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Abstract: A complete set of eigenfunctions is introduced within the Riemann—Hilbert
formalism for spectral problems associated to some solvable nonlinear evolution equa-
tions. In particular, we consider the time-independent and time-dependent Schrodinger
problems which are related to the KdV and KPI equations possessing solitons and lumps,
respectively. Non-standard scalar products, orthogonality and completeness relations are
derived for these problems. The complete set of eigenfunctions is used for perturbation
theory and bifurcation analysis of eigenvalues supported by the potentials under pertur-
bations. We classify two different types of bifurcations of new eigenvalues and analyze
their characteristic features. One type corresponds to thresholdless generation of solitons
in the KdV equation, while the other predicts a threshold for generation of lumps in the
KPI equation.

1. Introduction

1.1. Motivations.Some nonlinear evolution equations have attracted intense studies
in past years for their universal appearance in the mathematical description of wave
processes in dispersive systems and their remarkable analytical properties. In particular,
they are related to linear scattering problems in such a way that the nonlinear analysis
of wave systems is possible through the Fourier-type analysis of the direct and inverse
scattering transform of their linear counterparts [1]. The spectral data in inverse scattering
consist typically of thecontinuous spectruraigenfunctions and a discrete number of
bound statesThe bound states correspond to localized steady-state disturbances such
as solitons, lumps, dromions and instantons.

Among many universal properties in inverse scattering, Ablowitz, Kaup, Newell and
Segur noticed in their pioneer paper [1] that the set of eigenfunctions for the continuous
and discrete spectrum for the AKNS spectral problemis complete, i.e. an arbitrary vector-
function with appropriate boundary conditions at infinity can be decomposed through
this set of eigenfunctions. This property generalizes the Fourier decomposition [2] and
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is well-known in spectral theory of linear self-adjoint operators [3,4]. The completeness
relation was proved in Ref. [1] by means of the Gelfand-Levitan—Marchenko (GLM)
integral equations which appear in the formalism of the inverse scattering transform.

In the AKNS spectral problem, the isolated eigenvalues appear as poles of transmis-
sion coefficients and corresponddaponentially localizethound states associated to
solitonsin nonlinear evolution equations. Further development in inverse scattering led
to the construction of new linear scattering problems associated to the nonlinear evolu-
tion equation in one and two dimensions (see review in [5,6]). In the latter problems,
Fokas and Ablowitz [7—9] showed that the isolated eigenvalues appear in homogeneous
integral Fredholm equations and the corresponding bound stateslgabzaic decay
at infinity. These bound states are associatédrtgsor algebraic solitonsn nonlinear
evolution equations.

The most general formulation of the inverse scattering transform relies on the Rie-
mann-Hilbert (RH) boundary value problem or its generalization gtpeoblem. This
setting requires new methods for constructing and studying complete sets of eigenfunc-
tions. A particular spectral system associated to the Benjamin-Ono (BO) equation was
studied recently by Kaup, Lakoba, and Matsuno [10-12]. Their results serve as a pivot
for our approach to integrable problems associated to the RH formalism.

Studies of complete sets of eigenfunctions have many different prospects. First, they
provide a basis for the spectral decomposition associated to the given linear problem.
Second, they enable us to develop a perturbation theory and study variations of spectral
data and eigenfunctions induced by perturbations of the potential. Third, bifurcations
of eigenvalues can be analyzed through the expansions over a complete basis, while
a standard perturbative analysis usually misses the possibility of such bifurcations. We
recently obtained[13, 14] that, for the spectral problem associated to the BO equation, this
bifurcation may happen from the edge of the continuous spectrum when the potential of
the scattering problem satisfies a condition of non-genericity. Finally, the orthogonality
and completeness relations are used in Hamiltonian formalism of nonlinear evolution
equations and construction of Poisson brackets and canonical variables [15].

In this paper we construct a complete set of eigenfunctions associated to the scalar
RH formalism. Although our analysis is based on two canonical and physically impor-
tant problems (Sect. 1.2), it can also be formulated in an abstract form (Sect. 1.3). The
main analysis concentrates on the time-independent Schrédinger problem which is as-
sociated to solitons of the Korteweg—de Vries (KdV) equation and the time-dependent
Schrddinger problem which is associated to lumps of the Kadomtsev—Petviashvili (KPI)
equation. We derive non-standard scalar products and orthogonality relations and prove
the completeness formula by means of the RH formalism. We then develop a regular
perturbation theory from the integral representation of the linear eigenvalue problem and
calculate variational derivatives of spectral data in the absence of bifurcations of new
eigenvalues. When the integral representation becomes singular, we find the conditions
for a new eigenvalue to emerge from the continuous spectrum. These bifurcations are
classified into two general types.

Thetype | bifurcationoccurs when the marginal eigenfunction at the edge of the con-
tinuous spectrum becomes bounded (nonsecular) in space and belongs to the spectrum
in contrast to a generic secular eigenfunction which is excluded from the spectrum. The
multisoliton solutions are examples of nongeneric potentials and the type | bifurcation
occurs under a certathresholdlesgerturbation of multisoliton potentials. Tligpe I
bifurcationoccurs when a new bound state is embedded into the continuous spectrum at
the bifurcation point and splits apart from the continuous spectrum or disappears upon
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a perturbation. This type is not supported by multisoliton potentials. A new eigenvalue
appears above a certdhresholdon the amplitude of a perturbation to the multisoliton
potential.

The type | bifurcation is illustrated in Sect. 2 for the time-independent Schrédinger
equation. Although our results recover the standard inverse scattering formalism asso-
ciated to this equation (see Appendix A.2 of Ref. [2]), we introduce and study a new
non-standard basis of eigenfunctions within the RH formalism. The type Il bifurcation
is illustrated in Sect. 3 for the time-dependent Schrodinger equation. We find for the
first time to our knowledge a complete set of eigenfunctions associated to this equation.
The methods and results derived for these two basic problems can be generalized for
other examples in inverse scattering which include differential-difference linear sys-
tems associated to the Intermediate Long-Wave (ILW) equation and the BO equation as
well as vector eigenvalue problems such as the AKNS spectral system in one and two
dimensions. A brief review of these spectral problems is discussed in Sect. 4.

1.2. Linear eigenvalue problemd.he inverse scattering theory has been developed for
several prototypical examples which include the Kadomtsev—Petviashvili equation re-
ferred to as the KPI equation,

(s 4 Guny + tyyx)y = 3uyy. (1.2)
It is associated with the time-dependent Schrddinger equation,
i@y + @xx +up =0, 1.2)

whereu = u(x, y, t) satisfies Eqg. (1.1). Inverse scattering for the KPI equation was
initiated by Manakov [16] and developed by Fokas and Ablowitz [8] by means of a
(nonlocal) RH boundary value problem. In particular, the authors of [8] defined proper
eigenfunctions\/. and N+ of the time-dependent Schrédinger equation (1.2) and in-
corporated the lump solutions in the inverse scattering scheme. Rigorous results on the
solvability of direct and inverse scattering transforms were reported by Beals and Coif-
man [17], Zhou [18], and Fokas and Sung [19]. More complete results on existence and
classification of multiple bound states in the discrete spectrum of the time-dependent
Schrodinger equations were recently found by Ablowitz and Villaroel [20-22].

A complete version of the spectral transform for the KPI equation was derived by
Boiti et al. [23—25] by means of a formal resolvent approach based on some orthogonality
relations for the eigenfunctions of Eg. (1.2). However, their approach does not provide a
complete basis of eigenfunctions for the perturbation theory and bifurcation analysis of
weakly localized potentials such as multilump potentials. This problem was discussed by
Kaup [26] who pointed out that the eigenfunctions of (1.2) are unbounded and incomplete
in the Hilbert space if the potentialx, y) is not absolutely integrable.

Recently the inverse scattering transform theory was applied to solve rigorously
the initial-value problem for the KPI equation (1.1) with and without the zero mass
constaint [27—29]. Uniqueness and existence of the solution was also proved by Fokas
and Sung [30,31] under the assumption that the initial data is a “small” function in
the Schwartz space. The latter assumption was used to exclude generation of lumps
(two-dimensional solitons) in the KPI equation (1.1) by localized initial data.

The problem of lump generation in the KPI equation remains open in spite of its
applications in water wave theory [6]. Kuznetsov and Turitsyn [32] showed that a single
KPI lump is stable against small perturbations. Recent numerical simulations of the
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KPI equation (1.1) by He [33] showed that a localized initial condition may lead to the
formation of KPI lumps if the amplitude of the initial pulse exceeds a certain threshold
value.

In the case of-independent solutions, the KPIl equation reduces to the KdV equation,

uy + 6utty + gy =0, (1.3)
and the linear system (1.2) to the time-independent Schrédinger equation,

Oxx (e + k2)§0 =0, (14)

wherek is a spectral parameter and= u(x, 7) satisfies Eq. (1.3). The standard complete
set of eigenfunctions for this problem is described in Ref. [2]. The spectral properties of
the eigenfunctions at the edge of the continuous spectrum were also studied in relation
to bifurcation of new eigenvalues in the problem (1.4) [34]. The appearance of a single
eigenvalue supported by a small potential for the problem (1.4) was analyzed by direct
methods in [35-37]. It was found that the linear problem (1.4) exhibits a single small
eigenvalue for infinitely small potentials under the constraint that the area integral of the
potential is positive. The same conclusion was also formulated for a perturbation of a
single soliton potential [38].

In this paper, we present a systematic method based on the RH problem to derive the
spectral decomposition associated to the linear eigenvalue problems in inverse scatter-
ing. For the sake of clarity, it is first presented in the context of the time-independent
Schrédinger equation (1.4) and then extended to the time-dependent Schrédinger equa-
tion (1.2) which is more difficult. In both cases, we use the completeness properties
to study bifurcation of new eigenvalues. We recover and generalize some of the results
discussed above. In particular, we show that for the spectral problem (1.4), an eigenvalue
and its associated bound state exist for an arbitrary small potental (x), while the
spectral problem (1.2) does not have eigenvalues and bound states for small potentials
u = u(x, y). This feature illustrates the different types of bifurcation of eigenvalues for
Egs. (1.2) and (1.4) (types | and I1).

1.3. RH formalism and eigenfunction&. Riemann—Hilbert boundary value problem
in a complex planez( e C) consists in reconstructing meromorphic functioris(z)
outside of a contour e C according to a given jump at the contour,

@ —-p @ =T[p @], (1.5)
whereT is an operator and the functiops" (z) satisfy the boundary conditions,

lim u*(z) =1,

|z]—>00

in the corresponding domains 6f

Ininverse scattering [6,5], the RH problem appears typically if the scattering problem
has a single spectral parameter (§3and the continuous spectrum is located for real
values of, i.e.z = k andl" = Re(k). This problem relates two Jost functiobs. (x, k)
which are generallyd{ x n) matrices and depend amvariablesx1, xo, ..., x,,. In what
follows, we restrict ourselves to scalar RH problems=(1) in one dimension; = x)
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or two dimensionsx; = x andx, = y). The Jost functions/* (x, k) are introduced as
particular solutions of Fredholm'’s integral equations in Green'’s function representation,

My (x, k) = 1+/ G+(x —x', Du(x"YMy(x', k)dx'. (1.6)

—0Q

Hereu(x) is areal-valued potential;  (x, k) andG _ (x, k) are Green’s functions which
are supposed to be analytic in (ln > 0 and Imk) < O respectively, and satisfy
Iim‘k‘_,oo Gi(x, k) = 0.

Taking the derivativeéd/dk in Eq. (1.6), wheré is the complex conjugate @&f, we
find that the eigenfunction8/y (x, k) are analytic functions of in the domains of
analyticity of G 1 (x, k) if there are no homogeneous solutions of Fredholm’s integral
equations (1.6). On the other hand, if Fredholm’s integral equations (1.6) do possess
homogeneous solutions in a number of isolated pdird§the complex domain, then
the eigenfunctiond/y (x, k) are meromorphic functions df. We refer to the bound
states in the former case salitonsand in the latter case &smps

At real k, the limiting values of the eigenfunctiond..(x, k) are related by the fol-
lowing scattering problems,

MRy ) = o (ON-(x, K, (1.7)
a4 (k)
M_(x,k
M (e k) — ﬁ = 02 (N (x, 1. (1.8)

Herea. (k) are the inverse transmission coefficients. The coefficient) represent
scattering data and the eigenfunctiovis (x, k) are linearly independent solutions of
the spectral system withon-constanboundary conditions at infinity,

o0
Ni(x, k) = PR +/ Gi(x —x', u(x" YN+ (x', k)dx'. (1.9)
—00
The coefficientsiy (k) are identically equal to unity for problems associated to lumps
and are not constant for problems associated to solitons. In the latter problems, the
coefficientsa (k) have the same analyticity properties as the eigenfuncfibnée, k)
subject to the following boundary conditions,

lim My(x,k)= lim ay(k) =1 (1.10)
|k|— o0 |k|— o0

Combining all these facts, the scattering problem (1.7) (or, equivalently, Eq. (1.8)) defines

a RH boundary-value problem, if the eigenfunctidns(x, k) can be expressed through

M (x, k) by additional symmetry formulas,

Ni(x, k) = FMi(x, k)eP&h (1.11)

whereF is an operator. Bound states are to be added to the problem (1.7) and (1.11)
as pole contributions in the meromorphic functidas (k)]~1 M. (x, k). Then, a closed
solution of the RH problem can be found (see Appendix Al in [6]), from which the
potential is recovered.

