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Abstract We study bifurcations of periodic traveling waves in diatomic granular
chains from the anti-continuum limit, when the mass ratio between the light and
heavy beads is zero. We show that every limiting periodic wave is uniquely continued
with respect to the mass ratio parameter, and the periodic waves with a wavelength
larger than a certain critical value are spectrally stable. Numerical computations are
developed to study how this solution family is continued to the limit of equal mass
ratio between the beads, where periodic traveling waves of homogeneous granular
chains exist.

Keywords Diatomic granular chains · Periodic traveling waves · FPU lattice ·
Anti-continuum limit
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1 Introduction

Wave propagation in granular crystals has been studied quite intensively in the past
ten years. Granular crystals are thought to be closely packed chains of elastically in-
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teracting particles, which obey the Fermi–Pasta–Ulam (FPU) lattice equations with
Hertzian interaction forces. Experimental work with granular crystals and their nu-
merous applications (Daraio et al. 2006; Sen et al. 2008) stimulated theoretical and
mathematical research on the granular chains of particles.

The existence of solitary waves in granular chains was considered with a num-
ber of analytical and numerical techniques. In his two-page note, MacKay (1999)
showed how to adapt the technique of Friesecke and Wattis (1994) to the proof of the
existence of solitary waves. English and Pego (2005) used these results to prove the
double-exponential decay of spatial tails of solitary waves. Numerical convergence to
the solitary wave solutions was studied by Ahnert and Pikovsky (2009). Stefanov and
Kevrekidis (2012) reviewed the variational technique of Friesecke and Wattis (1994)
and proved that the solitary waves are bell-shaped (single-humped).

Recently, the interest to granular crystals has shifted towards periodic traveling
waves as well as traveling waves in heterogeneous (diatomic) chains, as more relevant
for physical experiments (Boechler et al. 2010; Harbola et al. 2009; Ponson et al.
2010; Porter et al. 2008, 2009; Theocharis et al. 2009, 2010). Unlike solitary waves,
periodic traveling waves were believed not to occur in uncompressed granular chains
until their recent numerical observations (Jayaprakash et al. 2011, 2012; Starosvetsky
and Vakakis 2010) (they have not been experimentally observed up to now).

Periodic wave solutions of the differential advance–delay equation were consid-
ered by James in the context of Newton’s cradle (James 2011) and homogeneous
granular crystals (James 2012). In particular in James (2012), the existence proof
was given for wavenumbers close to π and numerical approximations suggested that
periodic waves with wavelength larger than a critical value are spectrally unstable.
Convergence to solitary waves in the limit of infinite wavelengths and occurrence of
compactons were also illustrated numerically and asymptotically in James (2012).
In more recent work James et al. (2013) showed the non-existence of time-periodic
breathers in homogeneous granular crystals and the existence of these breathers in
Newton’s cradle, where a discrete p-Schrödinger equation provides a robust approx-
imation.

Periodic waves in a chain of finitely many beads closed in a periodic loop were ap-
proximated by Starosvetsky et al. in homogeneous (Starosvetsky and Vakakis 2010)
and heterogeneous (Jayaprakash et al. 2011, 2012) granular chains by using numer-
ical techniques based on Poincaré maps. Interesting enough, solitary waves were
found in the limit of zero mass ratio between lighter and heavy beads in Jayaprakash
et al. (2011). It is explained in Jayaprakash et al. (2011) that these solitary waves
are in resonance with linear waves and hence they do not persist with respect to the
mass ratio parameter. Numerical results of Jayaprakash et al. (2011) indicate the ex-
istence of a countable set of the mass ratio parameter values, for which solitary waves
should exist, but no rigorous studies of this problem have been developed so far. Re-
cent work Jayaprakash et al. (2012) contains numerical results on the existence of
periodic traveling waves in diatomic granular chains.

Inspired by these recent development in existence and stability of periodic trav-
eling waves in homogeneous and heterogeneous granular crystals, we address these
problems from an analytical point of view. To obtain rigorous analytical results, we
rely on the anti-continuum limit of the FPU lattice, which was recently explored in
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the context of existence and stability of discrete multi-site breathers by Yoshimura
(2011). An earlier study of the anti-continuum limit in diatomic FPU lattices was
developed by Livi et al. (1997).

