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Purpose: The goal of this study is to solve the linear advection--diffusion equation with a variable speed on a semi-
infinite line. The variable speed is determined by an additional condition at the boundary, which models the dynamics
of a contact line of a hydrodynamic flow at 180°contact angle.

Approach: The investigation is carried out by an application of Laplace transform in spatial coordinate. Properties of
Green's function for the fourth-order diffusion equation are used in analysis of implicit solutions of the linear advection-
diffusion equation.

Findings: We prove local existence of solutions of the initial-value problem associated with the set of over-determining
boundary conditions in the form of the fractional power series in time variable. We also analyze the explicit solutions in
the case of a constant speed to show that the inhomogeneous boundary condition induces change of convexity of the
flow at the contact line in a finite time.
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1. Introduction

Contact lines are defined by the intersection of the rigid and free boundaries of the flow.
Flows with the contact line at 180° contact angle were discussed in [2, 4], where corresponding so-
lutions of the Navier-Stokes equations were shown to have no physical meanings. Recently, a dif-
ferent approach based on the lubrication approximation and thin film equations was developed by
Benilov & Vynnycky [1].

As a particularly simple model for the flow shown on Fig. 1, the authors of [1] derived the
linear advection—diffusion equation for the free boundary h(x,t) of the flow:

oh a“h

_Vt—, x>0, t>0. 1

o Vo 1)
The contact line is fixed at x = 0 in the reference frame moving with the velocity -V(t) and is

defined by the boundary conditions h(0,t) = 1 and h,(0,t) = 0. The flux conservation is expressed by

the boundary condition h,, (0,t) = —% (set o® = 3 in equations (5.12)—(5.13) in [1]).

We assume that h, hy, hy — 0 as X—o0: in fact, any constant value of h at infinity is allowed
thanks to the invariance of the linear advection—diffusion equation (1) with respect to the shift and
scaling transformations. With three boundary conditions at x = 0 and the decay conditions as x —
oo, the initial-value problem for equation (1) is over-determined and the third (over-determining)
boundary condition at x = 0 is used to find the dependence of V on t.

We shall consider the initial-value problem with the initial data h(x,0) = ho(x) for a suitable
function ho. In particular, we assume that the profile ho(x) decays monotonically to zero as x—oo
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and that 0 is a non-degenerate maximum of hy such that hy(0) = 1, h,(0) =0, and h;(0) <0, see

Fig. 1. If the solution h(x,t) losses monotonicity in x during the dynamical evolution, for instance,
due to the value of h(0,t) crossing O from the negative side, then we say that the flow becomes
non-physical for further times and the model breaks. Simultaneously, this may mean that the veloci-
ty V(t) blows up, as it is defined for sufficiently strong solutions of the advection—diffusion equation
(1) by the pointwise equation:

Nyoox(0,8) = V(1) hyx(0,1), 2)

which follows by differentiation of (1) in x and setting x— 0.

The main claim of [1] based on numerical computations of the reduced equation (1) as well as
more complicated thin-film equations is that for any suitable ho, there is a finite positive time t, such
that V(t) — —oo and hy(0,t) — 0" as t 1 to. Moreover, it is claimed that V(t) behaves near the blowup
time as the logarithmic function of t, e.g.

V(t)~C log(t,—t)+C, as t1to, (3)

where C4, C, are positive constants.
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Fig. 1. Schematic picture of the flow between rigid boundaries

This paper is devoted to analytical studies of solutions of the advection—diffusion equation (1)

and the effects coming from the inhomogeneous boundary condition h

XXX

0,t) = —% associated with

the flux conservation. In particular, we rewrite the evolution equation for the variable u = hy in the
form

Ut + Usox = V(t) u, x>0, t>0, (4)

subject to the boundary conditions at the contact line
1
u(,t)=0, u,(0,t)= 5 U, (0,t)=0, t>0, (5)

where the boundary conditions uxx(0,t) = hyx(0,t) = 0 follows from the boundary conditions
h(0,t) = 1 and h4(0,t) = 0 as well as the advection-diffusion equation (1) as x — 0.
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To simplify the problem, we shall also consider the model for given constant V(t) = Vand
drop the third over-determining boundary conditions at the contact line:

U, + U, =Vou,, x>0,t>0,
6
u(O,t):O,uXX(O,t):—%, t>0. (©)