In a simplified version, the inverse scattering scheme is a sequence of transformations
from the given potential = u(x, 0) to the set of eigenfunction$(0) for the associated
linear problem, then to the spectral d&€D) with simple evolution in timeR = R(z),
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then back to the set of eigenfunctiofis= S(¢) via self-consistent integral equations and
finally back to the potential = u(x, ¢). This sequence of transformations generalizes
the Fourier transform which is based on orthogonality and completeness relations of the
trigonometric functions. Similarly, a closure of the general scheme-a implies the
existence of a complete basis of eigenfunctions for the direct and inverse spectral trans-
forms. However, the orthogonality and completeness relations for the eigenfunctions
used in inverse scattering are not usually under consideration because their derivation
may be labourous. Moreover, it is not always clear how to choose a proper basis for
these transformations. For example, it is natural to use the eigenfundfios k) for

a characterization of the inverse scattering problem whereas these functions do not form
a complete basis.

Our mainidea s that each linear problem associated to a nonlinear evolution equation
provides a natural set of orthogonal and complete eigenfunctions which forms a basis
of the inverse scattering transform. The complete set of eigenfunctions consists of the
eigenfunctionsV. (x, k) and associated bound states and characterize all other data of
the spectral transform, including the associated eigenfunctiiné, k), the spectral
dataa (k) andp+ (k) and the potential (x). We prove this statement in Sects. 2 and 3
for the particular scattering problems (1.2) and (1.4).

2. Time-Independent Schrdédinger Equation

The local RH problem (1.7) appears for the spectral problem (1.4) after the transforma-
tion, ¢ = me™'**, where the functiom = m(x, k) satisfies the problem,

Myy — 2ikm, +u(x)m = 0. (2.2)

We suppose that the functiaitx) is real, smooth and belongskd foranyp > 1. These
requirements are satisfied for multisoliton potentials of the KdV equation (3.8) since
such potentials have an exponential decay at infinity. The dependence of the potential
and the eigenfunctions on evolution timevill be omitted henceforth. The standard
complete set of eigenfunctions is described in Appendix A.2 of Ref. [2]. Here we view
the problem by means of the RH formalism and introduce a new non-standard complete
set of eigenfunctions.

2.1. Spectrum and scattering datawo fundamental solutions/,. (x, k) of Eq. (2.1)
can be extended analytically for (&) > 0 and Imk) < 0 according to the integral
representation (1.6). The corresponding Green'’s functions have the form [6]:

Gi(x, k)= j:—%(l — %@ (£x), (2.2)
2ik

where®(x) = 1if x > 0 and®(x) = 0 if x < 0. The other two fundamental solutions

N4 (x, k) canbefound fromEgs. (1.9) wii(x, k) = 2kx. The eigenfunction&f.. (x, k)
and N4 (x, k) satisfy the following boundary conditions in the limit— oo,

My(x, k) — 1, Ni(x, k) — e2kx, (2.3)

Taking the limitsx — +oo in the Green’s function representation (1.6) and using
Egs. (2.2) and (2.3), we find the scattering relations (1.7) and (1.8) with the spectral
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datap+ = b+ (k)/ax (k). The coefficientsiy (k) andb (k) can be expressed through
My (x,k)as

ar (k) =14+ i /00 u(x)My(x, k)dx, (2.4)
2ik J_
by (k) = —i ” u(x)M(x, k)e %K dx. (2.5)
2ik J_

The scattering coefficients satisfy the constraints [6]

a_(k) = a’ (k). b_(k) = by (k), (2.6)
ai (k) = ax(—k), bi(k) = bi(—k), (2.7)

and
lay (k)2 = 1+ by (k)2 (2.8)

Using these relations, we deduce from Egs. (1.7) and (1.8) the boundary conditions for
the eigenfunctiond/ (x, k) and N (x, k) in the limitsx — 400,

My (x, k) = ap (k) £ by(k)e?*, (2.9)
Ni(x, k) = az(k)e?* £ b (k). (2.10)

Whenk — oo +i0, the eigenfunctions/. (x, k) have the asymptotic representation,

Ma(x, k) =1+ —— u(x )dx' + O(k™2). (2.11)
Foo
This formula follows from Egs. (1.6) and (2.2).
The scattering relation (1.7) defines the (local) RH boundary-value problem for
M4 (x, k). The closure relations (1.11) follow from the symmetry of the Green'’s func-
tions, G+ (x, k) = G%.(x, —k) = G% (x, k)e?** and have the form,

Ni(x, k) = N (x, —k) = M* (x, k)e?**. 2.12
+ +

Bound states for Eq. (2.1) exist for eigenvalues given by the zeras @ in the
upper half-plane of and the zeros af_ (k) in the lower half-plane. Zeros af. (k) are
simple [6] and located symmetrically on the imaginary axi& die to the constraints
imposed or (k). These bound states correspond to exponentially localized solitons of
the KdV equation (1.3).

The two RH problems (1.7) and (1.8) supplemented by the boundary conditions (1.10)
and the closure relation (2.12) can be solved in the form

LocFOT() 1 [ pi(K)Na(x, K)dK
Mi(x,k)=1 — : 2.1
050 +Z k—k7F 27'[1'/00 —kxi0) (213)
or, equivalently,
1 CDi(x) o0 / Y,
Mi(x, B _ Z L L[ et KK 2.14)
a (k) pct T )T W —wk=xi0
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whered®*(x) are the bound states, the eigenvaltigsatisfy the constraints™ = ik

duetothe symmetry( > 0),n isthe numberofbound states, arjihre renormalization

constants. The limiting relations for the eigenfunctidds (x, k) approaching bound
states are

lim My(x, k) = yjifbj.:(x), (2.15)
k—>kji

whereyjjE = c;—L(a})i are real coefficients. Using the symmetry (2.6) and (2.7), we write
the coefficients as?E = iiCjF and

— ; /
—:I:laj,

<a})i _ dadik(k)

whereCJ“.—L anda; are real. The bound statdsf(x) are real functions satisfying the
inhomogeneous integral equations,

oF(x) = (H 7+ /oo Gi(x —x', K u(x) @7 (x)dx', (2.16)

—00

with the boundary conditions

()/ji)_l asx — Foo

2.17
O(eF%i*) asx — +oo ( )

CDJj-E(x) — {
We notice that the bound stat@sf(x) are not localized in the limit — Foo. Using
the boundary conditions fa¥ . (x, k) we find the following integral representation,

+
; [e'e)
Y

o] ()@ (x)dx, (2.18)

Kj =
which is also a condition foa (k) to have a zero at = kT = +ik; (see Eq. (2.4)).
In addition, comparing the boundary values (2.3) and (2.17), we normalize the bound
states according to the limiting relations,
lim Ni(x, k) = dDjF(x), (2.19)

k*)k?:
or, equivalently, according to the boundary conditidis(x) — eT2i* asx — =+oo.
This renormalization leads by virtue of Egs. (2.12) to the relations

OF(x) =y O (x)e*?9". (2.20)

It follows from Egs. (2.20) that the coefficien®s” andy ;" satisfy the constraints,

2
o en (a.;.) =1 ¥y =1 (2.21)

The set of coefficient&u (k), b+ (k)} represents the spectral data for the continuous
spectrum of the linear problem (2.1) while the gef, y*}_; corresponds to the data

for the discrete spectrum. The separation of the discrete and continuous spectra follows
from the analysis of the asymptotic behavior of the spectral data in theklimitO.
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Definition 2.1. The potentialu(x) is called generic potential of type | if the limiting
pointk = 0 is excluded from the continuous spectrum, i.e. the limiting eigenfunctions
My (x,0) are not bounded inx asx — oo and the spectral coefficients. (k) are

not bounded irk ask — 0, so thatlim_ o[ax(k)]~1My(x, k) = 0. Otherwise, the
potential is callechongenericpotential of type I.

The asymptotic behavior of the scattering data as 0 follows from Eqgs. (2.4),

m_q m_i
ay (k) — iﬁ + 01, bi(k) — ik + O(), (2.22)
where
m_q= / u(x)My(x,0)dx = / u(x)M_(x,0)dx, (2.23)

and the eigenfunction® . (x, 0) are real and satisfy the integral equations,

X
Mi(x,00=1- / x = xDu(xHYM+(x',0)dx’. (2.24)
Foo
These eigenfunctions have a secular growth &t infinity according to the boundary
conditions,

1 asx — Foo
My(x,0 2.25
£(x )_){1:I:méci|:m1x asx — =+oo, ( )
where
o0
m(j)E =/ xu(x)Mx(x, 0)dx. (2.26)
—00

Thus, ifm_1 # 0, the limiting pointk = 0 is excluded from the continuous spectrum
and the potentiak(x) is a generic potential of type I. On the other handgif; = 0,
the secularities of the spectral datakas> O disappear and the limiting eigenfunctions
M4 (x, 0) become bounded and related as

M_(x,0) = (1—mg)M4(x,0), Mi(x,0) = (1+md)M_(x,0). (2.27)

In this case, the potentialx) is a nongeneric potential of type | and the limiting point
k — 0 belongs to the continuous spectrum as

ax(k) > ap+ Ok), bi(k) — bo+ O(k), (2.28)
where real coefficientgy andbg are expressed througltgL ,
mr2 m+2
ap=1+ 2(Tomo+) bo:mg—z(Tomg), (2.29)
or, equivalently, through:; according to the relation,
__m
14 ma'

my
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Multisoliton potentials are particular examples of nongeneric potentials of type | since
they display a non-secular behavior if (k), i.e. bL(k) = 0 [2]. The asymptotic
expressions (2.22) for spectral data were analyzed in Ref. [34], where the numober
bound states was related to a finite value ofarg)),

1) ifm_1#0

argas (0) = ¥ {” (n—3) i g (2.30)
n if m_1=0.

Thus, the constraink_1; = 0 changes the spectral data and may result in a change of
the number of bound states (i.e. in bifurcation of a new eigenvalue of the linear system).
This is the type | bifurcation analyzed in Sect. 2.4.

2.2. Scalar products, orthogonality and completeness relatidwsording to
Egs. (2.13) and (2.14), the eigenfunctidds (x, k) can be characterized by either of the

two setsS* = [Ni(x, k), {dﬁ(x)}'}:l]. Furthermore, the spectral ddta. (k), b+ (k)}

and {kjt, yji};?:l can be expressed through the functions of the §&taccording to

formulas (2.4), (2.5), (2.12), (2.17), and (2.18). Also the potentia) is related to the
setsS* by

X 1 00 n
/ u(x)dx = ——/ px(K)Nx(x, k)dk 2 " CFoT(x). (2.31)
Foo T J-c0 =
This formula results from Egs. (2.11) and (2.13) in the linit> co. Thus, the scheme
for closure of the spectral transform holds for the stsWe now prove the following
main result.
Proposition 2.2.An arbitrary scalar functionf (x) with the boundary conditions

xﬂqgoof(X) = fx,

where f are constants, can be decomposed through the orthogonal and complete set
of eigenfunctions™ if £ = 0 or through its dual sef~ if £, = 0.

The proof of this proposition is based on two lemmas.

Lemma 2.3.The eigenfunctiond/ (x, k) and{@jF(x)}’}zl introduced in Sect. 2.1 sat-
isfy the orthogonality relations,

(N(K)|Ns(k)) = 2mikas(k)s(k — k'), (2.32)
(@7 INL(K) = (N+ (k)| D7) = O, (2.33)
(@] 19T) = Ficja)8i, (2.34)

where the scalar product is defined by

oo

(g |h(k)) = / g (x, kKNoch(x, k)dx. (2.35)

—00
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Proof. First, we derive the Wronskian relation for two solutiolh&) and g(k") of
Eq. (2.1) with a real potentiad(x),

di (8" (Khy (k) — gx(Kh(k) — 2ik' g*(K')h(k)] = 2i(k — k') g* (K)h (k). (2.36)
X

Then, we integrate Eq. (2.36) féxk) = N.(x, k) andg*(k’) = N*(x, k') overx and
use the boundary conditions (2.10) and the formula for generalized functions,

lim %l = £7iks(k). (2.37)

L—+oc0

As aresult, we find Eq. (2.32). The zero scalar products in Egs. (2.33) and (2.34) follow
also from Eq. (2.36) for different bound states. In order to find the nonzero scalar products
(2.34), we integrate Eq. (2.36) fark) = M (x, k) andg*(k’) = ®*(x) overx and

use the boundary conditions (2.3) and (2.17). As a result, we find the integral relation,

* + £\t
2i(k—k;F)/_oo OF (x)d, Ma (v, K)dx = 2¢; (yj ) .

This equation reduces to Eq. (2.34) after computing the integral on the left-hand side
with the help of Eq. (2.13) and the zero scalar products (2.33) and (2:134).

The proof of the orthogonality relations uses only the direct analysis of the spectral
problem (2.1). The next lemma formulates the completeness relation. It will be proved
by using equations of the inverse scattering transform.