By using a variant of the Implicit Function Theorem, we prove that every limiting
periodic wave is uniquely continued with respect to the mass ratio parameter. By the
perturbation theory arguments (which are similar to the recent work (Pelinovsky and
Sakovich 2012) in the context of the Klein–Gordon lattices), we also show that the
periodic waves with the wavelength larger than a certain critical value are spectrally
stable. Our results are different from the asymptotic calculations in Jayaprakash et al.
(2011), where a different limiting solution is considered in the anti-continuum limit.

The family of periodic nonlinear waves bifurcating from the anti-continuum limit
are shown numerically to extend all way to the limit of equal masses for the granular
beads. The periodic traveling waves of the homogeneous granular chains considered
in James (2012) are different from the periodic waves extended here from the anti-
continuum limit. In other words, the periodic waves in diatomic chains do not satisfy
the reductions to the periodic waves in homogeneous chains even if the mass ratio is 1.
Similar traveling waves consisting of binary oscillations in homogeneous chains were
considered a while ago with center manifold reduction methods (Iooss and James
2005).

The paper is organized as follows. Section 2 introduces the model and sets up
the scene for the search of periodic traveling waves. Continuation from the anti-
continuum limit is developed in Sect. 3. Section 4 gives perturbative results that char-
acterize Floquet multipliers in the spectral stability problem associated with the peri-
odic waves near the anti-continuum limit. Numerical results are collected together in
Sect. 5. Section 6 concludes the paper.

2 Formalism

2.1 The Model

We consider an infinite granular chain of spherical beads of alternating masses (a
diatomic granular chain). The physical configuration of the diatomic chain is shown
on Fig. 1. Dynamics of the granular beads of alternating masses obey the classical
Newton equations of motion,

{
mẍn = V ′(yn − xn) − V ′(xn − yn−1),

Mÿn = V ′(xn+1 − yn) − V ′(yn − xn),
n ∈ Z, (1)

where m and M are masses of light and heavy beads, whereas {xn}n∈Z and {yn}n∈Z

are deviations of the beads coordinates from their reference positions. The interaction
potential V represents the Hertzian contact forces for perfect spheres and is given by

V (x) = 1

1 + α
|x|1+αH(−x), (2)

where α = 3
2 and H is the Heaviside step function with H(x) = 1 for x > 0 and

H(x) = 0 for x ≤ 0. See review Sen et al. (2008) for a derivation of the Hertzian
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Fig. 1 Schematic
representation of a diatomic
granular chain

potential with α = 3
2 in the context of perfectly spherical granular crystals. Note that

our main results can be extended to arbitrary α > 1. The results definitely break for
α = 1 (the oscillators become harmonic) and for 0 < α < 1 (the potential V is not
C2).

The mass ratio is modeled by the parameter ε2 := m
M

. Using the substitution,

n ∈ Z : xn(t) = u2n−1(τ ), yn(t) = w2n(τ ), t = √
mτ, (3)

we rewrite the system of Newton’s equations (1) in the equivalent form
{

ü2n−1 = V ′(w2n − u2n−1) − V ′(u2n−1 − w2n−2),

ẅ2n = ε2V ′(u2n+1 − w2n) − ε2V ′(w2n − u2n−1),
n ∈ Z. (4)

The value ε = 0 correspond to the anti-continuum limit, when the heavy particles do
not move.

At the limit of equal mass ratio ε = 1, we note the reduction,

n ∈ Z : u2n−1(τ ) = U2n−1(τ ), w2n(τ ) = U2n(τ ), (5)

for which the system of two granular chains (4) reduces to the homogeneous granular
chain:

Ün = V ′(Un+1 − Un) − V ′(Un − Un−1), n ∈ Z. (6)

The system of Newton’s equations (4) has two symmetries. One symmetry is the
translational invariance of solutions with respect to τ , that is, if {u2n−1(τ ),w2n(τ )}n∈Z

is a solution of (4), then
{
u2n−1(τ + b),w2n(τ + b)