Both problems (4)—(5) and (6) are considered under the initial condition u(x,0) = ug(x) with
Uo(0) =0, uy(0) <0,and ug(0) = —% as well as the decay condition u, Uy, Uy — 0 as X — oo,

Using Laplace transform in spatial coordinate and Green's function for the fourth-order diffu-
sion equation, we derive an explicit solution of the boundary-value problem (6). In the case Vo =0,

. . 1
we show that the inhomogeneous boundary condition h,, (0,t) =u, (0,t) = ~5 leads to the secular

growth of the boundary value hy(0,t) = ux(0,t) to positive infinity as t — c. As a result, even if
h«(0,t) < 0 initially, the convexity of the solution h(x,t) at the boundary x = 0 is lost in a finite time.
In the case V< 0, we show that no secular growth is observed but the convexity of the solution at
the boundary is still lost in a finite time. Applying the same method, we prove local existence of
solutions of the original boundary-value problem (4)—(5) in the form of fractional power series in
time variable t. This prepares us to tackle the original conjecture on the finite-time blow-up in the
dynamical evolution of the reduced model (1), which is still left opened for forthcoming studies.

The remainder of this paper is organized as follows. Section 2 reports explicit solutions of the
boundary—value problem (6) for Vo = 0 and V, # 0. Section 3 gives the local existence result for the
boundary-value problem (4)—(5). Appendix A reviews properties of Green's function for the fourth-
order diffusion equation.

2. Solution for V(t) = V,

Because the coefficient V(t) changes in time variable t in the framework of the original advec-
tion-diffusion equation (1), the Laplace transform in time t is not a useful method for this problem.
On the other hand, the boundary-value problem (1) is formulated on half-line, and hence we can use
Laplace transform in space variable x:

U(p,t)= e Pu(xt)dx, p>0. @)
0
We shall develop this method to solve the boundary—value problem (6). The explicit solution
of this problem will help us to analyze the effects of the inhomogeneous boundary condition
u, (0,t) = —% and the constant advection term V(t) = V, on the temporal dynamics of the advection-

diffusion equation with the fourth-order diffusion.
Let us denote the boundary values:

B =u(0,0), (1) = Ux(0,). (8)

Using Laplace transform (7), we rewrite an evolution problem associated with the advection—
diffusion equation (6):

U, + p'u—V,pu =y(t)—% P+ pBM),  t>0,

U (p.,0) =U,(p),

)

where Ug(p) is the Laplace transform of ug(x) = u(x,0). By using the variation of parameters,
we obtain
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U(p.t) = Uy (p)e™ V0P 1 [g(=IP*+=5Vop (1 (s) —% p+ p°A(s))ds. (10)
0

Using the inverse Laplace transform, we write this solution in the form:

C+ioo

u(x,t):% J‘ er—tp4+tVoP(.[:Oe—DyuO(y)dy)dp

(11)

27

C+ioo t
b ep*(! e "”“‘”V“’(y(s) p+ pzﬂ(s))ds]dp,
0

c—ioo

where Re(c) > 0 so that the singularities of the integrand in the complex p-plane remain to the left of
the contour of integration.
If t > 0 is finite, u, € L'(R,), and B,y € L. (R,), Fubini's Theorem implies that the integra-

tion in p and iny, s can be interchanged. Let us introduce Green's function G(x) for the fourth-order
diffusion equation (see Appendix A):

1 C+ioo . 1 +00 Y 100 .
G(X)=— [e™™dp=—"|e™"dk == [e™ cos(kx)dk.
(=5 [em o= | L] coslko

Using Green's function, we can rewrite the solution (11) in the implicit form:

u(x,t)=Tet(x+vot—y)%(y)dy—%jez_s(xwo(t—s))ds
0 0 (12)

+ [ (X +Vy (t = 9))7(8) + G, (X +V, (t - 5)) A(5) ds.

O —

The solution is said to be in the implicit form, because the functions B(t) and y(t) determined by the
boundary conditions (8) are not specified yet.
We verify that lim u(x,t) =0, no matter what B and y are, as long as they are bounded
X—>00

function of t. Indeed, by the Lebesgue's Dominated Convergence Theorem, we have
TGt (X+Vot=y)uy(y)dy >0 as x— oo
0

if uy e '(R,), because Gy(x) — 0 as X — co. On the other hand, the other three convolution inte-

grals are bounded if B,y e Li..(R,) and t > 0 is finite, because G;, G{and G/ have integrable singu-

larities at t = 0. By the same Lebesgue's Dominated Convergence Theorem, these three integrals
decay to zero as X — .