Lemma 2.4.The eigenfunction®V. (x, k) and {CDT(x)}’}Il satisfy the completeness
relations, '

% NX(y, N, dk L @7 (T ()

; ; +
—0o 2mi(k Fi0)ax(k) ; /cja}

+O[+(x — y)] = (2.38)

Proof. First, we close Eq. (2.13) with the help of Egs. (2.12) and (2.15). As a result,
we find a system of integral and algebraic relations for the eigenfunctieiis, k) and
T (x),

J

) " iCTO®T(x) 1 [ pr(K)Nxt(x, kdk'
N k) = o2kt |14 5 TP _/ ()N, . (239
by =e { 12_; kFin, 21 ) K1 kFiO (2:39)

n FopF 00
OF (x) = o2 |:1_ ZM n 1 Pi(k)Ni(x,k)dk:| . (2.40)

i Kj+ K 2mi —oo kFikj
We expressVZ (y, k) by using Egs. (1.7) and (2.12),

NE. k) = az KNE. k) F br(k)Nx(y, be 20, (2.41)
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The productVi (y, k) N+ (x, k) can be found from Eqgs. (2.39) and (2.40) using the pole
decomposition,

Or(NPT(x) L PT(MPT ()
— p2ik(x—y) _J 7y ST
Ni(y,k)Ni(x, k) =e {u; T i :t; kT end,

1 / p+(K)Nx(y, K)NL(x, KNe 2KV dk/
—00

2ri k' +k=Fxi0
1 /°° o+ (KYN£(y, K)NL(x, k'Ye 2K > dk’
270 oo k' —k Fi0 ’

Then, the following integral can be evaluated using the residue theorem,

1 /00 Ni(y, )N+ (x, kydk
270 J_ oo kFi0 B

(y)cb*(x) 1 T petoNe(y, b NL(x, ek dk
+ O[+(x—y)] (1+Z +o /Pﬂ:() +(y k);;éx )e )

—00

2ri kxi0

—00

Kjaj

n o dE()dT(x) °° ~2iky
Zl:@[:F(X—y)] (Z J y /] X _’_i /pi(k)Ni(y7k)Ni(xsk)e dk) )

j=1
(2.42)

Substituting Egs. (2.41) and (2.42) into the integral on the right-hand side we derive the
completeness relation (2.38)a

Proof of Proposition 2.2Using Lemmas 2.3 and 2.4, we decompose the funcfios)
into two equivalent integral representations,

fx) = fe+ f as (k)N (x, k)dk+ZajF<I>jF(x) (2.43)

j=1

wherea (k) anda are coefficients of the expansion arfigd are constants defined

by boundary condltlons fof (x). The coefficients of the expansion can be expressed
through the functiory (x) by means of Eqgs. (2.32)—(2.34),

+
_ (Nx®)IS) s (o5 If)
W= kT i T

Kja j
Then, Eqg. (2.43) reduces to an identity by means of Eq. (2.28).

The completeness relations (2.38) and scalar products (2.35) for a new complete
set of eigenfunctions differ from the standard relations for Jost eigenfunctions of the
time-independent Schrédinger problem (see Appendix A.2 in Ref. [2]). This is due to
the derivative ternd, appearing in the problem (2.1) in front of the spectral param-
eterk. Since only the derivatives of (x) determine the coefficients in Eqg. (2.43), an
arbitrary functionf (x) may not be localized at infinity. Another related feature is that
we have to pass by the singular poknt= 0 in the completeness relations (2.38) into
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the corresponding complex extensionskpfwhere the functiona (k) are analytic.
We notice that the spectral problem (2.1) is not self-adjoint in contrast with the origi-
nal problem (1.4). Furthermore, the scalar product (2.35) is not a proper inner product
since it is not sign-definite [4]. However, the problem (2.1) inherits some features of
the self-adjoint problem. In particular, the orthogonal setsandS— are self-dual, i.e.
complex-conjugate eigenfunctions &f are adjoint to eigenfunctions ¢ft and vice
versa.

Itis important to point out that the relation (2.31) for the inverse scattering transform
is a particular application of Eq. (2.43). The coefficiepigk) and C;F play the role
of Fourier coefficients. Indeed, using the orthogonality relations (2.32) and (2.34), one
can express these coefficients through the potentiglaccording to Egs. (2.5), (2.12),
and (2.18). Thus, the sefs" represent the only basis for closure of direct and inverse
scattering transforms.

Since two alternative (self-dual) orthogonal and complete sets of eigenfunctions have
been constructed, we can now study perturbations of the potential and the associated
transformation of the spectrum of Eq. (2.1).

2.3. Perturbation theory for spectral data he spectral data can be evaluated explic-
itly only in some special cases such as multisoliton potentials. Therefore, perturbation
theory for the scattering data under a perturbation of the potential is an effective tool to
study characteristic features of a given scattering problem. Furthermore, the dynamics
of solitons in nearly integrable systems can be investigated with the help of the same
perturbation theory (see reviews in Refs. [39,40]). The results of the perturbation theory
for the time-independent Schrddinger equation are now well-known and have been used
many times. Here we reproduce these results within the self-consistent scheme given in
Sect. 2.2.

Suppose that the potential can be decomposefl asu(x) + € Au(x), wheree <« 1

and the complete sets of eigenfuncticfs= [Ni (x, k), {d)jF (x)}’}:l] are associated to

the potentiak (x). Here we evaluate variations of the spectral data due to the perturbation
Au(x).

2.3.1. Variations of data of discrete spectruuppose thasb;.FE (x) solves Eq. (2.1) for
u¢ = u(x) +eAu(x) with the eigenvalué = kj.Fe = Fix§. We expandl)f6 (x) through
the setsS* according to Eq. (2.43) rewritten as

7 (1) = /‘” o ()N (x. k) dk Z of OF (x)

_—. 2.44
—o00 4 (k Fi0)ax (k) (k £ i/cj.) 2i1a)(k; — K;) ( )

=1

The eigenvalue problem (2.1) reduces with the help of Egs. (2.32)—(2.34) and (2.44) to
an equivalent set of homogeneous integral equations for the coeffiaietitsande;",

B ©  Ky(k, Kox (K)dk' 5 Kk
k) =€ |:/_Oo 4 (k' F i0)ax (K) (K £ ik5) + ; 2i1a; (k] — ) ’ (2.45)

F_¢ |:/°° K% (k)ax(k)dk : Kimoy,

= — " |, 2.46
% 0o dm (k :FiO)ajF(k)(k:I:i/c;) +m=l 2imal, (ki —Kj.):| ( )
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where the integral elements are

o0

Ki(k, k') = / Au(x)N3(x, )N+ (x, k')dx,

Kij(k) = /OO Au(x)N(x, k)cpf(x)dx,
and -
Kiji =/ Au(x)dﬁ(x)d)li(x)dx.

We look for solutions of Eqgs. (2.45) and (2.46) in the asymptotic linit> 0. The
results are summarized in the following proposition.

Proposition 2.5.Variational derivatives of daté ;, yji};%:l of the discrete spectrum of
Eqg. (2.1) with respect to the potentialx) are given by

skj P PT()

su(x) Zcha; ’ (2.47)
sinys  x®7 0T 1 ek ot

e a—— Z[Vf PT@HF ) — e onTm ], (248)

where the real functionﬁf(x) are introduced as the limits,

+ 5+

[ Mee k) T )

[ )e ea
J J

Proof. It follows from the self-consistency condition for Eq. (2.46) at j that/cj. can
be expanded into the asymptotic series,

K = Kj+ €Ak +62A2Kj +0(e3),

where

Kxjj
Akj = — . 2.50
J 2 ja} ( )

This formula is equivalent to Eq. (2.47). Using Eq. (2.50), we construct an asymptotic
solution of Eq. (2.45) and (2.46) to the first order of the perturbation theory,

ax(k) = €K (k) + O(e?),
Otf = €Ky + 0(62).

As a result, we find a perturbation to the bound st@tﬁf (x) = <I>f(x) + eA@j.F(x) +
O(€2), in the form,

AT (x) = AaFdT(x) + / T KON+, bk Ky OF )
j =80 0o 4 (k F i0)azx (k) (k L ix;) oy 2cia)(k; — Kj)

(2.51)



Eigenfunctions and Eigenvalues for a Scalar Riemann—Hilbert Problem 727

where Aa’f is defined through the corrections &g and«;. We use the boundary
conditions (2.3) and (2.17) as— Foo and evaluate the contribution from a double
pole atk = Fik; in Eq. (2.51). Then, the term@+2</*) should be removed from the
asymptotic representation fmcpf(x) asx — Foo by specifying the correction«x;F

in the form,

o0 :|: o0
Ak; 1
AaF = 2K xAu(x)qﬁ(x)cbi(x)dx Au(x)cbi(x)ﬁ(x)dx
J Kj /cja;- Kj
—00 —00

(2.52)

whereujﬁ(x) is defined by Eqg. (2.49). On the other hand, we assume an expansion
y/.“—Lf - y,.i + eAy;—L + O(€2) and find the correctiomy/.i,

o
svp = vpsag+ KO, [ K@@t K
j J=r 2 4t (k Fi0)(k £ ik;) oy 2c1a) (k] — Kkj)

(2.53)

—00

This formula follows from Eq. (2.51) in the limi — o0 with the help of Egs. (2.10)
and (2.17). In order to simplify this formula, we rewrite Eqgs. (2.14) and (2.49) in the
form,

Cii

Z Crof @) @i(x) e 7 PE(ONE e, k)dk
I LG — 2w (k Fi0)(k £ix;)’

(2.54)

@) =My (x.0) =

where we have used Eqs. (2.7) and (2.12). Substitution of Eq. (2.54) into Eq. (2.53) gives

+ + ES AK/ 1 * ¥ +
ij =Y AO{]- - g +Z 700Au(x)q)j (X)Mj (x)dx.

This expression reduces to Eq. (2.48) with the help of Eq. (2.62)

Formulas (2.47) and (2.48) for the variations of data of discrete spectrum coincide
with those derived from the standard perturbation theory of Eq. (1.4) (see Ref. [39]).
Here we have derived these formulas by using the non-standard complef& safts
Eqg. (2.1). In addition, the solution of the first order of the perturbation theory enables
us to evaluate from Eq. (2.46) at= j the next-order correction x ;,

© K:T:/(k)K:Fj(k)dk K;/ZKJFZ/
AZK]' = —/ :

2.55
oo 871/<ja}(k FiOax(k)(k £ iKJ') 4K /qa (/q —kj) ( )

1#
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2.3.2. Variations of data of continuous spectruiithe eigenfunctions of the continuous
spectrum can also be decomposed through theS§etss in Sect. 2.3.1. Suppose that
N§ (x, k) solves Eq. (2.1) for® = u(x) + € Au(x). We expand them to the first order
of the perturbation theoryy$ (x, k) = N+(x, k) + € AN+ (x, k) + O(€2), and find the
correctionA N4 (x, k) in the form,

[ Ke(K BNL(x KK L KL 0T @)
AN = /W 4 (K F i0)az () (K — (k £i0)) 2 2ircja(k £ix))
(2.56)

J=1

Proposition 2.6.Variational derivatives of datéa+ (k), b-(k)} of the continuous spec-
trum of Eq. (2.1) with respect to the potentidglx) are given by

Sas(k) _ , N3G HN:(x k)

Su(x) 2ik (2.57)
8bi(k) NG, k)Mz(x, k)
Su(x) 2ik ’ (2.58)

Proof. We expand the scattering data in the form
aS (k) = ax(k) + e Aax (k) + O(?),
S (k) = b (k) + e Abs (k) + O(e?),

and analyze Eq. (2.56) in the limits— 400 by comparinOg with the boundary condi-
tions (2.10) and (2.17). We find explicit solutions

Ki(k, k)

Aay(k) = +-228 2.59
a+ (k) ik (2.59)
and
A K=k 0 /00 Kz K)pz ()l & Kxj(C5
=TTk oo A (K £IOK — (k Fi0) o 2k Fixj)

(2.60)

Then, Eg. (2.57) follows directly from Eq. (2.59). Furthermore, using Eq. (2.13), we
derive the relation,

k(% pe(k)Ni(x, k)dK' L CfoT ()
My(x, k) — My(x,0) = — k) ——
s =M 0 =50 | Wik — kLo jzzlmkiixj)

Substituting this formula to Eq. (2.60), we recover Eq. (2.58).

Formulas (2.57) and (2.58) for the variations of data of continuous spectrum coincide
with those obtained from the standard perturbation theory of Eq. (1.4) (see Ref. [39]).
We notice that in the limit — 0, the variations\a (k) andAb4 (k) are divergent, i.e.