}
n∈Z

(7)

is also a solution of (4) for any b ∈ R. The other symmetry is a uniform shift of
coordinates {u2n−1,w2n}n∈Z, that is, if {u2n−1(τ ),w2n(τ )}n∈Z is a solution of (4),
then {

u2n−1(τ ) + a,w2n(τ ) + a
}
n∈Z

(8)

is also a solution of (4) for any a ∈ R.
The system of Newton’s equations (4) can be cast as a Hamiltonian dynamical

system with the symplectic structure:

du2n−1

dt
= ∂H

∂p2n−1
,

dp2n−1

dt
= − ∂H

∂u2n−1
,

dw2n

dt
= ∂H

∂q2n

,
dq2n

dt
= − ∂H

∂w2n

, n ∈ Z

(9)
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and the Hamiltonian function

H = 1

2

∑
n∈Z

(
p2

2n−1 + ε2q2
2n

) +
∑
n∈Z

V (w2n − u2n−1) +
∑
n∈Z

V (u2n−1 − w2n−2), (10)

written in canonical variables {u2n−1,p2n−1 = u̇2n−1,w2n, q2n = ẇ2n/ε
2}n∈Z.

2.2 Periodic Traveling Waves

We shall consider 2π -periodic solutions of the diatomic granular chain (4) satisfying

u2n−1(τ ) = u2n−1(τ + 2π), w2n(τ ) = w2n(τ + 2π), τ ∈ R, n ∈ Z. (11)

Traveling waves correspond to the special solution to the system of Newton’s equa-
tions (4), which satisfies the following reduction:

u2n+1(τ ) = u2n−1(τ + 2q), w2n+2(τ ) = w2n(τ + 2q), τ ∈ R, n ∈ Z, (12)

where q ∈ [0,π] is a free parameter. We note that the constraints (11) and (12) imply
that there exist 2π -periodic functions u∗ and w∗ such that

u2n−1(τ ) = u∗(τ + 2qn), w2n(τ ) = w∗(τ + 2qn), τ ∈ R, n ∈ Z. (13)

In this context, q is inverse proportional to the wavelength of the periodic traveling
wave over the chain n ∈ Z. The functions u∗ and w∗ satisfy the following system of
differential advance–delay equations:

{
ü∗(τ ) = V ′(w∗(τ ) − u∗(τ )) − V ′(u∗(τ ) − w∗(τ − 2q)),

ẅ∗(τ ) = ε2V ′(u∗(τ + 2q) − w∗(τ )) − ε2V ′(w∗(τ ) − u∗(τ )),
τ ∈ R. (14)

Remark 1 A more general traveling periodic wave can be sought in the form

u2n−1(τ ) = u∗(cτ + 2qn), w2n(τ ) = w∗(cτ + 2qn), τ ∈ R, n ∈ Z,

where c > 0 is an arbitrary parameter. However, the parameter c can be normalized
to one thanks to invariance of the system of Newton’s equations (4) with the Hertzian
potential (2) with respect to a scaling transformation.

Remark 2 For particular values q = πm
N

, where m and N are positive integers such
that 1 ≤ m ≤ N , periodic traveling waves satisfy a system of 2mN second-order
differential equations that follow from the system of lattice differential equations (4)
subject to the periodic conditions:

u−1 = u2mN−1, u2mN+1 = u1, w0 = w2mN, w2mN+2 = w2. (15)

This reduction is useful for analysis of stability of periodic traveling waves and for
numerical approximations.
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2.3 Anti-continuum Limit

Let ϕ be a solution of the nonlinear oscillator equation,

ϕ̈ = V ′(−ϕ) − V ′(ϕ) ⇒ ϕ̈ + |ϕ|α−1ϕ = 0. (16)

Because α = 3
2 , bootstrapping arguments show that if there exists a classical 2π -

periodic solution of the differential equation (16), then ϕ ∈ C3
per(0,2π).

The nonlinear oscillator equation (16) has the first integral

E = 1

2
ϕ̇2 + 1

1 + α
|ϕ|α+1. (17)

The phase portrait of the nonlinear oscillator (16) on the (ϕ, ϕ̇)-plane consists of
a family of closed orbits around the only equilibrium point (0,0). Each orbit cor-
responds to the T -periodic solution for ϕ, where T is determined uniquely by en-
ergy E. It is well-known (James 2012; Yoshimura 2011) that, for α > 1, the period
T is a monotonically decreasing function of E such that T → ∞ as E → 0 and
T → 0 as E → ∞. Therefore, there exists a unique E0 ∈ R+ such that T = 2π for
this E = E0. We also know that the nonlinear oscillator (16) is non-degenerate in the
sense that T ′(E0) 
= 0 (to be more precise, T ′(E0) < 0).

