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Abstract: We justify the use of the lattice equation (the discrete nonlinear Schrödinger
equation) for the tight-binding approximation of stationary localized solutions in the
context of a continuous nonlinear elliptic problem with a periodic potential. We rely on
properties of the Floquet band-gap spectrum and the Fourier–Bloch decomposition for
a linear Schrödinger operator with a periodic potential. Solutions of the nonlinear ellip-
tic problem are represented in terms of Wannier functions and the problem is reduced,
using elliptic theory, to a set of nonlinear algebraic equations solvable with the Implicit
Function Theorem. Our analysis is developed for a class of piecewise-constant periodic
potentials with disjoint spectral bands, which reduce, in a singular limit, to a periodic
sequence of infinite walls of a non-zero width. The discrete nonlinear Schrödinger equa-
tion is applied to classify localized solutions of the Gross–Pitaevskii equation with a
periodic potential.

1. Introduction

Recent experimental and theoretical works on Bose–Einstein condensates in optical lat-
tices [18], coherent structures in photorefractive lattices [3], and gap solitons in photonic
crystals [22] have stimulated a new wave of interest in localized solutions of the nonlinear
elliptic problem with a periodic potential

− φ′′(x) + V (x)φ(x) + σ |φ(x)|2φ(x) = ωφ(x), ∀x ∈ R, (1.1)

where φ : R �→ C decays to zero sufficiently fast as |x | → ∞, V : R �→ R is a bounded
2π -periodic function, σ = ±1 is normalized, and ω is a free parameter. Solutions of
the nonlinear elliptic problem (1.1) correspond to stationary (time-periodic) solutions
of Hamiltonian dynamical systems such as the Gross–Pitaevskii equation.

Localized solutions φ(x) of the elliptic problem (1.1) in energy space H1(R) have
been proved to exist forω in every bounded gap in the spectrum of the linear Schrödinger
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operator L = −∂2
x + V (x), as well as in the semi-infinite gap for σ = −1 [13]. It is,

however, desired to obtain more precise information on classification and properties of
localized solutions. The number of branches of localized solutions, counted modulo a
discrete group of translations with a 2π -multiple period, is infinite even in one dimen-
sion, and the solutions can be classified, for instance, by the number of peaks in different
wells of the periodic potentials. To approximate the solution shape by analytic functions
or numerically, various asymptotic reductions of the nonlinear elliptic problem (1.1)
have been used [14]. The asymptotic reductions are formally derived for bifurcations
of small-amplitude localized solutions from the zero solution φ = 0. Recent rigor-
ous results on these bifurcations include justification of the time-dependent nonlinear
Schödinger equation for pulses near a band edge of the spectrum of L [2], analysis of
the coupled nonlinear Schödinger equations for a finite-amplitude two-dimensional sep-
arable potential [6], and justification of the coupled-mode system for a small-amplitude
one-dimensional potential [17].

This paper addresses the tight-binding approximation of localized solutions outside
a narrow band in the spectrum of L . Although the tight-binding approximation has been
used by physicists for a long time, it was only recently that this approximation was for-
malized by means of Wannier function decompositions [1]. The rigorous analysis of the
“averaged procedure” announced in [1] as Ref. [15] appears not to have been written.
Moreover, as we show in this paper, one of the claims of [1] (the coupled lattice equations
(12) for inter-band interactions) cannot be verified in the context of the nonlinear elliptic
problem (1.1).

Our main goal here is to prove that, when the potential V (x) is represented by a
periodic piecewise-constant sequence of large walls of a non-zero width, a localized
solution φ(x) of the nonlinear elliptic problem (1.1) on x ∈ R is a linear transform of a
localized sequence {φn} on n ∈ Z satisfying the lattice equation

α (φn+1 + φn−1) + σ |φn|2φn = �φn, ∀n ∈ Z, (1.2)

where α is constant and � is a new parameter related to the parameter ω. The sequence
{φn}n∈Z represents a small-amplitude solution φ(x) of the nonlinear elliptic prob-
lem (1.1) in the sense that φn corresponds to φ(x) for the value of x in the nth well
of the periodic potential V (x). The precise statement of our main theorem can be found
in Sect. 4 of our article.

Besides the formal analysis in [1], justification of the lattice equation (1.2) for the
nonlinear elliptic problem (1.1) seems not to have been carried out in the literature.
Nevertheless, our work has two recent counterparts in the theory of nonlinear parabolic
systems. These works are relevant as time-independent solutions of nonlinear parabolic
systems satisfy nonlinear elliptic equations. In particular, the stationary solutions of a
nonlinear heat equation satisfy the second-order elliptic problem (1.1).

The scalar nonlinear heat equation with a periodic diffusive term was considered
in [21] and the convergence of the global solutions of the continuous partial differen-
tial equation to the global solutions of a lattice differential equation is proven with the
Fourier–Bloch analysis. Although the Wannier functions are never mentioned in [21],
modifications of these functions (suitable for the Shannon sampling and interpolation
theory [24]) are implicitly constructed in Lemma 2.5 of [21]. The lattice differential
equation describes dynamics on the invariant infinite-dimensional manifold of the non-
linear heat equation.

If the dynamics is stationary (time-independent), this center manifold corresponds
directly to the nonlinear elliptic problem (1.1), which we consider here. Unfortunately,
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our methods can not be extended to Hamiltonian dynamical systems such as the Gross–
Pitaevskii equation, since the center manifold of nonlinear dispersive wave equations
does not give typically any reduction of the problem. This is the main reason why we
limit our consideration to the stationary solutions of the Gross–Pitaevskii equation.

A more general system of reaction–diffusion equations was considered in [25] and the
lattice differential equations were derived to describe dynamics of an infinite sequence of
interacting pulses which are located far apart from each other (see also [5] for analysis of
a periodic sequence of interacting pulses). The infinite sequence of equally spaced pulses
introduces an effective periodic potential in the linearization of the reaction–diffusion
equations, which explains the similarity between the two problems. However, the
Fourier–Bloch theory cannot be used for strongly nonlinear non-equally spaced pulses.
As a result, direct methods of projections in exponentially weighted spaces are applied
in [25] to catch a weak tail–tail interaction of neighboring pulses. Similar analysis of the
pulse tail–tail interaction was earlier developed for a finite sequence of nonlinear pulses
in the reaction–diffusion systems [20].

Our paper is structured as follows. The spectral theory of operators with periodic
potentials and the related Fourier–Bloch decomposition are reviewed in Sect. 2. The
Wannier functions are introduced and studied in Sect. 3. The main theorem is formu-
lated in Sect. 4 after the analysis of piecewise-constant potentials, which reduce, in a
singular limit, to a periodic sequence of infinite walls of a non-zero width. The main theo-
rem is proved in Sect. 5 using elliptic theory and the Wannier decomposition. Examples
of localized solutions of the lattice equation (1.2) are given in Sect. 6. Other exam-
ples of periodic potentials with similar properties are discussed in Sect. 7. Extensions
of analysis for multi-dimensional elliptic problems with a separable periodic potential
are developed in Sect. 8. Appendix A reviews the Shannon decomposition which is an
alternative to the Wannier decomposition. Appendices B and C give proofs of impor-
tant technical lemmas about the spectrum of the Schrödinger operator with a periodic
piecewise–constant potential. Appendix D describes a relationship between the lattice
equation (1.2) and the Poincaré map for the second-order equation (1.1).

Notations and basic facts. In what follows, we consider scalar complex-valued func-
tions u on R in the Sobolev space Hm(R) for an integer m ≥ 0 equipped with the
squared norm

‖u‖2
Hm (R) =

m∑

k=0

∫

R

|∂k
x u(x)|2dx, (1.3)

and complex-valued vectors 	u for sequences {un}n∈Z in the weighted spaces l1
q(Z) and

l2
s (Z) for q, s ≥ 0 equipped with the norms

‖	u‖l1
q (Z)

=
∑

n∈Z

(1 + n2)q/2|un|, ‖	u‖2
l2
s (Z)

=
∑

n∈Z

(1 + n2)s |un|2. (1.4)

Furthermore, we use the space of bounded continuous functions C0
b (R) and recall

Sobolev’s embeddings

‖u‖C0
b (R)

≤C1(s)‖u‖Hs (R), ‖	u‖l1
q (Z)

≤C2(s, q)‖	u‖l2
s+q (Z)

, ∀s>
1

2
, ∀q ≥0, (1.5)

for some constants C1(s),C2(s, q) > 0. We also recall that the Sobolev space Hs(R)

forms a Banach algebra for s > 1
2 such that
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∀u, v ∈ Hs(R) : ‖uv‖Hs (R) ≤ C(s)‖u‖Hs (R)‖v‖Hs (R), ∀s >
1

2
, (1.6)

for some constant C(s) > 0. We denote N = {1, 2, 3, . . .} ⊂ Z and T = [− 1
2 ,

1
2

] ⊂ R.

2. Review of Spectral Theory

We consider the Schrödinger operator L = −∂2
x + V (x)with a real-valued, bounded and

2π -periodic function V with respect to x ∈ R. The operator L is defined for functions
in C∞

0 (R). It is extended to a self-adjoint operator which maps continuously H2(R) to
L2(R).

By Theorem XIII.100 on p. 309 in [19], if V ∈ L2
per(R), then the spectrum of

L = −∂2
x + V (x) in L2(R), denoted by σ(L), is real, purely continuous, and consists of

the union of spectral bands. According to Floquet analysis (see Sects. 6.4, 6.6 and 6.7 in
[7]), for each fixed k ∈ T, where T = [− 1

2 ,
1
2

]
, there exists a Bloch function ul(x; k) =

eikxwl(x; k) corresponding to the eigenvalue ωl(k), such thatwl(x +2π; k) = wl(x; k).
The band function ωl(k) and the periodic functionwl(x; k) for a fixed k ∈ T correspond
to the l th eigenvalue–eigenvector pair of the operator Lk = −∂2

x − 2ik∂x + k2 + V (x),
so that

Lkwl(x; k) = ωl(k)wl(x; k), or, equivalently, Lul(x; k) = ωl(k)ul(x; k). (2.1)

The Bloch functions are uniquely defined up to a scalar multiplication factor. We shall
assume that the amplitude factors of the Bloch functions are normalized by the orthog-
onality relations

∫

R

ul(x, k)ūl ′(x, k′)dx = δl,l ′δ(k − k′), ∀l, l ′ ∈ N, ∀k, k′ ∈ T, (2.2)

where δl,l ′ is the Kronecker symbol and δ(k) is the Dirac delta function in the sense of dis-
tributions. In addition, if ul(x; k) is a Bloch function forωl(k), then ul(x;−k) = ūl(x; k)
can be chosen as a Bloch function for ωl(−k) = ω̄l(k) = ωl(k), to normalize uniquely
the phase factors of the Bloch functions. Similar normalization was used recently for
construction of Bloch functions in [12].

