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Abstract: A complete set of eigenfunctions is introduced within the Riemann–Hilbert
formalism for spectral problems associated to some solvable nonlinear evolution equa-
tions. In particular, we consider the time-independent and time-dependent Schrödinger
problems which are related to the KdV and KPI equations possessing solitons and lumps,
respectively. Non-standard scalar products, orthogonality and completeness relations are
derived for these problems. The complete set of eigenfunctions is used for perturbation
theory and bifurcation analysis of eigenvalues supported by the potentials under pertur-
bations. We classify two different types of bifurcations of new eigenvalues and analyze
their characteristic features. One type corresponds to thresholdless generation of solitons
in the KdV equation, while the other predicts a threshold for generation of lumps in the
KPI equation.

1. Introduction

1.1. Motivations.Some nonlinear evolution equations have attracted intense studies
in past years for their universal appearance in the mathematical description of wave
processes in dispersive systems and their remarkable analytical properties. In particular,
they are related to linear scattering problems in such a way that the nonlinear analysis
of wave systems is possible through the Fourier-type analysis of the direct and inverse
scattering transform of their linear counterparts [1].The spectral data in inverse scattering
consist typically of thecontinuous spectrumeigenfunctions and a discrete number of
bound states. The bound states correspond to localized steady-state disturbances such
as solitons, lumps, dromions and instantons.

Among many universal properties in inverse scattering, Ablowitz, Kaup, Newell and
Segur noticed in their pioneer paper [1] that the set of eigenfunctions for the continuous
and discrete spectrum for theAKNS spectral problem is complete, i.e. an arbitrary vector-
function with appropriate boundary conditions at infinity can be decomposed through
this set of eigenfunctions. This property generalizes the Fourier decomposition [2] and
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is well-known in spectral theory of linear self-adjoint operators [3,4]. The completeness
relation was proved in Ref. [1] by means of the Gelfand–Levitan–Marchenko (GLM)
integral equations which appear in the formalism of the inverse scattering transform.

In the AKNS spectral problem, the isolated eigenvalues appear as poles of transmis-
sion coefficients and correspond toexponentially localizedbound states associated to
solitonsin nonlinear evolution equations. Further development in inverse scattering led
to the construction of new linear scattering problems associated to the nonlinear evolu-
tion equation in one and two dimensions (see review in [5,6]). In the latter problems,
Fokas and Ablowitz [7–9] showed that the isolated eigenvalues appear in homogeneous
integral Fredholm equations and the corresponding bound states havealgebraic decay
at infinity. These bound states are associated tolumpsor algebraic solitonsin nonlinear
evolution equations.

The most general formulation of the inverse scattering transform relies on the Rie-
mann-Hilbert (RH) boundary value problem or its generalization, the∂̄ problem. This
setting requires new methods for constructing and studying complete sets of eigenfunc-
tions. A particular spectral system associated to the Benjamin-Ono (BO) equation was
studied recently by Kaup, Lakoba, and Matsuno [10–12]. Their results serve as a pivot
for our approach to integrable problems associated to the RH formalism.

Studies of complete sets of eigenfunctions have many different prospects. First, they
provide a basis for the spectral decomposition associated to the given linear problem.
Second, they enable us to develop a perturbation theory and study variations of spectral
data and eigenfunctions induced by perturbations of the potential. Third, bifurcations
of eigenvalues can be analyzed through the expansions over a complete basis, while
a standard perturbative analysis usually misses the possibility of such bifurcations. We
recently obtained [13,14] that, for the spectral problem associated to the BO equation, this
bifurcation may happen from the edge of the continuous spectrum when the potential of
the scattering problem satisfies a condition of non-genericity. Finally, the orthogonality
and completeness relations are used in Hamiltonian formalism of nonlinear evolution
equations and construction of Poisson brackets and canonical variables [15].

In this paper we construct a complete set of eigenfunctions associated to the scalar
RH formalism. Although our analysis is based on two canonical and physically impor-
tant problems (Sect. 1.2), it can also be formulated in an abstract form (Sect. 1.3). The
main analysis concentrates on the time-independent Schrödinger problem which is as-
sociated to solitons of the Korteweg–de Vries (KdV) equation and the time-dependent
Schrödinger problem which is associated to lumps of the Kadomtsev–Petviashvili (KPI)
equation. We derive non-standard scalar products and orthogonality relations and prove
the completeness formula by means of the RH formalism. We then develop a regular
perturbation theory from the integral representation of the linear eigenvalue problem and
calculate variational derivatives of spectral data in the absence of bifurcations of new
eigenvalues. When the integral representation becomes singular, we find the conditions
for a new eigenvalue to emerge from the continuous spectrum. These bifurcations are
classified into two general types.

Thetype I bifurcationoccurs when the marginal eigenfunction at the edge of the con-
tinuous spectrum becomes bounded (nonsecular) in space and belongs to the spectrum
in contrast to a generic secular eigenfunction which is excluded from the spectrum. The
multisoliton solutions are examples of nongeneric potentials and the type I bifurcation
occurs under a certainthresholdlessperturbation of multisoliton potentials. Thetype II
bifurcationoccurs when a new bound state is embedded into the continuous spectrum at
the bifurcation point and splits apart from the continuous spectrum or disappears upon
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a perturbation. This type is not supported by multisoliton potentials. A new eigenvalue
appears above a certainthresholdon the amplitude of a perturbation to the multisoliton
potential.

The type I bifurcation is illustrated in Sect. 2 for the time-independent Schrödinger
equation. Although our results recover the standard inverse scattering formalism asso-
ciated to this equation (see Appendix A.2 of Ref. [2]), we introduce and study a new
non-standard basis of eigenfunctions within the RH formalism. The type II bifurcation
is illustrated in Sect. 3 for the time-dependent Schrödinger equation. We find for the
first time to our knowledge a complete set of eigenfunctions associated to this equation.
The methods and results derived for these two basic problems can be generalized for
other examples in inverse scattering which include differential-difference linear sys-
tems associated to the Intermediate Long-Wave (ILW) equation and the BO equation as
well as vector eigenvalue problems such as the AKNS spectral system in one and two
dimensions. A brief review of these spectral problems is discussed in Sect. 4.

1.2. Linear eigenvalue problems.The inverse scattering theory has been developed for
several prototypical examples which include the Kadomtsev–Petviashvili equation re-
ferred to as the KPI equation,

(ut + 6uux + uxxx)x = 3uyy. (1.1)

It is associated with the time-dependent Schrödinger equation,

iϕy + ϕxx + uϕ = 0, (1.2)

whereu = u(x, y, t) satisfies Eq. (1.1). Inverse scattering for the KPI equation was
initiated by Manakov [16] and developed by Fokas and Ablowitz [8] by means of a
(nonlocal) RH boundary value problem. In particular, the authors of [8] defined proper
eigenfunctionsM± andN± of the time-dependent Schrödinger equation (1.2) and in-
corporated the lump solutions in the inverse scattering scheme. Rigorous results on the
solvability of direct and inverse scattering transforms were reported by Beals and Coif-
man [17], Zhou [18], and Fokas and Sung [19]. More complete results on existence and
classification of multiple bound states in the discrete spectrum of the time-dependent
Schrödinger equations were recently found by Ablowitz and Villaroel [20–22].

A complete version of the spectral transform for the KPI equation was derived by
Boiti et al. [23–25] by means of a formal resolvent approach based on some orthogonality
relations for the eigenfunctions of Eq. (1.2). However, their approach does not provide a
complete basis of eigenfunctions for the perturbation theory and bifurcation analysis of
weakly localized potentials such as multilump potentials. This problem was discussed by
Kaup [26] who pointed out that the eigenfunctions of (1.2) are unbounded and incomplete
in the Hilbert space if the potentialu(x, y) is not absolutely integrable.

Recently the inverse scattering transform theory was applied to solve rigorously
the initial-value problem for the KPI equation (1.1) with and without the zero mass
constaint [27–29]. Uniqueness and existence of the solution was also proved by Fokas
and Sung [30,31] under the assumption that the initial data is a “small” function in
the Schwartz space. The latter assumption was used to exclude generation of lumps
(two-dimensional solitons) in the KPI equation (1.1) by localized initial data.

The problem of lump generation in the KPI equation remains open in spite of its
applications in water wave theory [6]. Kuznetsov and Turitsyn [32] showed that a single
KPI lump is stable against small perturbations. Recent numerical simulations of the
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KPI equation (1.1) by He [33] showed that a localized initial condition may lead to the
formation of KPI lumps if the amplitude of the initial pulse exceeds a certain threshold
value.

In the case ofy-independent solutions, the KPI equation reduces to the KdV equation,

ut + 6uux + uxxx = 0, (1.3)

and the linear system (1.2) to the time-independent Schrödinger equation,

ϕxx + (u + k2)ϕ = 0, (1.4)

wherek is a spectral parameter andu = u(x, t) satisfies Eq. (1.3). The standard complete
set of eigenfunctions for this problem is described in Ref. [2]. The spectral properties of
the eigenfunctions at the edge of the continuous spectrum were also studied in relation
to bifurcation of new eigenvalues in the problem (1.4) [34]. The appearance of a single
eigenvalue supported by a small potential for the problem (1.4) was analyzed by direct
methods in [35–37]. It was found that the linear problem (1.4) exhibits a single small
eigenvalue for infinitely small potentials under the constraint that the area integral of the
potential is positive. The same conclusion was also formulated for a perturbation of a
single soliton potential [38].

In this paper, we present a systematic method based on the RH problem to derive the
spectral decomposition associated to the linear eigenvalue problems in inverse scatter-
ing. For the sake of clarity, it is first presented in the context of the time-independent
Schrödinger equation (1.4) and then extended to the time-dependent Schrödinger equa-
tion (1.2) which is more difficult. In both cases, we use the completeness properties
to study bifurcation of new eigenvalues. We recover and generalize some of the results
discussed above. In particular, we show that for the spectral problem (1.4), an eigenvalue
and its associated bound state exist for an arbitrary small potentialu = u(x), while the
spectral problem (1.2) does not have eigenvalues and bound states for small potentials
u = u(x, y). This feature illustrates the different types of bifurcation of eigenvalues for
Eqs. (1.2) and (1.4) (types I and II).

1.3. RH formalism and eigenfunctions.A Riemann–Hilbert boundary value problem
in a complex plane (z ∈ C) consists in reconstructing meromorphic functionsµ±(z)

outside of a contour0 ∈ C according to a given jump at the contour,

µ+(z) − µ−(z) = T
[
µ−(z)

]
, (1.5)

whereT is an operator and the functionsµ±(z) satisfy the boundary conditions,

lim|z|→∞ µ±(z) = 1,

in the corresponding domains ofC.
In inverse scattering [6,5], the RH problem appears typically if the scattering problem

has a single spectral parameter (sayk) and the continuous spectrum is located for real
values ofk, i.e.z = k and0 = Re(k). This problem relates two Jost functionsM±(x, k)

which are generally (n × n) matrices and depend onm variablesx1, x2, ...,xm. In what
follows, we restrict ourselves to scalar RH problems (n = 1) in one dimension (x1 = x)
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or two dimensions (x1 = x andx2 = y). The Jost functionsM±(x, k) are introduced as
particular solutions of Fredholm’s integral equations in Green’s function representation,

M±(x, k) = 1 +
∫ ∞

−∞
G±(x − x′, k)u(x′)M±(x′, k)dx′. (1.6)

Hereu(x) is a real-valued potential,G+(x, k) andG−(x, k) are Green’s functions which
are supposed to be analytic in Im(k) ≥ 0 and Im(k) ≤ 0 respectively, and satisfy
lim |k|→∞ G±(x, k) = 0.

Taking the derivative∂/∂k̄ in Eq. (1.6), wherēk is the complex conjugate ofk, we
find that the eigenfunctionsM±(x, k) are analytic functions ofk in the domains of
analyticity ofG±(x, k) if there are no homogeneous solutions of Fredholm’s integral
equations (1.6). On the other hand, if Fredholm’s integral equations (1.6) do possess
homogeneous solutions in a number of isolated pointsk of the complex domain, then
the eigenfunctionsM±(x, k) are meromorphic functions ofk. We refer to the bound
states in the former case assolitonsand in the latter case aslumps.

At real k, the limiting values of the eigenfunctionsM±(x, k) are related by the fol-
lowing scattering problems,

M+(x, k)

a+(k)
− M−(x, k) = ρ−(k)N−(x, k), (1.7)

M+(x, k) − M−(x, k)

a−(k)
= ρ+(k)N+(x, k). (1.8)

Herea±(k) are the inverse transmission coefficients. The coefficientsρ±(k) represent
scattering data and the eigenfunctionsN±(x, k) are linearly independent solutions of
the spectral system withnon-constantboundary conditions at infinity,

N±(x, k) = eiβ(x,k) +
∫ ∞

−∞
G±(x − x′, k)u(x′)N±(x′, k)dx′. (1.9)

The coefficientsa±(k) are identically equal to unity for problems associated to lumps
and are not constant for problems associated to solitons. In the latter problems, the
coefficientsa±(k) have the same analyticity properties as the eigenfunctionsM±(x, k)

subject to the following boundary conditions,

lim|k|→∞ M±(x, k) = lim|k|→∞ a±(k) = 1. (1.10)

Combining all these facts, the scattering problem (1.7) (or, equivalently, Eq. (1.8)) defines
a RH boundary-value problem, if the eigenfunctionsN±(x, k) can be expressed through
M±(x, k) by additional symmetry formulas,

N±(x, k) = FM±(x, k)eiβ(x,k), (1.11)

whereF is an operator. Bound states are to be added to the problem (1.7) and (1.11)
as pole contributions in the meromorphic functions[a±(k)]−1M±(x, k). Then, a closed
solution of the RH problem can be found (see Appendix A1 in [6]), from which the
potential is recovered.

In a simplified version, the inverse scattering scheme is a sequence of transformations
from the given potentialu = u(x, 0) to the set of eigenfunctionsS(0) for the associated
linear problem, then to the spectral dataR(0) with simple evolution in timeR = R(t),
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then back to the set of eigenfunctionsS = S(t) via self-consistent integral equations and
finally back to the potentialu = u(x, t). This sequence of transformations generalizes
the Fourier transform which is based on orthogonality and completeness relations of the
trigonometric functions. Similarly, a closure of the general scheme att = 0 implies the
existence of a complete basis of eigenfunctions for the direct and inverse spectral trans-
forms. However, the orthogonality and completeness relations for the eigenfunctions
used in inverse scattering are not usually under consideration because their derivation
may be labourous. Moreover, it is not always clear how to choose a proper basis for
these transformations. For example, it is natural to use the eigenfunctionsM±(x, k) for
a characterization of the inverse scattering problem whereas these functions do not form
a complete basis.

Our main idea is that each linear problem associated to a nonlinear evolution equation
provides a natural set of orthogonal and complete eigenfunctions which forms a basis
of the inverse scattering transform. The complete set of eigenfunctions consists of the
eigenfunctionsN±(x, k) and associated bound states and characterize all other data of
the spectral transform, including the associated eigenfunctionsM±(x, k), the spectral
dataa±(k) andρ±(k) and the potentialu(x). We prove this statement in Sects. 2 and 3
for the particular scattering problems (1.2) and (1.4).