In what follows, we only consider 2π -periodic functions ϕ which are defined
by (17) for E = E0. For uniqueness arguments, we shall consider initial conditions
ϕ(0) = 0 and ϕ̇(0) > 0, which determine uniquely one of the two odd 2π -periodic
functions ϕ.

The limiting 2π -periodic traveling wave solution at ε = 0 should satisfy the con-
straints (12), which we do by choosing, for any fixed q ∈ [0,π],

ε = 0 : u2n−1(τ ) = ϕ(τ + 2qn), w2n(τ ) = 0, τ ∈ R, n ∈ Z. (18)

To prove the persistence of this limiting solution with respect to the mass ratio pa-
rameter ε2, we shall work in the Sobolev spaces of odd 2π -periodic functions for
{u2n−1}n∈Z,

Hk
u = {

u ∈ Hk
per(0,2π) : u(−τ) = −u(τ), τ ∈ R

}
, k ∈ N0, (19)

and in the Sobolev spaces of 2π -periodic functions with zero mean for {w2n}n∈Z,

Hk
w =

{
w ∈ Hk

per(0,2π) :
∫ 2π

0
w(τ)dτ = 0

}
, k ∈ N0. (20)

The constraints in (19) and (20) reflects the presence of the two symmetries (7) and
(8). The two symmetries generate a two-dimensional kernel of the linearized opera-
tors. Under the constraints in (19) and (20), the kernel of the linearized operators is
trivial, zero-dimensional.

It will be clear from analysis that the vector space Hk
w defined by (20) is not precise

enough to prove the persistence of traveling wave solutions satisfying the constraints
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(12). Instead of this space, for any fixed q ∈ [0,π], we introduce the vector space H̃ k
w

by

H̃ k
w = {

w ∈ Hk
per(0,2π) : w(τ) = −w(−τ − 2q)

}
, k ∈ N0. (21)

We note that H̃ k
w ⊂ Hk

w , because if the constraint w(τ) = −w(−τ − 2q) is satisfied,
then the 2π -periodic function w has zero mean. We also note that symmetry con-
straint in H̃ k

w can be written as a shifted version of the symmetry constraint in Hk
u :

w(τ − q) = −w(−τ − q). Although this constraint is not induced directly by the
symmetries (7) and (8), we find that it provides a sufficient frame for application of
the Implicit Function Theorem.

2.4 Special Periodic Traveling Waves

Before developing persistence analysis, we shall point out three remarkable explicit
periodic traveling solutions of the diatomic granular chain (4) for q = 0, q = π

2 and
q = π . For q = π

2 , we have an exact solution

q = π

2
: u2n−1(τ ) = ϕ(τ + πn), w2n(τ ) = 0. (22)

This solution preserves the constraint V ′(u2n+1) = V ′(−u2n−1) in the system of
Newton’s equations (4) thanks to the symmetry ϕ(τ − π) = ϕ(τ + π) = −ϕ(τ) of
the 2π -periodic solution of the nonlinear oscillator equation (16).

For either q = 0 or q = π , we obtain another exact solution,

q = {0,π} : u2n−1(τ ) = ϕ(τ)

(1 + ε2)3
, w2n(τ ) = −ε2ϕ(τ)

(1 + ε2)3
. (23)

By construction, these solutions (22) and (23) persist for any ε ≥ 0. We shall
investigate if the continuations are unique near ε = 0 for these special values of q

and if there exists a unique continuation of the general limiting solution (18) in ε for
any other fixed value of q ∈ [0,π].