Proposition 1. If V ∈ L2
per(R), then there exists a unitary Fourier–Bloch transformation

T : L2(R) �→ l2(N, L2(T)) given by

∀φ ∈ L2(R) : φ̂(k) = T φ, φ̂l(k) =
∫

R

φ(y)ūl(y; k)dy, ∀l ∈ N, ∀k ∈ T. (2.3)

The inverse transformation is given by

∀φ̂ ∈ l2(N, L2(T)) : φ(x) = T −1φ̂ =
∑

l∈N

∫

T

φ̂l(k)ul(x; k)dk, ∀x ∈ R. (2.4)

Proof. The statement follows by Theorems XIII.97 and XIII.98 on pp. 303–304 in [19],
which prove orthogonality and completeness of the set of Bloch functions {ul(x; k)} on
l ∈ N and k ∈ T. The orthogonality relations are given by (2.2), while the completeness
relation can be written in the form

∑

l∈N

∫

T

ul(x, k)ūl(x
′; k)dk = δ(x − x ′), ∀x, x ′ ∈ R, (2.5)

where δ(x) is again the Dirac delta function in the sense of distributions. �
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Let El for a fixed l ∈ N be the invariant closed subspace of L2(R) associated with
the l th spectral band of σ(L). Then,

∀φ ∈ El ⊂ L2(R) : φ(x) =
∫

T

φ̂l(k)ul(x; k)dk, (2.6)

where φ̂l(k) is defined by the integral in (2.3). According to the Fourier–Bloch decom-
position (2.3)–(2.4), the space L2(R) is decomposed into a direct sum of invariant closed
bounded subspaces ⊕l∈NEl . The Fourier–Bloch decomposition can be used for repre-
sentation of classical solutions of partial differential equations with periodic coefficients
[2,6]. This decomposition is, however, inconvenient for a reduction of a continuous PDE
problem to a lattice problem. Other decompositions, such as the Wannier and Shannon
decompositions, are found to be more useful in the recent works [1] and [21], respec-
tively. Properties of the Wannier functions are described in the next section, while the
Shannon functions are reviewed in Appendix A.

3. Properties of the Wannier Functions

Since the band function ωl(k) and the Bloch function ul(x; k) are periodic with respect
to k ∈ T for any l ∈ N, we represent them by the Fourier series

ωl(k) =
∑

n∈Z

ω̂l,nei2πnk, ul(x; k) =
∑

n∈Z

ûl,n(x)e
i2πnk, ∀l ∈ N, ∀k ∈ T, (3.1)

where the inverse transformation is

ω̂l,n =
∫

T

ωl(k)e
−i2πnkdk, ûl,n(x)=

∫

T

ul(x; k)e−i2πnkdk, ∀l ∈ N, ∀n ∈ Z. (3.2)

Since ωl(k) = ω̄l(k) = ωl(−k) and ul(x; k) = ūl(x;−k) for any k ∈ T and any l ∈ N,
the coefficients of the Fourier series (3.1) satisfy the constraints

ω̂l,n = ¯̂ωl,−n = ω̂l,−n, ûl,n(x) = ¯̂ul,n(x), ∀n ∈ Z, ∀l ∈ N, ∀x ∈ R. (3.3)

In particular, the functions ûl,n(x) are always real-valued. Since ul(x + 2π; k) =
ul(x; k)ei2πk for any x ∈ R, k ∈ T, and l ∈ N, we obtain another constraint on
the functions ûl,n(x):

ûl,n(x) = ûl,n−1(x − 2π) = ûl,0(x − 2πn), ∀n ∈ Z, ∀l ∈ N, ∀x ∈ R. (3.4)

By substituting the Fourier series representation (3.1) into the linear problem (2.1),
we obtain a system of equations for the set of functions {ûl,n(x)}n∈Z and coefficients
{ω̂l,n}n∈Z for a fixed l ∈ N:

− û′′
l,n(x) + V (x)ûl,n(x) =

∑

n′∈Z

ω̂l,n−n′ ûl,n′(x), ∀n ∈ Z. (3.5)

We shall now make rigorous the formal representations above.

Definition 1. The functions in the set {ûl,n(x)} for n ∈ Z and l ∈ N are called the
Wannier functions.



808 D. Pelinovsky, G. Schneider, R. S. MacKay

Assumption 1. Let V be a real-valued, piecewise-continuous and 2π -periodic function
with respect to x ∈ R. Assume that the spectrum of L = −∂2

x + V (x) consists of the
union of disjoint spectral bands.

Proposition 2. Let V satisfy Assumption 1. There exists a unitary transformation W :
L2(R) �→ l2(N × Z) given by

∀φ ∈ L2(R) : 	φ = Wφ, φl,n =
∫

R

ûl,n(x)φ(x)dx, ∀l ∈ N, ∀n ∈ Z. (3.6)

The inverse transformation is given by

∀	φ ∈ l2(N × Z) : φ(x) = W−1 	φ =
∑

l∈N

∑

n∈Z

φl,nûl,n(x), ∀x ∈ R. (3.7)

Moreover, there exists ηl > 0 and Cl > 0 for a fixed l ∈ N, such that

|ûl,n(x)| ≤ Cle
−ηl |x−2πn|, ∀n ∈ Z, ∀x ∈ R. (3.8)

Proof. We need to prove that the set of Wannier functions of Definition 1 forms an
orthonormal basis in L2(R) according to the orthogonality relation

∫

R

ûl,n(x)ûl ′,n′(x)dx = δl,l ′δn,n′, ∀l, l ′ ∈ N, ∀n, n′ ∈ Z (3.9)

and the completeness relation
∑

l∈N

∑

n∈Z

ûl,n(x)ûl,n(x
′) = δ(x − x ′), ∀x, x ′ ∈ R. (3.10)

The orthogonality relation (3.9) for the Wannier functions follows from the orthogonality
relation (2.2) for the Bloch functions

∫

R

ûl,n(x)ûl ′,n′(x)dx =
∫

R

∫

T

∫

T

ul(x; k)ūl ′(x; k′)ei2π(k′n′−kn)dkdk′dx

= δl ′,l

∫

T

∫

T

δ(k′ − k)ei2πk(n′−n)dkdk′

= δl ′,l

∫

T

ei2πk(n′−n)dk = δl ′,lδn′,n,

after the integrations in x ∈ R and k, k′ ∈ T are interchanged. Similarly, the completeness
relation (3.10) for the Wannier functions follows from the completeness relation (2.5)
for the Bloch functions

∑

l∈N

∑

n∈Z

ûl,n(x)ûl,n(x
′) =

∑

l∈N

∑

n∈Z

∫

T

∫

T

ul(x; k)ūl(x
′; k)ei2π(k′−k)ndkdk′

=
∑

l∈N

∫

T

∫

T

ul(x; k)ūl(x
′; k)

∑

n∈Z

ei2π(k′−k)ndkdk′

=
∑

l∈N

∫

T

ul(x; k)ūl(x
′; k)dk = δ(x − x ′),
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where we have used the well-known orthogonality relation

∑

n∈Z

ei2πn(k−k′) = δ(k − k′), ∀k, k′ ∈ T.

The Wannier decomposition (3.6)–(3.7) follows by the standard theory of orthonor-
mal bases in L2(R). It remains to show that the function ûl,n(x) for any l ∈ N and
n ∈ Z is uniformly and absolutely bounded with respect to x ∈ R by an exponentially
decaying function centered at x = 2πn. By Theorem XIII.95 on p.301 in [19], if the
potential V satisfies Assumption 1, the band function ωl(k) and the Bloch function
ul(x; k) = wl(x; k)eikx are analytic on k ∈ (− 1

2 , 0
) ∪ (

0, 1
2

)
and are continued ana-

lytically along a Riemann surface near k = 0 and k = ± 1
2 . Let us consider a rectangle

Dηl with vertices
(− 1

2 , 0
)
,
( 1

2 , 0
)
,
( 1

2 , iηl
)
,
(− 1

2 , iηl
)

in the domain of analyticity of
ul(x; k). By using the Cauchy complex integration, we obtain the identity

0 =
∮

∂Dηl

ul(x; k)dk =
∫

T

ul(x; k)dk −
∫

T

ul(x; k + iηl)dk

+
∫ 1

2 +iηl

1
2

(ul(x; k)− ul(x; k − 1)) dk.

The last integral is zero due to the periodicity of ul(x; k) with period 1 in k. As a result,
we obtain a uniform upper bound for the Wannier function ûl,0(x):

|ûl,0(x)| =
∣∣∣∣
∫

T

ul(x; k)dk

∣∣∣∣ =
∣∣∣∣
∫

T

ul(x; k + iηl)dk

∣∣∣∣

=
∣∣∣∣
∫

T

wl(x; k + iηl)e
ikx−ηl x dk

∣∣∣∣ ≤ Cle
−ηl x , ∀x ≥ 0,

where Cl = supk∈Dηl
|wl(x; k)|. A similar computation extends the bound for x ≤ 0.

The decay bound (3.8) follows from the relation (3.4). �
Remark 1. The class of piecewise-continuous potentials with disjoint spectral bands pro-
vides a sufficient condition for existence of the unitary transformation (3.6)–(3.7) and
the exponential decay (3.8). More general potentials are expected to exist for which
Proposition 2 remains valid. Moreover, we do not need in our analysis the assumption
that all spectral bands are disjoint. It is sufficient for the exponential decay of functions
{ûl,n(x)}n∈Z for a fixed l ∈ N that the particular l th band is disjoint from the rest of the
spectrum of L .