2. Time-Independent Schrödinger Equation

The local RH problem (1.7) appears for the spectral problem (1.4) after the transforma-
tion, ϕ = me−ikx , where the functionm = m(x, k) satisfies the problem,

mxx − 2ikmx + u(x)m = 0. (2.1)

We suppose that the functionu(x) is real, smooth and belongs toLp for anyp ≥ 1. These
requirements are satisfied for multisoliton potentials of the KdV equation (3.8) since
such potentials have an exponential decay at infinity. The dependence of the potential
and the eigenfunctions on evolution timet will be omitted henceforth. The standard
complete set of eigenfunctions is described in Appendix A.2 of Ref. [2]. Here we view
the problem by means of the RH formalism and introduce a new non-standard complete
set of eigenfunctions.

2.1. Spectrum and scattering data.Two fundamental solutionsM±(x, k) of Eq. (2.1)
can be extended analytically for Im(k) ≥ 0 and Im(k) ≤ 0 according to the integral
representation (1.6). The corresponding Green’s functions have the form [6]:

G±(x, k) = ± 1

2ik
(1 − e2ikx)2(±x), (2.2)

where2(x) = 1 if x > 0 and2(x) = 0 if x < 0. The other two fundamental solutions
N±(x, k)can be found from Eqs. (1.9) withβ(x, k) = 2kx.The eigenfunctionsM±(x, k)

andN±(x, k) satisfy the following boundary conditions in the limitx → ∓∞,

M±(x, k) → 1, N±(x, k) → e2ikx . (2.3)

Taking the limitsx → ±∞ in the Green’s function representation (1.6) and using
Eqs. (2.2) and (2.3), we find the scattering relations (1.7) and (1.8) with the spectral
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dataρ± = b∓(k)/a∓(k). The coefficientsa±(k) andb±(k) can be expressed through
M±(x, k) as

a±(k) = 1 ± 1

2ik

∫ ∞

−∞
u(x)M±(x, k)dx, (2.4)

b±(k) = − 1

2ik

∫ ∞

−∞
u(x)M±(x, k)e−2ikxdx. (2.5)

The scattering coefficients satisfy the constraints [6]

a−(k) = a∗+(k), b−(k) = b+(k), (2.6)

a∗±(k) = a±(−k), b∗±(k) = b±(−k), (2.7)

and

|a+(k)|2 = 1 + |b+(k)|2. (2.8)

Using these relations, we deduce from Eqs. (1.7) and (1.8) the boundary conditions for
the eigenfunctionsM±(x, k) andN±(x, k) in the limitsx → ±∞,

M±(x, k) → a±(k) ± b±(k)e2ikx, (2.9)

N±(x, k) → a∓(k)e2ikx ± b∗±(k). (2.10)

Whenk → ∞ ± i0, the eigenfunctionsM±(x, k) have the asymptotic representation,

M±(x, k) = 1 + 1

2ik

∫ x

∓∞
u(x′)dx′ + O(k−2). (2.11)

This formula follows from Eqs. (1.6) and (2.2).
The scattering relation (1.7) defines the (local) RH boundary-value problem for

M±(x, k). The closure relations (1.11) follow from the symmetry of the Green’s func-
tions,G±(x, k) = G∗±(x, −k) = G∗±(x, k)e2ikx and have the form,

N±(x, k) = N∗±(x, −k) = M∗±(x, k)e2ikx . (2.12)

Bound states for Eq. (2.1) exist for eigenvalues given by the zeros ofa+(k) in the
upper half-plane ofk and the zeros ofa−(k) in the lower half-plane. Zeros ofa±(k) are
simple [6] and located symmetrically on the imaginary axis ofk due to the constraints
imposed ona±(k). These bound states correspond to exponentially localized solitons of
the KdV equation (1.3).

The two RH problems (1.7) and (1.8) supplemented by the boundary conditions (1.10)
and the closure relation (2.12) can be solved in the form

M±(x, k) = 1 +
n∑

j=1

c∓
j 8∓

j (x)

k − k∓
j

+ 1

2πi

∫ ∞

−∞
ρ±(k′)N±(x, k′)dk′

k′ − (k ± i0)
, (2.13)

or, equivalently,

M±(x, k)

a±(k)
= 1 +

n∑
j=1

c±
j 8±

j (x)

k − k±
j

+ 1

2πi

∫ ∞

−∞
ρ∓(k′)N∓(x, k′)dk′

k′ − (k ± i0)
, (2.14)
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where8±
j (x) are the bound states, the eigenvaluesk±

j satisfy the constraintsk±
j = ±iκj

due to the symmetry (κj > 0),n is the number of bound states, andc±
j are renormalization

constants. The limiting relations for the eigenfunctionsM±(x, k) approaching bound
states are

lim
k→k±

j

M±(x, k) = γ ±
j 8±

j (x), (2.15)

whereγ ±
j = c±

j (a′
j )

± are real coefficients. Using the symmetry (2.6) and (2.7), we write

the coefficients asc±
j = ±iC±

j and

(
a′
j

)± = da±(k)

dk

∣∣∣∣
k=k±

j

= ±ia′
j ,

whereC±
j anda′

j are real. The bound states8±
j (x) are real functions satisfying the

inhomogeneous integral equations,

8±
j (x) = (γ ±

j )−1 +
∫ ∞

−∞
G±(x − x′, k±

j )u(x′)8±
j (x′)dx′, (2.16)

with the boundary conditions

8±
j (x) →

{
(γ ±

j )−1 asx → ∓∞
O(e∓2κj x) asx → ±∞ (2.17)

We notice that the bound states8±
j (x) are not localized in the limitx → ∓∞. Using

the boundary conditions forG±(x, k) we find the following integral representation,

κj = γ ±
j

2

∫ ∞

−∞
u(x)8±

j (x)dx, (2.18)

which is also a condition fora±(k) to have a zero atk = k±
j = ±iκj (see Eq. (2.4)).

In addition, comparing the boundary values (2.3) and (2.17), we normalize the bound
states according to the limiting relations,

lim
k→k∓

j

N±(x, k) = 8∓
j (x), (2.19)

or, equivalently, according to the boundary conditions8±
j (x) → e∓2κj x asx → ±∞.

This renormalization leads by virtue of Eqs. (2.12) to the relations

8∓
j (x) = γ ±

j 8±
j (x)e±2κj x . (2.20)

It follows from Eqs. (2.20) that the coefficientsC±
j andγ ±

j satisfy the constraints,

C+
j C−

j

(
a′
j

)2 = 1, γ +
j γ −

j = 1. (2.21)

The set of coefficients{a±(k), b±(k)} represents the spectral data for the continuous
spectrum of the linear problem (2.1) while the set{k±

j , γ ±
j }mj=1 corresponds to the data

for the discrete spectrum. The separation of the discrete and continuous spectra follows
from the analysis of the asymptotic behavior of the spectral data in the limitk → 0.
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Definition 2.1. The potentialu(x) is calledgeneric potential of type I if the limiting
point k = 0 is excluded from the continuous spectrum, i.e. the limiting eigenfunctions
M±(x, 0) are not bounded inx as x → ∞ and the spectral coefficientsa±(k) are
not bounded ink as k → 0, so thatlimk→0[a±(k)]−1M±(x, k) = 0. Otherwise, the
potential is callednongenericpotential of type I.

The asymptotic behavior of the scattering data ask → 0 follows from Eqs. (2.4),

a±(k) → ±m−1

2ik
+ O(1), b±(k) → −m−1

2ik
+ O(1), (2.22)

where

m−1 =
∫ ∞

−∞
u(x)M+(x, 0)dx =

∫ ∞

−∞
u(x)M−(x, 0)dx, (2.23)

and the eigenfunctionsM±(x, 0) are real and satisfy the integral equations,

M±(x, 0) = 1 −
∫ x

∓∞
(x − x′)u(x′)M±(x′, 0)dx′. (2.24)

These eigenfunctions have a secular growth inx at infinity according to the boundary
conditions,

M±(x, 0) →
{

1 asx → ∓∞
1 ± m±

0 ∓ m−1x asx → ±∞,
(2.25)

where

m±
0 =

∫ ∞

−∞
xu(x)M±(x, 0)dx. (2.26)

Thus, ifm−1 6= 0, the limiting pointk = 0 is excluded from the continuous spectrum
and the potentialu(x) is a generic potential of type I. On the other hand, ifm−1 = 0,
the secularities of the spectral data ask → 0 disappear and the limiting eigenfunctions
M±(x, 0) become bounded and related as

M−(x, 0) = (1 − m−
0 )M+(x, 0), M+(x, 0) = (1 + m+

0 )M−(x, 0). (2.27)

In this case, the potentialu(x) is a nongeneric potential of type I and the limiting point
k → 0 belongs to the continuous spectrum as

a±(k) → a0 + O(k), b±(k) → b0 + O(k), (2.28)

where real coefficientsa0 andb0 are expressed throughm+
0 ,

a0 = 1 + m+2
0

2(1 + m+
0 )

, b0 = m+
0 − m+2

0

2(1 + m+
0 )

, (2.29)

or, equivalently, throughm−
0 according to the relation,

m−
0 = m+

0

1 + m+
0

.
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Multisoliton potentials are particular examples of nongeneric potentials of type I since
they display a non-secular behavior ofb±(k), i.e. b±(k) ≡ 0 [2]. The asymptotic
expressions (2.22) for spectral data were analyzed in Ref. [34], where the numbern of
bound states was related to a finite value of arga±(0),

arga±(0) = ∓
{

π
(
n − 1

2

)
if m−1 6= 0

πn if m−1 = 0.
(2.30)

Thus, the constraintm−1 = 0 changes the spectral data and may result in a change of
the number of bound states (i.e. in bifurcation of a new eigenvalue of the linear system).
This is the type I bifurcation analyzed in Sect. 2.4.

2.2. Scalar products, orthogonality and completeness relations.According to
Eqs. (2.13) and (2.14), the eigenfunctionsM±(x, k) can be characterized by either of the

two setsS± =
[
N±(x, k), {8∓

j (x)}nj=1

]
. Furthermore, the spectral data{a±(k), b±(k)}

and{k±
j , γ ±

j }nj=1 can be expressed through the functions of the setsS± according to
formulas (2.4), (2.5), (2.12), (2.17), and (2.18). Also the potentialu(x) is related to the
setsS± by

∫ x

∓∞
u(x)dx = − 1

π

∫ ∞

−∞
ρ±(k)N±(x, k)dk ± 2

n∑
j=1

C∓
j 8∓

j (x). (2.31)

This formula results from Eqs. (2.11) and (2.13) in the limitk → ∞. Thus, the scheme
for closure of the spectral transform holds for the setsS±. We now prove the following
main result.

Proposition 2.2.An arbitrary scalar functionf (x) with the boundary conditions

lim
x→±∞ f (x) = f±,

wheref± are constants, can be decomposed through the orthogonal and complete set
of eigenfunctionsS+ if f− = 0 or through its dual setS− if f+ = 0.

The proof of this proposition is based on two lemmas.

Lemma 2.3.The eigenfunctionsN±(x, k) and{8∓
j (x)}nj=1 introduced in Sect. 2.1 sat-

isfy the orthogonality relations,

〈N∓(k′)|N±(k)〉 = 2πika∓(k)δ(k − k′), (2.32)

〈8±
j |N±(k)〉 = 〈N±(k)|8±

j 〉 = 0, (2.33)

〈8±
l |8∓

j 〉 = ∓κja
′
j δjl, (2.34)

where the scalar product is defined by

〈g(k′)|h(k)〉 =
∫ ∞

−∞
g∗(x, k′)∂xh(x, k)dx. (2.35)
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Proof. First, we derive the Wronskian relation for two solutionsh(k) and g(k′) of
Eq. (2.1) with a real potentialu(x),

d

dx

[
g∗(k′)hx(k) − g∗

x(k′)h(k) − 2ik′g∗(k′)h(k)
] = 2i(k − k′)g∗(k′)hx(k). (2.36)

Then, we integrate Eq. (2.36) forh(k) = N±(x, k) andg∗(k′) = N∗∓(x, k′) overx and
use the boundary conditions (2.10) and the formula for generalized functions,

lim
L→±∞ eikL = ±πikδ(k). (2.37)

As a result, we find Eq. (2.32). The zero scalar products in Eqs. (2.33) and (2.34) follow
also from Eq. (2.36) for different bound states. In order to find the nonzero scalar products
(2.34), we integrate Eq. (2.36) forh(k) = M±(x, k) andg∗(k′) = 8±(x) overx and
use the boundary conditions (2.3) and (2.17). As a result, we find the integral relation,

2i(k − k∓
j )

∫ ∞

−∞
8±

j (x)∂xM±(x, k)dx = 2κj

(
γ ±
j

)−1
.

This equation reduces to Eq. (2.34) after computing the integral on the left-hand side
with the help of Eq. (2.13) and the zero scalar products (2.33) and (2.34).ut

The proof of the orthogonality relations uses only the direct analysis of the spectral
problem (2.1). The next lemma formulates the completeness relation. It will be proved
by using equations of the inverse scattering transform.

Lemma 2.4.The eigenfunctionsN±(x, k) and {8∓
j (x)}nj=1 satisfy the completeness

relations,

±2[±(x − y)] =
∫ ∞

−∞
N∗∓(y, k)N±(x, k)dk

2πi(k ∓ i0)a∓(k)
∓

n∑
j=1

8±
j (y)8∓

j (x)

κj a
′
j

. (2.38)

Proof. First, we close Eq. (2.13) with the help of Eqs. (2.12) and (2.15). As a result,
we find a system of integral and algebraic relations for the eigenfunctionsN±(x, k) and
8∓

j (x),

N±(x, k) = e2ikx


1 ±

n∑
j=1

iC∓
j 8∓

j (x)

k ∓ iκj

+ 1

2πi

∫ ∞

−∞
ρ±(k′)N±(x, k′)dk′

k′ + k ∓ i0


 , (2.39)

8∓
j (x) = e±2κj x


1 −

n∑
j=1

C∓
l 8∓

l (x)

κj + κl

+ 1

2πi

∫ ∞

−∞
ρ±(k)N±(x, k)dk

k ∓ iκj


 . (2.40)

We expressN∗∓(y, k) by using Eqs. (1.7) and (2.12),

N∗∓(y, k) = a∓(k)N∗±(y, k) ∓ b∓(k)N±(y, k)e−2iky . (2.41)
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The productN∗±(y, k)N±(x, k) can be found from Eqs. (2.39) and (2.40) using the pole
decomposition,

N∗±(y, k)N±(x, k) = e2ik(x−y)


1 ±

n∑
j=1

8±
j (y)8∓

j (x)

i(k ∓ iκj )a
′
j

±
n∑

j=1

8∓
j (y)8±

j (x)

i(k ± iκj )a
′
j

+ 1

2πi

∫ ∞

−∞
ρ±(k′)N±(y, k′)N±(x, k′)e−2ik′ydk′

k′ + k ∓ i0

+ 1

2πi

∫ ∞

−∞
ρ±(k′)N±(y, k′)N±(x, k′)e−2ik′xdk′

k′ − k ∓ i0

]
.