Furthermore, we note that the exact solution (23) for q = π at ε = 1 satisfies the
constraint (5) with U2n−1(τ ) = −U2n(τ ) = U2n(τ −π). This reduction indicates that
the periodic traveling wave solution (23) for q = π and ε = 1 satisfies the homoge-
neous granular chain (6) and coincides with the solution considered by James (2012).
On the other hand, the exact solutions (22) for q = π

2 and (23) for q = 0 do not pro-
duce any solutions of the homogeneous granular chain at ε = 1. This fact implies that
there exist generally two distinct solutions at ε = 1, one is continued from ε = 0 and
the other one is constructed from the solution of the homogeneous granular chain (6)
in James (2012).
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3 Persistence of Periodic Traveling Waves Near ε = 0

3.1 Main Result

We consider the system of differential advance–delay equations (14). The limiting
solution (18) becomes now

ε = 0 : u∗(τ ) = ϕ(τ), w∗(τ ) = 0, τ ∈ R, (24)

where ϕ is a unique odd 2π -periodic solution of the nonlinear oscillator equation (16)
with ϕ̇(0) > 0. We now formulate the main result of this section.

Theorem 1 Fix q ∈ [0,π]. There is a unique C1 continuation of 2π -periodic travel-
ing wave (24) in ε2, that is, there is a ε0 > 0 such that for every ε ∈ (0, ε0), there are
a positive constant C and a unique 2π -periodic solution (u∗,w∗) ∈ H 2

u × H̃ 2
w of the

system of differential advance–delay equations (14) such that

‖u∗ − ϕ‖H 2
per

+ ‖w∗‖H 2
per

≤ Cε2. (25)

Remark 3 By Theorem 1, the limiting solution (24) for q ∈ {0, π
2 ,π} is uniquely

continued in ε. These continuations coincide with the exact solutions (22) and (23).

3.2 Formal Expansions in Powers of ε

Let us first consider formal expansions in powers of ε to understand the persistence
analysis from ε = 0. Expanding the solution of the differential advance–delay equa-
tions (14), we write

u∗(τ ) = ϕ(τ) + ε2u(2)∗ (τ ) + o
(
ε2), w∗(τ ) = ε2w(2)∗ (τ ) + o

(
ε2), (26)

and obtain the linear inhomogeneous equations

ẅ(2)∗ (τ ) = F (2)
w (τ ) := V ′(ϕ(τ + 2q)

) − V ′(−ϕ(τ)
)

(27)

and

ü(2)∗ (τ ) + α
∣∣ϕ(τ)

∣∣α−1
u(2)∗ (τ )

= F (2)
u (τ ) := V ′′(−ϕ(τ)

)
w(2)∗ (τ ) + V ′′(ϕ(τ)

)
w(2)∗ (τ − 2q). (28)

Because V is C2 but not C3, we have to truncate the formal expansion (26) at o(ε2)

to indicate that there are obstacles to continue the power series beyond terms of the
O(ε2) order.

Let us consider two differential operators

L0 = d2

dτ 2
: H 2

per(0,2π) → L2
per(0,2π), (29)



J Nonlinear Sci (2013) 23:689–730 697

L = d2

dτ 2
+ α

∣∣ϕ(τ)
∣∣α−1 : H 2

per(0,2π) → L2
per(0,2π). (30)

As a consequence of two symmetries, these operators are not invertible because they
admit one-dimensional kernels,

Ker(L0) = span{1}, Ker(L) = span{ϕ̇}. (31)

Note that the kernel of L is one-dimensional under the constraint T ′(E0) 
= 0 (see
Lemma 3 in James (2012) for a review of this standard result).

To find uniquely solutions of the inhomogeneous equations (27) and (28) in func-
tion spaces H 2

w and H 2
u , respectively, see (19) and (20) for definition of function

spaces, the source terms must satisfy the Fredholm conditions

〈
1,F (2)

w

〉
L2

per
= 0 and

〈
ϕ̇,F (2)

u

〉
L2

per
= 0.