K+(0,0) _ K+(0,0)

Aay (k) - + ok Aby(k) — ik (2.61)
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Comparing with Eq. (2.22) we identify the expansion of the parametgr=m_1 +
eAm_1 + O(e?), where

Am_1=K4+(0,0) = / Au(x)M_(x, )M, (x, 0)dx. (2.62)

—0o0

2.3.3. Example: Asingle soliton potentidlVe solve Eq. (2.40) fop. (k) = 0andn = 1
in the form,

o2
dF (x) = T i (2.63)
where we have used the parametrization,
CT = ke TH¥0,
Then, the soliton of the KdV equation is
ug(x) = ZKfseCﬁxl(x — X0). (2.64)

Using the following data for the single soliton potential,

ey a/l . yii = eiZleO’
k+iky

at (k) = aZ(k) =

we evaluate the corrections of the first order of the perturbation theory from Eqgs. (2.47),
(2.48), (2.57), and (2.58),

1 o
Akl = —2/ Au(x)ug(x)dx, (2.65)
8ki J—oo
Ayli 1 o
= :I:—Z/ xAu(x)ug(x)dx
"1 Akt J—oo
1 o0
+ — / Au(x)tanHk1(x — x0)ldx, (2.66)
21 —00

1 o0
Aaq (k) = im [w Au(x) <k2 + Klz tant[x1(x — xo)]> dx, (2.67)

Aby (k) = Au(x) (k — ikt tanhx1(x — xo))? e~ ?**dx. (2.68)

1 o0
©2ik(k2 + D) /_oo

The results for a single KdV soliton can be found in Refs. [39,40]. We notice that
the integral in Eq. (2.65) identifies with P;, the correction to the momentu®y, =

5 /%2 u?dx of the KdV soliton. Computing?, from Eq. (2.64) asP, = 5«3, we
conclude from Eq. (2.65) that the correctiarP; defines completely the renormalization
of the parameter; of the KdV soliton. The momentum of the continuous spectrum is
therefore affected at the order of€3). This result is associated to the stability of a KdV

soliton against small perturbations (see Ref. [41] for other examples).
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2.4. Type | bifurcation of new eigenvalueBhe number of bound states may change if
the potentialk (x) is a nongeneric potential of type |, i.e. the criterion; = 0is met (see
Definition 2.1). Using the asymptotic formulas (2.61) and (2.62), we find a necessary
condition for this bifurcation. Suppose that the nongeneric potential hasn bound
states. Then, the coefficienf (k) for the perturbed potential® = u(x) + e Au(x) has

the following behavior ag — 0,

€eAm_1
2ik
whereaqg is given by Eq. (2.29) andm_1 is defined by Eq. (2.62). Then, we take into

account Eq. (2.30) for the potentialx) and derive the extension of this formula for the
perturbed potential€ (x),

a$ (k) =ao £

+ OC(e, k),

arga$. (0) = F7 (n + %) : (2.69)

whereo = sign(e Am_1/ag). Comparing Egs. (2.30) and (2.69) we conclude that a new

(n + 1™ eigenvalue detaches from the edge of the continuous spectraa=if+1.

Here we derive asymptotic expansions for the data of discrete spectrum corresponding
to the new bound state. Also we discuss applications of these results to some physical
problems such as soliton generation in the KdV equation and bifurcation of oscillatory
modes in nonlinear Klein—Gordon equations.

2.4.1. Asymptotic expressions for a new eigenvalue and bound Safmose that the
potentialx(x) is nongeneric and the perturbatiom (x) supports the type | bifurcation.

A new bound stat@ffjl(x) can be decomposed through the completeS$setccording

to the same integral representation (2.44) but with the eigenkattigrix,; , , such that
lime—ox;,, = 0.Aself-consistent solution to the homogeneous integral equation (2.45)
may appear only if the kernel of the integral transform becomes singukir-aso for

;.1 — 0. Indeed, this is the case for a nongeneric potential, when the coefficients
a~ (k) satisfy the asymptotic representation (2.28). Solving Egs. (2.45) and (2.46) into
the limite — O we derive the following result.

Proposition 2.7.Under the conditions that the potentia{x) satisfiesn_; = 0 and
the perturbationAu(x) satisfieSaalAm,l > 0, the potentialu® = u(x) + eAu(x)
supports a bound state in a neighbourhoodkof O for ¢ > 0. The spectral data
(&1, v,51) for the new bound state are defined by

Kpp1 = €AK + €? Aok + O(e3),

where
Am_
Ak = Z’Zol >0, (2.70)

A 1

K= —

o’ =g

v /oo a“ KO DK (k. 0) —ag (am_p)? +3 KOO

S 4 k? o] ZKJZLZ; ’
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and
AyE =1+m3, (2.72)
wherem3 is defined by Eq. (2.26).

Proof. Evaluating the singular contribution from the pale= 0 in Eq. (2.45), we find
the leading order term in the form,

€Ki (k,0)as(0)

ax(k) — T — O, (2.73)
Tag
where
/oo dk’ 2
O+ = e = ,
oo K Fi0)(K £iecAk) €Ak

if eAx > 0,andQ+ = 0, if eAx < 0. Therefore, the new eigenvalue exists under the
conditionAkx > 0 (assuming > 0). Writing Eq. (2.73) ak = 0 gives the asymptotic
expression (2.70). The new bound stétg;, (x) is defined by Eq. (2.44) and (2.73).
Using the boundary condition (2.3) fa¥.(x, k), we take the limitx — oo for
®"%, (x) and find

a+(0) F2eAkx

€K1(0,0)
The boundary condition (2.17) is metdf. (0) = € K+ (0, 0). Then, Egs. (2.44) and (2.73)
reduce to an asymptotic expression for the new bound state,

O () _Efoo K+ (k, O)N4(x, k)dk
nt LT | dn(k T i0)ax (k) (k £ i€ Ax)

O () =

+ O(e), (2.74)

where the integral term is an order of1). At the intermediate scale for finite we find
fromEq. (2.74) tha@rfjl(x) = N+(x, 0)4+0O(e). Therefore, the bound state approaches
a delocalized limiting eigenfunction of the continuous spectrum for finiehen, using
Egs. (2.10) and (2.17), we take the limit— o0 in Eq. (2.74) and find&yji in the
form,

Ayi = ag * bo.

This expression reduces to Eq. (2.72) with the help of Egs. (2.29). Finally, Eq. (2.71)
follows from Eq. (2.45) ak = 0 by substituting the results of the first order of the
perturbation theory.o

We notice that the asymptotic approximation for can be equivalently written from
Egs. (2.27), (2.62), and (2.70) as

Ap - (1_ ’2) / " dxAuo) [My (x, 02 > 0, (2.75)

We have thus obtained that, for the type | bifurcation, a new eigenvalue is located in a
neighbourhood of the edge of the continuous spectrumie=g0) and a new (localized)
bound state arises from a delocalized critical eigenfunction that exists in a nongeneric
case.
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2.4.2. Example: A new eigenvalue supported by a small poterBiahpose that the
initial potential is small, i.eu(x) = 0 andu®(x) = € Au(x). Then, the spectrum of the
unperturbed problem is obvious:

n=0, ar(® =1 be(k)=0, Mi(x,k)=0, Ni(x,k)=e%*".

Sincem_1 = 0, the zero background belongs to the class of nhongeneric potentials of
type . Therefore, the type | bifurcation is possible, i.e. an infinitesimal initial disturbance
can support a single eigenvalue in the problem (2.1). The criterion for this bifurcation
follows from Eq. (2.75) as

1 1 [*>
Ak = =AM = —/ Au(x)dx > 0, (2.76)
2 2 )

whereA M isthe areaintegral which is the mass invariant for the KdV equation (1.3). This
result is well-known as a Peierls problem in quantum mechanics [36]. In application to
the KdV equation, we illustrate this phenomenon in Fig.1, where numerical simulations
of Eq. (1.3) are presented.

Figure 1(a) shows the evolution of the initial data, 0) = 2asecHx witha = 0.5.
This corresponds to a disturbancexofvith AM > 0. We observe that the initial pulse
evolves into a soliton propagating to the right and a radiative wave packet propagating
to the left. The soliton has the ma&s,; = 2¢ AM, while the radiation has the mass
M,,q = —e AM. On the other hand, the same initial pulse but wite= —0.4, which
corresponds to the cageM < 0, transforms solely into a linear radiative wave packet
as seen in Fig. 1(b). No soliton is generated for this case.

In the critical caseAM = 0 (e.g. for asymmetric pulseg—x) = —u(x)), the type
| bifurcation may still take place i« > 0. Inspecting the expression (2.71), we
transform it to the form,

1 o0
Ak = —7 // dxdyAu(x)Au(y)|x — yl,

—00

or, equivalently,

Ak = —% /'00 dx (/x Au(y)dy> </0<> Au(y)dy) . (2.77)

It is clear from Eq. (2.77) thahox > 0 if Ax = 0. Therefore, the soliton generation
always occurs even for critical initial disturbance wiki = 0 (see also Ref. [37]
for the same conclusion). Moreover, for small negath@ the soliton generation still
occurs ifk€ = e Ak + €2Aok + O(e3) > 0.

Preliminary results on soliton generation in the critical cagé — O were reported by
Karpman (see Chap. 21 in [35]). Using physical motivations and analysis of quasi-linear
self-similar solutions, he found that the quasi-linear solutions of the KdV equation (1.3)
existforAM = 0 and

o0
P1 =/ xu(x, 0)dx < per,

o
wherep., ~ 7.Asaresult, he concluded that no soliton can be generated by a smallinitial

perturbation withp1 < p.,. This conclusion together with early numerical simulations
(see Fig. 21.1 in Ref. [35]) are not confirmed by the analysis developed here.
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Fig. 2.1. Time evolution of the solution of the KdV equation (1.3) for the initial conditiany, 0) =

733

2aseckf(x). (a) Formation of a new soliton far = 0.5. (b) Transformation of an initial pulse to a linear wave

packet fora = —0.4

2.4.3. Example: A new eigenvalue supported by a perturbed single soliton potential.
Multisoliton potentials also belong to the class of nongeneric potentials of type | for

the problem (2.1). Therefore, perturbation of multisoliton potentials may generate a
new eigenvalue and a bound state provided the condition (2.75) is met. In particular, a

perturbation to a single soliton generates a new bound state if

Ak = %/Oo Au(x) tanf?[/c(x —x0)]ldx > 0,

—00

wherexg is defined in Eq. (2.63).

This bifurcation was analyzed in Ref. [38] for the problem of soliton production from
a shelf emitted by a moving soliton. The account of a secondary soliton allowed one to
satisfy the mass conservation in the KdV equation perturbed by an external (dissipative)

term.
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Recently, the same bifurcation was analyzed for the problem of existence of inter-
nal (oscillation) modes of kinks in nonlinear Klein-Gordon equations [42]. The crite-
rion (2.78) was compared with numerical data for the oscillation mode in the spectrum
of a double sine—Gordon equation.

3. Time-Dependent Schrodinger Problem

The (nonlocal) RH formalism for the linear equation (1.2) can be developed after the
transformationg = me~"**~k*y wherem = m(x, v, k) satisfies the problem,

imy +myx — 2ikmy +u(x, y)ym = 0. (3.1)

We assume that the functioix, y) is real, smooth and belongs i@ for any p > 2.
Also we assume the boundary condition fdx, y) in the form,u(x, y) ~ O(R™?) as

R = /x2 4+ y2 — oo, which includes the class of multilump potentials. Note that the
functionu(x, y) for the multilump potentials is not i1 A solutionu = u(x, y, t) of

the KPI equation (1.1) satisfies the constraintsfer 0 [27,28],

o0
/ u(x,y, t)dx = 0. (3.2)
—0o0

Ifthe initial datau = u(x, y, 0) does not satisfy this constraint, the instant transformation
of a solution occurs in an initial time layer so that the solution has the jump discontinuity
atr — 0%F [28-30].

Since the potential(x, y) of the linear system (3.1) corresponds to any solution of
the KPI equation (1.1) including the initial data= u(x, y, 0), we do not impose the
constraint (3.2) in our analysis and omit again the dependence on time. However, we
assume the convergence of the following integral,

o o0
’ / dy / dxu(x,y)
—0Q —0oQ

Underthis assumption, the integrals involving the eigenfunctions of Eq. (3.1), the spectral
data and the potentiad(x, y) are bounded in the scheme developed below (see e.g.
Eq. (3.65)).

< 00. (3.3)

3.1. Spectrum and scattering datilere we construct the continuous and discrete spec-
trum for Eq. (3.1) according to previous approaches [8,23] and also derive additional
relations between the spectral data.

3.1.1. Green’s functionsThe Green'’s function& 1 (x, v, k) associated to the problem
(3.1) have the form [6],

Gi(x,y, k)= ZL / o E R —E) [0(1)O (££) — O(—y)O(FE)] dE.  (3.4)

T J—c0

The Green’s function§  (x, y, k) andG _(x, y, k) are analytic in the domains Igh) >
0 and Im(k) < 0 respectively and have a jump atm = 0,

; o0
Gi(x,y, k) —G_(x,y,k) = Z’_n/ Sign(e)e! EX T2k =62 ge (3.5)

—00
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In addition, the Green'’s functions have two symmetry properties:

0G1(x,y,k)

i
—i 2ky)G K+ — 3.6
% i(x 4+ 2ky)G+(x,y, k) o= (3.6)

and
Gi(-xa yak) ZG;:(_X,_y,k)~ (37)

It follows from Eq. (3.4), or, equivalently, from Eg. (3.6) that the Green’s functions are
localized in the limitR = \/x2 + y2 — oo

1 -2
Gi(x,y, k) — :an(x 20 £i0)y) + O(R™9), (3.8)

subject tox 4+ 2ky # 0. This expression is exact for= 0. Furthermore, the Green’s
functions are weakly localized along the singular kne2ky = 0, whereG . (x, y, k) —
O(R™ Y2y asR — .

The boundary value (3.8) implies the following asymptotic expansion in the limit
k — oo 110,

1 -2
Gi(x,y, k) — $4nk(y —10Sign) + O(k—). (3.9

Using the relation,

1
— = +mwid(z) +p.Vv. (—) , (3.10)
zFi0 z
we express Eq. (3.9) in the form,
1 1 2
Gilx,y k) — —Slgn(x)S(y) T Inky + O%*™). (3.11)

This result agrees with the analysis of Ref. [28].