Then, the following integral can be evaluated using the residue theorem,

1

2πi

∫ ∞

−∞
N∗±(y, k)N±(x, k)dk

k ∓ i0
=

± 2[±(x−y)]

1+

n∑
j=1

8±
j (y)8∓

j (x)

κj a
′
j

+ 1

2πi

∞∫
−∞

ρ±(k)N±(y, k)N±(x, k)e−2ikydk

k ∓ i0




± 2[∓(x−y)]

 n∑

j=1

8±
j (y)8∓

j (x)

κj a
′
j

+ 1

2πi

∞∫
−∞

ρ±(k)N±(y, k)N±(x, k)e−2ikydk

k ∓ i0


 .

(2.42)

Substituting Eqs. (2.41) and (2.42) into the integral on the right-hand side we derive the
completeness relation (2.38).ut
Proof of Proposition 2.2.Using Lemmas 2.3 and 2.4, we decompose the functionf (x)

into two equivalent integral representations,

f (x) = f∓ +
∫ ∞

−∞
α±(k)N±(x, k)dk +

n∑
j=1

α∓
j 8∓

j (x), (2.43)

whereα±(k) andα±
j are coefficients of the expansion andf± are constants defined

by boundary conditions forf (x). The coefficients of the expansion can be expressed
through the functionf (x) by means of Eqs. (2.32)–(2.34),

α±(k) = 〈N∓(k)|f 〉
2πi(k ∓ i0)a∓(k)

, α∓
j = ∓〈8±

j |f 〉
κja

′
j

.

Then, Eq. (2.43) reduces to an identity by means of Eq. (2.38).ut
The completeness relations (2.38) and scalar products (2.35) for a new complete

set of eigenfunctions differ from the standard relations for Jost eigenfunctions of the
time-independent Schrödinger problem (see Appendix A.2 in Ref. [2]). This is due to
the derivative term∂x appearing in the problem (2.1) in front of the spectral param-
eterk. Since only the derivatives off (x) determine the coefficients in Eq. (2.43), an
arbitrary functionf (x) may not be localized at infinity. Another related feature is that
we have to pass by the singular pointk = 0 in the completeness relations (2.38) into
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the corresponding complex extensions ofk, where the functionsa±(k) are analytic.
We notice that the spectral problem (2.1) is not self-adjoint in contrast with the origi-
nal problem (1.4). Furthermore, the scalar product (2.35) is not a proper inner product
since it is not sign-definite [4]. However, the problem (2.1) inherits some features of
the self-adjoint problem. In particular, the orthogonal setsS+ andS− are self-dual, i.e.
complex-conjugate eigenfunctions ofS− are adjoint to eigenfunctions ofS+ and vice
versa.

It is important to point out that the relation (2.31) for the inverse scattering transform
is a particular application of Eq. (2.43). The coefficientsρ±(k) andC∓

j play the role
of Fourier coefficients. Indeed, using the orthogonality relations (2.32) and (2.34), one
can express these coefficients through the potentialu(x) according to Eqs. (2.5), (2.12),
and (2.18). Thus, the setsS± represent the only basis for closure of direct and inverse
scattering transforms.

Since two alternative (self-dual) orthogonal and complete sets of eigenfunctions have
been constructed, we can now study perturbations of the potential and the associated
transformation of the spectrum of Eq. (2.1).

2.3. Perturbation theory for spectral data.The spectral data can be evaluated explic-
itly only in some special cases such as multisoliton potentials. Therefore, perturbation
theory for the scattering data under a perturbation of the potential is an effective tool to
study characteristic features of a given scattering problem. Furthermore, the dynamics
of solitons in nearly integrable systems can be investigated with the help of the same
perturbation theory (see reviews in Refs. [39,40]). The results of the perturbation theory
for the time-independent Schrödinger equation are now well-known and have been used
many times. Here we reproduce these results within the self-consistent scheme given in
Sect. 2.2.

Suppose that the potential can be decomposed asuε = u(x)+ ε1u(x), whereε � 1

and the complete sets of eigenfunctionsS± =
[
N±(x, k), {8∓

j (x)}nj=1

]
are associated to

the potentialu(x). Here we evaluate variations of the spectral data due to the perturbation
1u(x).

2.3.1. Variations of data of discrete spectrum.Suppose that8∓ε
j (x) solves Eq. (2.1) for

uε = u(x)+ε1u(x) with the eigenvaluek = k∓ε
j = ∓iκε

j . We expand8∓ε
j (x) through

the setsS± according to Eq. (2.43) rewritten as

8∓ε
j (x) =

∫ ∞

−∞
α±(k)N±(x, k)dk

4π(k ∓ i0)a∓(k)(k ± iκε
j )

+
n∑

l=1

α∓
l 8∓

l (x)

2κla
′
l (κl − κε

j )
. (2.44)

The eigenvalue problem (2.1) reduces with the help of Eqs. (2.32)–(2.34) and (2.44) to
an equivalent set of homogeneous integral equations for the coefficientsα±(k) andα∓

l ,

α±(k) = ε

[∫ ∞

−∞
K±(k, k′)α±(k′)dk′

4π(k′ ∓ i0)a∓(k′)(k′ ± iκε
j )

+
n∑

l=1

K∓l (k)α∓
l

2κla
′
l (κl − κε

j )

]
, (2.45)

α∓
l = ε

[∫ ∞

−∞
K∗±l (k)α±(k)dk

4π(k ∓ i0)a∓(k)(k ± iκε
j )

+
n∑

m=1

K∓lmα∓
m

2κma′
m(κm − κε

j )

]
, (2.46)
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where the integral elements are

K±(k, k′) =
∫ ∞

−∞
1u(x)N∗∓(x, k)N±(x, k′)dx,

K±j (k) =
∫ ∞

−∞
1u(x)N∗±(x, k)8±

j (x)dx,

and

K±j l =
∫ ∞

−∞
1u(x)8∓

j (x)8±
l (x)dx.

We look for solutions of Eqs. (2.45) and (2.46) in the asymptotic limitε → 0. The
results are summarized in the following proposition.

Proposition 2.5.Variational derivatives of data{κj , γ
±
j }nj=1 of the discrete spectrum of

Eq. (2.1) with respect to the potentialu(x) are given by

δκj

δu(x)
= −8−

j (x)8+
j (x)

2κja
′
j

, (2.47)

δ ln γ ±
j

δu(x)
= ∓x8−

j (x)8+
j (x)

κj a
′
j

+ 1

2κj

[
γ ∓
j 8∓

j (x)µ±
j (x) − γ ±

j 8±
j (x)µ∓

j (x)
]
, (2.48)

where the real functionsµ±
j (x) are introduced as the limits,

lim
k→k±

j

[
M±(x, k)

a±(k)
− c±

j 8±
j (x)

k − k±
j

]
= µ±

j (x). (2.49)

Proof. It follows from the self-consistency condition for Eq. (2.46) atl = j thatκε
j can

be expanded into the asymptotic series,

κε
j = κj + ε1κj + ε212κj + O(ε3),

where

1κj = − K∓jj

2κja
′
j

. (2.50)

This formula is equivalent to Eq. (2.47). Using Eq. (2.50), we construct an asymptotic
solution of Eq. (2.45) and (2.46) to the first order of the perturbation theory,

α±(k) = εK∓(k) + O(ε2),

α∓
l = εK∓lj + O(ε2).

As a result, we find a perturbation to the bound state,8∓ε
j (x) = 8∓

j (x) + ε18∓
j (x) +

O(ε2), in the form,

18∓
j (x) = 1α∓

j 8∓
j (x) +

∫ ∞

−∞
K∓j (k)N±(x, k)dk

4π(k ∓ i0)a∓(k)(k ± iκj )
+
∑
l 6=j

K∓lj8
∓
l (x)

2κla
′
l (κl − κj )

,

(2.51)
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where1α∓
j is defined through the corrections toα∓

j and κj . We use the boundary
conditions (2.3) and (2.17) asx → ∓∞ and evaluate the contribution from a double
pole atk = ∓iκj in Eq. (2.51). Then, the term O(e±2κj x) should be removed from the
asymptotic representation for18∓

j (x) asx → ∓∞ by specifying the correction1α∓
j

in the form,

1α∓
j = 1κj

κj

∓ 1

κja
′
j

∞∫
−∞

x1u(x)8∓
j (x)8±

j (x)dx − γ ±
j

2κj

∞∫
−∞

1u(x)8±
j (x)µ∓

j (x)dx,

(2.52)

whereµ±
j (x) is defined by Eq. (2.49). On the other hand, we assume an expansion

γ ±ε
j = γ ±

j + ε1γ ±
j + O(ε2) and find the correction1γ ±

j ,

1γ ±
j = γ ±

j 1α∓
j + K∓j (0)

2κj

±
∞∫

−∞

K∓j (k)ρ∗∓(k)dk

4π(k ∓ i0)(k ± iκj )
+
∑
l 6=j

K±j lγ
±
l

2κla
′
l (κl − κj )

.

(2.53)

This formula follows from Eq. (2.51) in the limitx → ±∞ with the help of Eqs. (2.10)
and (2.17). In order to simplify this formula, we rewrite Eqs. (2.14) and (2.49) in the
form,

µ±
j (x)−M∓(x, 0) = C±

j 8±
j (x)

κj

− κj

∑
l 6=j

C±
l 8±

l (x)

κl(κl−κj )
± κj

∞∫
−∞

ρ∗∓(k)N∗∓(x, k)dk

2π(k ∓ i0)(k ± iκj )
,

(2.54)

where we have used Eqs. (2.7) and (2.12). Substitution of Eq. (2.54) into Eq. (2.53) gives

1γ ±
j = γ ±

j

(
1α∓

j − 1κj

κj

)
+ 1

2κj

∫ ∞

−∞
1u(x)8∓

j (x)µ±
j (x)dx.

This expression reduces to Eq. (2.48) with the help of Eq. (2.52)ut

Formulas (2.47) and (2.48) for the variations of data of discrete spectrum coincide
with those derived from the standard perturbation theory of Eq. (1.4) (see Ref. [39]).
Here we have derived these formulas by using the non-standard complete setsS± of
Eq. (2.1). In addition, the solution of the first order of the perturbation theory enables
us to evaluate from Eq. (2.46) atl = j the next-order correction12κj ,

12κj = −
∫ ∞

−∞

K∗±j (k)K∓j (k)dk

8πκja
′
j (k ∓ i0)a∓(k)(k ± iκj )

−
∑
l 6=j

K∓j lK∓lj

4κjκla
′
j a

′
j (κl − κj )

. (2.55)
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2.3.2. Variations of data of continuous spectrum.The eigenfunctions of the continuous
spectrum can also be decomposed through the setsS± as in Sect. 2.3.1. Suppose that
Nε±(x, k) solves Eq. (2.1) foruε = u(x) + ε1u(x). We expand them to the first order
of the perturbation theory,Nε±(x, k) = N±(x, k) + ε1N±(x, k) + O(ε2), and find the
correction1N±(x, k) in the form,

1N±(x, k) =
∫ ∞

−∞
K±(k′, k)N±(x, k′)dk′

4π(k′ ∓ i0)a∓(k′)(k′ − (k ± i0))
∓

n∑
j=1

K∗±j (k)8∓
j (x)

2iκj a
′
j (k ± iκj )

.

(2.56)

Proposition 2.6.Variational derivatives of data{a±(k), b±(k)} of the continuous spec-
trum of Eq. (2.1) with respect to the potentialu(x) are given by

δa±(k)

δu(x)
= ±N∗∓(x, k)N±(x, k)

2ik
, (2.57)

δb±(k)

δu(x)
= −N∗±(x, k)M∓(x, k)

2ik
. (2.58)

Proof. We expand the scattering data in the form

aε±(k) = a±(k) + ε1a±(k) + O(ε2),

bε±(k) = b±(k) + ε1b±(k) + O(ε2),

and analyze Eq. (2.56) in the limitsx → ±∞ by comparin0g with the boundary condi-
tions (2.10) and (2.17). We find explicit solutions

1a±(k) = ±K±(k, k)

2ik
(2.59)

and

1b±(k) = −K∓(k, 0)

2ik
+
∫ ∞

−∞
K∓(k, k′)ρ∓(k′)dk′

4π(k′ ± i0)(k′ − (k ∓ i0))
−

n∑
j=1

K±j (k)C±
j

2iκj (k ∓ iκj )
.

(2.60)

Then, Eq. (2.57) follows directly from Eq. (2.59). Furthermore, using Eq. (2.13), we
derive the relation,

M±(x, k) − M±(x, 0) = k

2πi

∫ ∞

−∞
ρ±(k′)N±(x, k′)dk′

(k′ ∓ i0)(k′ − (k ± i0))
+ k

n∑
j=1

C∓
j 8∓

j (x)

κj (k ± iκj )
.

Substituting this formula to Eq. (2.60), we recover Eq. (2.58).ut
Formulas (2.57) and (2.58) for the variations of data of continuous spectrum coincide

with those obtained from the standard perturbation theory of Eq. (1.4) (see Ref. [39]).
We notice that in the limitk → 0, the variations1a±(k) and1b±(k) are divergent, i.e.

1a±(k) → ±K±(0, 0)

2ik
, 1b±(k) → −K∓(0, 0)

2ik
. (2.61)
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Comparing with Eq. (2.22) we identify the expansion of the parametermε−1 = m−1 +
ε1m−1 + O(ε2), where

1m−1 = K±(0, 0) =
∫ ∞

−∞
1u(x)M−(x, 0)M+(x, 0)dx. (2.62)

2.3.3. Example: A single soliton potential.We solve Eq. (2.40) forρ±(k) = 0 andn = 1
in the form,

8∓
1 (x) = e±2κ1x

1 + e±2κ1(x−x0)
, (2.63)

where we have used the parametrization,

C∓
1 = 2κ1e

∓2κ1x0.