The first Fredholm condition is satisfied,

∫ 2π

0

[
V ′(ϕ(τ + 2q)

) − V ′(−ϕ(τ)
)]

dτ

=
∫ 2π

0
V ′(ϕ(τ + 2q)

)
dτ −

∫ 2π

0
V ′(−ϕ(τ)

)
dτ = 0,

because the mean value of a periodic function is independent on the limits of inte-
gration and the function ϕ is odd in τ . Since F

(2)
w ∈ L2

w , there is a unique solution
w(2) ∈ H 2

w of the linear inhomogeneous equation (27).
The second Fredholm condition is satisfied,

∫ 2π

0
ϕ̇(τ )

[
V ′′(−ϕ(τ)

)
w(2)∗ (τ ) + V ′′(ϕ(τ)

)
w(2)∗ (τ − 2q)

]
dτ = 0,

if the function F
(2)
u is odd in τ . If this is the case, then F

(2)
u ∈ L2

u and there is a unique

solution u(2) ∈ H 2
u of the linear inhomogeneous equation (28). To show that F

(2)
u is

odd in τ , we will prove that w
(2)∗ satisfies the reduction

w(2)∗ (τ ) = −w(2)∗ (−τ − 2q) ⇒ F (2)
u (−τ) = −F (2)

u (τ ), τ ∈ R. (32)

It follows from the linear inhomogeneous equation (27) that

ẅ(2)∗ (τ ) + ẅ(2)∗ (−τ − 2q) = V ′(ϕ(τ + 2q)
) − V ′(−ϕ(τ)

) + V ′(ϕ(−τ)
)

− V ′(−ϕ(−τ − 2q)
) = 0,

where the last equality appears because ϕ is odd in τ . Integrating this equation twice
and using the fact that w

(2)∗ ∈ H 2
w , we obtain reduction (32). Note that the reduction

(32) implies that w
(2)∗ ∈ H̃ 2

w , where H̃ 2
w ⊂ H 2

w is given by (21).
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3.3 Proof of Theorem 1

To prove Theorem 1, we shall consider the vector fields of the differential advance–
delay equations (14),

{
Fu(u(τ),w(τ)) := V ′(w(τ) − u(τ)) − V ′(u(τ ) − w(τ − 2q)),

Fw(u(τ),w(τ), ε) := ε2V ′(u(τ + 2q) − w(τ)) − ε2V ′(w(τ) − u(τ)).
(33)

We are looking for a strong solution (u∗,w∗) of the system (14) satisfying the reduc-
tion,

u∗(−τ) = −u∗(τ ), w∗(τ ) = −w∗(−τ − 2q), τ ∈ R, (34)

that is, u∗ ∈ H 2
u (R) and w∗ ∈ H̃ 2

w(R).
If (u,w) ∈ H 2

u × H̃ 2
w , then Fu is odd in τ . Furthermore, since V is C2, then Fu is

a C1 map from H 2
u × H̃ 2

w to L2
u and its Jacobian at w = 0 is given by

DuFu(u,0) = −V ′′(−u) − V ′′(u) = −α|u|α−1,

DwFu(u,0) = V ′′(−u) − V ′′(u) = α|u|α−1sign(u).

On the other hand, under the constraints (34), we have Fw ∈ L2
w , because

∫ 2π

0
Fw

(
u(τ),w(τ), ε

)
dτ = ε2

∫ 2π

0
V ′(u(τ + 2q) + w(−τ − 2q)

)
dτ

− ε2
∫ 2π

0
V ′(w(τ) + u(−τ)

)
dτ = 0.

Moreover, under the constraints (34), we actually have Fw ∈ L̃2
w because

Fw

(
u(τ),w(τ), ε

) + Fw

(
u(−τ − 2q),w(−τ − 2q), ε

)
= ε2V ′(u(τ + 2q) − w(τ)

) − ε2V ′(w(τ) − u(τ)
)

+ ε2V ′(u(−τ) − w(−τ − 2q)
) − ε2V ′(w(−τ − 2q) − u(−τ − 2q)

)
= 0.