Remark 2. Since the transformation ω → ω+ω0, V (x) → V (x)+ω0 leaves the elliptic
problem (1.1) invariant, we will assume without loss of generality that V (x) is bounded
from below. For convenience, we choose V (x) ≥ 0, ∀x ∈ R. Then, σ(L) ≥ 0.

Lemma 1. Let 	φ be represented by the set of vectors {	φl}l∈N, where 	φl for a fixed l ∈ N

is represented by the set of elements {φl,n}n∈Z. If 	φ ∈ l1
1(N, l

1(Z)), then φ = W−1 	φ ∈
H1(R).



810 D. Pelinovsky, G. Schneider, R. S. MacKay

Proof. We use the triangle inequality

‖φ‖H1(R) ≤
∑

l∈N

∑

n∈Z

|φl,n|‖ûl,n‖H1(R) =
∑

l∈N

‖ûl,0‖H1(R)

∑

n∈Z

|φl,n|

and the fact that ‖ f ‖H1(R) ≤ ‖(1 + L)1/2 f ‖L2(R) for any f ∈ Dom(L), since L =
−∂2

x + V (x) and V (x) ≥ 0. By using the integral representation (3.2) and the orthogo-
nality relations (3.9), we obtain

‖(1 + L)1/2ûl,0‖2
L2(R)

=
∫

R

ûl,0(x)(1 + L)ûl,0(x)dx

=
∫

R

∫

T

∫

T

ūl(x; k′)(1 + L)ul(x; k)dkdk′dx =
∫

T

(1 + ωl(k)) dk.

By Theorem 4.2.3 on p. 57 of [7], there are k-independent constants C± > 0 such that

C−l2 ≤ |ωl(k)| ≤ C+l2, ∀l ∈ N, ∀k ∈ T. (3.11)

As a result,

‖φ‖H1(R) ≤ C
∑

l∈N

(1 + l2)1/2
∑

n∈Z

|φl,n| = C‖	φ‖l1
1 (N,l

1(Z)),

for some C > 0. �
Lemma 2. If 	φl ∈ l1(Z) for a fixed l ∈ N and φ(x) = ∑

n∈Z
φl,nûl,n(x), then φ

belongs to the invariant closed subspace El ⊂ L2(R). Moreover, φ ∈ H1(R), such that
the function φ is bounded, continuous, and decaying to zero as |x | → ∞.

Proof. By Lemma 1, we observe that if 	φl ∈ l1(Z) and φ(x) = ∑
n∈Z

φl,nûl,n(x), then
φ ∈ H1(R). By Sobolev’s embedding (1.5), we obtain that φ ∈ C0

b (R) and φ(x) decays
to zero as |x | → ∞. By the orthogonality property (3.9) and since ‖	φl‖l2(Z) ≤ ‖	φl‖l1(Z),
it follows that φ ∈ El ⊂ L2(R). �
Remark 3. If ûl,n(x) satisfies the exponential decay (3.8) for a fixed l ∈ N, direct com-
putations show that φ ∈ C0

b (R), i.e.

|φ(x)| ≤
∑

n∈Z

|φl,n||ûl,n(x)| ≤ Cl

∑

n∈Z

|φl,n|e−ηl |x−2πn| ≤ Cl‖	φl‖l1(Z), ∀x ∈ R.

Lemma 3. If ûl,n(x) satisfies the exponential decay (3.8) for a fixed l ∈ N and |φl,n| ≤
Cr |n| uniformly on n ∈ Z for some C>0 and 0<r<1, then φ(x) = ∑

n∈Z
φl,nûl,n(x)

decays to zero exponentially fast as |x | → ∞.

Proof. It is sufficient to prove that |φ(2πm)| ≤ Cqm uniformly on m ≥ 0 for some
C > 0 and 0 < q < 1. A similar analysis applies to m ≤ 0. Using the decay bound
(3.8) with Cl ≡ C and ηl ≡ η, we obtain that

|φ(2πm)| ≤ C

( ∞∑

n=1

|φl,m+n|e−2πηn +
m∑

n=0

|φl,m−n|e−2πηn

+ e−2πηm
∞∑

n=1

|φl,−n|e−2πηn

)
, ∀m ≥ 0.
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Since r < 1, e−2πη < 1 and re−2πη < 1, the first sum is bounded by C1rm , while the
third sum is bounded by C3e−2πηm . The second sum is bounded by

rm + rm−1e−2πη + · · · + e−2πηm =
⎧
⎨

⎩
rm 1−pm+1

1−p , p < 1,

rm pm 1−p−m−1

1−p−1 , p > 1,

where pr = e−2πη. If p ≤ 1, the sum is bounded by C2rm . If p ≥ 1, the sum is bounded
by C2e−2πηm . All three terms decay to zero exponentially fast as m → ∞. �
Remark 4. The Fourier series (3.1) for the Bloch function ul(x; k) is an example of the
Wannier decomposition over the basis {ûl,n(x)}n∈Z for a fixed l ∈ N with the explicit
representation

φ(x) = ul(x; k), φl,n = ei2πnk .

This decomposition corresponds to the case when 	φl /∈ l1(Z) and φ /∈ El ⊂ L2(R).

4. Main Results

We shall now describe our main example of the potential function V (x) which enables
us to reduce the continuous elliptic problem (1.1) to the lattice equation (1.2). The
potential function transforms, in a singular limit, to a sequence of infinite walls of a
non-zero width. Since Proposition 2 is established only for bounded potentials, we need
to show that the main properties of the Wannier functions such as the exponential decay
(3.8) hold also in the singular limit. To do so, we develop analysis of the one-dimensional
Schrödinger operator in Appendices B and C.

Assumption 2. Let V be given by a piecewise-constant function V (x) = b on x ∈ (0, a)
and V (x) = 0 on x ∈ (a, 2π) for fixed 0 < a < 2π and b = 1/ε2 > 0, periodically
continued with period 2π .

Figure 1 shows the potential function V (x) defined by Assumption 2 with a = π and
b = 4 (ε = 1

2 ).

Lemma 4. Let V satisfy Assumption 2. For any fixed l0 ∈ N, there exist ε0, ζ0, ω0, c±
1 ,

c2 > 0, such that, for any ε ∈ [0, ε0), the band functions of the operator L = −∂2
x +V (x)

satisfy the properties

(i) (band separation) min
∀l∈N\{l0}

inf
∀k∈T

|ωl(k)− ω̂l0,0| ≥ ζ0, (4.1)

(ii) (band boundness) |ω̂l0,0| ≤ ω0, (4.2)

(iii) (tight-binding approximation) c−
1 εe

− a
ε ≤|ω̂l0,1|≤c+

1εe
− a
ε , |ω̂l0,n|≤c2ε

2e− 2a
ε ,

(4.3)

where n ≥ 2.

Proof. The proof of the lemma is given in Appendix B. �
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Fig. 1. The potential function V (x) with a = π and b = 4
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Fig. 2. Left: The trace of the monodromy matrix A versus ω for the potential function V (x) with a = π and
b = 4. Right: The corresponding band-gap structure of the spectrum σ(L)

Figure 2 illustrates properties (4.1)–(4.3) of Lemma 4 for the potential function V (x)
with a = π and b = 4. The left panel shows the behavior of the trace of the monodromy
matrix A versus ω. The right panel shows the spectral bands defined by the intervals
with |tr(A)| ≤ 2. The first two bands are narrow for this value of b = 1/ε2, according
to the tight-binding approximation.

Lemma 5. Let V (x) satisfy Assumption 2. For any fixed l0 ∈N, there exists ε0,C0,C>0,
such that, for any ε ∈ [0, ε0), the Wannier functions of the operator L = −∂2

x + V (x)
satisfy the properties:

(i) (compact support) |ûl0,0(x)− û0(x)| ≤ C0ε, ∀x ∈ [0, 2π ], (4.4)

(ii) (exponential decay)
∣∣ûl0,0(x)

∣∣ ≤ Cεne− na
ε , (4.5)

∀x ∈ [−2πn,−2π(n − 1)]
∪ [2πn, 2π(n + 1)], n ∈ N,
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Fig. 3. The Wannier functions ûl,0(x) for l = 1 (left) and l = 2 (right). The solid lines show the Wannier
functions for b = 4 and b = 16. The dashed lines show the limiting function (4.6)

where

û0(x) =
{

0, ∀x ∈ [0, a],√
2√

2π−a
sin πl0(2π−x)

2π−a , ∀x ∈ [a, 2π ]. (4.6)

Proof. The proof of the lemma is given in Appendix C. �
Figure 3 illustrates properties (4.4)–(4.5) of Lemma 5 for the potential function V (x)

with a = π and b = 4, 16. The left and right panels show the Wannier functions û1,0(x)
and û2,0(x), respectively. The two functions were computed by using the integral repre-
sentation (3.2) and the numerical approximations of the corresponding Bloch functions.
The dashed line shows the limiting function (4.6).