Then, the soliton of the KdV equation is

us(x) = 2κ2
1sech2κ1(x − x0). (2.64)

Using the following data for the single soliton potential,

a+(k) = a∗−(k) = k − iκ1

k + iκ1
, a′

1 = − 1

2κ1
, γ ±

1 = e±2κ1x0,

we evaluate the corrections of the first order of the perturbation theory from Eqs. (2.47),
(2.48), (2.57), and (2.58),

1κ1 = 1

8κ2
1

∫ ∞

−∞
1u(x)us(x)dx, (2.65)

1γ ±
1

γ ±
1

= ± 1

4κ2
1

∫ ∞

−∞
x1u(x)us(x)dx

± 1

2κ1

∫ ∞

−∞
1u(x) tanh[κ1(x − x0)]dx, (2.66)

1a±(k) = ± 1

2ik(k ∓ iκ1)2

∫ ∞

−∞
1u(x)

(
k2 + κ2

1 tanh2[κ1(x − x0)]
)

dx, (2.67)

1b±(k) = − 1

2ik(k2 + κ2
1)

∫ ∞

−∞
1u(x) (k − iκ1 tanh[κ1(x − x0)])2 e−2ikxdx. (2.68)

The results for a single KdV soliton can be found in Refs. [39,40]. We notice that
the integral in Eq. (2.65) identifies with1Ps , the correction to the momentumPs =
1
2

∫∞
−∞ u2

s dx of the KdV soliton. ComputingPs from Eq. (2.64) asPs = 8
3κ3

1, we
conclude from Eq. (2.65) that the correction1Ps defines completely the renormalization
of the parameterκ1 of the KdV soliton. The momentum of the continuous spectrum is
therefore affected at the order of O(ε2). This result is associated to the stability of a KdV
soliton against small perturbations (see Ref. [41] for other examples).
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2.4. Type I bifurcation of new eigenvalues.The number of bound states may change if
the potentialu(x) is a nongeneric potential of type I, i.e. the criterionm−1 = 0 is met (see
Definition 2.1). Using the asymptotic formulas (2.61) and (2.62), we find a necessary
condition for this bifurcation. Suppose that the nongeneric potentialu(x) hasn bound
states. Then, the coefficientaε±(k) for the perturbed potentialuε = u(x) + ε1u(x) has
the following behavior ask → 0,

aε±(k) = a0 ± ε1m−1

2ik
+ O(ε, k),

wherea0 is given by Eq. (2.29) and1m−1 is defined by Eq. (2.62). Then, we take into
account Eq. (2.30) for the potentialu(x) and derive the extension of this formula for the
perturbed potentialuε(x),

argaε±(0) = ∓π
(
n + σ

2

)
, (2.69)

whereσ = sign(ε1m−1/a0). Comparing Eqs. (2.30) and (2.69) we conclude that a new
(n + 1)th eigenvalue detaches from the edge of the continuous spectrum ifσ = +1.
Here we derive asymptotic expansions for the data of discrete spectrum corresponding
to the new bound state. Also we discuss applications of these results to some physical
problems such as soliton generation in the KdV equation and bifurcation of oscillatory
modes in nonlinear Klein–Gordon equations.

2.4.1. Asymptotic expressions for a new eigenvalue and bound state.Suppose that the
potentialu(x) is nongeneric and the perturbation1u(x) supports the type I bifurcation.
A new bound state8∓ε

n+1(x) can be decomposed through the complete setsS± according
to the same integral representation (2.44) but with the eigenvaluek = ∓iκε

n+1 such that
limε→0 κε

n+1 = 0.A self-consistent solution to the homogeneous integral equation (2.45)
may appear only if the kernel of the integral transform becomes singular ask′ → 0 for
κε
n+1 → 0. Indeed, this is the case for a nongeneric potential, when the coefficients

a±(k) satisfy the asymptotic representation (2.28). Solving Eqs. (2.45) and (2.46) into
the limit ε → 0 we derive the following result.

Proposition 2.7.Under the conditions that the potentialu(x) satisfiesm−1 = 0 and
the perturbation1u(x) satisfiesa−1

0 1m−1 > 0, the potentialuε = u(x) + ε1u(x)

supports a bound state in a neighbourhood ofk = 0 for ε > 0. The spectral data
(κε

n+1, γ
±ε
n+1) for the new bound state are defined by

κε
n+1 = ε1κ + ε212κ + O(ε3),

γ ±ε
n+1 = 1γ ± + O(ε),

where

1κ = 1m−1

2a0
> 0, (2.70)

12κ = 1

2a0
p.v.

∫ ∞

−∞
a−1− (k)K+(0, k)K+(k, 0) − a−1

0 (1m−1)
2

4πk2 dk +
n∑

j=1

K−j (0)K+j (0)

2κ2
j a′

j


 ,

(2.71)
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and

1γ ± = 1 ± m±
0 , (2.72)

wherem±
0 is defined by Eq. (2.26).

Proof. Evaluating the singular contribution from the polek′ = 0 in Eq. (2.45), we find
the leading order term in the form,

α±(k) → εK±(k, 0)α±(0)

4πa0
Q±, (2.73)

where

Q± =
∫ ∞

−∞
dk′

(k′ ∓ i0)(k′ ± iε1κ)
= 2π

ε1κ
,

if ε1κ > 0, andQ± = 0, if ε1κ < 0. Therefore, the new eigenvalue exists under the
condition1κ > 0 (assumingε > 0). Writing Eq. (2.73) atk = 0 gives the asymptotic
expression (2.70). The new bound state8∓ε

n+1(x) is defined by Eq. (2.44) and (2.73).
Using the boundary condition (2.3) forN±(x, k), we take the limitx → ∓∞ for
8∓ε

n+1(x) and find

8∓ε
n+1(x) → α±(0)

εK±(0, 0)
e∓2ε1κx.

The boundary condition (2.17) is met ifα±(0) = εK±(0, 0). Then, Eqs. (2.44) and (2.73)
reduce to an asymptotic expression for the new bound state,

8∓ε
n+1(x) = ε

∫ ∞

−∞
K±(k, 0)N±(x, k)dk

4π(k ∓ i0)a∓(k)(k ± iε1κ)
+ O(ε), (2.74)

where the integral term is an order of O(1). At the intermediate scale for finitex, we find
from Eq. (2.74) that8∓ε

n+1(x) = N±(x, 0)+O(ε). Therefore, the bound state approaches
a delocalized limiting eigenfunction of the continuous spectrum for finitex. Then, using
Eqs. (2.10) and (2.17), we take the limitx → ±∞ in Eq. (2.74) and find1γ ±

j in the
form,

1γ ± = a0 ± b0.

This expression reduces to Eq. (2.72) with the help of Eqs. (2.29). Finally, Eq. (2.71)
follows from Eq. (2.45) atk = 0 by substituting the results of the first order of the
perturbation theory.ut

We notice that the asymptotic approximation for1κ can be equivalently written from
Eqs. (2.27), (2.62), and (2.70) as

1κ = 1

2

(
1 − b0

a0

)∫ ∞

−∞
dx1u(x)

[
M+(x, 0)

]2
> 0. (2.75)

We have thus obtained that, for the type I bifurcation, a new eigenvalue is located in a
neighbourhood of the edge of the continuous spectrum (e.g.k = 0) and a new (localized)
bound state arises from a delocalized critical eigenfunction that exists in a nongeneric
case.
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2.4.2. Example: A new eigenvalue supported by a small potential.Suppose that the
initial potential is small, i.e.u(x) = 0 anduε(x) = ε1u(x). Then, the spectrum of the
unperturbed problem is obvious:

n = 0, a±(k) = 1, b±(k) = 0, M±(x, k) = 0, N±(x, k) = e2ikx .

Sincem−1 = 0, the zero background belongs to the class of nongeneric potentials of
type I. Therefore, the type I bifurcation is possible, i.e. an infinitesimal initial disturbance
can support a single eigenvalue in the problem (2.1). The criterion for this bifurcation
follows from Eq. (2.75) as

1κ = 1

2
1M = 1

2

∫ ∞

−∞
1u(x)dx > 0, (2.76)

where1M is the area integral which is the mass invariant for the KdV equation (1.3).This
result is well-known as a Peierls problem in quantum mechanics [36]. In application to
the KdV equation, we illustrate this phenomenon in Fig.1, where numerical simulations
of Eq. (1.3) are presented.

Figure 1(a) shows the evolution of the initial datau(x, 0) = 2asech2x with a = 0.5.
This corresponds to a disturbance ofu with 1M > 0. We observe that the initial pulse
evolves into a soliton propagating to the right and a radiative wave packet propagating
to the left. The soliton has the massMsol = 2ε1M, while the radiation has the mass
Mrad = −ε1M. On the other hand, the same initial pulse but witha = −0.4, which
corresponds to the case1M < 0, transforms solely into a linear radiative wave packet
as seen in Fig. 1(b). No soliton is generated for this case.

In the critical case1M = 0 (e.g. for asymmetric pulsesu(−x) = −u(x)), the type
I bifurcation may still take place if12κ > 0. Inspecting the expression (2.71), we
transform it to the form,

12κ = −1

4

∫∫ ∞

−∞
dxdy1u(x)1u(y)|x − y|,

or, equivalently,

12κ = −1

2

∫ ∞

−∞
dx

(∫ x

−∞
1u(y)dy

)(∫ ∞

x

1u(y)dy

)
. (2.77)

It is clear from Eq. (2.77) that12κ > 0 if 1κ = 0. Therefore, the soliton generation
always occurs even for critical initial disturbance with1M = 0 (see also Ref. [37]
for the same conclusion). Moreover, for small negative1M the soliton generation still
occurs ifκε = ε1κ + ε212κ + O(ε3) > 0.

Preliminary results on soliton generation in the critical case1M = 0 were reported by
Karpman (see Chap. 21 in [35]). Using physical motivations and analysis of quasi-linear
self-similar solutions, he found that the quasi-linear solutions of the KdV equation (1.3)
exist for1M = 0 and

p1 =
∫ ∞

∞
xu(x, 0)dx < pcr ,

wherepcr ≈ 7.As a result, he concluded that no soliton can be generated by a small initial
perturbation withp1 < pcr . This conclusion together with early numerical simulations
(see Fig. 21.1 in Ref. [35]) are not confirmed by the analysis developed here.
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Fig. 2.1. Time evolution of the solution of the KdV equation (1.3) for the initial condition,u(x, 0) =
2asech2(x). (a) Formation of a new soliton fora = 0.5. (b) Transformation of an initial pulse to a linear wave
packet fora = −0.4

2.4.3. Example: A new eigenvalue supported by a perturbed single soliton potential.
Multisoliton potentials also belong to the class of nongeneric potentials of type I for
the problem (2.1). Therefore, perturbation of multisoliton potentials may generate a
new eigenvalue and a bound state provided the condition (2.75) is met. In particular, a
perturbation to a single soliton generates a new bound state if

1κ = 1

2

∫ ∞

−∞
1u(x) tanh2[κ(x − x0)]dx > 0, (2.78)

wherex0 is defined in Eq. (2.63).
This bifurcation was analyzed in Ref. [38] for the problem of soliton production from

a shelf emitted by a moving soliton. The account of a secondary soliton allowed one to
satisfy the mass conservation in the KdV equation perturbed by an external (dissipative)
term.
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Recently, the same bifurcation was analyzed for the problem of existence of inter-
nal (oscillation) modes of kinks in nonlinear Klein-Gordon equations [42]. The crite-
rion (2.78) was compared with numerical data for the oscillation mode in the spectrum
of a double sine–Gordon equation.

3. Time-Dependent Schrödinger Problem

The (nonlocal) RH formalism for the linear equation (1.2) can be developed after the
transformation,ϕ = me−ikx−ik2y , wherem = m(x, y, k) satisfies the problem,

imy + mxx − 2ikmx + u(x, y)m = 0. (3.1)

We assume that the functionu(x, y) is real, smooth and belongs toLp for anyp ≥ 2.
Also we assume the boundary condition foru(x, y) in the form,u(x, y) ∼ O(R−2) as
R = √

x2 + y2 → ∞, which includes the class of multilump potentials. Note that the
functionu(x, y) for the multilump potentials is not inL1. A solutionu = u(x, y, t) of
the KPI equation (1.1) satisfies the constraint fort > 0 [27,28],∫ ∞

−∞
u(x, y, t)dx = 0. (3.2)

If the initial datau = u(x, y, 0) does not satisfy this constraint, the instant transformation
of a solution occurs in an initial time layer so that the solution has the jump discontinuity
at t → 0± [28–30].

Since the potentialu(x, y) of the linear system (3.1) corresponds to any solution of
the KPI equation (1.1) including the initial datau = u(x, y, 0), we do not impose the
constraint (3.2) in our analysis and omit again the dependence on time. However, we
assume the convergence of the following integral,∣∣∣∣

∫ ∞

−∞
dy

∫ ∞

−∞
dxu(x, y)

∣∣∣∣ < ∞. (3.3)

Under this assumption, the integrals involving the eigenfunctions of Eq. (3.1), the spectral
data and the potentialu(x, y) are bounded in the scheme developed below (see e.g.
Eq. (3.65)).

3.1. Spectrum and scattering data.Here we construct the continuous and discrete spec-
trum for Eq. (3.1) according to previous approaches [8,23] and also derive additional
relations between the spectral data.

3.1.1. Green’s functions.The Green’s functionsG±(x, y, k) associated to the problem
(3.1) have the form [6],

G±(x, y, k) = i

2π

∫ ∞

−∞
ei(ξx+2ξky−ξ2y) [2(y)2(±ξ) − 2(−y)2(∓ξ)] dξ. (3.4)

The Green’s functionsG+(x, y, k) andG−(x, y, k) are analytic in the domains Im(k) ≥
0 and Im(k) ≤ 0 respectively and have a jump at Im(k) = 0,

G+(x, y, k) − G−(x, y, k) = i

2π

∫ ∞

−∞
sign(ξ)ei(ξx+2ξky−ξ2y)dξ. (3.5)
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In addition, the Green’s functions have two symmetry properties:

∂G±(x, y, k)

∂k
= i(x + 2ky)G±(x, y, k) ± i

2π
(3.6)

and

G±(x, y, k) = G∗∓(−x, −y, k). (3.7)

It follows from Eq. (3.4), or, equivalently, from Eq. (3.6) that the Green’s functions are
localized in the limitR = √

x2 + y2 → ∞,

G±(x, y, k) → ∓ 1

2π(x + 2(k ± i0)y)
+ O(R−2), (3.8)

subject tox + 2ky 6= 0. This expression is exact fory = 0. Furthermore, the Green’s
functions are weakly localized along the singular linex+2ky = 0, whereG±(x, y, k) →
O(R−1/2) asR → ∞.

The boundary value (3.8) implies the following asymptotic expansion in the limit
k → ∞ ± i0,

G±(x, y, k) → ∓ 1

4πk(y ∓ i0sign(x))
+ O(k−2). (3.9)

Using the relation,

1

z ∓ i0
= ±πiδ(z) + p.v.

(
1

z

)
, (3.10)

we express Eq. (3.9) in the form,

G±(x, y, k) → 1

4ik
sign(x)δ(y) ∓ 1

4πky
+ O(k−2). (3.11)

This result agrees with the analysis of Ref. [28].

Remark.The order of integration becomes important for computing spectral data for
the problem (3.1) when the potentialu(x, y) is not absolutely integrable. Moreover, the
result of integration of the Green’s functions (3.4) depends on the order in the double
integrals, ∫ ∞

−∞
dy

∫ ∞

∞
dxG±(x, y, k) = 0,

while ∫ ∞

−∞
dx

∫ ∞

∞
dyG±(x, y, k) = − 1

4(k ± i0)2 .

According to this result, we define all data for the former order of integration and use
the following notation, ∫∫

R

dydx = p.v.