It follows from this construction that the only way to determine the functions B(t) and y(t) in
the solution (12) is to use the boundary conditions at x = 0, e.g. the boundary conditions u(0,t) =0
and uy(0,t) = B(t). In what follows, this step is performed separately for the cases of V, = 0 and
Vo#0.

2.1.Case V=0

We rewrite the solution (12) for Vo = 0:

u(x,t) = CZGt (X =y)uo(y)dy —%EG{S (x)ds + (})[Gts ()7(5) +GL()AE)Hs.  (13)

Using (A.3) and (A.4) for Green’s function G¢(x) and the boundary condition u(0,t) = 0, we evaluate
this expression at x = 0 and obtain an integral equation for § and v:
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IR A O 1 (3} BG) e
4r r@c{ -5 rmf{ (—s)7* = FG VLY. (14)

To use the boundary condition u(0,t) = B(t), we shall recall from equation (A.5) that the
function G{(x) behaves like O(t™) for any x > 0 and hence is not integrable in t at t = 0. Therefore,

we have to be careful to differentiate the solution in the above convolution form. The last term of
the solution (13) can be computed by using the Fourier transform:

V1) = Gl () A(s)ds = T (ik)ze‘kX[}e-k“(‘—S) ,B(s)ds)dk .
0 27T 0

Differentiating this expression in x and integrating by parts in s, we obtain

v. (% t)—— '|.(|k) elkx[J'ek (t- s)ﬂ(s)dsjdp—_J' U ds( K S))’B(S)dSJ

o J = (ﬂ(t) - B0 - | e‘““*’ﬁ'(s)ds}dp (15)
— 2 PO POH0 - [H (0 E)cs,
where
oo a—tk A ikx wa-tkd o «
H,(0:= = | S — k== 1M o - (). (16)
A-w K 0 k 0

Here we note that all integrals are evaluated in the principal value sense, because the half-residue at
k = 0 is canceled out in the resulting expression (15). Also we note that the decay of vy(x,t) to zero
as X — oo is satisfied because of the symmetry and normalization of G; in (A.6). We can now use
the boundary condition ux(0,t) = B(t) to obtain the exact value for B(t):

B) = ZJG( y)u, (y)dy — _[G” (O)ds_sz( y)u, (y)dy + —r ) (3/4) {4

After B(t) is found uniquely from (17), y(t) is found uniquely from the integral equatlon (14). This
computation completes the construction of the exact solution of the boundary-value problem (6) for
Vo = 0 (see also [5] for other solutions of this fourth-order diffusion equation). Now we turn to the
analysis of the solution thus obtained.

Theorem 1. Consider the advection-diffusion equation (6) for Vo = 0 with the initial data

U, € L'(R,). Then, there exists a solution u e L*(R, xR,) of the evolution problem in the explicit
form (13), where B,y € Lio. (R,) are defined by (14) and (17) and lim g(t) = +oo.
t—o0

- (17)

Proof. The convolution integral in the explicit expression (17) can be analyzed from the
representation (A.5) for Green's function G. If u, € L'(R,), then
gl

Up|[,x
TL, t>0.

j G{(—y)up(y)dy| <

Therefore, B e L. (R,)and B(t) ~ tY* ast — oo due to the second term in (17). Now, the integral

equation (14) for y(t) with a weakly singular kernel is well defined and solutions exist with
y € Li.(R,). Similarly, the solution ue L*(R, xR,) is well defined by (13).
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Remark 1 One can show that there is no singularity of the solution for B(t) as t— 0 so that
S(0)=u;(0) by continuity. Also, one can show that the solution of the integral equation (14) for

y(t) exists in the closed form: y(t) = ZOIOGt (=y)ug(y)dy .
0

Coming back to the original question, if up(0) = 0, uy(0) <0, and ug(0) = —%, then there is a

finite value of toe (0,00) such that ux(0,t) > 0 for all t > tp, that is, h(x,t) loses monotonicity at
the boundary x = 0 in a finite time to (recall that u = hy). This dynamical phenomenon occurs be-

. . 1 .
cause of the inhomogeneous boundary conditions uXX(O,t)=—§ even in the absence of the

advection term in the fourth-order diffusion equation (6).

