 1/ε. This
was not observed in [10, 20] since the detailed analysis of the error term
was not undertaken. However, it must be noted, upon direct comparison of
the two solutions, that the maximum absolute error of the solution U12 is
still significantly smaller than the error of the solution U1. This is because
the constant C12 in the error term (67) is smaller than the corresponding
leading-order constant C1 (see Table 1).



Regularized Boussinesq Equation 77

5.2. Boussinesq equation with γ > 0

Let us now consider an initial-value problem for the regularized Boussinesq
equation (2) starting with initial data⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U |t=0 = 3k2 sech2( kx
2 ) − α̂

[
sech2

(
k(x+x0)

2

)
+ sech2

(
k(x−x0)

2

)]
,

Ut |t=0 = 3k3 sech2( kx
2 ) tanh( kx

2 ) − kα̂
[
sech2

(
k(x+x0)

2

)
tanh

(
k(x+x0)

2

)
+ sech2

(
k(x−x0)

2

)
tanh

(
k(x−x0)

2

) ]
,

(68)

where x0 is an arbitrary shift along x . The initial data are defined on the
periodic domain −L ≤ x ≤ L . If we choose α̂ to be

α̂ = 3k2 tanh(kL/2)

tanh(k(L + x0)/2) + tanh(k(L − x0)/2)
,

then the mean value of U |t=0 is zero, c0 = 0.
The weakly nonlinear solution is still given by the expansion (60) but the

leading-order term f − is now a solution to the Ostrovsky equation (48) starting
with the initial data

f −|T =0 = 3k2 sech2

(
kξ−

2

)
− α̂

[
sech2

(
k(ξ− + x0)

2

)

+ sech2

(
k(ξ− − x0)

2

)]
. (69)

The higher order terms φ± satisfy the linearized Ostrovsky equations

∂ξ+φ
+ (−2∂Tφ

+ + ∂3
ξ+φ

+) = γφ+, (70)

and

∂ξ−
(
2∂Tφ

− + ∂3
ξ−φ

− + ∂ξ−( f −φ−)
) = γφ− + ∂2

T f − + 2∂T ∂
3
ξ− f −, (71)

starting with the initial data{
φ+|T =0 = −�(ξ+)
φ−|T =0 = �(ξ−)

, (72)

where � can be expressed in terms of the leading-order solution f − as

�(x) = 1

2

(∫ x

−L
f −
T (s)ds − 1

2L

∫ L

−L

(∫ y

−L
f −
T (s)ds

)
dy

)∣∣∣∣
T =0

. (73)

The function f − is a solution to the Ostrovsky equation (48), and therefore the
derivative f −

T in (73) can be readily expressed as

f −
T = 1

2

(
− f −∂ξ− f − − ∂3

ξ− f − + γ ∂−1
ξ− f −

)
.
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Then, the formula (73) shows, in particular, that the magnitude of the higher
order corrections will be smaller if the initial data for the function f − are
localized, and for smaller values of the constant γ . To simplify our numerical
simulation, we choose the initial data accordingly.

The Cauchy problems for Equations (48), (70), and (71) are solved
numerically and simultaneously at each time step. The Ostrovsky equation (48)
can be solved numerically using both pseudo-spectral and finite difference
methods (e.g., [19, 42–44]). We extend the spectral method used to solve the
KdV equation in [41] in order to solve the linearized Ostrovsky equation
(70) and the forced linearized Ostrovsky equation (71). The method used
to solve the Boussinesq equation is an extension to the numerical method
in [40].

We now compare direct numerical simulations of the Cauchy problem for
the Boussinesq equation (2) with the weakly nonlinear solutions U1 and U2

defined by (65), as well as analyze the approximation error from (66) and (67).
Figure 3 presents numerical solutions for k = 1√

3
, ε = 0.025, and γ = 0.1.

The top panels of Figure 3 depict the evolution of the numerical solution
Unum and the weakly nonlinear solutions U1 and U2 at times t = 1 (left) and
t = 1/ε (right). The middle panels of Figure 3 show the close-up of the area
near the maximum of the right-propagating wave at t = 1 (left) and of the
small left-propagating wave at t = 1/ε (right). We again note, similarly to our
first example, that the leading-order approximation U1 does not capture the
generation of this left-propagating wave at all.