∫ ∞

−∞
dy

∫ ∞

−∞
dx. (3.12)
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3.1.2. Continuous spectrum.The eigenfunctionsM±(x, y, k) and N±(x, y, k, l) of
Eq. (3.1) satisfy Fredholm’s integral equations,

M±(x, y, k) = 1 +
∫∫

R

dy′dx′G±(x − x′, y − y′, k)u(x′, y′)M±(x′, y′, k) (3.13)

and

N±(x, y, k, l) = eiβ(x,y,k,l)

+
∫

R

dy′dx′G±(x − x′, y − y′, k)u(x′, y′)N±(x′, y′, k, l),
(3.14)

whereβ(x, y, k, l) = (k − l)x + (k2 − l2)y. The additional implicit parameterl appears
for the eigenfunctionsN±(x, y, k, l) according to the most general Fourier solution of
Eq. (3.1) for the caseu(x, y) = 0.

Applying the boundary conditions (3.8) to Eqs. (3.13) and (3.14), we find that the
eigenfunctionsM±(x, y, k) andN±(x, y, k, l) are not secular inx andy for anyk and
l. As R = √

x2 + y2 → ∞ andx + 2ky 6= 0, they approach the boundary conditions,

M±(x, y, k) → 1 + O(R−1), N±(x, y, k, l) → eiβ(x,y,k,l) + O(R−1). (3.15)

The asymptotic representation of the eigenfunctionsM±(x, y, k) in the limitk → ∞±i0
follows from Eqs. (3.11) and (3.13),

M±(x, y, k) = 1 + 1

4ik

(∫ x

−∞
−
∫ ∞

x

)
dx′u(x′, y)

± 1

4πk

∫ ∞

−∞
dy′

y′ − y

∫ ∞

−∞
dx′u(x′, y′) + O(k−2).

(3.16)

Using Eq.(3.5), we find the RH boundary value problem for the eigenfunctions
M±(x, y, k) at Im(k) = 0,

M+(x, y, k) − M−(x, y, k) = −
(∫ k

−∞
−
∫ ∞

k

)
dlr∓(k, l)N±(x, y, k, l), (3.17)

wherer± = r±(k, l) is the spectral transform [8,23],

r±(k, l) = 1

2πi

∫∫
R

dydxu(x, y)M±(x, y, k)e−iβ(x,y,k,l). (3.18)

The RH problem (3.17) is equivalent to the nonlocal form of Eq. (1.7) witha±(k) ≡ 1.
The closure relations (1.11) between the eigenfunctionsN±(x, y, k, l) andM±(x, y, k)

follow from Eq. (3.6),

∂N±(x, y, k, l)

∂k
= i(x + 2ky)N±(x, y, k, l) ± F±(k, l)M±(x, y, k), (3.19)

where

F±(k, l) = − 1

2πi

∫∫
R

dydxu(x, y)N±(x, y, k, l). (3.20)
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This relation is to be complemented by the boundary conditions following from the
uniqueness of solutions of Eqs. (3.13) and (3.14),

N±(x, y, k, k) = M±(x, y, k). (3.21)

Using these relations, we integrate Eq. (3.17) and obtain,

N±(x, y, k, l) = M±(x, y, l)eiβ(x,y,k,l) ±
∫ k

l

F±(p, l)M±(x, y, p)eiβ(x,y,k,p)dp.

(3.22)

In addition to the spectral datar±(k, l) andF±(k, l), we consider also the spectral data
T±(k, l, p) which appear in the relationship between the eigenfunctionsN±(x, y, k, l)

following from Eq. (3.14),

N+(x, y, k, l) − N−(x, y, k, l) = −
(∫ k

−∞
−
∫ ∞

k

)
dpT∓(k, l, p)N±(x, y, k, p),

(3.23)

where

T±(k, l, p) = 1

2πi

∫∫
R

dydxu(x, y)N±(x, y, k, l)e−iβ(x,y,k,p). (3.24)

We point out that the relation (3.23) is not a RH boundary value problem since the
eigenfunctionsN±(x, y, k, l) have no meromorphic continuation in a complex domain
of k. Still, the relation (3.23) is formally valid for realk. Furthermore, the integrals (3.18),
(3.20), and (3.24) for the spectral data are not absolutely integrable and, therefore, the
order of integration specified by Eq. (3.12) cannot be interchanged. On the other hand,
the integrals in Eqs. (3.13) and (3.14) converge absolutely and the order of integration
can be interchanged in these integrals and also in further integration with respect tox,
y andk.

The spectral datar±(k, l) define the continuous spectrum of the problem (3.1) and
satisfy the integral relations [23],

r±(k, l) + r∗±(l, k) ∓
(∫ l

−∞
−
∫ ∞

k

)
dpr±(k, p)r∗±(l, p) = 0,

r±(k, l) + r∗∓(l, k) ±
∫ l

k

dpr±(k, p)r∗∓(l, p) = 0.

These equations were used in Ref. [23] to factorize the RH boundary-value nonlocal
problem (3.17) and eliminate the set of eigenfunctionsN±(x, y, k, l) from the problem.
We intend to solve here a different problem: we express all eigenfuctions and scattering
data in terms of the sets involving the eigenfunctionsN±(x, y, k, l). In this respect, the
following result completes the construction of the continuous spectrum for the prob-
lem (3.1).

Proposition 3.1.The spectral datar±(k, l), F±(k, l) and T±(k, l, p) defined by Eqs.
(3.18), (3.20) and (3.24) are related algebraically by

r±(k, l) = F ∗∓(k, l), (3.25)

T±(k, l, p) = −T ∗∓(k, p, l). (3.26)
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Proof. We multiply Eq. (3.14) byu(x, y)M∗∓(x, y, k) and integrate overy andx. Using
the symmetry relation (3.7) and integral equations (3.13) forM∗∓(x, y, k) we find a
simple formula,

0 = −2πir∗∓(k, l) + 2πiF±(k, l),

where we have used definitions (3.18) and (3.20). This formula is nothing but Eq. (3.25).
The proof of Eq. (3.26) can be done by the same method starting with Eq. (3.14) and
multiplying it by u(x, y)N∗∓(x, y, k, l). ut

3.1.3. Discrete spectrum.Bound states for Eq. (3.1) exist as homogeneous solutions of
Fredholm’s integral equations (3.13) for isolated complex values ofk (eigenvalues). The
eigenvalues are located symmetrically in upper and lower half-planes [8]. The bound
states correspond to algebraically decaying lumps of the KPI equation (1.1). It was
proved [20,21] that the bound states may appear as multiple poles in the complex plane
of k. Here we restrict ourselves to the case when the bound states are not multiple.

The RH problem (3.17) coupled by the boundary conditions (1.10) and the closure
relations (3.22) can be solved in the form,

M±(x, y, k) = 1+
n∑

j=1

[
c+
j 8+

j (x, y)

k− k+
j

+ c−
j 8−

j (x, y)

k−k−
j

]

− 1

2πi

∫ ∞

−∞
dk′

k′−(k ± i0)

(∫ k′

−∞
−
∫ ∞

k′

)
dlr−σ (k′, l)N+σ (x, y, k′, l),

(3.27)

whereσ = +1 or σ = −1, 8±
j (x, y) are the bound states,n is the number of bound

states, andc±
j are renormalization constants. The bound states8±

j (x, y) are complex
functions satisfying the homogeneous integral equations,

8±
j (x, y) =

∫∫
R

dy′dx′G±(x − x′, y − y′, k±
j )u(x′, y′)8±

j (x′, y′). (3.28)

It follows from Eq. (3.8) that they can be renormalized according to the boundary con-
ditions asR = √

x2 + y2 → ∞,

8±
j (x, y) → 1

x + 2k±
j y

+ O(R−2), (3.29)

subject to the normalization constraints,

Q± = ∓ 1

2π

∫∫
R

dydxu(x, y)8±
j (x, y) = 1. (3.30)

Multiple bound states also occur for the KPI equation when the quantitiesQ± vanish. In
this case, the expression (3.27) should be modified by multiple pole contributions [20,
21]. We consider only potentialsu(x, y) for which the renormalization (3.30) holds.
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The limiting relations for the eigenfunctionsM±(x, y, k) approaching bound states
can be derived from Eq. (3.1) in the form,

lim
k→k±

j

[
M±(x, y, k) − c±

j 8±
j (x, y)

k − k±
j

]
= µ±

j (x, y) = ic±
j (x + 2k±

j y + γ ±
j )8±

j (x, y).

(3.31)

Taking the limit R = √
x2 + y2 → ∞ in Eq. (3.31) with the help of Eqs. (3.15)

and (3.29) we find that
c±
j = −i.

We notice that this constraint does not hold for the problem (2.1) in one dimension,
wherec±

j is related toγ ±
j . The data{k±

j , γ ±
j }nj=1 defines the discrete spectrum of the

problem (3.1) subject to the symmetry constraints,

(k−
j )∗ = k+

j , (γ −
j )∗ = γ +

j . (3.32)

The first symmetry constraint can be proved by means of the relation,

R±(k) ≡ r±(k, k) = −r∗∓(k, k), (3.33)

which follows from Eqs. (3.21) and (3.25). The coefficientsR+(k) andR−(k) are mero-
morphic functions in Im(k) ≥ 0 and Im(k) ≤ 0 respectively (see Eqs. (3.18) and (3.27)).
Therefore, the symmetry constraint (3.33) implies that the location of the polesR+(k)

andR∗−(k) coincides, i.e. the first relation in Eq. (3.32). The second symmetry constraint
in Eq. (3.32) follows from Eqs. (3.70) and (3.71) below. Notice that the coefficientsR±(k)

play now the same role as the coefficients
[
a±(k)

]−1 in the problem (2.1) despite the
fact thata±(k) = 1 for the RH problem (3.17).

3.1.4. Embedded eigenvalues.The continuous spectrum in the problem (3.1) has no
edge points which separate it from the discrete spectrum. Recall that the problem (2.1)
has the edge point atk = 0. Indeed, the spectral datar±(k, l) are not singular for realk
andl in the general case (see Eqs. (3.18) and (3.27)), and the eigenfunctionsM±(x, y, k)

are not growing inx andy asR = √
x2 + y2 → ∞ (see Eq. (3.15)). Still there are

special (nongeneric) potentialsu(x, y) for which the spectral data become singular at a
certain pointk = k0 at the real axis.

Definition 3.2. The potentialu(x, y) is callednongenericof type II if there is at least one
eigenvalue embedded into the continuous spectrum, i.e. the homogeneous Fredholm’s
equations (3.28) exhibit bounded solutions at realk = k0. Otherwise, the potential is
calledgenericof type II.

If the eigenvaluek = k0 is embedded into the continuous spectrum, the eigenfunctions
M±(x, y, k),N±(x, y, k, l), and the spectral datar±(k, l) have a resonant pole atk = k0.
This pole is produced by the integral part in the solution of the RH problem (3.27). We
introduce the singular behavior ofM±(x, y, k) ask → k0 according to a limiting relation
ask → k0,

M±(x, y, k) → −i8±
0 (x, y)

k − (k0 ∓ i0)
, (3.34)
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where8±
0 (x, y) are solutions of Eq. (3.28) fork = k0. It follows from Eq. (3.18) that

r±(k, l) → r±
0 (l)

k − (k0 ∓ i0)
ask → k0, (3.35)

where

r±
0 (l) = − 1

2π

∫∫
R

dydxu(x, y)8±
0 (x, y)e−iβ(x,y,k0,l).

We normalize the bound state8±
0 (x, y) according to the same constraint (3.30) so that

r±
0 (k0) = ±1.

However, the boundary conditions (3.29) are no longer valid due to the singular line at
x +2k0y = 0 and the bound states8±

0 (x, y) are weakly localized asR = √
x2 + y2 →

∞,

8±
0 (x, y) → O(R−1) asx + 2k0y 6= 0 (3.36)

and

8±
0 (x, y) → O(R−1/2) asx + 2k0y = 0. (3.37)

According to Eqs. (3.22) and (3.25), the eigenfunctionsN±(x, y, k, l) are not singular
asl → k0 and have the dominant behavior ask → k0,

N±(x, y, k, l) → ± ir∓∗
0 (l)8±

0 (x, y)

k − (k0 ∓ i0)
. (3.38)

Using Eqs. (3.27), (3.34), (3.35) and (3.38), we find that the asymptotic expressions are
self-consistent provided the following constraints are satisfied,

8+
0 (x, y) = −8−

0 (x, y) ≡ 80(x, y) (3.39)

and ∫ ∞

−∞
dl sign(k0 − l) |r±(l)|2 = 0. (3.40)

These constraints can be derived by evaluating the residue contributions atk = k0 in
Eq. (3.27) with the help of the formal expansion,

sign(k − l) = sign(k0 − l) + 2(k − k0)δ(k0 − l) + O(k − k0)
2. (3.41)

These eigenstates8±
0 (x, y) are calledhalf-bound statessince they are weakly localized

asR → ∞ and their spectral data consist only of the embedded eigenvaluek0.
Embedded eigenvalues and half-bound states are structurally unstable under a pertur-

bation of the potential according to the theory of quantum resonances [43,44]. Therefore,
we expect that the perturbation leads either to disappearance of the embedded eigenval-
ues atk = k0 or to their emergency into the complex domain as true eigenvalues. This
is the type II bifurcation analyzed in Sect. 3.4.
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3.2. Spectral decompositions.Here we study the spectral decomposition based on the
eigenfunctions of the problem (3.1) for a potentialu(x, y). Our analysis is not affected
by the presence of embedded eigenvalues. The only assumption required for the potential
u(x, y) is that it does not support multiple poles in the expansion (3.27). Non-standard
orthogonality and completeness relations for the eigenfunctions of Eq. (3.1) are obtained
in Sect. 3.2.1. Additional integral relations for the dataγ ±

j of the discrete spectrum are
derived in Sect. 3.2.2.

3.2.1. Scalar products, orthogonality and completeness relations.The eigenfunctions
M±(x, y, k) are characterized through the sets of eigenfunctionsS± = [N±(x, y, k, l),
{8+

j (x, y), 8−
j (x, y)}nj=1] by means of Eq. (3.27). The spectral datar±(k, l) and

{k±
j , γ ±

j }nj=1 are defined by the setsS± through Eqs. (3.20), (3.25), (3.30) and (3.31)
(see also the additional Eq. (3.70) below). The potentialu(x, y) is related to the setsS±
as follows [6]

1

2

(∫ x

−∞
−
∫ ∞

x

)
u(x′, y)dx′ = 1

π

∫ ∞

−∞
dk

(∫ k

−∞
−
∫ ∞

k

)
dlr∓(k, l)N±(x, y, k, l)

+ 2
n∑

j=1

[
8+

j (x, y) + 8−
j (x, y)

]
.

(3.42)

This formula results from Eqs. (3.16) and (3.27) in the limitk → ∞. Thus, the scheme
for closure of the integral transform holds for the setsS± and we state the following
main result.