2.2. Case Vo# 0

We have the solution in the implicit form (12) and we need to derive integral equations on
the unknown functions B(t) and y(t). One integral equation follows again from the boundary
condition u(0,t) = 0:

16t 579+ B Vit~ N A5 =] G, Vit~ ) (y)dy - [ L (ot -5 (19

To find another integral equation from the boundary condition ux(0,t) = B(t), we have to use the
technique explained in Section 2.1 and to compute the derivative of the solution (12) in x:

0, (D) = [ G0+t - y)uo(y)dy—%jG;'s(Hvo(t —s))ds
+ jG{s(X +Vo(t—5))y(s)ds +%ﬂ(t) = BOH (x+V,t) (19)
—Jt' H _(x+V,(t—s))B'(s)ds +V0j‘Gt_S (X+V,(t—s))B(s)ds.

We can now use the boundary condition uy(0,t) = B(t) to obtain another integral equation for 3
and v:

PO+ 28O H, Vo) +2[ H,_, (Vo t ) B/(5)ds ~ 2V, [ G, (Vy (t— ) A(s)ds
0 0 (20)

—2[G{, (Vo (t—5))(s)ds = 2[ GI(Vot — y)s (y)dy —[ G, (Vo (t — 5))s.

The system of integral equations (18) and (20) completes the solution (12) for the case Vq # 0.
Because of the original motivation to study behavior of the flow on Fig. 1 for large negative V(t),
see equation (3), we shall analyze the obtained solution for Vo< 0 only.

Theorem 2. Consider the advection-diffusion equation (6) for Vo < 0 with the initial data

Ug € L'(R,). Then, there exists a solution ue L*(R, xR,) of the evolution problem in the explicit
form (12), where B,y € L*(R,) are defined by (18) and (20) with
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. 1 . t1/3
lim A(t) = W lim »(t) = % (21)

0

Proof. Similarly to the proof of Theorem 1, it is easy to show from the integral equations (18)
and (20) that if u, e L'(R,), then B,8',7 e Lio.(R,). We shall now compute the limit of B(t) and
y(t) ast — oo:

loc

B, = tIim L), Vo = tIim y(t). (22)

To deal with the first integral equation (18), we first notice the explicit computation by using the
Fourier transform:

t —s(k*—ikvy) +Oo'(l e )
f(t).=.c|)'G V(- s))ds——j(lk) je ds |dk = > jks—_dk
where the integrals in s and k can be mterchanged by Fubini's Theorem and the integration is per-
formed in the principal value sense. We can now explicitly compute the limit as t — oo by using
Lebesgue's Dominated Convergence Theorem:

—00

I|mf(t)_ | gk=Yoy k1
t—o0 k —iV, 7 ok®+Vg 3V

This computation gives the last term of the integral equation (18) as t — oo. To deal with the first
term on the right-hand side of (18), we write

0 1 o [ o0 e y 0 e .
J.Gt(vot_ y)uo(y)dy =2_ J.(J.e e kyuo(y)ddek :J.e e kVO)Uo(k)dk'
0 72-—00 0 —w
where
. 1 o .
o (k) = - Te™ug (y)ay.
TOo

By Lebesgue's Dominated Convergence Theorem, this integral converges to zero as t — oo as long
asu, € L'(R,).

To deal with the second term on the left-hand side of the integral equation (18), we rewrite it
in the form

}G{’_S(\/0 (t—s))B(s)ds = L i (ik)z[} B(t— s)e‘s("4‘i"V°)ds)dk.
0 27T —o 0

Since B e L. (R,) with the assumed limit in (22), we apply Lebesgue's Dominated Convergence
Theorem and compute the integral in the principal value sense:

ﬂoo J‘ k k__ﬂooOO k4dk _ _ﬂoo
“o k3 - r ok®+Vy 3[\/0|1’3'
The first term on the left-hand side of the integral equation (12) is more tricky. First, we re-
write it in the form,

lim [G7 (Vo (t =) A(s)ds =
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RS s))y(s)ds—zi“’(}y(t e ‘kV°>dsjdk.