Remark.The order of integration becomes important for computing spectral data for
the problem (3.1) when the potentiglx, y) is not absolutely integrable. Moreover, the
result of integration of the Green'’s functions (3.4) depends on the order in the double

integrals,
(0.¢] o0
/ dyf dxG1(x,y,k)=0
—00 (.¢]

/ dx/ dyGi(x,y, k)= 4(k:l:10)2

According to this result, we define all data for the former order of integration and use

the following notation,
o0 o
// dydx = p.V./ dy/ dx. (3.12)
R —00 —00

while
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3.1.2. Continuous spectrunT.he eigenfunctionsV.(x, y, k) and NL(x, y, k, 1) of
Eq. (3.1) satisfy Fredholm’s integral equations,

My(x,y, k) =1+ // dy'dx'Ge(x —x',y =y, bux', y )M (x', y', k) (3.13)
R

and

Ni(x, y, k, 1) =ePoriD

3.14
+ / dy'dx'Ge(x —x',y — ¥, bu(x', YINL(x', ¥, k, 1), ( )
R

whereB(x, y, k, 1) = (k—)x + (k* —1?)y. The additional implicit parametéappears
for the eigenfunction®v. (x, y, k, I) according to the most general Fourier solution of
Eq. (3.1) for the case(x, y) = 0.

Applying the boundary conditions (3.8) to Egs. (3.13) and (3.14), we find that the
eigenfunctiondy (x, y, k) andN+(x, v, k, [) are not secular in andy for anyk and

[.As R = \/x2 + y2 — oo andx + 2ky # 0, they approach the boundary conditions,
Mi(x,y,k) = 1+ OR™Y), Ni(x,y, k1) — PErkD L oR™Y.  (3.15)

The asymptotic representation of the eigenfunctigngx, y, k) inthe limitk — oco+i0
follows from Egs. (3.11) and (3.13),

1 X o

My(x,y, k) =1+ — / —/ dx'u(x’, y)
4ik \J oo Jx
1

* dy *© / o -2
— dx'u(x’,y") + Ok ).
Ak ) Y =y )

(3.16)

Using Eq.(3.5), we find the RH boundary value problem for the eigenfunctions
M4 (x,y, k) atlm(k) =0,

k 00
M+(xayak)_M—(xsy’k)=_</ _/ )dqu:(k,l)Ni(.x,y,k,l), (317)
—00 k
wherery = ry(k, 1) is the spectral transform [8,23],

1 : !
re(k, 1) = P f/ dydxu(x, y)M+(x,y, k)e By KD (3.18)
R

The RH problem (3.17) is equivalent to the nonlocal form of Eq. (1.7) wittk) = 1.
The closure relations (1.11) between the eigenfunctdéné, y, k, ) andML(x, y, k)
follow from Eq. (3.6),

ONL(x,v,k, D)

ok =i(x +2ky)Ne(x, v, k, 1) £ Fr(k, DMy (x, y, k), (3.19)

where

1
Felh.l) = =5— // dydxu(x, y)N+(x, y, k,I). (3.20)
R



Eigenfunctions and Eigenvalues for a Scalar Riemann—Hilbert Problem 737

This relation is to be complemented by the boundary conditions following from the
uniqueness of solutions of Egs. (3.13) and (3.14),

Ni(x,y, k, k)= My(x,y, k). (3.21)

Using these relations, we integrate Eq. (3.17) and obtain,

k
Ni(x,y,k, 1) = My(x, y, DePrkD 4 / Fi(p, DMy (x, y, p)eP>ykrgp,
[
(3.22)

Inaddition to the spectral data (k, [) andF (k, I), we consider also the spectral data
Ty (k,1, p) which appear in the relationship between the eigenfunctn&:, v, &, 1)
following from Eq. (3.14),

k 00
N-‘r(-xvyvksl)_N—(-xsyskvl)=_</ _/]; )de:F(kalsp)Nj:(-xvyvksp)s
-0
(3.23)

where
1 —iBx.y.k.p)
Ti(k,l, p) = P Rdydxu(x, YN+L(x,y,k,De R (3.24)

We point out that the relation (3.23) is not a RH boundary value problem since the
eigenfunctionsV. (x, v, k, I) have no meromorphic continuation in a complex domain
of k. Still, the relation (3.23) is formally valid for real Furthermore, the integrals (3.18),
(3.20), and (3.24) for the spectral data are not absolutely integrable and, therefore, the
order of integration specified by Eq. (3.12) cannot be interchanged. On the other hand,
the integrals in Egs. (3.13) and (3.14) converge absolutely and the order of integration
can be interchanged in these integrals and also in further integration with respect to
y andk.

The spectral data. (k, /) define the continuous spectrum of the problem (3.1) and
satisfy the integral relations [23],

1 00
re(k, D) +ri(, k) F <f —fk )dpri(k, p)rid, p) =0,

!
re(k, ) +r3(l, k) :I:/ dprs(k, pyri(, p) = 0.
k

These equations were used in Ref. [23] to factorize the RH boundary-value nonlocal
problem (3.17) and eliminate the set of eigenfunctidéngx, y, k, ) from the problem.

We intend to solve here a different problem: we express all eigenfuctions and scattering
data in terms of the sets involving the eigenfunctidhs(x, y, &, 1). In this respect, the
following result completes the construction of the continuous spectrum for the prob-
lem (3.1).

Proposition 3.1.The spectral data+(k, ), F+(k,l) and T+ (k, l, p) defined by Egs.
(3.18), (3.20) and (3.24) are related algebraically by

re(k, ) = Fi(k, D), (3.29)
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Proof. We multiply Eq. (3.14) by:(x, y) MZ (x, y, k) and integrate ovey andx. Using
the symmetry relation (3.7) and integral equations (3.13)Mdr(x, y, k) we find a
simple formula,

0= —Zniri(k, D+ 2niFe(k, D),

where we have used definitions (3.18) and (3.20). This formula is nothing but Eq. (3.25).
The proof of Eq. (3.26) can be done by the same method starting with Eq. (3.14) and
multiplying it by u(x, y)NZ(x, y, k,1). O

3.1.3. Discrete spectrumBound states for Eq. (3.1) exist as homogeneous solutions of
Fredholm’s integral equations (3.13) for isolated complex valuégeifjenvalues). The
eigenvalues are located symmetrically in upper and lower half-planes [8]. The bound
states correspond to algebraically decaying lumps of the KPI equation (1.1). It was
proved [20,21] that the bound states may appear as multiple poles in the complex plane
of k. Here we restrict ourselves to the case when the bound states are not multiple.

The RH problem (3.17) coupled by the boundary conditions (1.10) and the closure
relations (3.22) can be solved in the form,

" [efotf(,y) o @ (x,y)
Mi<x,y,k>=1+2[-’ ! L }

+ —
= kK ke—k;
1 %) dk’ 14 00 ,
_ - — dlr_s(k',N. Sy, kLD,
o | i [w / reo (K DN 4o (x, v, K, D)
(3.27)
whereoc = +1oro = —1, @jﬁ(x, y) are the bound states,is the number of bound

states, anm‘?E are renormalization constants. The bound staﬁ@c, y) are complex
functions satisfying the homogeneous integral equations,

7 (x,y) = f/ dy'dx'Ge(x —x', y =y kDu@, y)o7 (', y).  (3.28)
R

It follows from Eq. (3.8) that they can be renormalized according to the boundary con-
ditions asR = /x2 + y2 — oo,

1
ot (x, E— ) ) 3.29
HE: y)—>x+2kj¢y+ (R79) (3.29)

subject to the normalization constraints,
+ 1 +
0" =F_— dydxu(x, y)®7 (x,y) = 1. (3.30)
2 R J

Multiple bound states also occur for the KPI equation when the quanfitieganish. In
this case, the expression (3.27) should be modified by multiple pole contributions [20,
21]. We consider only potentialgx, y) for which the renormalization (3.30) holds.
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The limiting relations for the eigenfunctiodg. (x, y, k) approaching bound states
can be derived from Eg. (3.1) in the form,

J
S
k — k3

] cf@i(x,y)
lim | M (x,y, k) — L

] = uj () = Q¢+ 25y + v 9T y).
k—>kj

(3.31)

Taking the limitR = /x2+ y2 — oo in Eq. (3.31) with the help of Egs. (3.15)
and (3.29) we find that

c = —I.
J

We notice that this constraint does not hold for the problem (2.1) in one dimension,
wherec? is related toy;". The data{k;", y;}"_,; defines the discrete spectrum of the

problem (3.1) subject to the symmetry constraints,
k) =k, ) =y (3.32)
The first symmetry constraint can be proved by means of the relation,
Ri(k)y=ry(k, k) = —rj*F(k, k), (3.33)

which follows from Egs. (3.21) and (3.25). The coefficieRts(k) andR_ (k) are mero-
morphic functions in Intk) > 0 and Imk) < O respectively (see Egs. (3.18) and (3.27)).
Therefore, the symmetry constraint (3.33) implies that the location of the Rqlés
andR* (k) coincides, i.e. the first relation in Eq. (3.32). The second symmetry constraint
in EqQ. (3.32) follows from Egs. (3.70) and (3.71) below. Notice that the coefficients)

play now the same role as the coefficie[r@(k)]*1 in the problem (2.1) despite the
fact thata (k) = 1 for the RH problem (3.17).

3.1.4. Embedded eigenvalueBhe continuous spectrum in the problem (3.1) has no
edge points which separate it from the discrete spectrum. Recall that the problem (2.1)
has the edge point at= 0. Indeed, the spectral data(k, /) are not singular for real

and! in the general case (see Egs. (3.18) and (3.27)), and the eigenfunidtignsy, k)

are not growing inc andy asR = /x2+ y2 — oo (see Eq. (3.15)). Still there are
special (nongeneric) potentialgx, y) for which the spectral data become singular at a
certain pointk = ko at the real axis.

Definition 3.2. The potentiak (x, y) is callednongenericof type Il if there is atleast one
eigenvalue embedded into the continuous spectrum, i.e. the homogeneous Fredholm’s
equations (3.28) exhibit bounded solutions at reat kg. Otherwise, the potential is
calledgenericof type II.

Ifthe eigenvalué = kgis embedded into the continuous spectrum, the eigenfunctions
My(x,y,k), N+ (x, v, k, 1), and the spectral data (k, /) have a resonant polefat= ko.
This pole is produced by the integral part in the solution of the RH problem (3.27). We
introduce the singular behavior & (x, y, k) ask — kg according to a limiting relation
ask — ko,

—i®F (x,y)

M Jk —_—,
+(x,y, k) —> k— (ko T 10)

(3.39)
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Wherecbg(x, y) are solutions of Eq. (3.28) fdr = ko. It follows from Eq. (3.18) that

o ()

ki) —» —0
g )

ask — ko, (3.35)

where
1 .
ra(l) = —5 //Rdydxu(x, NBE(x, y)e Pk,

We normalize the bound sta«ﬂ%F (x, y) according to the same constraint (3.30) so that
rg (ko) = 1.

However, the boundary conditions (3.29) are no longer valid due to the singular line at

x + 2koy = 0 and the bound statel%(x, y) are weakly localized aR = /x2 + y2 —
o0,

dT(x,y) — O(R™1) asx +2koy #0 (3.36)
and
T (x,y) - O(R™Y?) asx + 2kgy = 0. (3.37)

According to Egs. (3.22) and (3.25), the eigenfunctidhgx, y, k, [) are not singular
as! — ko and have the dominant behaviorias> kg,

irg*(HDE (x, y)

Ni(x, vy, k, 1 +
=02k D = N e T i0

(3.38)

Using Egs. (3.27), (3.34), (3.35) and (3.38), we find that the asymptotic expressions are
self-consistent provided the following constraints are satisfied,

D (x, y) = =Dy (x, y) = Polx, y) (3.39)
and
/ dl signtko — 1) [rE@)|> = 0. (3.40)

These constraints can be derived by evaluating the residue contributibns &b in
Eq. (3.27) with the help of the formal expansion,

sign(k — 1) = sign(ko — [) + 2(k — ko)8 (ko — 1) + O(k — ko)2. (3.41)

These eigenstat@ (x, y) are callechalf-bound statesince they are weakly localized
asR — oo and their spectral data consist only of the embedded eigenkglue

Embedded eigenvalues and half-bound states are structurally unstable under a pertur-
bation of the potential according to the theory of quantum resonances [43,44]. Therefore,
we expect that the perturbation leads either to disappearance of the embedded eigenval-
ues atk = kg or to their emergency into the complex domain as true eigenvalues. This
is the type Il bifurcation analyzed in Sect. 3.4.
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3.2. Spectral decompositionslere we study the spectral decomposition based on the
eigenfunctions of the problem (3.1) for a potentiat, y). Our analysis is not affected

by the presence of embedded eigenvalues. The only assumption required for the potential
u(x, y) is that it does not support multiple poles in the expansion (3.27). Non-standard
orthogonality and completeness relations for the eigenfunctions of Eq. (3.1) are obtained
in Sect. 3.2.1. Additional integral relations for the dafﬁof the discrete spectrum are
derived in Sect. 3.2.2.