Proposition 3.3.An arbitrary scalar functionf (x, y) with the boundary conditions
limx→±∞ f (x, y) = f±(y) can be decomposed through any of the orthogonal and
complete sets of eigenfunctionsS± if f+(y) + f−(y) = 0.

The proof of this proposition is based on two lemmas.

Lemma 3.4.The eigenfunctionsN±(x, y, k, l) and {8+
j (x, y), 8−

j (x, y)}nj=1 introdu-
ced in Sects. 3.1.2 and 3.1.3 satisfy the orthogonality relations,

〈N±(k′, l′)|N±(k, l)〉 = 2π2i sign(k − l) δ(k − k′) δ(l − l′), (3.43)

〈8±
j |N±(k, l)〉 = 〈N±(k, l)|8±

j 〉 = 〈8∓
j |N±(k, l)〉 = 〈N±(k, l)|8∓

j 〉 = 0, (3.44)

〈8±
l |8±

j 〉 = 0, 〈8∓
l |8±

j 〉 = ±πδjl, (3.45)

where the scalar product is given by

〈g(k′, l′)|h(k, l)〉 =
∫∫

R

dydxg∗(x, y, k′, l′)∂xh(x, y, k, l). (3.46)
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Proof. First, we derive a balance equation for two solutionsh(k, l) and g(k′, l′) of
Eq. (3.1) with a real potentialu(x, y),

i
∂

∂y

(
g∗(k′, l′)h(k, l)

)+ ∂

∂x

(
g∗(k′, l′)hx(k, l) − g∗

x(k′, l′)h(k, l)

−2ik′g∗(k′, l′)h(k, l)
) = 2i(k − k′)g∗(k′, l′)hx(k, l).

(3.47)

We integrate this equation forh = N±(x, y, k, l) andg∗ = N∗±(x, y, k′, l′) overx and
then overy. Using Eqs. (2.37) and (3.15), we derive the relation,

〈N±(k′, l′)|N±(k, l)〉 = 1

2(k−k′)

[
lim

y→∞− lim
y→−∞

]

·
∫ ∞

−∞
dxN∗±(x, y, k′, l′)N±(x, y, k, l) (3.48)

+ 2π2i
(k−k′−l)2−l′2

k−k′ δ(k−k′−l + l′)δ(k2−l2−k′2 + l′2).

We substitute the integral representation (3.14) to evaluate the first term in Eq. (3.48) and
integrate the Green’s functions according to Eq. (3.4). Then, the relation (3.48) reduces
to the formula,

〈N±(k′, l′)|N±(k, l)〉 = 4π2i(k − l)δ(k − l − k′ + l′)δ(k2 − l2 − k′2 + l′2)
∓ π2iδ(k − k′)R±,

(3.49)

where

R± = T±(k, l, l′) + T ∗±(k, l′, l) ∓
[∫ k

−∞
−
∫ ∞

k

]
dpT±(k, l, p)T ∗±(k, l′, p)

andT±(k, l, p) is given by Eq. (3.24). In the derivation of Eq. (3.49) we have supposed
that k 6= l and k′ 6= l′, i.e. the eigenfunctionN±(x, y, k, l) is not degenerate [cf.
Eq. (3.21)]. Under these conditions, zeros of bothδ-functions in Eq. (3.49) occur only
for k = k′ andl = l′. Therefore, we simplify Eq. (3.49) by using the following formulas,

αδ(αx) = sign(α)δ(x), 2δ(x + y)δ(x − y) = δ(x)δ(y). (3.50)

Then, Eq. (3.49) reduces to Eq. (3.43) providedR± = 0. The latter identity follows
from the relation (3.26) and the explicit expressions (3.23) and (3.24).

The zero scalar products (3.44) and (3.45) can also be found from Eq. (3.47) for
bound states. In order to find the nonzero inner products in Eqs. (3.45), we integrate
Eq. (3.47) forh = M±(x, y, k) andg∗ = 8∓∗

j (x, y) overx and then overy and use the
boundary conditions (3.15) and (3.29). As a result, we derive the integral relation,

2i(k − k±
j )

∫∫
R

dydx8∓∗
j (x, y)∂xM±(x, y, k) = ±2π. (3.51)

This relation reduces to Eq. (3.45) after substitution of Eq. (3.27) forM±(x, y, k) and
use of the zero scalar products (3.44) and (3.45).ut
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We notice that Boiti et al. [23] used different scalar products for the orthogonality
relations,

1

2π

∫ ∞

−∞
dxM∗∓(x, y, l)M±(x, y, k)eiβ(x,y,l,k) = δ(l − k). (3.52)

These products generalize the results of the time-independent Schrödinger equation and
are independent ony for solutions of Eq. (3.1). However, an arbitrary scalar function in
two dimensions cannot be decomposed through the eigenfunctions

M±(x, y, k)e−i(kx+k2y)

which depend on one spectral parameter. Note that, in the time-dependent problem, the
eigenfunctionsN±(x, y, k, l) andN±(x, y, k′, l′) are orthogonal whileN∓(x, y, k, l)

andN±(x, y, k′, l′) are not (the time-independent problem has the opposite property,
see Eq. (2.34)).

Lemma 3.5.The eigenfunctionsN±(x, y, k, l) and{8+
j (x, y), 8−

j (x, y)}nj=1 satisfy the
completeness relation,

1

2
sign(x − x′)δ(y − y′) = 1

2π2i

∫∫
D

dkdlN∗±(x′, y′, k, l)N±(x, y, k, l)

+ 1

π

n∑
j=1

[
8−∗

j (x′, y′)8+
j (x, y) − 8+∗

j (x′, y′)8−
j (x, y)

]
, (3.53)

where we have used the notation,∫∫
D

dkdl ≡
∫ ∞

−∞
dk

(∫ k

−∞
−
∫ ∞

k

)
dl.

Proof. We start with transforming Eq. (3.19) to the form,

∂

∂k

[
N∗±(x′, y′, k, l)N±(x, y, k, l)

]
= i

[
x − x′ + 2k(y − y′)

]
N∗±(x′, y′, k, l)N±(x, y, k, l)

± [
M±(x, y, k)r∗∓(k, l)N∗±(x′, y′, k, l) + M∗±(x′, y′, k)r∓(k, l)N±(x, y, k, l)

]
,

where we have used Eq. (3.25). Multiplying this equation by sign(k − l) and integrating
overl, we derive the expression,

∂W(k)

∂k
= i

[
x − x′ + 2k(y − y′)

]
W(k) + M∗−(x′, y′, k)M+(x, y, k)

+ M∗+(x′, y′, k)M−(x, y, k),

(3.54)

where

W(k) =
[∫ k

−∞
−
∫ ∞

k

]
dlN∗±(x′, y′, k, l)N±(x, y, k, l).

The functionsM∗−(x′, y′, k)M+(x, y, k) andM∗+(x′, y′, k)M−(x, y, k) are meromor-
phic in Im(k) ≥ 0 and Im(k) ≤ 0 respectively. We apply the Plemelj formula (see
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Appendix A1 in [6]) to reconstruct their sum from a given jump at Im(k) = 0. Evalu-
ating the pole contribution according to Eqs. (3.31) and (3.32), we derive the following
representation,

1

2

[
M∗−(x′, y′, k)M+(x, y, k) + M∗+(x′, y′, k)M−(x, y, k)

]
= R(k) + 1

2

[
1+(k) − 1−(k)

]
,

(3.55)

where

R(k) = 1 +
n∑

j=1

8+∗
j (x′, y′)8−

j (x, y)

[
i(x − x′ + 2k−

j (y − y′))
k − k−

j

+ 1

(k − k−
j )2

]

+
n∑

j=1

8−∗
j (x′, y′)8+

j (x, y)

[
i(x − x′ + 2k+

j (y − y′))
k − k+

j

+ 1

(k − k+
j )2

]

(3.56)

and

1±(k) = ± 1

2πi

∫ ∞

−∞
dk′

k′ − (k ± i0)

· [M∗−(x′, y′, k′)M+(x, y, k′) − M∗+(x′, y′, k′)M−(x, y, k′)
]
.

(3.57)

The functions1+(k) and1−(k) represent the boundary values at realk of analytical
functions in the upper and lower half-plane ofk, respectively, subject to the boundary
conditions in the limitk → ∞ ± i0,

1±(k) → ±1±∞
k

+ O(k−2), (3.58)

where1±∞ are given by

1±∞ = − 1

2πi

∫ ∞

−∞
dk
[
M∗−(x′, y′, k)M+(x, y, k) − M∗+(x′, y′, k)M−(x, y, k)

]
± (y − y′)

4π

∫ ∞

−∞
dy′′

(y′′ − y)(y′′ − y′)

∫ ∞

−∞
dx′′u(x′′, y′′).

(3.59)

Solving Eq. (3.54) as a differential equation ink, we derive explicitly,∫ ∞

−∞
W(k)dk =

∫ ∞

−∞
W+(k)dk +

∫ ∞

−∞
W−(k)dk +

∫∫
D

dkdlR(l)eiβ(x−x′,y−y′,k,l),

(3.60)

where the functionsW±(k) solve the differential equations,

∂W±(k)

∂k
= i

[
x − x′ + 2k(y − y′)

]
W±(k) ± 1±(k). (3.61)
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In order to evaluate the last integral in Eq. (3.60) from Eq. (3.56), we transform the
variables,

k = 1

2
(p + κ), l = 1

2
(p − κ),

and integrate first overp and then overκ with the use of the residue theorem. Then,
Eq. (3.60) reproduces exactly the completeness relation (3.53) subject to the following
constraint, ∫ ∞

−∞
W+(k)dk +

∫ ∞

−∞
W−(k)dk = 0. (3.62)

Now we show that this constraint is satisfied for the functionsW±(k) defined by
Eqs. (3.61). Since the right-hand-sides1±(k) are analytical functions in the upper/lower
half-planes ofk, the functionsW±(k) solving Eq. (3.61) can be analytically continued
in the corresponding domains ofk subject to the constraint,

(y − y′)
∫ ∞

−∞
W±(k)dk = 0. (3.63)

In the casey 6= y′, the boundary conditions forW±(k) follow from Eqs. (3.58) and (3.61)
asW±(k) ∼ O(k−2). Therefore, the constraints (3.62) and (3.63) are satisfied. In the
casey = y′, the constraint (3.63) is still met and the functionsW±(k) have the boundary
conditions ask → ∞ ± i0,

W±(k) → i1±∞
k(x − x′)

+ O(k−2).

As a result, we find explicitly that∫ ∞

−∞
W±(k)dk = ± π1±∞

x − x′ .

However, it follows from Eq. (3.59) that1+∞ = 1−∞ wheny = y′ and, therefore, the
constraint (3.62) is satisfied.ut
Proof of Proposition 3.3.We decompose a scalar functionf (x, y) in the form,

f (x, y) = 1

2
(f+(y) + f−(y)) +

∫∫
D

dkdlα±(k, l)N±(x, y, k, l)

+
n∑

j=1

(
α+

j 8+
j (x, y) + α−

j 8−
j (x, y)

)
.

(3.64)

The coefficients of the expansion can be expressed through the derivativefx(x, y) ac-
cording to Eqs. (3.43)–(3.45),

α±(k, l) = 〈N±(k, l)|f 〉
2π2i

, α±
j = ±〈8∓

j |f 〉
π

.

Then, Eq. (3.64) reduces to an identity by means of Eq. (3.53).ut
We conclude that the relation (3.42) for the inverse scattering transform is a particular

application of Eq. (3.64). The coefficientsr±(l, k) play the role of Fourier coefficients
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and they can be found from Eqs. (3.42) and (3.43) in the form (3.20) and (3.25). The co-
efficientsc±

j for the discrete spectrum are all fixed,c±
j = −i, due to the renormalization

conditions (3.30). These conditions are consistent with Eqs. (3.42) and (3.45). Notice
that the formula (3.42) gives a nontrivial limit atx → ±∞ even in the case when the
constraint (3.2) does not hold. Indeed, integrating Eq. (3.42) overy and then taking the
limit x → ∞, we derive the explicit expression,

∫∫
R

dydxu(x, y) = 2πiR±(0) −
∫∫

D

dkdl
|r±(k, l)|2

k ∓ i0
+ πi

n∑
j=1

k−
j − k+

j

k+
j k−

j

,

(3.65)

where we have used the relations following from Eqs. (3.4), (3.14) and (3.28),[
lim

x→∞ − lim
x→−∞

] ∫ ∞

−∞
dy N±(x, y, k, l) = 2π2i sign(k − l) δ(k) δ(l) − πr∗∓(k, l)

k ± i0
(3.66)

and [
lim

x→∞ − lim
x→−∞

] ∫ ∞

−∞
dy 8±

j (x, y) = ±πi

k±
j

. (3.67)

The relation (3.65) can also be derived from Eq. (3.27). We notice that the spectral
decomposition gives an explicit value for the mass integral (3.65) provided the order of
integration is specified according to Eq. (3.12).

3.2.2. Characterization of the data of the discrete spectrum.Here we use the orthogo-
nality relations (3.43)–(3.45) and find an integral representation for the parametersγ ±

j of

the bound states. First, it follows from Eqs. (3.27) and (3.31) that the functions8±
j (x, y)

satisfy the system of algebraic equations,

(x + 2k±
j y + γ ±

j )8±
j (x, y) = 1 − i

n∑
l=1

′ [
8+

l (x, y)

k±
j − k+

l

+ 8−
l (x, y)

k±
j − k−

l

]

− 1

2πi

∫ ∞

−∞
dk

k − k±
j

(∫ k

−∞
−
∫ ∞

k

)
dlr−σ (k, l)N+σ (x, y, k, l),

(3.68)

whereσ = +1 orσ = −1 and
∑′ stands for sum without the singular term atk±

l = k±
j .

Equation (3.68) can be viewed as a spectral decomposition of the functionsµ±
j (x, y)

defined by Eq. (3.31) through the complete setsS±. It follows from Eq. (3.68) and
Eqs. (3.43)–(3.45) that∫∫

R

dydx8∓∗
j (x, y)

(
(x + 2k±

j y + γ ±
j )8±

j (x, y)
)

x
= 0. (3.69)

As a result, the spectral dataγ ±
j can be expressed from Eqs. (3.45) and (3.69) as

γ ±
j = ∓ 1

π

∫∫
R

dydx8∓∗
j (x, y)(x + 2k±

j y)8±
jx(x, y), (3.70)
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subject to the constraint,∫ ∞

−∞
dx8∓∗

j (x, y)8±
j (x, y) = 0. (3.71)

This constraint can be derived by integrating Eq. (3.47) forh = 8±
j (x, y) andg∗ =

8∓∗
j (x, y) overx subject to the zero boundary conditions asy → ∞ (see Eq. (3.29)).

We notice that Eqs. (3.70) and (3.71) imply the symmetry constraint
(
γ −
j

)∗ = γ +
j , i.e.

the second relation in Eq. (3.32).
We apply the orthogonal and complete sets of eigenfunctionsS± to study perturba-

tions of the potential and variation of the spectral data for Eq. (3.1).