Let us sketch a formal derivation of the lattice equation (1.2) from the continuous
nonlinear problem (1.1) by using the Wannier function decomposition for a particular l th

0

band. Let V satisfy Assumption 2 and denoteµ = εe− a
ε . Fix l0 ∈ N, letω = ω̂l0,0 +µ�,

and consider the substitution

φ(x) =
(
µ

β

)1/2

(ϕ(x) + µψ(x)) , ϕ(x) =
∑

n∈Z

φnûl0,n(x), (4.7)

where β = ‖ûl0,0‖4
L4(R)

and ψ is orthogonal to El0 ⊂ L2(R). Using the ODE system
(3.5), we find that ψ(x) satisfies the inhomogeneous system

−ψ ′′(x) + V (x)ψ(x)− ω̂l0,0ψ(x) = − 1

µ

∑

n∈Z

∑

m∈N

ω̂l0,m (φn+m + φn−m) ûl0,n(x)

+�(ϕ(x) + µψ(x))− σ

β
|ϕ(x) + µψ(x)|2 (ϕ(x) + µψ(x)) . (4.8)

Since ψ ∈ Dom(L) and ψ ⊥ El0 , where L = −∂2
x + V (x), then (ûl0,n, Lψ) =

0 for all n ∈ Z. As a result, the projection equations for components of the vector
	φ = (. . . , φ−2, φ−1, φ0, φ1, φ2, . . .) satisfy the system
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1

µ

∑

m∈N

ω̂l0,m (φn+m + φn−m) +
σ

β

∑

(n1,n2,n3)

Kn,n1,n2,n3φn1 φ̄n2φn3

= �φn − σ

β
Rn(	φ, ψ), ∀n ∈ Z, (4.9)

where

Kn,n1,n2,n3 =
∫

R

ûl0,n(x)ûl0,n1(x)ûl0,n2(x)ûl0,n3(x)dx, ∀n, n1, n2, n3 ∈ Z, (4.10)

and

Rn(	φ, ψ) =
∫

R

ûl0,n(x)
[
|ϕ(x) + µψ(x)|2 (ϕ(x)

+µψ(x))− |ϕ(x)|2ϕ(x)
]

dx, ∀n ∈ Z. (4.11)

By Lemma 4(iii), α = ω̂l0,1

µ
is uniformly bounded and nonzero for small µ > 0,

while
ω̂l0,m

µ
= O(µ) for all m ≥ 2. By Lemma 5(i), Kn,n,n,n = β = ‖ûl0,0‖4

L4(R)

is uniformly bounded and nonzero for small µ > 0. By Lemma 5(ii), Kn,n1,n2,n3 =
O

(
µ|n1−n|+|n2−n|+|n3−n|+|n2−n1|+|n3−n1|+|n3−n2|) for all n1, n2, n3 �= n. If system (4.9) is

formally truncated at the leading-order terms as µ → 0, it becomes the lattice equa-
tion (1.2). We can now formulate the main result of our article.

Theorem 1. Let V satisfy Assumption 2. Fix l0 ∈ N and denote µ = εe− a
ε . Assume

that there exists a solution 	φ0 ∈ l1(Z) of the lattice equation (1.2) with α = ω̂l0,1/µ

and a fixed � such that the linearized equation at 	φ0 has one-dimensional kernel in
l1(Z) ⊂ l2(Z) spanned by {i 	φ0} and the rest of the spectrum is bounded away from zero.
There existµ0,C > 0, such that the nonlinear elliptic problem (1.1) withω = ω̂l0,0 +µ�
has a solution φ(x) in H1(R) with

∀0 < µ < µ0 :
∥∥∥∥∥φ −

(
µ

β

)1/2 ∑

n∈Z

φnûl0,n

∥∥∥∥∥
H1(R)

≤ Cµ3/2, (4.12)

where β = ‖ûl0,0‖4
L4(R)

. Moreover, φ(x) decays to zero exponentially fast as |x | → ∞
if {φn} decays to zero exponentially fast as |n| → ∞.

Remark 5. According to Theorem 1 in [13], there exists a bounded, continuous and
exponentially decaying solution φ in H1(R) if ω is in a finite gap of the spectrum of L .
Not only do we recover this result but also we specify the asymptotic correspondence
between exponentially decaying solutions of the elliptic problem (1.1) and those of the
lattice equation (1.2). The correspondence can be used to classify the localized solutions
of these models by the number of pulses in different wells of the periodic potential V (x)
modulo a discrete group of translations with a 2π -multiple period. This classification is
explained in Remark 9 of Sect. 6.

Remark 6. We show in Appendix D that the lattice equation (1.2) occurs naturally as the
Poincaré map for the second-order equation (1.1) with a periodic coefficient. However,
the map we used to turn a sequence {φn}n∈Z into a function φ(x) on x ∈ R involves the
Wannier functions, whereas that to turn a sequence for Poincaré map iterations into a
function φ(x) involves evolution of the differential equation on [0, 2π ]. There is a map
between these two types of sequences but it is not a sitewise map.
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5. Proof of Theorem 1

Using the same scaling as in the previous section, namely µ = εe− a
ε , ω = ω̂l0,0 + µ�

and φ =
√
µ√
β
φ̃(x), we rewrite the nonlinear elliptic problem (1.1) in the equivalent form

Lµφ̃ = µ

(
�φ̃ − σ

β
|φ̃|2φ̃

)
, Lµ = −∂2

x + V (x)− ω̂l0,0, (5.1)

where both V and ω̂l0,0 depend on ε and thus on µ. Let El0 be an invariant subspace
of L2(R) associated with the l th

0 spectral band of σ(L). Using the Lyapunov–Schmidt
reduction theory, we decompose the solution in the form φ̃(x) = ϕ(x) + µψ(x), where
ϕ ∈ El0 ⊂ L2(R) and ψ ∈ E⊥

l0
= L2(R)\El0 . Denote projection operators P :

L2(R) �→ El0 and Q = I − P : L2(R) �→ E⊥
l0

. Then, the bifurcation problem (5.1)
splits into a system of two equations

P LµPϕ = µ

(
�ϕ − σ

β
P|ϕ + µψ |2(ϕ + µψ)

)
, (5.2)

QLµQψ = µ�ψ − σ

β
Q|ϕ + µψ |2(ϕ + µψ). (5.3)

The proof of Theorem 1 is based on the following two lemmas that describe solutions
of system (5.2)–(5.3).

Lemma 6. Let Dδ0 ⊂ H1(R) be a ball of finite radius δ0 centered at 0 ∈ H1(R) and
let Rµ0 ⊂ R be an interval of small radius µ0 centered at 0 ∈ R. There exists a unique
smooth map ψµ : Dδ0 × Rµ0 �→ H1(R), such that ψ(x) = ψµ(ϕ(x)) solves Eq. (5.3)
and

∀0 < µ < µ0, ∀‖ϕ‖H1(R) < δ0 : ‖ψ‖H1(R) ≤ C0‖ϕ‖3
H1(R)

, (5.4)

for some constant C0 > 0. Moreover, ψ(x) decays exponentially as |x | → ∞.

Proof. Let ω ≡ ω̂l0,0. Since ω /∈ σ(E⊥
l0
) by Lemma 4(i), solutions φ(x) of the linear

inhomogeneous problem QLµQφ = f (x) with f ∈ L2(R) belong to L2(R) uniformly
in µ ∈ R because of the Fourier–Bloch decomposition (see Proposition 1)

φ(x) =
∑

l∈N\{l0}

∫

T

f̂l(k)

ωl(k)− ω
ul(x; k)dk, ∀x ∈ R (5.5)

and the Parseval identity

‖φ‖2
L2(R)

=
∑

l∈N\{l0}

∫

T

| f̂l(k)|2
(ωl(k)− ω)2

dk

≤ 1

ζ 2
0

∑

l∈N\{l0}

∫

T

| f̂l(k)|2dk ≤ 1

ζ 2
0

‖ f ‖2
L2(R)

, (5.6)
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where the bound (4.1) has been used. Since V (x) ≥ 0 andω > 0 according to Remark 2,
we multiply QLµQφ = f (x) by the function φ and integrate it with respect to x ∈ R

to obtain

‖φ′(x)‖2
L2(R)

+ ‖V 1/2φ‖2
L2(R)

≤ ω‖φ‖2
L2(R)

+|(φ, f )| ≤ ω‖φ‖2
L2(R)

+ ‖φ‖L2(R)‖ f ‖L2(R), (5.7)

where the Cauchy–Schwarz inequality has been used. Using the bound (5.6), we find
that

‖φ‖H1(R) ≤ C‖ f ‖L2(R), (5.8)

where C > 0 is ε-independent. Therefore, the operator QLµQ is continuously invertible
and the inverse operator (QLµQ)−1 provides a continuous map from L2(R) to H1(R)

uniformly in µ, such that

∀0 < µ < µ0 : ‖ (
QLµQ − µ�

)−1 ‖L2(R) �→H1(R) ≤ C̃, (5.9)

where C̃ > 0 is ε-independent. Therefore, system (5.3) can be rewritten in the form

ψ = −σ
β

(
QLµQ − µ�

)−1
Q|ϕ + µψ |2(ϕ + µψ). (5.10)

Since H1(R) is a Banach algebra, the nonlinear operator acting on ψ and given by the
right-hand-side of system (5.10) maps an element of H1(R) to itself if ϕ ∈ H1(R).
The existence of the map ψ(x) = ψµ(ϕ(x)) with the desired bound (5.4) follows by
the Implicit Function Theorem. By elliptic theory, solution ψ(x) of system (5.10) in
H1(R) decays exponentially as |x | → ∞. �
Remark 7. One might have hoped that the operator (QLµQ)−1 provides a continuous
map from L2(R) to H2(R) uniformly in µ, but we suspect this is false. Nevertheless,
we do obtain a bound

‖φ‖H2(R) ≤ C

ε
‖ f ‖L2(R) ≤ C(ν)µ−ν‖ f ‖L2(R),

for a fixed ν > 0 and some C(ν) > 0, which may not be sharp. Indeed, this bound
follows from the bounds

‖φ′′(x)‖L2(R) ≤ ‖Vφ‖L2(R) + ω‖φ‖2
L2(R)

+ ‖ f ‖L2(R)

and ‖Vφ‖L2(R) ≤ 1
ε
‖V 1/2φ‖L2(R), where ‖V 1/2φ‖L2(R) is uniformly bounded in ε by

‖ f ‖L2(R), thanks to the bounds (5.6) and (5.7).

Using the map in Lemma 6, we rewrite system (5.2) as a bifurcation equation for
ϕ(x),

P LµPϕ = µ

(
�ϕ − σ

β
P|ϕ + µψµ(ϕ)|2(ϕ + µψµ(ϕ))

)
. (5.11)

Using the decomposition in Lemma 2, we represent solutions of (5.11) in the form

∀ϕ ∈ El0 ⊂ L2(R) : ϕ(x) =
∑

n∈Z

φnûl0,n(x). (5.12)
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We recall that ϕ ∈ H1(R) if 	φ ∈ l1(Z). By Proposition 2, the orthogonal projections
of the bifurcation equation (5.11) result in the lattice equation (4.9), where ψ(x) =
ψµ(ϕ(x)) is represented by the map with the bound (5.4) and ϕ(x) is given by the
Wannier function decomposition (5.12).