3.2.1. Scalar products, orthogonality and completeness relatidh® eigenfunctions
M4 (x, y, k) are characterized through the sets of eigenfunctions= [N+ (x, v, k, 1),
{d)jf(x,y), d>jf(x,y)};%:1] by means of Eq. (3.27). The spectral datak,/) and

{7, y;'y1_, are defined by the ses* through Egs. (3.20), (3.25), (3.30) and (3.31)

(see also the additional Eq. (3.70) below). The potential y) is related to the sets*
as follows [6]

1 X o0 , , 1 [>® k o0
—(/ —/ )u(x,y)dx =—/ dk (/ —/ )dquc(k,l)Ni(x,y,k,l)
2 —o0 x TJ -0 —o0 k

+2)° [@j(x, )+ @7 (x, y)] .
j=1
(3.42)
This formula results from Eqgs. (3.16) and (3.27) in the linit> co. Thus, the scheme
for closure of the integral transform holds for the s§fsand we state the following
main result.
Proposition 3.3.An arbitrary scalar functionf (x, y) with the boundary conditions
limy_100 f(x,y) = fi(y) can be decomposed through any of the orthogonal and
complete sets of eigenfunctioss if £, (y) + f_(y) = 0.
The proof of this proposition is based on two lemmas.

Lemma 3.4.The eigenfunction®/ (x, y, k, [) and {dﬁ(x, y), @7 (x, y)}i_; introdu-
ced in Sects. 3.1.2 and 3.1.3 satisfy the orthogonality relations,

(N+(K',I")|Nx(k, 1)) = 272 signk — 1) 8(k — k') 8( = 1), (3.43)
(@7 IN£(k, 1) = (Na(k, D|®T) = (DT IN<(k, ) = (N+(k,D|®T) =0,  (3.44)

(@,i|c1>j.t> =0, <c1>f|q>f> = +n8;, (3.45)

where the scalar product is given by

(gk', I |h(k, D) = /f dydxg*(x, y, k', 1)oh(x, v, k,1). (3.46)
R
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Proof. First, we derive a balance equation for two solutidrig, /) and g(k’,!’) of
Eq. (3.1) with a real potentiad(x, y),

9 9
i— (g* (K, IRk, D) + — (85K, IDh(k, 1) — g5k Uik, |
lay(g( Yh( ))+ax(g( Yhx(k, 1) — gy (k' )h(k, D) (3.47)

—2ik' g* (K, I'Yh(k, 1)) = 2i(k — K)g* (K, I')h (k, D).

We integrate this equation far= Ni(x, y, k,[) andg* = Ni(x, y,k’,1l") overx and
then overy. Using Egs. (2.37) and (3.15), we derive the relation,

1
Na(K, 1) Na(k, D)) = —— | lim — lim
(N DI (k. D) = 5 [_Hoo yﬂo}
o0
/ dxNE(x, v, K )N (x, v, kD) (3.48)
—00

N 27[21 (k_k/_l)Z_l/Z

o Sk—K L DO -1k 1),

We substitute the integral representation (3.14) to evaluate the firsttermin Eq. (3.48) and
integrate the Green’s functions according to Eq. (3.4). Then, the relation (3.48) reduces
to the formula,

(Ne (K, )Nk, D)) =472k — DSk — 1 — K +1)8(k2 — 12 — K%+ 1'%

3.49
Fr2%isk — k)Ry, (349)

where

k oo
R = Talk, 1,1) + TE, 1, 1) F [f —/k }dei(k, LTk, p)
—00

andTy (k, [, p) is given by Eq. (3.24). In the derivation of Eq. (3.49) we have supposed
thatk # [ andk’ # I, i.e. the eigenfunctiorN. (x, v, k, 1) is not degenerate [cf.
Eq. (3.21)]. Under these conditions, zeros of bdflunctions in Eq. (3.49) occur only
fork = k" andl = I’. Therefore, we simplify Eq. (3.49) by using the following formulas,

ad(ax) = sign(@)s(x), 25(x + y)d(x —y) =8(x)8(y). (3.50)

Then, Eqg. (3.49) reduces to Eg. (3.43) providéd = 0. The latter identity follows
from the relation (3.26) and the explicit expressions (3.23) and (3.24).

The zero scalar products (3.44) and (3.45) can also be found from Eg. (3.47) for
bound states. In order to find the nonzero inner products in Egs. (3.45), we integrate
Eq. (3.47) forh = M1 (x, y, k) andg* = d)j.F*(x, y) overx and then ovey and use the
boundary conditions (3.15) and (3.29). As a result, we derive the integral relation,

2i(k — k) /f dydx®T*(x, y)d, M (x, y, k) = +27. (3.51)
R

This relation reduces to Eq. (3.45) after substitution of Eq. (3.27Mo(x, y, k) and
use of the zero scalar products (3.44) and (3.45).
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We notice that Boiti et al. [23] used different scalar products for the orthogonality
relations,

o
— dxM*(x, y, DM (x, y, k)ePEYL0 = 51 — k). (3.52)
27 J_ oo i

These products generalize the results of the time-independent Schrédinger equation and
are independent onfor solutions of Eq. (3.1). However, an arbitrary scalar function in
two dimensions cannot be decomposed through the eigenfunctions

Ma(x, y, ke xto)

which depend on one spectral parameter. Note that, in the time-dependent problem, the
eigenfunctionsV4 (x, y, k, 1) and N+ (x, y, k', ') are orthogonal whileV(x, y, k, )

and N4 (x, y, k', 1) are not (the time-independent problem has the opposite property,
see Eq. (2.34)).

Lemma 3.5.The eigenfunction¥. (x, y, k, ) and{dﬁ(x, y), 7 (x, y)}’j?:1 satisfy the
completeness relation, ‘ '

1. 1
Lsignix — x)8(y — v) = = f / dKdIN (¥ s DN (3, v, )
2 27'[21 D

1 . —%k / / * ’ 12 —
+;Z;[‘D/ &, NPT (x, y) = TF(, Y@ (x,y)], (3.53)
/:

where we have used the notation,

] = [ e[ )

Proof. We start with transforming Eq. (3.19) to the form,

ad
ﬁ [Ni(-x/a yl’ k5 l)Ni(-xv y? ka l)]

=i[x—x'+2k(y—y)| NIy . k,DN=(x, y, k. ])
+ [Mi(x, y. )rEte, DNIG', y' k. D) + MG,y K)rs(k, DNx(x, y, k. D],

where we have used Eq. (3.25). Multiplying this equation by &gnl/) and integrating
overl, we derive the expression,

oW (k)
ok

=i [x —x' 4+ 2k(y — y/)] Wk)+ M*(x',y, k)M (x,y,k) (3.54)
+ My M _(x, y, k),

where

k 00
Wk) = [/ —/ }dzN;;(x/, vy, k,DN+(x, v, k,1I).
—00 k

The functionsM* (x', y', k)M (x, y, k) and M’ (x', y', k)M _(x, y, k) are meromor-
phic in Im(k) > 0 and Imk) < O respectively. We apply the Plemelj formula (see
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Appendix Al in [6]) to reconstruct their sum from a given jump atkin= 0. Evalu-
ating the pole contribution according to Egs. (3.31) and (3.32), we derive the following
representation,

1
> [ME (Y My (x, y, k) + MG, Y OM_(x, y, k)]

(3.55)
1 _
=Rk + 5 [ATH) =AW,
where
n i(x —x' +2k(y—Y)) 1
R — +>x< A - J
(k) 1+;cb, (x,y><1>,(x,y>[ e +(k_k.)2]
j= J J
n ix —x' +2kT(y—y) 1
(DT* / /CD_!' J
+,~X_£ 7Y ,(m)[ s +(k_kj+)2}
(3.56)
and
T Y A
ATl = jE2m' oo k' — (k £i0) (3.57)

AMEC Y KYMy (e, y, k) — M Y KM _(x, y, K]

The functionsA™ (k) and A~ (k) represent the boundary values at realf analytical
functions in the upper and lower half-planeigfrespectively, subject to the boundary
conditions in the limitk — oo %0,

+

A
AT (k) — :I:TOO + O(k™2), (3.58)
whereAZ are given by
+ _ 1 * A ko 7
AL = — > dk [M* (X', y M (x,y, k) — ME(xX,y  K)M_(x, y, k)]
—0o0

(y - /) > d " o / /
+ 4 - / " __ 4 Iy / dx”u(x/’y/)‘
7T —o0 "=V =) Jo

Solving Eq. (3.54) as a differential equationkirwe derive explicitly,

(3.59)

oo o0 o
f W (k)dk = / wk)dk + / W™ (k)dk + / / dkdIR(1)e' P y=y" kD
—00 —00 —00 D
(3.60)
where the functiondV* (k) solve the differential equations,

IW=E(k)
ok

i[x —x' +2k(y — )] WEK) £ A (k). (3.61)
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In order to evaluate the last integral in Eqg. (3.60) from Eq. (3.56), we transform the
variables,

k—1(+) l—l( )
=W E=Sp T,

and integrate first ovep and then ovek with the use of the residue theorem. Then,
Eq. (3.60) reproduces exactly the completeness relation (3.53) subject to the following
constraint,

/oo Wt (k)dk + /oo W~ (k)dk = 0. (3.62)

Now we show that this constraint is satisfied for the functiés (k) defined by
Egs. (3.61). Since the right-hand-side$ (k) are analytical functions in the upper/lower
half-planes of, the functionsW* (k) solving Eq. (3.61) can be analytically continued
in the corresponding domains bEubject to the constraint,

o=y / ” W (k)dk = 0. (3.63)

Inthe case # y’, the boundary conditions fa¥ * (k) follow from Egs. (3.58) and (3.61)
asW* (k) ~ O(k—2). Therefore, the constraints (3.62) and (3.63) are satisfied. In the
casey = y’, the constraint (3.63) is still met and the functidk& (k) have the boundary
conditions ag — oo £i0,

+

0 -2
oot O(k™2).

Wt (k) —

As a result, we find explicitly that

00 Ai
/ W ()dk = £ =2
oo X

However, it follows from Eq. (3.59) that}, = A7 wheny = y’ and, therefore, the
constraint (3.62) is satisfiedo

Proof of Proposition 3.3We decompose a scalar functigiix, y) in the form,

1
F 3 =5 o)+ o) + / / | dkdlars (k. DNk, 3, D)

n (3.64)
+ 7 (o OF ) + oy @7 ()

j=1
The coefficients of the expansion can be expressed through the derifativey) ac-
cording to Egs. (3.43)—(3.45),

(N+(k, DI f) + :i@)}FIf)

272 ’ J i

Then, Eqg. (3.64) reduces to an identity by means of Eq. (3.58).

at(k,l) =

We conclude that the relation (3.42) for the inverse scattering transform is a particular
application of Eq. (3.64). The coefficients(l, k) play the role of Fourier coefficients
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and they can be found from Egs. (3.42) and (3.43) in the form (3.20) and (3.25). The co-
eff|C|ent3c] for the discrete spectrum are all leﬁﬂjt —i, due to the renormalization

conditions (3.30). These conditions are consistent with Eqgs. (3.42) and (3.45). Notice
that the formula (3.42) gives a nontrivial limit at— 4oo even in the case when the
constraint (3.2) does not hold. Indeed, integrating Eq. (3.42) pwerd then taking the

limit x — oo, we derive the explicit expression,

|ri(k l>| "k =k}
// dydxu(x,y) = 21i Ry (0) — // dkdl=—="—— 4 g Z e

(3.65)
where we have used the relations following from Egs. (3.4), (3.14) and (3.28),

. . 00 ) ri(k, )
lim — lim / dy Ni(x,y, k,1) = 272 sign(k — 1) 8(k) 8() — —F——
X—>00 X—>—00 oo k+i0
(3.66)

and

. . o + i
lim — lim dy 5 (x,y) =+—%. (3.67)
X—=>00 X—>—00 — 00 kj

The relation (3.65) can also be derived from Eq. (3.27). We notice that the spectral
decomposition gives an explicit value for the mass integral (3.65) provided the order of
integration is specified according to Eqg. (3.12).

3.2.2. Characterization of the data of the discrete spectriitare we use the orthogo-
nality relations (3.43)—(3.45) and find an integral representation for the paramétefs
the bound states. First, it follows from Egs. (3.27) and (3.31) that the funcl:?(ts y)
satisfy the system of algebraic equations,

n '/ + —
. O (xy) | P (x,y)
(X + 2y +y P () =1—i) [ki_k+ ki_k_
=1 i i l

1 o0
= ki</ /)dlr_g(k DNo(x, y, k1),

wheres = +1oro = —1andy_’ stands for sum without the singular termkzt= k.
Equation (3.68) can be viewed as a spectral decomposition of the fumc@b(ns y)

defined by Eq. (3.31) through the complete s§ts It follows from Eq. (3.68) and
Egs. (3.43)—(3.45) that

} (3.68)

//R dydx®T*(x, y) ((x + Zkfy + yji)op]#(x, y))x =0. (3.69)

As aresult, the spectral daﬁ can be expressed from Egs. (3.45) and (3.69) as

1
vi =F- / / dydx®T*(x, y)(x + 2k ) D} (x, y), (3.70)
T R
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subject to the constraint,

o0
/ dx®T*(x, y)cbjt(x, y) =0. (3.71)
o0

This constraint can be derived by integrating Eq. (3.47)ifos CDjF(x, y) andg* =
@jF*(x, y) overx subject to the zero boundary conditionsyas> oo (see Eq. (3.29)).
We notice that Egs. (3.70) and (3.71) imply the symmetry const(ajﬁt>* = y/+ ie.

the second relation in Eq. (3.32).
We apply the orthogonal and complete sets of eigenfunctiént study perturba-
tions of the potential and variation of the spectral data for Eq. (3.1).