3.3. Perturbation theory.Suppose that the potential can be decomposed asuε = u(x, y)

+ ε1u(x, y), whereε � 1. We assume that the potentialu(x, y) supports the com-

plete sets of eigenfunctionsS± =
[
N±(x, y, k, l), {8+

j (x, y), 8−
j (x, y)}nj=1

]
. Also we

assume that the perturbation1u(x, y) ∼ O(1) asε → 0. Here we evaluate variations
of the spectral data due to the perturbation1u(x, y).

3.3.1. Variations of data of discrete spectrum.Suppose that8±ε
j (x, y) solves Eq. (3.1)

for uε = u(x, y) + ε1u(x, y) with the eigenvaluek = k±ε
j . We expand8±ε

j (x, y)

through the setsS± according to Eq. (3.64) rewritten as

8±ε
j (x, y) =

∫∫
D

dkdl
α±(k, l)N±(x, y, k, l)

4π2(k − k±ε
j )

± 1

2πi

n∑
l=1

[
α±

l 8±
l (x, y)

k±ε
j − k±

l

− α̃∓
l 8∓

l (x, y)

k±ε
j − k∓

l

]
.

(3.72)

The eigenvalue problem (3.1) reduces with the help of Eqs. (3.43)–(3.45) and (3.72) to
a set of homogeneous integral equations,

α±(k, l) = ε

[∫∫
D

dk′dl′ K±(k, k′, l, l′)α±(k′, l′)
4π2(k′ − k±ε

j )

± 1

2πi

n∑
l=1

(
K±l (k, l)α±

l

k±ε
j − k±

l

− K̃∓l (k, l)α̃∓
l

k±ε
j − k∓

l

)]
,

(3.73)

α±
l = ε

[∫∫
D

dkdl
K̃∗∓l (k, l)α±(k, l)

4π2(k − k±ε
j )

± 1

2πi

n∑
m=1

(
K±lmα±

m

k±ε
j − k±

m

− K̃∓lmα̃∓
m

k±ε
j − k∓

m

)]
,

(3.74)

α̃∓
l = ε

[∫∫
D

dkdl
K∗±l (k, l)α±(k, l)

4π2(k − k±ε
j )

± 1

2πi

n∑
m=1

(
K̃±lmα±

m

k±ε
j − k±

m

− K∓lmα̃∓
m

k±ε
j − k∓

m

)]
,

(3.75)
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where the integral elements are

K±(k, k′, l, l′) =
∫∫

R

dydx1u(x, y)N∗±(x, y, k, l)N±(x, y, k′, l′),

K±j (k, l) =
∫∫

R

dydx1u(x, y)N∗±(x, y, k, l)8±
j (x, y),

K̃±j (k, l) =
∫∫

R

dydx1u(x, y)N∗∓(x, y, k, l)8±
j (x, y),

K±j l =
∫∫

R

dydx1u(x, y)8∓∗
j (x, y)8±

l (x, y),

and

K̃±j l =
∫∫

R

dydx1u(x, y)8±∗
j (x, y)8±

l (x, y).

The results of the asymptotic analysis of Eqs. (3.73)–(3.75) in the limitε → 0 are
summarized in the following proposition.

Proposition 3.6.Variational derivatives of the data{k±
j , γ ±

j }nj=1 of the discrete spec-
trum of Eq. (3.1) with respect to the potentialu(x, y) are defined by

δk±
j

δu(x, y)
= ±8∓∗

j (x, y)8±
j (x, y)

2πi
, (3.76)

δγ ±
j

δu(x, y)
= ∓y8∓∗

j (x, y)8±
j (x, y)

πi

± 1

2π

n∑
l=1

′ [
8∓∗

j 8±
l − 8±

j 8∓∗
l

(k±
j − k±

l )2
+ 8∓∗

j 8∓
l − 8±

j 8±∗
l

(k±
j − k∓

l )2

]
(3.77)

±
∫∫

D

dkdl
r±(k, l)N∓(x, y, k, l)8∓∗

j (x, y) − r∗∓(k, l)N∗±(x, y, k, l)8±
j (x, y)

4π2(k − k±
j )2

,

where
∑′

l stands for sum excluding the singular term atk±
l = k±

j .

Proof. The self-consistency condition of Eq. (3.74) atl = j defines the expansion of
the eigenvaluek±ε

j as

k±ε
j = k±

j + ε1k±
j + O(ε2),

where

1k±
j = ±K±jj

2πi
. (3.78)

This formula is equivalent to Eq. (3.76). We notice that the symmetryk−
j = k+∗

j is
preserved in the perturbation theory for real1u(x, y). The set of integral equations is
solved at the leading order as

α±(k, l) = εK±j (k, l) + O(ε2),

α±
l = εK±lj + O(ε2),

α̃∓
l = εK̃±lj + O(ε2).
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This solution defines a perturbation to the bound state,8±ε
j (x, y) = 8±

j (x, y) +
ε18±

j (x, y) + O(ε2), in the form,

18±
j (x, y) = 1α±

j 8±
j (x, y) ± 1

2πi

n∑
l=1

′ [
K±lj8

±
l (x, y)

k±
j − k±

l

− K̃±lj8
∓
l (x, y)

k±
j − k∓

l

]

+
∫∫

D

dkdl
K±j (k, l)N±(x, y, k, l)

4π2(k − k±
j )

,

(3.79)

where the coefficient1α±
j is expressed through the corrections ofα±

j andk±ε
j . This

coefficient should be specified by normalizing the bound state8±ε
j (x, y) as R =√

x2 + y2 → ∞ according to Eq. (3.29) or, equivalently, Eq. (3.30). The latter con-
straint can be expanded to the first order inε as

∓ 1

2π

∫∫
R

dydx
(
u(x, y)18±

j (x, y) + 1u(x, y)8±
j (x, y)

)
= 0. (3.80)

We prove that this integral equation defines the correction1α±
j in the form,

1α±
j = − 1k±

j

k±
j

± k±
j

2πi

n∑
l=1

′ [
K±lj

k±
l (k±

l − k±
j )

+ K̃±lj

k∓
l (k∓

l − k±
j )

]

± 1

2π
K±j (0, 0) ± k±

j

4π2i

∫∫
D

dkdl
K±j (k, l)r∗∓(k, l)

(k ± i0)(k − k±
j )

.

(3.81)

We evaluate the first integral in Eq. (3.80) by substituting Eq. (3.79) and using Eqs. (3.20),
(3.25), and (3.30),

∓ 1

2π

∫∫
R

dydxu(x, y)18±
j (x, y) =1α±

j ± 1

2πi

n∑
l=1

′ [
K±lj

k±
j − k±

l

+ K̃±lj

k±
j − k∓

l

]

∓
∫

D

dkdl
K±j (k, l)r∗∓(k, l)

4π2i(k − k±
j )

. (3.82)

Then, we evaluate the second integral in Eq. (3.80) by using the spectral decomposition,

1

2

(∫ x0

∞
−
∫ ∞

x0

)
dx1u(x, y)8±

j (x, y) = 1

2π2i

∫∫
D

dkdlK±j (k, l)N±(x0, y, k, l)

± 1

π

n∑
l=1

(
K±lj8

±
l (x0, y)−K̃±lj8

∓
l (x0, y)

)
. (3.83)

Integrating this expression first iny and then taking the limitx0 → ∞, we find the
second integral in Eq. (3.80) with the use of Eqs. (3.66) and (3.67),
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∓ 1

2π

∫∫
R

dydx1u(x, y)8±
j (x, y) = ± 1

2πi

n∑
l=1

[
K±lj

k±
l

+ K̃±lj

k∓
l

]

∓ 1

2π
K±j (0, 0) ±

∫∫
D

dkdl
K±j (k, l)r∗∓(k, l)

4π2i(k ± i0)
. (3.84)

Formulas (3.82) and (3.84) reduce Eq. (3.80) to the form (3.81). Furthermore, we simplify
Eq. (3.81) as follows

1α±
j = ± 1

2π

∫∫
R

dydx1u(x, y)(x + 2k±
j y + γ ±

j )8∓∗
j (x, y)8±

j (x, y). (3.85)

This transformation is based on the relation following from Eqs. (3.27) and (3.68),

µ±
j (x, y) − M∓(x, y, 0) = − i8±

j (x, y)

k±
j

− ik±
j

n∑
l=1

′ [
8+

l (x, y)

k+
l (k±

j − k+
l )

+ 8−
l (x, y)

k−
l (k±

j − k−
l )

]

− k±
j

2πi

∫∫
D

dkdl
r±(k, l)N∓(x, y, k, l)

(k ± i0)(k − k±
j )

,

whereµ±
j (x, y) is defined by Eq. (3.31).

In order to prove Eq. (3.77) we assume the asymptotic expansion,γ ±ε
j = γ ±

j +
ε1γ ±

j + O(ε2), and express the correction1γ ±
j from Eq. (3.69) in the form,

1γ ±
j = ∓ 1

π

∫∫
R

dydx18∓∗
j (x, y)

[
(x + 2k±

j y + γ ±
j )8±

j (x, y)
]
x

∓ 1

π

∫∫
R

dydx8∓∗
j (x, y)

[
(x + 2k±

j y + γ ±
j )18±

j (x, y)
]
x

∓ 21k±
j

π

∫∫
R

dydxy8∓∗
j (x, y)8±

jx(x, y).

(3.86)

The first two terms can be evaluated by means of direct substitution of Eq. (3.79) and
use of Eq. (3.68) and the orthogonality relations (3.43)–(3.45). The result is given by
the expression,

1γ ±
j = ± 1

2π

n∑
l=1

′ [
K∗∓lj − K±lj

(k±
j − k±

l )2
+ K̃∗∓lj − K̃±lj

(k±
j − k∓

l )2

]

±
∫∫

D

dkdl
r±(k, l)K∗∓j (k, l) − r∗∓(k, l)K±j (k, l)

4π2(k − k±
j )2

∓ 21k±
j

π

∫∫
R

dydxy8∓∗
j (x, y)8±

jx(x, y)

∓ 1

π

∫∫
R

dydx8∓∗
j (x, y)18±

j (x, y).

(3.87)
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In order to evaluate the last two terms in this expression, we use the equation for18±
j ,

i18±
jy + 18±

jxx − 2ik±
j 18±

jx + u18±
j = 2i1k±

j 8±
jx − 1u8±

j (3.88)

with the boundary condition asR = √
x2 + y2 → ∞,

18±
j → − 21k±

j y

(x + 2k±
j y)2

+ O(R−2). (3.89)

The balance equation following from Eqs. (3.1) and (3.88) can be integrated to the form,

∂

∂y

(∫ ∞

−∞
dx8∓∗

j (x, y)18±
j (x, y)

)

= 21k±
j

∫ ∞

−∞
dx8∓∗

j (x, y)8±
jx(x, y) + i

∫ ∞

−∞
dx1u(x, y)8∓∗

j (x, y)8±
j (x, y).

(3.90)

Multiplying this equation byy and integrating overy with the boundary conditions (3.29)
and (3.89), we find

∓21k±
j

π

∫∫
R

dydxy8∓∗
j (x, y)8±

jx(x, y) ∓ 1

π

∫∫
R

dydx8∓∗
j (x, y)18±

j (x, y)

= ∓ 1

πi

∫∫
R

dydxy1u(x, y)8∓∗
j (x, y)8±

j (x, y).

(3.91)

Formulas (3.87) and (3.91) reduce to Eq. (3.77). We notice that the symmetry constraint
(γ −

j )∗ = γ +
j is preserved by the real potential1u(x, y). ut

The results formulated in Proposition 3.6 constitute the basis for the analysis of
dynamics of the KPI lumps under small perturbations, e.g. under distortions of their
shapes.

3.3.2. Variations of data of continuous spectrum.Suppose thatNε±(x, y, k, l) solves
Eq. (3.1) foruε = u(x, y)+ ε1u(x, y). We expand it to the first order,Nε±(x, y, k, l) =
N±(x, y, k, l) + ε1N±(x, y, k, l) + O(ε2), and find the correction1N±(x, y, k, l) in
the form,

1N±(x, y, k, l) =
∫∫

D

dk′dl′ K±(k′, k, l′, l)N±(x, y, k′, l′)
4π2(k′ − (k ± i0))

± 1

2πi

n∑
l=1

[
K̃∗∓l (k, l)8±

l (x, y)

k − k±
l

− K∗±l (k, l)8∓
l (x, y)

k − k∓
l

]
.

(3.92)

The main result of this subsection is formulated in the following proposition.

Proposition 3.7.Variational derivatives of the datar±(k, l) of the continuous spectrum
of Eq. (3.1) with respect to the potentialu(x, y) are given by

δr±(k, l)

δu(x, y)
= N∗∓(x, y, k, l)M±(x, y, k)

2πi
. (3.93)
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Proof. The derivation follows the proof of Proposition 3.6. First, we expand the scatter-
ing data asrε±(k, l) = r±(k, l) + ε1r±(k, l) + O(ε2) and use Eqs. (3.20) and (3.25) to
express1r±(k, l) as

1r±(k, l) = 1

2πi

∫∫
R

dydx
(
u(x, y)1N∗∓(x, y, k, l) + 1u(x, y)N∗∓(x, y, k, l)

)
.

(3.94)

The first integral can be evaluated explicitly through the substitution of Eqs. (3.92) and
use of Eqs. (3.20), (3.25), and (3.30). The second integral can be found by integrating
the spectral decomposition,

1

2

(∫ x0

−∞
−
∫ ∞

x0

)
dx1u(x, y)N∗∓(x, y, k, l)

= 1

2π2i

∫∫
D

dk′dl′K∗∓(k′, k, l′, l)N∗∓(x0, y, k′, l′)

± 1

π

n∑
l=1

(
K̃±l (k, l)8∓∗

l (x0, y) − K∓l (k, l)8±∗
l (x0, y)

)
,

overy in the limit x0 → ∞. As a result, we deduce

1r±(k, l) = 1

2πi
K∗∓(0, k, 0, l) + k

4π2

∫∫
D

dk′dl′
K∗∓(k′, k, l′, l)r±(k′, l′)
(k′ ± i0)(k′ − (k ± i0))

+ k

2π

n∑
l=1

(
K̃±l (k, l)

k±
l (k±

l − k)
+ K∓l (k, l)

k∓
l (k∓

l − k)

)
.

(3.95)

Using Eqs. (3.27) forM±(x, y, k) − M∓(x, y, 0), we conclude that Eq. (3.95) reduces
to Eq. (3.93). ut

3.3.3. Example: A single lump potential.We solve Eq. (3.68) forr±(k, l) = 0 atl 6= k

andn = 1 in the form,

8+
1 (x, y) = 2κ1

2κ1X − 4iκ2
1Y − 1

4κ2
1X2 + 16κ4

1Y 2 + 1
, (3.96)

8−
1 (x, y) = 2κ1

2κ1X + 4iκ2
1Y + 1

4κ2
1X2 + 16κ4

1Y 2 + 1
, (3.97)

where we have used the parametrization,

k±
1 = p1 ± iκ1, γ ±

1 = −x0 − 2k±
1 y0, X = x − x0 + 2p1(y − y0), Y = y − y0.