Lemma 7. The lattice system (4.9) for vectors 	φ is closed in vector space l1(Z). More-
over,

∀0 < µ < µ0, ∀‖	φ‖l1(Z) ≤ δ0 : ‖ 	R(	φ, ψ)‖l1(Z) ≤ µD0‖	φ‖5
l1(Z)

, (5.13)

for some constant D0 > 0.

Proof. We shall prove that every term of the lattice system (4.9) maps l1(Z) to itself.
The first term is estimated as follows:

‖	ω(	φ)‖l1(Z) ≤ 1

µ

∑

n∈Z

∑

n′∈Z\{0}
|ω̂l0,n′ ||φn+n′ | ≤ 1

µ
‖	ωl0‖l1(Z)‖	φ‖l1(Z),

where 	ωl0 is the vector of elements {ω̂l0,n} on n ∈ Z\{0}. Since ωl0(k) is analytically
extended along the Riemann surface on k ∈ T (by Theorem XIII.95 on p.301 in [19]),
we obtain that ωl0 ∈ Hs(T) for any s ≥ 0 and, hence, 	ωl0 ∈ l1(Z). By Lemma 4(iii),
we have ‖	ωl0‖l1(Z) ≤ Cµ for some C > 0 and small µ > 0. The second term of the
lattice system (4.9) is estimated as follows:

‖ 	K(	φ)‖l1(Z) ≤ σ

β

∑

n∈Z

∑

(n1,n2,n3)

|Kn,n1,n2,n3 ||ψn1 ||ψn2 ||ψn3 | ≤ σ

β
K0‖	φ‖3

l1(Z)
,

where K0 = sup(n1,n2,n3)
‖ 	Kn1,n2,n3‖l1(Z) and 	Kn1,n2,n3 is the vector of elements

{Kn,n1,n2,n3} on n ∈ Z. Because of the exponential decay (3.8) justified in Lemma 5(ii),
there exists a uniform bound

∑

n∈Z

|ûl0,n(x)| ≤ Cl0

∑

n∈Z

e−ηl0 |x−2πn| ≤ A0, ∀x ∈ R,

for some A0 > 0. As a result, we obtain

‖ 	Kn1,n2,n3‖l1(Z) ≤ A0

∫

R

|ûl0,n1(x)||ûl0,n2(x)||ûl0,n3(x)|dx

≤ A0‖ûl0,0‖L∞(R)‖ûl0,0‖2
L2(R)

,

uniformly in (n1, n2, n3). Since ‖ûl0,0‖H1(R) ≤ ‖(1 + L)1/2ûl0,0‖L2(R) ≤ (1 + ω̂l0,0)
1/2,

we have K0 ≤ C for some C > 0 and smallµ > 0, thanks to Lemma 4(ii) and Sobolev’s
embedding. Finally, the vector field 	R(	φ) of the lattice system (4.9) is estimated as fol-
lows:

‖ 	R(	φ)‖l1(Z) ≤ A0

∫

R

∣∣∣|ϕ(x) + µψµ(ϕ(x))|2(ϕ(x) + µψµ(ϕ(x)))− |ϕ(x)|2ϕ(x)
∣∣∣ dx

≤ µA0 B0‖ϕ‖2
H1(R)

‖ψµ(ϕ)‖H1(R)

≤ µA0 B0C0‖ϕ‖5
H1(R)

≤ µA0 B0C0‖	φ‖5
l1(Z)

,

for some B0 > 0, where we have used the property (1.6), the bound (5.4), and Lemma 2.
The last computation proves the desired bound (5.13) with D0 = A0 B0C0. �
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Proof of Theorem 1. By Lemmas 4(iii) and 7, the first term of the lattice system (4.9)
can be rewritten in the form

1

µ

∑

m∈N

ω̂l0,m (φn+m + φn−m) = α (φn+1 + φn−1) + µLn(φ, µ),

where α = ω̂l0,1/µ is uniformly bounded and nonzero for µ > 0 and

∀0 < µ < µ0, ∀‖	φ‖l1(Z) ≤ δ0 : ‖	L(	φ, µ)‖l1(Z) ≤ D1‖	φ‖l1(Z), (5.14)

for some constant D1 > 0. By Lemmas 5(ii) and 7, the second term of the lattice system
(4.9) can be rewritten in the form

σ

β

∑

(n1,n2,n3)

Kn,n1,n2,n3φn1 φ̄n2φn3 = σ |φn|2φn + µQn(φ, µ),

where

∀0 < µ < µ0, ∀‖	φ‖l1(Z) ≤ δ0 : ‖ 	Q(	φ, µ)‖l1(Z) ≤ D2‖	φ‖3
l1(Z)

, (5.15)

for some constant D2 > 0. As a result, we obtain the perturbed lattice system

α (φn+1 + φn−1) + σ |φn|2φn −�φn = µNn(	φ, µ), ∀n ∈ Z, (5.16)

where the perturbation term satisfies the bound

∀0 < µ < µ0, ∀‖	φ‖l1(Z) ≤ δ0 : ‖ 	N(	φ, µ)‖l1(Z) ≤ D‖	φ‖l1(Z), (5.17)

for some constant D > 0. Assume that there exists a solution 	φ0 ∈ l1(Z) of the lattice
equation (1.2) with α = ω̂l0,1/µ and a fixed� such that the linearized equation at 	φ0 has
a one-dimensional kernel in l1(Z) ⊂ l2(Z) spanned by {i 	φ0} and the rest of the spectrum
is bounded away from zero. This eigenmode is always present owing to the invariance
of the lattice equation (1.2) with respect to the gauge transformation 	φ → 	φeiθ , ∀θ ∈ R.
The perturbed lattice equation (5.16) is also invariant with respect to this transforma-
tion, since it is inherited from the properties of the nonlinear elliptic problem (1.1). Fix
θ uniquely by picking a n0 ∈ Z such that |(φ0)n0 | �= 0 and requiring that

Im(φ0)n0 = 0, Im(φ)n0 = 0.

The vector field of the perturbed lattice equation (5.16) preserves the constraint
Im(φ)n0 = 0 by symmetry and it is closed in l1(Z) ⊂ l2(Z), while the linearized
operator is continuously invertible under the constraint. By the Implicit Function Theo-
rem, there exists a smooth continuation of the solution 	φ0 due to the perturbation terms
of the lattice equation (5.16) such that Im(φ)n0 = 0 and

∀0 < µ < µ0 : ‖	φ − 	φ0‖l1(Z) ≤ Cµ, (5.18)

for some C > 0. By Lemma 2, if 	φ ∈ l1(Z), then ϕ(x) in the representation (5.12) is a
continuous bounded function of x ∈ R, which decays to zero as |x | → ∞. By Lemma 3,
it decays to zero exponentially fast as |x | → ∞ if 	φ decays to zero exponentially fast
as |n| → ∞. The same properties hold for ψ(x) = ψµ(ϕ(x)), by Lemma 6, and thus to
the full solution φ(x). These arguments finish the proof of Theorem 1. �
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Remark 8. For the proof of Theorem 1, we used a different approach compared to [6,
17]. In these papers, we first formulated the elliptic problem with a periodic potential
in the Bloch (Fourier) space and then reduced a closed system of equations for the
Bloch–Fourier transform by using the Lyapunov–Schmidt reductions. One can think of
using the same strategy here, when a full (double-series) Wannier function decomposi-
tion is used to transform the elliptic problem to an algebraic system for coefficients of
the double series. We have avoided this approach since we do not know how to show
that the system of the nonlinear algebraic equations is closed in the space l1

1(N, l
1(Z)),

which would ensure that φ ∈ H1(R).

6. Examples of Localized Solutions

We review examples of localized solutions of the lattice equation (1.2) which satisfy
the assumptions of Theorem 1. Following paper [11], these solutions can be efficiently
characterized in the anti-continuum limit where α is sufficiently small.

We recall that all localized solutions {φn}n∈Z of the lattice equation (1.2) are real-
valued (see, e.g., [15]). Let 	φ be a real-valued vector on n ∈ Z and rewrite the lattice
equation (1.2) in the form

(
�− σφ2

n

)
φn = α (φn+1 + φn−1) , ∀n ∈ Z. (6.1)

The linearized equation at the real-valued solution 	φ perturbed with the real-valued
vector 	ψ is written in the form

(
Lα 	ψ

)

n
=

(
�− 3σφ2

n

)
ψn − α (ψn+1 + ψn−1) , ∀n ∈ Z. (6.2)

The nonlinear vector field of the lattice equation (6.1) maps l1(Z) to itself for any α ∈ R.
If α = 0 and σ = sign(�), there exists a limiting solution of the lattice equation (6.1)
in the form

φn =
{

0, ∀n ∈ U0,

±√|�|, ∀n ∈ U±,
(6.3)

where U+ ∪ U− ∪ U0 = Z. The spectrum of the linearized operator L0 evaluated at
the limiting solution (6.3) consists of two points σ(L0) = {−2�,�}, where eigenvalue
� has multiplicity dim(U0) and eigenvalue −2� has multiplicity dim(U+) + dim(U−).
If dim(U+) + dim(U−) < ∞, the limiting solution (6.3) is in l1(Z) and the linearized
operator Lα is continuously invertible in l1(Z) for any� �= 0. By the Implicit Function
Theorem, there exists a unique smooth solution 	φα ∈ l1(Z) of the lattice equation (1.2)
with |α| < α0 and σ = sign(�), where α0 > 0 is sufficiently small, and

‖	φα − 	φ0‖l1(Z) ≤ C |α|,

for some α-independent constant C > 0. Since the kernel of the linearization opera-
tor (6.2) is empty for sufficiently small α, the assumptions of Theorem 1 are satisfied
for real-valued solutions 	φ ∈ l1(Z).
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Remark 9. For sufficiently small values of α, all localized solutions of the lattice equa-
tion (6.1) can be classified by the configurations U+ and U− in the limiting solution
(6.3). Simply speaking, the limiting configuration indicates a finite number of nodes on
Z, where “up” and “down” pulses are placed. Using the bound (4.12) of Theorem 1, we
can transfer this information to the localized solution of the elliptic problem (1.1) since
each n ∈ Z with φn �= 0 corresponds to the Wannier function ûl0,n(x) = ûl0,0(x −2πn),
which is centered at the nth potential well of V (x) and is exponentially decaying as
|x | → ∞. Therefore, the limiting configuration (6.3) indicates the finite number of “up”
and “down” pulses placed in the corresponding wells of the periodic potential V .