We also note the important qualitative change in the dynamics of the
solution, compared to the Boussinesq equation with γ = 0: the initial data
generate the right-propagating nonlinear wave packet instead of a solitary
wave. This dynamics agrees with the well-known behavior of solutions
of the Ostrovsky equation [19, 45], where initial solitary-like disturbances
lead to the formation of unsteady wave packets. The initial condition used
in our example is closer to this wave packet than the pure solitary-like
disturbance, and it has zero mass, which explains why there is less
radiation.

The bottom panels of Figure 3 illustrate the evolution of errors for each of
the weakly nonlinear solutions U1 and U2 relative to the numerical solution
Unum, for a particular ε. One can note a distinct improvement in the accuracy
of the weakly nonlinear solution U2 compared with U1.

Figure 4 displays double log plots of the maximum absolute error found
explicitly from simulations and the log of the absolute maximum error as
defined by (67). As one can see, the leading order maximum absolute error
scales as O(ε) for U1 and as O(ε2) for U2. This scaling agrees with the error
estimates in Theorem 2. It must be noted, however, that the constant C2 of the
higher order error term (67) is substantially larger than the corresponding



Regularized Boussinesq Equation 79

t = 1 t = 1

−50 0 50
−1

−0.5

0

0.5

1

x
−50 0 50

−1

−0.5

0

0.5

1

x

(a) Unum(—) U1(-.-) U2(- -) (b) Unum(—) U1(-.-) U2(- -)

0.8 0.9 1 1.1 1.2 1.3

0.985

0.9855

0.986

0.9865

0.987

0.9875

x
−60 −50 −40 −30 −20

−5

0

5

10

15

x 10
−3

x

(c) Unum(—) U1(-.-) U2(- -) (d) Unum(—) U1(-.-) U2(- -)

−50 0 50
−5

0

5x 10
−3

x
−50 0 50

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x

(e) (Unum − U1)(—) (Unum − U2)(- -) (f) (Unum − U1)(—) (Unum − U2)(- -)

Figure 3. Comparison of the weakly nonlinear solutions U1 and U2 with the numerical
solution Unum for k = 1/

√
3, ε = 0.025, γ = 0.1 at (a) t = 1 and (b) t = 1/ε, with the

close-up of some areas (c) and (d) and the error plots (e) and (f) at the respective times.
Numerical parameters: �t = 0.01, �T = 0.000125, and L = 80, N = 4 × 104.
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Figure 4. Double log plot of absolute errors versus ε at t = 1 and t = 1/ε. Numerical
parameters are the same as in Figure 3. Coefficients α1,2 and C1,2 are given in Table 1.

leading-order error term constant C1, and both constants are larger than in the
case of the Boussinesq equation (see Table 1). Therefore, although the error term
scales as O(ε2), as expected, it is substantially larger than in the case of γ = 0
(compare the Figures 1(f) and 3(f) and note the difference in the values of ε).

6. Conclusions

In this paper, we constructed a weakly nonlinear solution of the Cauchy
problem for the regularized Boussinesq equation (1) with δ > 0 in the
periodic domain. The weakly nonlinear solution is constructed in terms of
solutions of two uncoupled Ostrovsky equations, extending the results obtained
in [10, 20]. In our present paper, it was shown how the accuracy of the
weakly nonlinear solution can be improved by using the linearized Ostrovsky
equations for the two functions present in the first-order correction term.
Although our consideration exceeded the accuracy of the physical problem
formulation because the second-order correction terms were not included in
the original Boussiness-type equation (1), the methodology can be generalized
and extended to the case when the main equation includes these higher order
terms.

Analytical results have been illustrated numerically, for the regularized
Boussinesq equation with δ = 0 and δ > 0 in the large domain. The behavior
of the error terms has been studied in details and the numerical results have
shown excellent agreement with the analytical predictions.
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