Then, the lump of the KPI equation (1.1) is

us(x, y) = wsX(X, Y ), ws(X, Y ) = 16κ2
1X

4κ2
1X2 + 16κ4

1Y 2 + 1
, (3.98)
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which satisfies the constraint (3.2). We use the following relation,

8∓∗
1 (x, y)8±

1 (x, y) = −1

4
us(X, Y ) ± i

8κ1
wsY (X, Y ),

and evaluate explicitly the perturbation corrections of the first order of the perturbation
theory (3.76) and (3.77),

1k±
1 = 1

16πκ1

(
1Psy − 2p11Psx

)± i

8π
1Psx, (3.99)

1γ ±
1 = 4κ1

π

∫∫
R

dydx
X(16κ4

1yY − 1)

(4κ2
1X2 + 16κ4

1Y 2 + 1)2
1u(x, y)

± 1

4πi

∫∫
R

dydx yus(x, y)1u(x, y),

(3.100)

where1Psx and1Psy are corrections to thex andy-projections of the momentum for
the KPI equation (1.1),

Psx = 1

2

∫∫
R

dydxw2
sx, Psy = 1

2

∫∫
R

dydxwsxwsy.

The perturbation of the data of the continuous spectrum1r±(k, l) can be found from
Eq. (3.93) by using the explicit relation (see Eqs. (3.22) and (3.27)),

N±(x, y, k, l) =
[

1 − 4iκ2
1(2(l − p1)X + 4κ2

1Y − i)

((l − p1)2 + κ2
1)(4κ2

1X2 + 16κ4
1Y 2 + 1)

]
eiβ(x,y,k,l).

(3.101)

We notice that

R±(k) = r±(k, k) = − 4πκ1

(k − p1)2 + κ2
1

,

i.e.R(k) 6= 0. On the other hand, we confirm from Eqs. (3.20), (3.25), and (3.101) that
r±(k, l) = 0 for anyl 6= k.

Since the projections of the momentum at the KPI lump (3.98) arePsx = 8πκ1 and
Psy = 16πκ1p1, we check from Eq. (3.99) that the first-order corrections1Psx and
1Psy define completely the renormalization of the parametersκ1 andp1 of the KPI
lump (3.98) and affect the excitation of the momentum of the continuous spectrum in
the order of O(ε2). This result confirms the stability of the single KPI lump against small
perturbations [32].

3.4. Type II bifurcation of new eigenvalues.The results of Sects. 3.2 and 3.3 remain
valid even if the potentialu(x, y) is a nongeneric potential of type II, i.e. it supports an
embedded eigenvalue atk = k0. Indeed, the half-bound states8±

0 (x, y) appear as pole
contributions of the continuous spectrum and their presence does not affect the complete

sets of eigenfunctionsS± =
[
N±(x, y, k, l), {8+

j (x, y), 8−
j (x, y)}nj=1

]
. However, the

eigenfunctionsM±(x, y, k) andN±(x, y, k, l) are singular atk = k0 according to Eqs.
(3.34) and (3.38). As a result, the variation of the scattering datar±(k, l) defined by
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Eq. (3.93) becomes divergent ask → k0 if the nongeneric potentialu(x, y) is perturbed
by a correction1u(x, y),

1r±(k, l) → ± r±
0 (l)K±

0

2πi(k − (k0 ∓ i0))2 , (3.102)

whereK±
0 = −K0 and

K0 =
∫∫

R

dydx1u(x, y)|80(x, y)|2. (3.103)

Combining Eqs. (3.35) and (3.102), we find that the perturbation1u(x, y) shifts the
pole atk = k0 into the complex domain,

k±ε
0 = k0 ± iεK0

2π
. (3.104)

This shift crosses the real axis if sign(εK0) > 0. In this case, the eigenfunctions
M+(x, y, k) and M−(x, y, k) acquire a new pole in the upper and lower half-plane
of k, respectively (cf. Eqs. (3.27) and (3.34)). We prove below that the bifurcation of the
embedded eigenvalue into the complex plane occurs under the condition sign(εK0) > 0
and Eq. (3.104) gives the leading order of the new eigenvalue. In the opposite case, i.e.
when sign(εK0) < 0, the analyticity properties ofM±(x, y, k) in the corresponding do-
mains ofk are not affected and we expect that the embedded eigenvalue just disappears.
Here we derive asymptotic expansions for the new eigenvalue and associated bound
state. The results are applied to the problem of generation of a KPI lump by a localized
initial pulse.

3.4.1. Asymptotic expressions for a new eigenvalue and bound state.Suppose that the
type II bifurcation occurs under the perturbation1u(x, y).A new bound state8±ε

n+1(x, y)

can be decomposed through the complete setsS± according to Eq. (3.72) with the
eigenvaluek = k±ε

n+1 such that limε→0 k±ε
n+1 = k0. If the potentialu(x, y) is nongeneric,

the homogeneous integral equation (3.73) has a singular kernel atk′ → k0 if k±ε
n+1 → k0.

Solving this equation asymptotically in the limitε → 0, we derive the following result.

Proposition 3.8.Under the conditions that the potentialu(x, y) exhibits an embedded
eigenvalue atk = k0 and the perturbation1u(x, y) satisfies the criterionK0 > 0
(see Eq. (3.103), the potentialuε = u(x, y) + ε1u(x, y) supports a bound state in
a neighbourhood ofk = k0 for ε > 0. The eigenvaluek±ε

n+1 for the new bound state
8±ε

n+1(x, y) is defined by

k±ε
n+1 = k0 ± iε1k + O(ε2),

where

1k = 1

2π
K0 > 0. (3.105)

Proof. We consider an asymptotic solution of Eq. (3.73) atk, l → k0 andε → 0. Using
Eq. (3.38), we rescale the variables in the problem,

K±(k, k′, l, l′) = r∓
0 (l)r∓∗

0 (l′)P±(k, k′, l, l′)
(k − (k0 ± i0))(k′ − (k0 ∓ i0))

, α±(k, l) = r∓
0 (l)A±(k, l)

k − (k0 ± i0)
.

(3.106)
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Then, we evaluate the singular contribution from the polek′ = k0 in the integral of
Eq. (3.73) and find the leading order term in the form,

A±(k, l) → εP±(k, k0, l, k0)A±(k0, k0)

4π2 Q±, (3.107)

where

Q± =
∫∫

D

dk′dl′|r∓
0 (l′)|2

(k′ − k0)2(k′ − k0 ∓ iε1k)
.

Using the formal expansion (3.41) and the constraint (3.40), we evaluateQ± by means
of the residue theorem as

Q± =
∫ ∞

−∞
2dk

(k − k0)(k − k0 ∓ iε1k)
= 2π

ε1k
sign(ε1k). (3.108)

Writing Eq. (3.107) atk = l = k0 and assumingε > 0, we find the simple result,

|1k| = 1

2π
P±(k0, k0, k0, k0) = 1

2π
K0.

The latter equation is self-consistent only forK0 > 0, when the bifurcation occurs and
the new eigenvalue has the asymptotic approximation (3.105). The new bound state
8±ε

n+1(x, y) is defined by Eqs. (3.72), (3.106), and (3.107). Using the same approach,

we simplify the expression for8±ε
n+1(x, y) for finite R = √

x2 + y2,

8±ε
n+1(x, y) = ± iA±(k0, k0)

4π2 Q±8±
0 (x, y) + O(ε). (3.109)

Using Eq. (3.108), we satisfy the normalization condition (3.30) by specifying
A±(k0, k0) = ∓iεK0. Then, Eqs. (3.72), (3.106), and (3.107) reduce to the asymp-
totic expression for the new bound state,

8±ε
n+1(x, y) = ∓ iε

4π2K

∫∫
D

dkdl
r∓
0 (l)P±(k, k0, l, k0)N±(x, y, k, l)

(k − (k0 ± i0))(k − k0 ∓ iε1k)
+ O(ε),

where the integral term is the order of O(1). ut
We have thus found that, for the type II bifurcation, a new eigenvalue appears trans-

versely to the real axis in the neighbourhood of the embedded eigenvalue and a new
bound state arises from a localized eigenfunction corresponding to the half-bound state.

3.4.2. Example: Generation of a single KPI lump.The multilump potentials of the linear
problem (1.2) do not belong to the nongeneric potentials of type II sincer±(k, l) are not
singular for realk. Indeed, for such potentials,r±(k, l) = 0 atl 6= k and

N±(x, y, k, l) = M±(x, y, l)eiβ(x,y,k,l),

where

M±(x, y, l) = 1 − i

n∑
j=1

[
8+

j (x, y)

l − k+
j

+ 8−
j (x, y)

l − k−
j

]
.

It is clear from this expression that the embedded eigenvalues at realk are not supported
by the multilump potentials. In the particular casen = 0, we conclude that the zero
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0.0 55.0 → x 110.0
0.0

40.0

↑ y

↗ u

80.0

(a) (b)

(c) (d)

Fig. 3.1.Formation of a new KPI lump for the initial condition (3.110) anda = 1.5 at timest = 5 (a), t = 10
(b), t = 15 (c), andt = 20 (d) ((a)–(d) in the same coordinates)

backgroundu(x, y) = 0 does not exhibit embedded eigenvalues and, therefore, small
initial data do not generate new eigenvalues. This implies that there must be a threshold
for amplitude of the initial localized pulse to generate a new eigenvalue in the prob-
lem (1.2) and an associated lump in the KPI equation (1.1). This result is valid if the
initial data1u(x, y) ∼ O(1) asε → 0. Note that the existence of a threshold follows
also from the rigorous paper by Fokas and Sung [19] where a small-norm assumption
was used to eliminate lumps from the spectral problem (1.2).

In order to illustrate this result, we reproduce in Fig. 2 the numerical simulations of
the KPI equation (1.1) performed by M. He [33]. The initial condition was chosen in the
form of the KPI lump (3.98) withp1 = 0, κ1 = 1/2 and an arbitrary amplitudea,

u(x, y, 0) = 4a
1 + y2 − x2

(1 + x2 + y2)2 . (3.110)

If a = 1, it coincides with the KPI lump. If the amplitudea is greater or close to the
amplitude of the KPI lump, the initial pulse transforms into a steady-state solitary wave.
Fig. 2(a–d) shows successive snapshots at various times for the evolution of the initial
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0.0 55.0 → x 110.0
0.00.0

40.0

↑ y

↗ u

80.0

(a) (b)

(c) (d)

Fig. 3.2.Transformation of an initial pulse to a linear wave packet for the initial condition (3.110) anda = 0.5
at timest = 2 (a), t = 4 (b), t = 6 (c), andt = 8 (d) ((a)–(d) in the same coordinates)

data (3.110) witha = 1.5. It is clearly seen that the initial pulse evolves into a KPI lump.
On the other hand, if the amplitudea is small enough, the initial pulse broads up and
decays into linear dispersive waves. Fig. 3(a–d) shows the decay of initial data (3.110)
with a = 0.5. Since the multilump potentials do not support embedded eigenvalues,
a small perturbation does not generate new bound states in the spectral problem (1.2).
Therefore, similarly to the casen = 0, there is a threshold for the amplitude of a
perturbation to the multilump potential to generate a new eigenvalue and an associated
KPI lump.

4. Discussion

We have presented a complete analysis of the spectral decomposition for the time-
independent and time-dependent Schrödinger equations within the RH formalism of
inverse scattering. The spectral problems (1.2) and (1.4) are formulated for self-adjoint
operators where the spectral decomposition, inner products and completeness relations
follow from the spectral theory in Hilbert spaces [4] subject to the assumption that
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u(x, y) ∈ L1. Since the multilump potentials violate this assumption, the discrete spec-
trum of the time-dependent Schrödinger equation (1.2) does not fit into this theory and
the corresponding eigenfunctions diverge exponentially,

ϕ = 8±
j (x, y)e

−ik±
j x−ik±2

j y
,

where8±
j (x, y) are defined by Eq. (3.28). These nonlocalized “bound states” account for

resonant poles of the operator resolvent [4]. Spectral decomposition and completeness
relations were not derived in this context.

In the framework of the RH formalism of the inverse scattering, we have transformed
the self-adjoint spectral problems (1.2) and (1.4) to the non-self-adjoint form (2.1)
and (3.1), where new non-standard scalar products were introduced and orthogonal-
ity and completeness relations were proved by means of direct computations. Although
no rigorous result is available for general non-self-adjoint linear operators, we conjecture
that linear problems associated to nonlinear evolution equations within the formalism
of inverse scattering always possess a complete basis for the spectral decomposition.

We mention now some results concerning other linear spectral problems considered
in the RH formalism of inverse scattering [6].

The ILW equation.This integro-differential equation is related to the scalar (local)
RH boundary value problem (1.7) and (1.8). The associated linear problem generalizes
Eq. (1.4) and has a standard complete basis of eigenfunctions. The discrete spectrum of
this problem is associated to solitons of the ILW equation [45].

The BO equation.This equation is related to the scalar (nonlocal) RH problem (1.7)
and (1.8) fora±(k) = 1. The discrete spectrum is associated to lumps (algebraic solitons)
of the BO equation [7]. The spectral decomposition for the associated linear problem
was recently analyzed [10].

Equations of the AKNS scheme.These equations are associated to the AKNS spectral
problem and include the NLS equation and the modified KdV equation as particular
cases [1]. The AKNS spectral problem can be formulated through the vector (local)
RH boundary value problem and the discrete spectrum corresponds to solitons of the
nonlinear evolution equations [6]. The standard spectral decomposition was proved in
Ref. [1].

The DSI system.This system is related to theAKNS spectral problem in two dimensions.
The vector (nonlocal) RH boundary value problem can be formulated and has a discrete
spectrum associated to dromions of the DSI system [46,47].

In this paper, the spectral decomposition was used to solve the particular problem
associated to nonlinear evolution equations, whether or not a small initial disturbance
supports propagation of a soliton. Equivalently, this problem concerns the existence of a
single eigenvalue for the discrete spectrum of the associated linear problem with a small
potential. Extending the results of this paper, we conjecture that spectral problems with
nongeneric potentials of type I may possess a single eigenvalue for a small potential while
spectral problems with nongeneric potentials of type II have no eigenvalues for small
potentials. We present below a table which summarizes the results on soliton generation
for the problems solvable by means of inverse scattering.
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nonlinear equation bound states type of bifurcation reference
KdV equation solitons type I [35]–[37]
ILW equation solitons type I [14]
BO equation lumps type I [13]
KPI equation lumps type II this paper
AKNS equations solitons type II [48]
DSI system dromions ? [49]

Finally, there are also linear problems which possess localized bound states and
are related to thē∂ formalism of inverse scattering rather than to the RH formalism.
An example is provided by the DSII system [9]. The eigenfunctions of the continuous
spectrum for these linear problems have no simple analytical properties ink and the
spectral decomposition and bifurcations of eigenvalues remain open for further studies.
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