Remark 10. Bifurcations of localized real-valued solutions may occur for larger values
of α, when the linearized operator (6.2) may admit a nontrivial kernel in l1(Z) ⊂ l2(Z).
Theorem 1 does not hold at the bifurcation point but can be used to prove persistence of
solutions before and after the bifurcation point, provided that the linearized operator is
again invertible.

7. Examples of Potential Functions V

The main example of the potential function V in Assumption 2 can be extended to other
potential functions using semi-classical techniques [4,8]. This extension will not be pre-
sented here. We shall, however, review other examples of the potential function V , for
which the analysis of our paper can be applied immediately.

Example 1. Let V (x) = cδ(x) on [−π, π ], periodically continued with the period 2π .
The band function ωl(k) for this example can be obtained from analysis of Appendix B
if a → 0 and c = ab is fixed. The expression (B.3) for tr(A) simplifies in the limit
a → 0 to the form

tr(A) = 2 cos(2π
√
ω) +

c√
ω

sin(2π
√
ω), 0 < ω < ∞. (7.1)

All bands have non-zero widths if c is finite. Therefore, the delta-function potential (with
infinitesimal thickness of the walls) does not satisfy the tight-binding property (4.3) of
Lemma 4. In addition, the periodic potential V (x) is unbounded at x = 2πn, ∀n ∈ Z

for any c > 0.

Example 2. Let V (x + L) = V (x) be L-periodic, such that V (x) = b on x ∈ (0, a) and
V (x) = 0 on x ∈ (a, L). We show that this function is equivalent, in the limit L → ∞,
to the potential function of Assumption 2 in the limit ε → 0. Let

ε =
(

2π

L

)2

, x = x̃√
ε
, V (x) = εṼ (x̃), φ(x) = φ̃(x̃), ω = εω̃.

Then, φ(x) and φ̃(x̃) solve

(−∂2
x + V (x))φ(x) = ωφ(x), (−∂2

x̃ + Ṽ (x̃))φ̃(x̃) = ω̃φ̃(x̃),

respectively, while Ṽ (x̃) = b̃ on x̃ ∈ (0, ã) and Ṽ (x̃) = 0 on x̃ ∈ (ã, 2π) with
ã = √

εa and b̃ = b/ε. For fixed a
L and b, the function Ṽ (x̃) is equivalent to the one in

Assumption 2. We note that the band separation property (4.1) of Lemma 4 is not satis-
fied for the function V (x) in the limit L → ∞, since the distance between spectral bands
reduces as O( 1

L2 ). However, this property is satisfied for the rescaled function Ṽ (x̃).
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Example 3. Let V (x) = 1
2ε2 (1 − cos x) be such that V (x) = x2

4ε2 + O(x4) near x = 0.
According to the asymptotic analysis in [23], the tight-binding property (4.3) of Lemma 4
is satisfied in the limit ε → 0, while the exponentially narrow spectral bands ωl(k) con-
verge to eigenvalues of the parabolic potential x2

4ε2 at ω = 2l−1
2ε for all l ∈ N. The

distance between different bands satisfies the band separation property (4.1) and in fact,
diverges as ε → 0. We note, however, that the band-boundeness property (4.2) fails for
this example. However, it only affects the bound (4.12) and does not affect the lattice
equation (1.2) where the coefficient of the nonlinear term is scaled to unity.

We finish this section with remarks on the related works [21,25].

• The periodic piecewise-constant function a(x) in the operator L = −∂x a(x)∂x con-
sidered in [21] is similar to the main example of the potential function V (x) used
in Assumption 2. It provides both the separation of bands and the tight-banding
approximation with some modifications: (i) the lowest-order band does not satisfy
the property |ω̂l0,1| � ω̂l0,0 but does satisfy the property |ω̂l0,m | � ω̂l0,0 for any
|m| ≥ 2 and (ii) the lowest-order band is separated from all other bands by a distance
diverging as ε → 0.

• Complicated projection analysis in the problem involving nonlinear pulses located
far away from each other [25] is partly explained in Example 2: the bands are not
separated from each other in the limit L → ∞ unless a rescaling to tilded variables
is applied.

8. Lattice Equations in Two and Three Dimensions

The results of our analysis were restricted to the space of one dimension since we have
used the Banach algebra property of H1(R) and the fact that (QLµQ)−1 provides a
bounded map from L2(R) to H1(R) uniformly in µ > 0. According to Remark 7,
no uniform bound may exist from L2(R) to H2(R). Nevertheless, thanks to the expo-
nential smallness of bounds (4.3) and (4.5) in Lemmas 4 and 5, we are still able to
extend results of our analysis to the nonlinear elliptic problem with a multi-dimensional
separable potential in the form

− ∇2φ + W (x)φ + σ |φ|2φ = ωφ, ∀x ∈ R
d , (8.1)

where ∇2 is the continuous d-dimensional Laplacian and W = ∑d
j=1 V (x j ) is a sep-

arable potential with a bounded 2π -periodic function V : R �→ R. The Laplacian ∇2

can be replaced by ∇M∇ with an arbitrary positive-definite matrix M and the results
will remain the same. Equivalently, the period parallelogram of W can be arbitrary. For
the sake of simplicity, we restrict our attention to the case when M is the identity matrix
and W has period 2π in each coordinate. The lattice equation (1.2) is generalized in the
multi-dimensional setting in the form

d∑

j=1

α j
(
φn+e j + φn−e j

)
+ σ |φn|2φn = �φn, ∀n ∈ Z

d , (8.2)

where (e1, e2, . . . , ed) is a standard basis in Z
d and (α1, α2, . . . , αd) are constants. Our

main result is generalized as follows.
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Theorem 2. Let W = ∑d
j=1 V (x j ) be a separable potential, where V satisfies Assump-

tion 2. Fix l0 ∈ N
d and denoteµ = εe− a

ε . Assume that there exists a solution 	φ0 ∈ l1(Zd)

of the lattice equation (8.2) for d = 1, 2, 3 with α j = ω̂(l0) j ,1/µ, j = 1, 2, . . . , d,

and a fixed � such that the linearized equation at 	φ0 has one-dimensional kernel in
l1(Zd) spanned by {i 	φ0} and the rest of the spectrum is bounded away from zero. Fix
ν ∈ (0, 1). There exist µ0,C(ν) > 0 such that the nonlinear elliptic problem (8.1) with
ω = ω0 +µ� has a solution φ(x) in H2(Rd) for d = 1, 2, 3 satisfying

∀0 < µ < µ0 :
∥∥∥∥∥∥
φ −

(
µ

β

)1/2 ∑

n∈Zd

φnûl0,n

∥∥∥∥∥∥
H2(Rd )

≤ C(ν)µ3/2−ν, (8.3)

where ω0 = ∑d
j=1 ω̂(l0) j ,0, ûl0,n(x) = ∏d

j=1 û(l0) j ,n j (x j ) and β = ‖ûl0,0‖4
L4(Rd )

.
Moreover, φ(x) decays to zero exponentially fast as |x | → ∞ if {φn} decays to zero
exponentially fast as |n| → ∞.

Proof. We recall that the band and Bloch functions for the l th spectral band of
Ld = −∇2 +

∑d
j=1 V (x j ) with l = (l1, l2, . . . , ld) ∈ N

d are represented by

ω =
d∑

j=1

ωl j (k j ), u =
d∏

j=1

ul j (x j ; k j ), (8.4)

where ωl(k) and ul(x; k) are the band and Bloch functions of the operator L = −∂2
x +

V (x) on x ∈ R. By using the same scaling of variables, we derive system (5.1) and
split it into system (5.2)–(5.3) by using the orthogonal projections. Since µ is expo-
nentially small in ε, while the operator (QLµQ)−1 provides a map from L2(Rd) to
H2(Rd) that diverges only algebraically in ε (see Remark 7), there exists a unique map
ψµ : H2(Rd)× (0, µ0) �→ H2(Rd), such that ψ(x) = ψµ(ϕ(x)) and

∀0 < µ < µ0, ∀‖ϕ‖H2(R) < δ0 : ‖ψ‖H2(R) ≤ µ−ν/6C0(ν)‖ϕ‖3
H2(R)

, (8.5)

for a fixed ν ∈ (0, 1) and some constant C0(ν) > 0. Therefore, we close the bifurcation
equation (5.11) using the Wannier function decomposition

∀ϕ ∈ El0 ⊂ L2(Rd) : ϕ(x) =
∑

n∈Zd

φnûl0,n(x), ûl0,n(x) =
d∏

j=1

û(l0) j ,n j (x j ). (8.6)

As a result, we obtain the lattice equation (4.9) in Z
d . Since

‖ûl0,n‖H2(Rd ) ≤ C(d)

ε
‖ûl0,n‖H1(Rd )

for some C(d) > 0, we have

‖ϕ‖H2(Rd ) ≤ C(d)

ε
‖	φ‖l1(Zd ) ≤ µ−ν/6C̃(ν)‖	φ‖l1(Zd )
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for the same ν ∈ (0, 1) and some C̃(ν) > 0. The lattice system (4.9) is closed in
l1(Zd) by the same analysis as in Lemma 7 and, since H2(Rd) is a Banach algebra for
d = 1, 2, 3, we obtain

∀0 < µ < µ0, ∀‖	φ‖l1(Zd ) ≤ δ0 : ‖ 	R(	φ, ψ)‖l1(Zd ) ≤ µ1−νD(ν)‖	φ‖5
l1(Zd )

for some D(ν) > 0. The rest of the proof repeats the proof of Theorem 1. �
Example 4. Complex-valued localized solutions of the lattice equation (8.2) in l1(Zd)

were constructed in the anti-continuum limit in [16] and [10] for d = 2 and d = 3
respectively. The method of Lyapunov–Schmidt reductions was used and all examples
considered in these papers were represented by isolated families of solutions with the
only free parameter due to the gauge invariance of the lattice equation (8.2). As a con-
sequence, the linearized equation at the complex-valued solution 	φ perturbed with the
complex-valued vector 	ψ ,

(Lαψ)n =
(
�− 2σ |φn|2

)
ψn −σφ2

nψ̄n −
d∑

j=1

α j
(
ψn+e j + ψn−e j

)
, ∀n ∈ Z

d , (8.7)

was shown to have one-dimensional kernel spanned by {i 	φ} for any 0<
∑d

j=1 |α j |<α0
sufficiently small. Therefore, the assumptions of Theorem 2 are satisfied and all solu-
tions of the lattice equation (8.2) obtained in [10,16] persist as solutions of the nonlinear
elliptic problem (8.1).