However, if yeLj.(R,) with the assumed limit in (22), application of Lebesgue's Dominated
Convergence Theorem yields the integral in k with a simple pole at k = 0:

7/00 dk
I|m G t—s))y(s)ds = _—

J _s(Vo(t—9))x(s) g NPT AY
The integral is no longer understood in the principal value sense. Instead, we return back to the
treatment of the inverse Laplace transform in (11) with Re(c) > 0, use transformation p = ik, and
shift the contour of integration in k below the pole at k = 0. As a result, computations of the integral
above are completed with the half-residue term at the simple pole at k = 0 and the principal value
integral:

©  k2dk 2
| . . ds = V4 Ll
|mI t-s (Vo (t—9))y(s)ds = [[\/0|+_{0 k® +V¢ ] 3Vl

Combining all computations together, we obtain the following linear equation on B, and y., from
the integral equation (18) in the limit t — oo:

|V0 | N0|l/3 - 2N0|2/3 :

To deal with the second integral equation (20), we use the Fourier transform again to write

e Lo _ 1 (23)

o a-tk*-ikvg)
J & Tk
k

H (Vo) =

and

T, o=y = 7= s o,

where the integrals are understood in the principal value sense. If g, ',y € L. with the assumed

limits (22), Lebesgue's Dominated Convergence Theorem implies that
t
H (Vot), [TH _(Vo(t—59))p'(s)ds—>0 as t—w.
0

Similar to the previous computations, we prove that

loc

im [ G/ (vt — y)uy ()dly =0,
0
t -1
!I_EE _([Gt—s (Vo(t—s))ds = W’

im [ G 0 (¢~ D (5)ds =L
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and

o ) _&“’ dk _ B
fim f Ge.(Vo(t=s)A(s)ds == _[Ok(k3 Vo) BVy|’

where the last integral is computed in the principal value sense because equations (19) and (20) are
derived in the principal value sense.

Combining all computations together, we have obtained the following linear equation on B, and Y.,
from the integral equation (20) in the limit t — oo:

41300_2L_L (24)

[V |2/3 - [V |1/3 !
0 0

Solving the linear system (23) and (24), we obtain (21) and the theorem is proved.
Coming back to the original question, if uy(0) =0, uy(0) <0, and ug(0) = —%, then there is a fi-

nite value of tye(0,00) such that uy(0,t) > O for all t > t,. Therefore, like in the case Vo = 0, the function
h(x,t) loses monotonicity at x = 0 in a finite time t, (where u = hy) with the only difference that
ux(0,t) remains finite and positive as t — o. We conclude that the presence of the advection term
with Vo < 0 in the fourth-order diffusion equation (6) does not prevent the loss of monotonicity in x
in a finite time but still stabilizes the solution globally as t — . In both cases Vo = 0 and Vo< 0,

the monotonicity of h in x is lost because of the inhomogeneous boundary conditionh,, (0,t) = —5

3. Solution of the original problem

We shall now use Laplace transform (7) to obtain the implicit solution to the advection-
diffusion equation (4) with a variable speed V(t). Let us denote

W (t) = (})v (s)ds

and obtain the Laplace transform solution in the form:
t
U(p.t)=Ug(p)e ™%+ [ e(”)p““W“)W“”p[—% p+ p%(s)jds. (25)
0

Compared with the solution (10), we have set y(t) = 0 because of the third boundary condition in
(5). Using the inverse Laplace transform and recalling the definition of Green's function G¢(x) (see
Appendix A), we obtain the analogue of the implicit solution (12):

068 = [ G (¢+W (1)~ Y)Uy()dy — [ 8L (x+W (1) ~W (9))ds
0 t 0 (26)
+ j Gl (X+W (t) =W (s)) B(s)ds.

Now we have two unknowns  and W and two integral equations from the boundary conditions
u(0,t) = 0 and ux(0,t) = B(1).
From the boundary condition u(0,t) = 0, we obtain the integral equation:
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—(})Gt_sw(o W () = G W) - oY)y - g) G W -W(s)ds. (27)

To find another integral equation from the boundary condition ux(0,t) = B(t), we differentiate
the solution (26) in x:

U, (1) = [ G (x+W (t) - y)u, (y)dy —% [Gl,(x+W (t)-W (s))ds

+%ﬂ(t) - BOH, (x+W (1)) - f H  (x+W(t) -W(s))5'(s)ds (28)

t
+V (1) G, (x+W (1) W (s)) B(5)ds.
From the boundary condition u(0,t) = B(t), we obtain another integral equation:

BE)+2BO)H, W (1)) +2[ H,_ (W (1) -W (s)) B (s)ds — 2V (1) [ G,_ (W (t) ~W (5)) B(s)dls
0 0 (29)

=2 G/W (0 - y)u, (Y)ly - [ G, W ) ~W(s))ds.

We shall prove that the system of two integral equations (27) and (29) determines uniquely
the function B(t) and V(t) locally for t > 0. The following theorem gives the result in the form of the
fractional power series in t.