3.3. Perturbation theorySuppose that the potential can be decomposetl asu(x, y)
+ eAu(x, y), wheree « 1. We assume that the potentiglx, y) supports the com-

plete sets of eigenfunctiorfs® = [Ni (x,y,k, 1), {QD;'(x, y), <I>]T(x, y)}’}:l]. Also we

assume that the perturbatian:(x, y) ~ O(1) ase — 0. Here we evaluate variations
of the spectral data due to the perturbatiom(x, y).

3.3.1. Variations of data of discrete spectru®uppose thal)f6 (x,y) solves Eq. (3.1)
for u¢ = u(x,y) + €Au(x, y) with the eigenvalug = k;.—Le. We expand@fe(x, y)
through the set§* according to Eq. (3.64) rewritten as

k, DN+ (x,y,k, 1)
D (x, y) = / / dkdl =
ey D Am2(k — k)

(3.72)

13 [af@f(x,y) &fcbf(x,y)}

o +e £ +e ¥
2ri = kj —k kj —k

The eigenvalue problem (3.1) reduces with the help of Egs. (3.43)—(3.45) and (3.72) to
a set of homogeneous integral equations,

Kok, kK, 1, s (K 1
ar(k,l) =€ /f ar'ar K= )“I( )
b w2k — k)

1< <Kﬂ(k,l)ali &F,(k,l)&fﬂ

(3.73)

+ + +
K — & KF — kT

2mi
=1

i Bt Dask. D) 1 I Kot R g \]
af =€ // dkdlLii) + =Y Ceimey, _ Kendf ) |
D 4ru2(k — ki) 2mi A

m=1
(3.74)

i Kyt Doz D) 1 O RimoE  Kemal \ |
GF = / / dkdl—il(z Jox (K ):i:—,z o ZFmn )
b a2k —kF) T 2w = \ K kK kg

m=1 n
(3.75)
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where the integral elements are

Ki(k, k' 1,1") = // dydxAu(x, )N (x,y, k,)Nx(x, y, k', 1),
R

Kajth) = [ dvdxsute pNzeey k007 ),
R

Kk, 1) = /f dydxAu(x, y)NZ(x, y, k, l)<I>j#(x, y),
R

Kij = // dydxAu(x, y)CIJ;?*(x, MO (x, ),
R
and
I?ijz = // dydxAu(x, y)@li*(x, y)@li(x, y).
® A

The results of the asymptotic analysis of Egs. (3.73)—(3.75) in the émit 0 are
summarized in the following proposition.

Proposition 3.6.Variational derivatives of the datg™, y.i}".:l of the discrete spec-
trum of Eq. (3.1) with respect to the potentidlx, y) are defined by

SkT OT*(x, y)0E(x, y)
J + J .]

- , 3.76
du(x,y) 2mi ( )
Sy yeT )@ (x, )
du(x,y) =T i
1 L [oF o —orof*  oT'of —ora 377
21 GE_kh2z T i 3-77)
=1 J l J 1

re(k, DN=(x, v, k, D®T*(x, y) —rX(k, )N (x, y, k, l)tbi(x, y)
:I:// dkdl——""F ; S Rkl
D Am2(k — k)2

where}"; stands for sum excluding the singular terrrkﬁt: k/i

Proof. The self-consistency condition of Eq. (3.74) at j defines the expansion of
the eigenvalué; < as

kjif - kjE + eAkjE + O(€?),
where
Kyjj

AkT =+
J 2mi

(3.78)

This formula is equivalent to Eq. (3.76). We notice that the symmle}ry: k;r* is

preserved in the perturbation theory for real(x, y). The set of integral equations is
solved at the leading order as

ax(k, 1) = €Ky j(k, 1) + O(e?),
o« = eKyij + O(%),
dl:F = Elgilj + 0(62).
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This solution defines a perturbation to the bound st@tﬁf(x, y) = @f(x, y) +
erp]i(x, y) + O(e?), in the form,

AT (x,y) = Ay BT (x, y) * 5

! ~
1 Z [Kiz,-eb,i(x,y) Kﬂjobf(x,y)]

; £ * £ .7
Zml:l kj —k kj —k
Kii(k,I)N. k,l
+/f dkdl i](a) i(-x?iya 7)7
D 4712(k—kj)

(3.79)

where the coefﬁmenAa is expressed through the correctlonsmj’f andkj“. This
coefficient should be specmed by normalizing the bound sﬂafé(x, y) asR =

Vx2 4+ y2 — oo according to Eq. (3.29) or, equivalently, Eq. (3.30). The latter con-
straint can be expanded to the first ordee ias

:Fi // dydx (u(x, NADE(x, ) + Aulx, y)dT(x, y)) =0. (3.80)
o R J J

We prove that this integral equation defines the correczm'aﬁ in the form,

+ + ’ ~
nat = _ 2K —kf ; Ky Ky
j kE T 2mi ki(ki k) kKT =)
J 1= 1 1 1 1

(3.81)

1 o Keei (k Dri (k1)

+ Z—Kij = F —

T (k:l:tO)(k k )

We evaluate the firstintegral in Eq. (3.80) by substituting Eq. (3.79) and using Egs. (3.20),
(3.25), and (3.30),

/ ~
P— 1 " K Ki:
+5 /f dydxu(x, y)A<I> (x,y) = Aa + = |: 2 Rl ]

+ + +
21 l kj —k kj —kf
K 'k,l *(k, 1
T / dkdlw. (3.82)
D 47T21(k—kj)

Then, we evaluate the second integral in Eq. (3.80) by using the spectral decomposition,

1/ [ [ . 1
= (f —f )dxAu(x,y)CIl(x,y): P /f dkdlK +j(k, )N+ (x0, y, k, 1)
2\Jo Jio J 214 D

1 — n -
+ - ; (Kiqu’z (x0, y)— K41 @ (xo, y)) . (3.83)

Integrating this expression first im and then taking the limitg — oo, we find the
second integral in Eg. (3.80) with the use of Egs. (3.66) and (3.67),
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1 n 1 G| Ky Kuyj
— dydxAu(x, y)P7(x,y) = +—
]an/fRyx”(xy)J(xy) 2m1§[kli+kf

1 Kij(k,Dri(k, 1)
=~ k0,00 + [ aka2ELEED
Fo, K100 //D 472 (k + i0)

Formulas (3.82) and (3.84) reduce Eq. (3.80) to the form (3.81). Furthermore, we simplify
Eq. (3.81) as follows

(3.84)

1
Aa#:i—// dydxAu(x, y)(x + 2kTy + yHoT (x, )@ L (x, y). (3.85)
J 2 R J i J

This transformation is based on the relation following from Egs. (3.27) and (3.68),

i(bi(x,y)
/.L;!:(X, y) - M;()C, Y, 0) = - Jk—i
J
n '/ + —
_ of (x, y) o7 (x, y)
+ I l
—ik; Z |:k+(ki -k * ky (kE —k):|
=1 l J l 1 J 1
+

K
5 /f dkdlri(k’ DN=x(x, y,ﬂl:, l)’
2ni JJ p (k +i0)(k — k7)

wherep: (x, y) is defined by Eq. (3.31).

In order to prove Eq. (3.77) we assume the asymptotic expanﬁjben,z y/.i +
eiji + O(e?), and express the correctim;/ji from Eq. (3.69) in the form,

1
avf =5 [[ avaxsefon w2y +ypetey)]
T R X

1
¥ [[ avsor o [wrady ehaeien] e

2A

+
kj T +
¥ dydxy®T"(x, y) @7, (x, y).
R

g
The first two terms can be evaluated by means of direct substitution of Eq. (3.79) and
use of Eq. (3.68) and the orthogonality relations (3.43)—(3.45). The result is given by
the expression,

Ky — Kaj | K3y — Ki’-/}

/!

1 n

AyF=+_—-> +

i 21 & [(kjt—kf)z (kF — k)2

re(k, DKL (k. 1) —re(k, DK+ j(k, 1)
+ /f dkdl a
D Am2(k — k)2 (3.87)

2AkT

F J /[ dydxy®T*(x, y) @ (x, y)
T R / 7

1
F - // dydx®T*(x, y)ACDj-E(X, y).
mJJ &
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In order to evaluate the last two terms in this expression, we use the equat'mmjbr

iADT

+ = + + _ o 5t +
Gy P ADT =20k ADT +uADT =20 Ak P — Aud; (3.88)

Jjxx
with the boundary condition a8 = /x2 + y2 — oo,

ZAk.iy
L +O(R™?). (3.89)

ACD/# > -
’ (x+2kj y)

The balance equation following from Egs. (3.1) and (3.88) can be integrated to the form,

a o0
a / dx®T*(x, y) AGE(x, )
ay —oo J J

o0 o0
zzAkjE/ dxcij*(x,y)q>]¢x(x,y)+i/ dxAu(x,y)Q}F*(x,y)CD]i(x,y).
—00 —00
(3.90)

Multiplying this equation by and integrating ovey with the boundary conditions (3.29)
and (3.89), we find

+
2Ak;

T

1
L [[ avavereneienz [[ adxorensetey
R T R

1
i R J J
(3.91)

Formulas (3.87) and (3.91) reduce to Eq. (3.77). We notice that the symmetry constraint
(v; )" = yj+ is preserved by the real potentidk (x, y). O

The results formulated in Proposition 3.6 constitute the basis for the analysis of
dynamics of the KPI lumps under small perturbations, e.g. under distortions of their
shapes.

3.3.2. Variations of data of continuous spectru8uppose thaiv§ (x, y, k, [) solves
Eq. (3.1) foru® = u(x, y) +eAu(x, y). We expand it to the first ordeN s (x, y, k, 1) =
Ni(x,y, k, 1)+ €AN+(x, y, k, 1) + O(?), and find the correctiod N+ (x, y, k, 1) in
the form,

KiK'k, I',)Nx(x, y, k', 1"
ANi(x,y,k, 1) = dk'dl’
£ D //D A 2(k — (k % i0))
1 G Rk heEey) KLk Def y] )
2ni 4 k — kit k—kf '

=1
The main result of this subsection is formulated in the following proposition.

Proposition 3.7.Variational derivatives of the data. (k, /) of the continuous spectrum
of Eqg. (3.1) with respect to the potentialx, y) are given by

Sra(k,l)  Ni(x,y, k,DMi(x,y, k)
Sulx,y) 27i :

(3.93)



752 D. E. Pelinovsky, C. Sulem

Proof. The derivation follows the proof of Proposition 3.6. First, we expand the scatter-
ing data as$ (k,l) = re(k, ) + eAry(k,1) + O(e?) and use Egs. (3.20) and (3.25) to
expressAry (k, 1) as

1
Arg(k, 1) = —// dydx (u(x, y)ANZ(x, y, k, 1) + Au(x, y)Ni(x, y, k, 1)) .
2mi R + +
(3.94)

The first integral can be evaluated explicitly through the substitution of Egs. (3.92) and
use of Egs. (3.20), (3.25), and (3.30). The second integral can be found by integrating
the spectral decomposition,

1/ [ o
1 (f _/ )dxAu(x,y)Ni(xs)’skvl)
2 —00 X0

1 / !/ /! / ! g/
:m//l)dkdlK:";(k,k,l,l)N;(xo,y,k,l)

1L N
+— ; (Kil(k, OF* (x0, y) — K1k, ) ®F* (xo, y)) ,

overy in the limit xg — oo. As a result, we deduce

1 k KAk 1, Dra (K, 1)
Are(k, 1) = ——K*(0,k,0,1) + —— dKdll =F
rek, 1) =5 7 K ( )+ g //D (k' +i0)(k' — (k + i0))

ks~ Kak D Kqk D)
+ o= + :
21 ; (k,i(k,i N NG

95)

Using Egs. (3.27) foM+ (x, y, k) — M<(x, y, 0), we conclude that Eq. (3.95) reduces
to Eq. (3.93). O

3.3.3. Example: A single lump potentidlVe solve Eq. (3.68) fory(k,l) = 0 atl # k
andn = 1 in the form,

21X — 4ik?y — 1

O (x,y) =2 : 3.96
P ST (3.96)
_ 21X +4ik?Y +1

Dy (x,y) =2 : 3.97
R ST s (3:97)

where we have used the parametrization,

+ . + + _ —
ki =piLiky, yf =-x0—2kiyo, X=x—x0+2p1(y —y0), Y =y—yo.
Then, the lump of the KPI equation (1.1) is

162X

ug(x, =w,x(X,Y), wy(X,Y)= ,
s(x,y) sx ( ) s ( ) 4K]2_X2+16Kfyz+l

(3.98)
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which satisfies the constraint (3.2). We use the following relation,
Fx + 1
ST (x, )T (x,y) = — us(X Y)+ 1wsY(X Y),

and evaluate explicitly the perturbation corrections of the first order of the perturbation
theory (3.76) and (3.77),

1 i
Akf = Tore (APsy — 2p1APs,) £ 5 AP (3.99)
4K1 // X(161< yY —1) Autr. v)
ux,
Y @2XZ 1 1602 + 1)2 Y

(3.100)

// dydx yus(x, y)Au(x, y),
4711

whereA Py, and A Py, are corrections to the andy-projections of the momentum for
the KPI equation (1.1),

1 1
Py == // dydxwm, Py = - // dydxwg,wyy.
2 2)J) r

The perturbation of the data of the continuous spectium(k, /) can be found from
Eq. (3.93) by using the explicit relation (see Egs. (3.22) and (3.27)),

NaGe,y kD) = | 1— 41/(1(2(1 —pnX +4K12Y —1i) SBG kD
(( — p1)? + K2 (M2 X2 + 16¢]Y2 + 1)

(3.101)

We notice that
Ak

(k= p1)2 +xf’
i.e. R(k) # 0. On the other hand, we confirm from Egs. (3.20), (3.25), and (3.101) that
ry(k,1) = 0 for anyl # k.