A. Shannon Decomposition

We review here the Shannon decomposition, which is different from the Wannier decom-
position of Proposition 2. Fix l ∈ N and assume that ul(0; k) �= 0 for all k ∈ T. Let us
define the set of functions {gn(x)}n∈Z according to the integrals

gn(x) =
∫

T

ul(x; k)

ul(0; k)
e−i2πkndk, ∀x ∈ R. (A.1)

Since ul(x; k) = wl(x; k)eikx , where wl(x; k) is a 2π -periodic function in x , it follows
from the integrals (A.1) that

gn(2πn′) = δn,n′, ∀n, n′ ∈ Z.

Therefore, the set {gn(x)}n∈Z can be used for interpolation of a continuous complex-
valued function u(x) from its values {un}n∈Z at the points x = 2πn. This construction
reminds us of the Shannon theory of sampling and interpolation (see review in [24]).

Definition 2. The functions of the set {gn(x)}n∈Z are called the Shannon functions.

Proposition 3. Let V satisfy Assumption 1. Fix l ∈ N and let El be an invariant closed
subspace of L2(R) associated to the lth spectral band of σ(L). There exists an isomor-
phism S : El ⊂ L2(R) �→ l2(Z) given by the sampling

∀φ ∈ El ⊂ L2(R) : 	φ = Sφ, φn = φ(2πn) ∀n ∈ Z. (A.2)

The inverse transformation is given by the interpolation

∀	φ ∈ l2(Z) : φ(x) = S−1 	φ =
∑

n∈Z

φngn(x), ∀x ∈ R. (A.3)
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Proof. By Sobolev’s embeddings (1.5), there exists an n-independent constant C > 0
such that

|φ(2πn)| ≤ C‖φ‖H1([2πn−π,2πn+π ]), ∀n ∈ Z.

Therefore,

‖	φ‖2
l2(Z)

=
∑

n∈Z

|φ(2πn)|2 ≤ C2
∑

n∈Z

‖φ‖2
H1([2πn−π,2πn+π ]) ≤ C2‖φ‖2

H1(R)
.

If φ ∈ El ⊂ L2(R), then φ ∈ H1(R), so that the map S is uniformly bounded on
El ⊂ L2(R). On the other hand, it follows from the Fourier–Bloch decomposition (2.6)
that

∀φ ∈ El : φn = φ(2πn) =
∫

T

φ̂l(k)ul(2πn; k)dk

=
∫

T

φ̂l(k)ul(0; k)ei2πnkdk, ∀n ∈ Z.

Inverting this representation by the Fourier series theory, we obtain that

φ̂l(k)ul(0; k) =
∑

n∈Z

e−i2πnkφn,

where ul(0; k) �= 0 for all k ∈ T is assumed. As a result,

∀φ ∈ El : φ(x) =
∫

T

φ̂l(k)ul(x; k)dk =
∑

n∈Z

φngn(x),

provided that the integrals (A.1) for the Shannon functions {gn(x)}n∈Z converge abso-
lutely and uniformly on x ∈ R. This property follows from the exponential decay of the
Shannon functions

|gn(x)| ≤ Ce−η|x−2πn|, ∀x ∈ R,

for some C > 0 and η > 0, which is proved similarly to the decay property (3.8) for the
Wannier functions. �

By Sturm–Liouville theory, the assumption ul(0; k) > 0 for all k ∈ T is satisfied
for the lowest spectral band with l = 1. This assumption, however, may fail for some
higher-order spectral bands with l > 1. Since our analysis is expected to work for any
l ∈ N, we have avoided the Shannon decomposition and have used an equivalent Wannier
decomposition, which does not rely on the assumption above. Shannon functions were
applied to the justification of lattice equations for the lowest spectral band in [21].
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B. Proof of Lemma 4

Let L = −∂2
x + V (x), where V is given by Assumption 2. For any 0 < ω < b, the

solution φ(x) of the ODE Lφ = ωφ on [0, 2π ] is obtained explicitly in the form

φ(x) =
⎧
⎨

⎩
φ(0) cosh

√
b − ωx + φ′(0)√

b−ω sinh
√

b − ωx, ∀x ∈ [0, a],
φ(2π) cos

√
ω(x − 2π) + φ′(2π)√

ω
sin

√
ω(x − 2π), ∀x ∈ [a, 2π ]. (B.1)

The continuity ofφ(x) and φ′(x) across the jump point x = a leads to the 2-by-2 transfer
matrix

φ(2π) = a11φ(0) + a12φ
′(0), φ′(2π) = a21φ(0) + a22φ

′(0), (B.2)

where the explicit expressions for {ai j }1≤i, j≤2 show that a11a22 −a12a21 = det(A) = 1
and a11 + a22 = tr(A) is given explicitly by

tr(A) = 2 cosh(a
√

b − ω) cos
[
(2π − a)

√
ω

]

+
b − 2ω√
ω(b − ω)

sinh(a
√

b − ω) sin
[
(2π − a)

√
ω

]
. (B.3)

This equation is valid for 0 < ω < b and it is analytically extended for ω > b to the
equation

tr(A) = 2 cos(a
√
ω − b) cos

[
(2π − a)

√
ω

]

+
b − 2ω√
ω(ω − b)

sin(a
√
ω − b) sin

[
(2π − a)

√
ω

]
. (B.4)

The band functions ωl(k) enumerated by l ∈ N and parameterized by k ∈ T corre-
spond to the values of ω in the interval |tr(A)| ≤ 2. They are defined by the equation
tr(A) = 2 cos(2πk). In the limit ε → 0, where b = 1

ε2 , |tr(A)| is bounded near the

particular valuesω =
(

πl
2π−a

)2
for any l ∈ N, such that the distance between the two con-

sequent values ofω is finite. We shall rewrite the algebraic equation tr(A) = 2 cos(2πk),
where tr(A) is given by (B.3) with b = 1

ε2 in the equivalent form:

sin
[
(2π − a)

√
ω

]
+

2ε
√
ω(1 − ε2ω)

1 − 2ε2ω
cos

[
(2π − a)

√
ω

]

= 4ε
√
ω(1 − ε2ω)

1 − 2ε2ω
e− a

√
1−ε2ω
ε cos(2πk)

−
(

sin
[
(2π − a)

√
ω

]− 2ε
√
ω(1−ε2ω)

1−2ε2ω
sin

[
(2π − a)

√
ω
]
)

e− 2a
√

1−ε2ω
ε . (B.5)

At ε = 0, all roots of the algebraic equation (B.5) are simple. By the Lyapunov–Schmidt
theory, the simple roots persist, and owing to the analyticity of the trigonometric func-
tions, they persist in the form

ωl(k) = ω̂l,0(ε) +
∑

n∈N

εne− na
ε ω̂l,n(ε) cosn(2πk), (B.6)
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where all parameters ω̂l,n are continuous functions of ε, uniformly bounded in the limit
ε → 0. In particular,

ω̂l,0(ε) = (πl)2

(2π − a)2
+ O(ε), ω̂l,1(ε) = 8(−1)l(πl)2

(2π − a)3
+ O(ε), etc.

Properties (4.1)–(4.3) follow from the representation (B.6) for sufficiently small ε > 0.

C. Proof of Lemma 5

Let us first rewrite the system of Eq. (3.5) in the form

− û′′
l,0(x) + V (x)ûl,0(x) =

∑

n∈Z

ω̂l,nûl,n(x), ∀n ∈ Z. (C.1)

Consider the ODE (L − ω)φ = f (x) for L = −∂2
x + V (x) on [0, 2π ]. The explicit

solution is

φ(x)=

⎧
⎪⎨

⎪⎩

Ae
√

1−ε2ω
ε

(x−a) + Be−
√

1−ε2ω
ε

(x−a) − ε

2
√

1−ε2ω

∫ a
0 e−

√
1−ε2ω
ε

|x−ξ | f (ξ)dξ, ∀x ∈ [0, a],

C cos
√
ω(x − a) + D sin

√
ω(x − a)− ∫ 2π

a
sin

√
ω|x−ξ |

2
√
ω

f (ξ)dξ, ∀x ∈ [a, 2π ],
(C.2)

where (A, B,C, D) are arbitrary constants. Because of the property (3.4), the ODE above
corresponds to system (C.1) for ω = ω̂l,0, φ = ûl,0 and f = ∑

n∈Z\{0} ω̂l,nûl,0(x −
2πn). Because ω̂l,n = O(εne− na

ε ) by the expansion (B.6), whereas ûl,0(x) are uniformly
bounded in ε, we have

sup
x∈[0,2π ]

| f (x)| ≤ εe− a
ε (F+ + F−), F+ = sup

x∈[0,2π ]
|ûl,0(x + 2π)|,

F− = sup
x∈[0,2π ]

|ûl,0(x − 2π)|. (C.3)

Matching the two solutions at x = a for φ(x) and φ′(x), we find that

A = 1

2

(
C +

ε
√
ω√

1 − ε2ω
D

)
+ εe− a

ε Ã, B = 1

2

(
C − ε

√
ω√

1 − ε2ω
D

)
+ εe− a

ε B̃,

where Ã and B̃ are uniformly bounded in |ε| < ε0. As ε → 0, the homogeneous solution
is bounded only if B = εe− a

ε B ′, where B ′ is a new parameter. This constraint results in
the relation

C = ε
√
ω√

1 − ε2ω
D + εe− a

ε C̃,

where C̃ is uniformly bounded in |ε| < ε0. As a result, we rewrite the solution (C.2) in
the form

ûl,0 =

⎧
⎪⎪⎨

⎪⎪⎩

D
ε
√
ω̂l,0√

1−ε2ω̂l,0
e

√
1−ε2ω̂l,0
ε

(x−a) + B ′εe−
√

1−ε2ω̂l,0
ε

x , ∀x ∈ [0, a]

D sin
√
ω̂l,0(x − a) + D

ε
√
ω̂l,0√

1−ε2ω̂l,0
cos

√
ω̂l,0(x − a), ∀x ∈ [a, 2π]

+ O(εe− a
ε ).