Theorem 3. Assume that u, € C*(R,) such that
n 1 ”I
U(©) =0, Uj(0)=-7, uj(0)=0. (30)

Then, there exists a formal solution (V, B) of the system of two integral equations (27) and (29) in
the form of the fractional power series:

PO=Fo+ T furat™s VO=Vot+ = Vort", (31)

where Sy =up(0), Vo =u$?(0)/uj(0), and {8, 4. Vin_3)/4}n-s are uniquely determined.

Proof. We substitute the series representations (31) to each term of the integral equations
(27) and (29). It follows from (31) that

7 IV (s)ds =V t** + Z_4Vn/4t(n+3)/4
and
t(n+4)/4 _ (t _ T)(n+4)/4

S = jV(S)ds V13/4+Z — Vo T

Using the representation (A.5) of the Green function with g € C*(R), we obtain for the three
terms of the integral equation (27):

Jo.m - W(s))ﬂ(sms_ﬂojg Sy, ZﬁnmI S e

0 4 t n/4
—4ﬂog"(0)t1/4+z g(k+2)(0)J' Le ZﬁnMjg (érz)_gm 7) dr,
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n=1

[G.W® -y, (y)dy = [ g(z—a)u,(t*z)dz = i%uém O [g(z—a,)z"dz

_ thUO(O)i%(_at)kJ- g“(2)zdz + i%ué”) (O)tnMJ. 9(z-a)z"dz,
k=0 H 0 n=2 - 0
and

196ty 21 e &
Gi_sW (1) W(S))dS—I 2,‘4 = ; a9 gt 1)(O)I ;,4 dr.
At the first powers of t™", we obtain a system of linear algebraic equatlons on the coefficients

of the fractional power series (31):

te: —48,0"(0) =uy(0)] g(2)2dz,

1/4

1 n K
t?*: 0 :EUO(O)Ig(z)zzdz,
- 0
3/4 . _ 1 m I 3
t 0_§u0(0)jg(z)z dz,
" 0
t4: 0 :lu(“)(O)]Eg(z)z“dz—u’(O)V Tg’(z)zdz
- 4| 0 ) 0 0O ’

5/4 . " l(l_x)4/4 1 (5) h 5 1 " T ’ 2
B O = dx= qui O] 022’z 203 OV [ g ()"

4 1A T ! 2 14
_guo (O)V1/4! 9'(z)zdz —g g"(0)V,,

and so on.
Using the explicit values for the integrals (A.9)—(A.13) and the initial conditions (30), we

obtain B, =uj(0), V, =u$” (0)/u}(0), and the linear equation

ua(O)v1,4+89"(0)(ﬂ4/4 +ud’ (0>+%vo)=0- (32)

Similarly, we expand all terms of the second integral equation (29):

jGHON(t) W(s»ﬂ(s)ds—ﬁoj 9(525 Zﬂn,4jg(§t’)(f,4 D _ar

=—ﬂ09(0)t3’4+z (k)(O)J‘ éjlt/it dr +Zﬂn/4'|.g(§“)(1t/4 )" 0"

JG (W (1) - Y)uo (y)dy = j g(z—a)uy(t"*z)dz = u(““)(O)t“"‘j g(z-2a,)2"dz

>
3 %MS

=u (O)Z [(-2) Ig‘k)(z)dz+z u‘””)(O)t”"‘jg(z a,)z"dz,

LW (O -W(s)ds= | L Gu) g -5l 1 (m)((m
0 0o T o k!

&

t,z
3/4d
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H, W (1)) =a§ 9(2)dz= ¥ —L _g®(0)ak,

k=0 (K +1)!
and
He WO -WEFEs = £ 4, oL g® O -9 de
0 n=4 k=0 (K +1)! 0

At the first powers of t“*, we obtain a system of linear algebraic equations on the coefficients

of the fractional power series (31):
By =2u5(0) g(2)dz,
0
te O:2ug(0)jg(z)zdz—4g"(0),
0
24 Ozug'(O)Ig(z)zzdz,
0
8 1 K , T,
£ 2ﬂog (O)Vo _gﬂog (O)Vo = §Ué4) (O)J g (Z)ZSdZ - 2u0 (O)Vo_[ g (Z)dZ,
0 0
414, 8 8 1 (5) T 4 " T '
5 Bt A9 (ONa =2 A0 OV, = 15 U5 (0)] 9(2)2"dz — 250V, [ g'(2) 2
0 0