Since the projections of the momentum at the KPI lump (3.98)Pare= 8«1 and
Py, = 16mk1p1, we check from Eq. (3.99) that the first-order correctidng;, and
AP, define completely the renormalization of the parametgrand p; of the KPI
lump (3.98) and affect the excitation of the momentum of the continuous spectrum in
the order of @e?). This result confirms the stability of the single KPI lump against small
perturbations [32].

Ryi(k) = re(k, k) = —

3.4. Type Il bifurcation of new eigenvalueghe results of Sects. 3.2 and 3.3 remain
valid even if the potentiak(x, y) is a hongeneric potential of type Il, i.e. it supports an
embedded eigenvalue fat= k. Indeed, the half-bound statés; (x, y) appear as pole
contributions of the continuous spectrum and their presence does not affect the complete

sets of eigenfunction§® = [Ni(x v, k, 1), {d>+(x ), @7 (Y ] However, the

eigenfunctiondM (x, y, k) andNy(x, y, k, 1) are smgular at = ko according to Eqgs.
(3.34) and (3.38). As a result, the variation of the scattering datk, /) defined by
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Eq. (3.93) becomes divergentias> kg if the nongeneric potential(x, y) is perturbed
by a correctiomAu(x, y),

+ +
rEDK,
Ars(k,l) > + 0r°"0 , 3.102
k) = — ko F10))2 (3.102)
whereky = —Ko and
Ko= / f dydx Au(x, )| bo(x. )P (3.103)
R

Combining Egs. (3.35) and (3.102), we find that the perturbateix, y) shifts the
pole atk = kg into the complex domain,

ieKo
2r

This shift crosses the real axis if sigrKg) > 0. In this case, the eigenfunctions

My (x,y, k) and M_(x, y, k) acquire a new pole in the upper and lower half-plane

of k, respectively (cf. Egs. (3.27) and (3.34)). We prove below that the bifurcation of the

embedded eigenvalue into the complex plane occurs under the conditignisign- 0

and Eq. (3.104) gives the leading order of the new eigenvalue. In the opposite case, i.e.

when sigrie Kg) < 0, the analyticity properties @1 (x, y, k) in the corresponding do-

mains ofk are not affected and we expect that the embedded eigenvalue just disappears.

Here we derive asymptotic expansions for the new eigenvalue and associated bound

state. The results are applied to the problem of generation of a KPI lump by a localized

initial pulse.

ki€ =ko+ (3.104)

3.4.1. Asymptotic expressions for a new eigenvalue and bound Sapmose that the
type Il bifurcation occurs under the perturbatien(x, y). Anew bound stat@jfrl(x, y)
can be decomposed through the complete $&tsaccording to Eq. (3.72) with the
eigenvalug = knijl such that lim_, ¢ kfjl = ko. If the potentiak(x, y) is nongeneric,
the homogeneous integral equation (3.73) has a singular keiiekat if knijl — ko.
Solving this equation asymptotically in the lingit— O, we derive the following result.

Proposition 3.8.Under the conditions that the potentia{x, y) exhibits an embedded
eigenvalue ak = ko and the perturbatiorAu(x, y) satisfies the criteriorkKg > 0

(see Eq. (3.103), the potentiaf = u(x, y) + eAu(x, y) supports a bound state in
a neighbourhood ok = kg for ¢ > 0. The eigenvaluelej[jl for the new bound state

PFE ) (x, y) is defined by
kE€) = ko £ ie Ak + O(e?),
where
1
Ak = —Kp > 0. (3.105)
2
Proof. We consider an asymptotic solution of Eq. (3.73),dt— ko ande — 0. Using
Eq. (3.38), we rescale the variables in the problem,
rg Ord* )Pk, k', 1,1)
(k — (ko £i0)) (k' — (ko F i0))

DALk D
axk D) = £i0)
(3.106)

Ki(k, k', 11") =
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Then, we evaluate the singular contribution from the pgdle= kg in the integral of
Eq. (3.73) and find the leading order term in the form,
€ Py (k, ko, 1, ko) A+ (ko, ko)

12 Qx,

B f/ dk'dl'lrg ("2
=T b = ko)2W —koF ieAk)

Using the formal expansion (3.41) and the constraint (3.40), we evaluatey means
of the residue theorem as

Ax(k, 1) > (3.107)

where

%0 2dk o
Q= /_oo ko (k —koFicAk) — eak o INeAk) (3.108)

Writing Eq. (3.107) ak = | = kg and assuming > 0, we find the simple result,
1 1
|Ak| = —— P+ (ko, ko, ko, ko) = =— Ko.
2 2

The latter equation is self-consistent only #g§ > O, when the bifurcation occurs and
the new eigenvalue has the asymptotic approximation (3.105). The new bound state
n+1(x y) is defined by Egs. (3.72), (3.106), and (3. 107) Usmg the same approach,

we simplify the expression fobn+1(x, y) for finite R = {/x2 + y2,
i A+ (ko, ko)
42

Using Eqg. (3.108), we satisfy the normalization condition (3.30) by specifying
A (ko, ko) = FieKo. Then, Egs. (3.72), (3.106), and (3.107) reduce to the asymp-
totic expression for the new bound state,

f/' dk dlro o () Px(k, ko, !, ko)N+(x,y,k,1)
— (ko £i0))(k — ko F ie Ak)

where the integral term is the order otI). 0

O (x,y) =+ 0+ ®F (x,y) + Oe). (3.109)

+
B () =

o 2K + O(e),

We have thus found that, for the type Il bifurcation, a new eigenvalue appears trans-
versely to the real axis in the neighbourhood of the embedded eigenvalue and a new
bound state arises from a localized eigenfunction corresponding to the half-bound state.

3.4.2. Example: Generation of a single KPI lumphe multilump potentials of the linear
problem (1.2) do not belong to the nongeneric potentials of type Il sin@e /) are not
singular for reak. Indeed, for such potentials; (k, /) = 0 at/ # k and

Ni(x, y, k, 1) = My (x, y, D)ePE&yRD

where

n
MiGe,y,)=1-i)

j=1

Itis clear from this expression that the embedded eigenvalues ataeahot supported
by the multilump potentials. In the particular case= 0, we conclude that the zero

[@,m,y) N Q}(x,y)}
- —|.
l—kj l—kj



756 D. E. Pelinovsky, C. Sulem

S u
80.0

Ty

==—————

Bee——————
Ee—— — W“*_A—_—
Ee——_— —_———————
_— —————

550 X 1100
@ (b)

40.0

%%

o

© (d)

Fig. 3.1.Formation of a new KPI lump for the initial condition (3.110) ane: 1.5 attimes = 5(a),7 = 10
(b), t = 15(c), andr = 20(d) ((a)«d) in the same coordinates)

background:(x, y) = 0 does not exhibit embedded eigenvalues and, therefore, small
initial data do not generate new eigenvalues. This implies that there must be a threshold
for amplitude of the initial localized pulse to generate a new eigenvalue in the prob-
lem (1.2) and an associated lump in the KPI equation (1.1). This result is valid if the
initial dataAu(x, y) ~ O(1) ase — 0. Note that the existence of a threshold follows
also from the rigorous paper by Fokas and Sung [19] where a small-norm assumption
was used to eliminate lumps from the spectral problem (1.2).

In order to illustrate this result, we reproduce in Fig. 2 the numerical simulations of
the KPI equation (1.1) performed by M. He [33]. The initial condition was chosen in the
form of the KPI lump (3.98) witlpy = 0, k1 = 1/2 and an arbitrary amplitude,

1+y2_x2

—. 11
(1+x24y2)? (3-110)

u(x,y,0 =4a

If @ = 1, it coincides with the KPI lump. If the amplitudeis greater or close to the
amplitude of the KPI lump, the initial pulse transforms into a steady-state solitary wave.
Fig. 2(a—d) shows successive snapshots at various times for the evolution of the initial
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Fig. 3.2.Transformation of an initial pulse to a linear wave packet for the initial condition (3.11Q) &n@.5
attimesr = 2 (a),r = 4 (b), t = 6 (c), andr = 8 (d) ((a)«(d) in the same coordinates)

data (3.110) witla = 1.5. Itis clearly seen that the initial pulse evolves into a KPI lump.

On the other hand, if the amplitudeis small enough, the initial pulse broads up and
decays into linear dispersive waves. Fig. 3(a—d) shows the decay of initial data (3.110)
with a = 0.5. Since the multilump potentials do not support embedded eigenvalues,
a small perturbation does not generate new bound states in the spectral problem (1.2).
Therefore, similarly to the case = 0, there is a threshold for the amplitude of a
perturbation to the multilump potential to generate a new eigenvalue and an associated
KPI lump.

4. Discussion

We have presented a complete analysis of the spectral decomposition for the time-
independent and time-dependent Schrodinger equations within the RH formalism of
inverse scattering. The spectral problems (1.2) and (1.4) are formulated for self-adjoint
operators where the spectral decomposition, inner products and completeness relations
follow from the spectral theory in Hilbert spaces [4] subject to the assumption that
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u(x, y) € L. Since the multilump potentials violate this assumption, the discrete spec-
trum of the time-dependent Schrédinger equation (1.2) does not fit into this theory and
the corresponding eigenfunctions diverge exponentially,

.t L 2
lij zkj y

¢ =D (x,y)e :

Where<I>jF(x, y) are defined by Eq. (3.28). These nonlocalized “bound states” account for
resonant poles of the operator resolvent [4]. Spectral decomposition and completeness
relations were not derived in this context.

In the framework of the RH formalism of the inverse scattering, we have transformed
the self-adjoint spectral problems (1.2) and (1.4) to the non-self-adjoint form (2.1)
and (3.1), where new non-standard scalar products were introduced and orthogonal-
ity and completeness relations were proved by means of direct computations. Although
no rigorous result is available for general non-self-adjoint linear operators, we conjecture
that linear problems associated to nonlinear evolution equations within the formalism
of inverse scattering always possess a complete basis for the spectral decomposition.

We mention nhow some results concerning other linear spectral problems considered
in the RH formalism of inverse scattering [6].

The ILW equation.This integro-differential equation is related to the scalar (local)

RH boundary value problem (1.7) and (1.8). The associated linear problem generalizes
Eq. (1.4) and has a standard complete basis of eigenfunctions. The discrete spectrum of
this problem is associated to solitons of the ILW equation [45].

The BO equationThis equation is related to the scalar (nonlocal) RH problem (1.7)
and (1.8) fow+ (k) = 1. The discrete spectrum is associated to lumps (algebraic solitons)
of the BO equation [7]. The spectral decomposition for the associated linear problem
was recently analyzed [10].

Equations of the AKNS schenighese equations are associated to the AKNS spectral
problem and include the NLS equation and the modified KdV equation as particular
cases [1]. The AKNS spectral problem can be formulated through the vector (local)
RH boundary value problem and the discrete spectrum corresponds to solitons of the
nonlinear evolution equations [6]. The standard spectral decomposition was proved in
Ref. [1].

The DSI systenThis system is related to the AKNS spectral problem in two dimensions.
The vector (nonlocal) RH boundary value problem can be formulated and has a discrete
spectrum associated to dromions of the DSI system [46,47].

In this paper, the spectral decomposition was used to solve the particular problem
associated to nonlinear evolution equations, whether or not a small initial disturbance
supports propagation of a soliton. Equivalently, this problem concerns the existence of a
single eigenvalue for the discrete spectrum of the associated linear problem with a small
potential. Extending the results of this paper, we conjecture that spectral problems with
nongeneric potentials of type | may possess a single eigenvalue for a small potential while
spectral problems with nongeneric potentials of type Il have no eigenvalues for small
potentials. We present below a table which summarizes the results on soliton generation
for the problems solvable by means of inverse scattering.
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nonlinear equation bound states type of bifurcation reference

KdV equation solitons type | [35]-[37]
ILW equation solitons type | [14]
BO equation lumps type | [13]
KPI equation lumps type Il this paper
AKNS equations solitons type Il [48]
DSl system dromions ? [49]

Finally, there are also linear problems which possess localized bound states and
are related to th@ formalism of inverse scattering rather than to the RH formalism.
An example is provided by the DSII system [9]. The eigenfunctions of the continuous
spectrum for these linear problems have no simple analytical propertiearid the
spectral decomposition and bifurcations of eigenvalues remain open for further studies.
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