(C.4)
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The parameter D is fixed by the normalization condition ‖ûl,0‖L2(R) = 1, from which
the property (4.4) on [0, 2π ] is proved.

Consider now the same ODE (L − ω)φ = f (x) on [2π, 4π ]. The explicit solution
φ ≡ φ1 is now written in the form

φ1(x) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1e

√
1−ε2ω
ε (x−2π−a) + B1e−

√
1−ε2ω
ε (x−2π−a)

− ε

2
√

1−ε2ω

∫ a+2π
2π e−

√
1−ε2ω
ε |x−ξ | f (ξ)dξ, ∀x ∈ [2π, 2π + a],

C1 cos
√
ω(x − 2π − a) + D1 sin

√
ω(x − 2π − a)− ∫ 4π

a+2π
sin

√
ω|x−ξ |

2
√
ω

f (ξ)dξ, ∀x ∈[2π+a, 4π ].

We have

sup
x∈[2π,4π ]

| f (x)| ≤ εe− a
ε

(
1 + sup

x∈[0,2π ]
|ûl,0(x + 4π)|

)
,

where we have used the bound (4.4). By matching the solution at x = 2π + a, we obtain
the constraints on parameters of the solution:

A1 = 1

2

(
C1 +

ε
√
ω√

1 − ε2ω
D1

)
+ εe− a

ε Ã1, B1 = 1

2

(
C1 − ε

√
ω√

1 − ε2ω
D1

)
+ εe− a

ε B̃1,

where Ã1 and B̃1 are uniformly bounded in |ε| < ε0. Now we apply the continuity
conditions φ(2π) = φ1(2π) and φ′(2π) = φ′

1(2π), which relate coefficients A1 and
B1 to D:

A1e− a
√

1−ε2ω
ε = 1 − 2ε2ω

2(1 − ε2ω)
D

[
sin

[
(2π − a)

√
ω

]
+

2ε
√
ω(1 − ε2ω)

1 − 2ε2ω

× cos
[
(2π − a)

√
ω

] ]
+ εe− a

ε F1,

B1e
a
√

1−ε2ω
ε = 1

2(1 − ε2ω)
D sin

[
(2π − a)

√
ω

]
+ εe− a

ε G1,

where F1 and G1 are uniformly bounded in |ε| < ε0. If ω = ω̂l,0, the second equation
implies that B1 = εe− a

ε B ′
1, such that

C1 = ε
√
ω√

1 − ε2ω
D1 + εe− a

ε C̃1,

where B ′
1 and C̃1 are uniformly bounded in |ε| < ε0. Substituting the expansion (B.6)

into the algebraic equation (B.5), we find that, if ω = ω̂l,0, then A1 = εF1 + O(ε2e− a
ε ).

Since F1 is linear with respect to C̃ and C̃ is linear with respect to B ′, one can choose

B ′ so that F1 = O
(
εe− a

ε

)
, after which

A1 = O
(
ε2e− a

ε

)
, C1 = O

(
ε2e− a

ε

)
, D1 = O

(
εe− a

ε

)
.
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Moreover, since

F+ = sup
x∈[0,2π ]

|ûl,0(x + 2π)| = O
(
εe− a

ε

)
,

it is also clear that B ′ = O
(
εe− a

ε

)
. This construction proves the bound (4.5) on [2π, 4π ].

Continuing the ODE analysis on the intervals [2πn, 2π(n + 1)] with n ≥ 2, the bound
(4.5) is extended for any x ∈ [2π, 2π(n + 1)]. It is left for a reader’s exercise to use the
same method to prove the bound (4.5) for x < 0.

D. Poincaré Mappings

We review here the Poincaré map for the second-order equation (1.1) with a 2π -periodic
coefficient V , in comparison with the second-order difference equation (1.2). Denote
φ(2πn) = φn and φ′(2πn) = ψn , ∀n ∈ Z and consider the initial value problem for
the second-order equation (1.1) on the interval [2πn, 2π(n + 1)] for a fixed n ∈ Z. By
the theorem on local existence and smoothness of solutions of the initial-value problem,
there exists a continuously differentiable solution φ(x) on [2πn, 2π(n + 1)] if the func-
tion V is piecewise continuous and δ0 := |φn| + |ψn| is sufficiently small. The Poincaré
map is then defined in the form

un+1 = P(un), un =
(
φn
ψn

)
, ∀n ∈ Z, (D.1)

where P : C
2 �→ C

2 is a continuously differentiable function. On one hand, the differ-
ence map (D.1) is exactly equivalent to the second-order equation (1.1) with the periodic
function V . On the other hand, the Poincaré map P(un) is generally different from the
second-order difference equation (1.2). We will show that the Poincaré map (D.1) reduces
to the scalar equation (1.2) in the near-linear limit, when the cubic term |φn|2φn is small
compared to the second-order difference term φn+1 + φn−1. This limit differs from the
domain of applicability of the lattice equation (1.2) justified in Theorem 1, where all
terms are considered to be of the same order.

In the linear theory, P(un) = Aun , where A is a monodromy matrix with the elements
ai j for 1 ≤ i, j ≤ 2. Since the Wronskian determinant of the second-order ODE (1.1)
is constant in x , the coefficients satisfy the constraint det(A) = a11a22 − a12a21 = 1.
Eliminating ψn from the system (D.1) with P(un) = Aun , we obtain that

φn+1 + φn−1 = �(ω)φn, ∀n ∈ Z, (D.2)

where �(ω) = tr(A) = a11 + a22. The Floquet theory follows immediately from the
linear second-order map (D.2) since the spectral bands are found from solutions of the
equation �(ω) = 2 cos(2πk) for all k ∈ T. It is proved in [7] that this equation admits
infinitely many solutions, which can be enumerated by the index l ∈ N and ordered as
follows: ω1(k) ≤ ω2(k) ≤ · · · ≤ ωl(k) ≤ · · · for any k ∈ T.

Consider the nonlinear Poincaré map (D.1) in the limit where the cubic terms are
small, i.e. when supx∈[2πn,2π(n+1)]

(|φ(x)| + |φ′(x)|) := δ is sufficiently small. Expand-
ing P(un) into the Taylor series in un and eliminating ψn from the second equation by
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using the near-identity transformations, we obtain the perturbed second-order difference
map,

φn+1 + φn−1 −�(ω)φn =σ
[
α1|φn|2φn + α2|φn|2(φn+1 + φn−1) + α3φ

2
n(φ̄n+1 + φ̄n−1)

+α4(|φn+1|2 + |φn−1|2)φn + α5(φ̄n+1φn−1 + φn+1φ̄n−1)φn

+α6(φ
2
n+1 + φ2

n−1)φ̄n + α7φn+1φn−1φ̄n

+α8(|φn+1|2φn+1+|φn−1|2φn−1)+ α9(φ
2
n+1φ̄n−1+ φ2

n−1φ̄n+1)

+α10(|φn+1|2φn−1 + |φn−1|2φn+1)
]
, ∀n ∈ Z, (D.3)

where (α1, α2, . . . , α10) are some coefficients. The perturbed equation (D.3) contains all
cubic terms, which preserve the gauge invariance and reversibility of the original ODE
(1.1), such that if {φn}n∈Z is a solution, then {φneiθ }n∈Z and {φ−n}n∈Z are also solutions
for any θ ∈ R. The actual values of the coefficients of the cubic terms depend on the
potential function V . See [15] for analysis of localized solutions of the second-order
difference equation (D.3).

Proposition 4. Let {φn}n∈Z be a real-valued solution of the lattice equation (D.3) such
that ‖	φ‖l2(Z) is small. There exists a near-identity transformation

φn = ϕn + σ B(ω)ϕ3
n + O

(
‖	ϕ‖5

l2(Z)

)
, (D.4)

which transforms the lattice equation (D.3) to the canonical form

ϕn+1 + ϕn−1 −�(ω)ϕn = σ A(ω)ϕ3
n + O

(
‖	ϕ‖5

l2(Z)

)
, (D.5)

for some constants A(ω) and B(ω).

Proof. Let {φn}n∈Z be a real-valued solution of the lattice equation (D.3), such that the
right-hand-side can be rewritten in the form

β1φ
3
n + β2φ

2
n(φn+1 + φn−1) + β3(φ

2
n+1 + φ2

n−1)φn + β4φn+1φn−1φn

+β5(φ
3
n+1 + φ3

n−1) + β6φn+1φn−1(φn+1 + φn−1),

where β1 = α1, β2 = α2 +α3, β3 = α4 +α6, β4 = 2α5 +α7, β5 = α8 and β6 = α9 +α10.
Substituting the leading-order equation (D.2) to the terms above, we obtain

(
β1 +�β2 +

1

3
�2(β3 + β4) +

1

3
�3β6

)
φ3

n

+

(
β5 − 1

3
β6 − 1

3�
(β4 − 2β3)

)
(φ3

n+1 + φ3
n−1).

Using the near-identity transformation (D.4) with B(ω) = β5 − 1
3β6 − 1

3�(β4 − 2β3),
we arrive to the canonical form (D.5) with A(ω) = β1 +�β2 + 1

3�
2(β3 +β4)+ 1

3�
3β6 +

�B(ω). �
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The canonical form (D.5) does not hold when the potential function V is defined by
Assumption 2 for sufficiently small ε. In the lattice equation (1.2) justified by Theorem 1,
the cubic term |φn|2φn can not be considered to be small compared to the second-order
difference termφn+1+φn−1, which implies that�(ω) in the canonical form (D.5) is large.
Compared to the Poincaré map (D.1), the Wannier decomposition replaces the second-
order equation by the lattice system with infinite coupling between lattice sites, which
is reduced asymptotically to the second-order difference map. Notice that the analysis
above implies that the lattice system for coefficients of the Wannier functions must be
satisfied exactly by the second-order Poincaré map (D.1) after a nonlocal transformation.
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