8 ! ° 1
= U (0)Vayg j 9'(2)dz,

and so on. Again, using the explicit values for the integrals (A9)—(A.13) and the initial conditions
(30), we obtain /3, =uj(0), V, =u$” (0)/uj(0), and the linear equation

8 , 1
=39OV + (Byya+Ug” () +5 V) =0, (33)
The system of linear equations (32) and (33) has a unique solution
_ _ _y® 1
Viia =0, Bya=-Uy (0) _EV , (34)

provided that

64 000" = {2 )r{3)- A2
-Sg000=.% r( Jr( 4j— N2

which is true. Note that the constraint V, = u(()“) (0)/ug(0) also follows from the pointwise equation

(2) obtained for sufficiently smooth solutions. Similarly, the second equation (34) follows from the
advection-diffusion equation (4) after one derivative in x and the limitx — 0 and t — 0.

It remains to prove that the system of linear equations obtained from the system of integral
equations (27) and (29) can be solved at each order of ™" and t"* respectively, for n > 4. From
the previous computations, we can deduce that the first integral equation at t™%* gives a linear
equation on variables (Bnas,V(n-3)4) Of the power series (31):
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1 (1_ X)n/4
3/4

14 4 ! @ !
= /49"(0) dx + n+luo(0)V(n—3)/4£9 (2)zdz=---, (35)

[
0 X

where the dots on the right-hand side denote the terms expressed through derivatives of ug(x) at
x =0 and the previous terms of the power series (31). Similarly, the second integral equation at {4
gives another linear equation on variables ( Bn/a,V(n-3)4):

ﬁn/4_%ﬂog(o)v(n—3)/4 = (36)

The system of linear equations (35) and (36) is non-degenerate if

__An+)) we f @=X)" O (n+1) 4 4
C, = — g(0)g (O)!—Xm dx_Gﬁﬂ r(”+5j #1. (37)
4

The coefficients {C,,} are computed numerically for n > 1 (see Fig. 2). The sequence is monoton-
ically increasing. It approaches closely to 1 at n = 8, where Cg~ 0.96, and n = 9, where Cg~ 1.04.
Therefore, C,, = 1 for all n > 1 so that the linear system is non-degenerate and a unique solution for
(Bria, V(n-3y) exists for any n > 4.
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Fig. 2. Numerical approximations of C, defined by (37)

In the present time, we cannot prove yet that the system of integral equations (27) and (29)
leads to a finite-time blow-up, according to the conjecture in [1]. Nevertheless, numerical computa-
tions show that the blow-up holds for a generic set of initial data. Fig. 3 shows the behavior of func-
tions B(t) and V(t) near the blow-up time. It follows from this figure that PB(t) = hy(0,t) — 0 at the
same time as V(t) — -0 with p(t) V(t)*® — Cq, where Co > 0 is a numerical constant. In other
words, we conclude with the conjecture that p(t) ~ V()2 as V(t) — -0 in a finite time tye (0,00).
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Fig. 3. Numerical computations of B(t) and V(t) for the advection-diffusion equation (1).
Acknowledgement. Authors received funding from the Federal Target Program “Research and sci-
entific-pedagogical cadres of Innovative Russia” for 2009-2013”. We thank E.S. Benilov
for enlightening discussions and for preparing Fig. 3 based on numerical codes in [1].

Appendix. Green's function
Let us define the fundamental solution of the fourth-order diffusion equation:

{ht+hw=0, xeR, t>0,

hl,=6(x), xeR, (A1)

where § is a standard Dirac delta-function in the distribution sense.The fundamental solution is usu-
ally referred to as Green's function and we shall denote it by

h(x,t)=G,(x), xeR, teR

G

Using the Fourier transform in X, we can obtain the explicit expression for Green's function:
17 ~tk*+ikx 17 —tk*
G,(x) === [ *dk == [e™ cos(kx)dk. (A.2)
2r Y, T

In particular, we have G¢(-x) = G¢(x) forall x € R and

T/ 4)
47Z't1/4 !

G,(0) =1 Te " dk = (A.3)
TOo
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r(3/4)

W, (A4)

GI(0) = - TkZ%e ™ dk =—
TO

where I is the standard Gamma function.The Green's function can be represented in the self-similar
form by

G (X)= t% g(t%j 9(z) = iTe‘“ cos(kz)dk, (A.5)
4 0

where g € L>(R) N L™”(R) . Therefore, G, decays to zero as t—oo in any L norm for p > 2. In partic-
ular, |G, (x)| < ||g],.. /t*,|G{(x)| <||g’|... /t""*, and so on, for any x € R.

By the stationary phase method (see, e.g., Chapter 5 in [3]), g(z) and all derivatives of g(z)
decay to zero as |z| —oo faster than any algebraic powers. This gives the decay of Gi(x) and any
x-derivative of Gy(x) as |x| — oo for any fixed t > 0. Although G; and g are not L' functions, they
satisfy the normalization conditions:

[G(X)dx=[g(z)dz=1, t>0. (A.6)
R R

The even function g: R — R satisfies the ordinary differential equation

d'g dg
4dz4 =g+z zeR, (A7)
subject to the initial values
1 1 1 3
0)=—T1| = |, '(0) =0, "0)=——-T1| — |, "(0) =0, A.8
g()4ﬁ(4j §'0)=0, g¢'(0) 47[(4) 9"(0) (A8)

and the decay behavior as |z| —oo. It is clear from the differential equation that g € C*(R) satisfies a
number of integral constraints:

29(2)dz = -4g"(0), (A9)
12%9(2)dz =0, (A.10)
12%(2)dz = -8g(0), (A11)
Z’z“g(z)dz - 12, (A.12)
Izsg(z)dz —1641g"(0), (A.13)

and so on.
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JIL.E. HEHHHOBCKHﬁl’Z, AP.T I/IHI/IﬂTyJIJII/lﬂl, 10.A. HaH(l)l/IJIOBal

O PEIIEHMSX YIIPOIIEHHOM MOJEJIA JUHAMHAYECKOM 3BOJIIOLINA
KOHTAKTHBIX JIMHUIA

Hwuxeropoackuii rocynapcTBeHHbIM TeXHUYeCKUd yHUBepcuTeT UM P.E. Anekceesa,
o 1
Hwxnuit Hoeropon, Poccus™,
2
VYuusepcurer MakMactepa, XamunbtoH, OnTapuo, Kanana

Hean: Llens paboThl 3aKim04aeTcs B pEIICHUH JIMHEHHOTO YpaBHEHUsI aBeKIMU-TU(]y3un ¢ mepeMeHHON CKOPOCThIO
Ha noiyOeckoHeuHOH ocu. IlepeMeHHas CKOPOCTh ONpPEAENAETCS JOMOJHUTEIBHBIM YCIOBUEM Ha TPaHHMIE, KOTOpOe
MOJIENMPYET ANHAMUKY KOHTAKTHOW JINHUU THJIPOJMHAMHUYECKOTO ITOTOKA C KOHTAKTHBIM yriioMm 180°.

Hayunblii noaxon: VccrienoBanue npoBeneHO ¢ IpUMEHEHHE TpeodpazoBanus Jlamaca mo mMpocTpaHCTBEHHOH KOOP-
nuHate. CBoiicTBa QyHkimu ['puna anst ypaBHeHust qud¢dy3un 4-ro mopsiika MUCIIOJIb30BAHBI IPH aHAIN3€ HESIBHBIX
peLIeHNH TMHEHHOTO YpaBHEHUs aaBeKunu-1uddy3nn.

Pesyabrar: Jloka3aHO JIOKJIBHOE CYIIECTBOBAHHE PEUICHHUs] HAYaJIbHON 3a/a4d acCOLMHPOBAHHOW ¢ Habopom mepe-
OTIpEIeTICHHBIX TPAaHMYHbIX YCIOBHUII B (hopMe ApOOHO-CTENEHHOTO psijia 10 BpeMeHHOH nepeMeHHoi. [Ipoananusupo-
BaHBI SIBHBIE PELICHHS B CIIy4ae MOCTOSHHOM CKOPOCTH, YTO MOKA3bIBAET, YTO HEOJHOPOJHBIC I'PAaHHYHBIC YCIOBHUS
MIPUBOJAAT K U3MEHEHHUIO BBIIYKJIOCTH ITOTOKA B KOHTAKTHOM JIMHUU 32 KOHEYHOE BPEeMs.

Kniouegvie cnosa: nuHeiiHoe ypaBHEHHE aJBEKUMH-AU(GPY3UH, NEpEMEHHas CKOPOCTb, KOHTAKTHAas JIMHUS,
npeobpa3oBanue Jlamnaca, pyukuus ['puna.