Since V is C2, then Fw is a C1 map from H 2
u × H̃ 2

w to L̃2
w . We also note that

Fw(u,w, ε) = ε2F̃w(u,w), where F̃w(u,w) is ε-independent.
Let us now define the nonlinear operator

⎧⎨
⎩

fu(u,w, ε) := d2u

dτ 2 − Fu(u,w),

fw(u,w, ε) := d2w

dτ 2 − ε2F̃w(u,w).
(35)

The nonlinear operator (fu, fw) : H 2
u × H̃ 2

w × R → L2
u × L̃2

w is C1 near the point
(ϕ,0,0) ∈ H 2

u × H̃ 2
w × R. To apply the Implicit Function Theorem near this point,

we need (fu, fw) = (0,0) at (u,w, ε) = (ϕ,0,0) and the invertibility of the Jacobian
operator (fu, fw) with respect to (u,w) near (ϕ,0,0).
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The Jacobian operator of (fu, fw) at (ϕ,0,0) is given by the matrix

[
L α|ϕ|α−1sign(ϕ)

0 L0

]
,

where operators L and L0 are defined by (29) and (30). The kernels of these opera-
tors in (31) are zero-dimensional in the constrained vector spaces (19) and (20) (we
actually use space (21) in place of space (20)).

By the Implicit Function Theorem, there exists a C1 continuation of the limiting
solution (24) with respect to ε2 as the 2π -periodic solutions (u∗,w∗) ∈ H 2

u × H̃ 2
w

of the system of differential advance–delay equations (14) near ε = 0. The proof of
Theorem 1 is complete.

4 Spectral Stability of Periodic Traveling Waves Near ε = 0

4.1 Linearization at the Periodic Traveling Waves

We shall consider the diatomic granular chain (4), which admits for small ε > 0 the
periodic traveling waves in the form (13), where (u∗,w∗) is defined by Theorem 1.
Linearizing the system of nonlinear equations (4) at the periodic traveling waves (13),
we obtain the system of linearized equations for small perturbations,

⎧⎪⎪⎨
⎪⎪⎩

ü2n−1 = V ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(w2n − u2n−1)

− V ′′(u∗(τ + 2qn) − w∗(τ + 2qn − 2q))(u2n−1 − w2n−2),

ẅ2n = ε2V ′′(u∗(τ + 2qn + 2q) − w∗(τ + 2qn))(u2n+1 − w2n)

− ε2V ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(w2n − u2n−1),

(36)

where n ∈ Z. A technical complication is that V ′′ is continuous but not continuous
differentiable. This will complicate our analysis of perturbation expansions for small
ε > 0. Note that the technical complications do not occur for the exact solutions (22)
and (23). Indeed, for the exact solution (22) with q = π

2 , the linearized system (36) is
rewritten explicitly as

{
ü2n−1 + α|ϕ|α−1u2n−1 = V ′′(−ϕ)w2n + V ′′(ϕ)w2n−2,

ẅ2n + 2ε2V ′′(−ϕ)w2n = ε2V ′′(−ϕ)(u2n+1 + u2n−1).
(37)

For the exact solution (23) with q = 0 or q = π , the linearized system (36) is rewritten
explicitly as

{
ü2n−1 + α

1+ε2 |ϕ|α−1u2n−1 = 1
1+ε2 (V ′′(−ϕ)w2n + V ′′(ϕ)w2n−2),

ẅ2n + αε2

1+ε2 |ϕ|α−1w2n = ε2

1+ε2 (V ′′(ϕ)u2n+1 + V ′′(−ϕ)u2n−1).
(38)

In both cases, the linearized systems (37) and (38) are analytic in ε near ε = 0.
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The system of linearized equations (36) has the same symplectic structure (9), but
the Hamiltonian function is now given by

H = 1

2

∑
n∈Z

(
p2

2n−1 + ε2q2
2n

)

+ 1

2

∑
n∈Z

V ′′(w∗(τ + 2qn) − u∗(τ + 2qn)
)
(w2n − u2n−1)

2

+ 1

2

∑
n∈Z

V ′′(u∗(τ + 2qn) − w∗(τ + 2qn − 2q)
)
(u2n−1 − w2n−2)

2. (39)

The Hamiltonian H is quadratic in canonical variables {u2n−1,p2n−1 = u̇2n−1,w2n,

q2n = ẇ2n/ε
2}n∈Z.

4.2 Main Result

Because coefficients of the linearized equations (36) are 2π -periodic in τ , we shall
look for an infinite-dimensional analog of the Floquet theorem that states that all
solutions of the linear system with 2π -periodic coefficients satisfies the reduction

u(τ + 2π) = Mu(τ ), τ ∈ R, (40)

where u := [. . . ,w2n−2, u2n−1,w2n,u2n+1, . . .] and M is the monodromy operator.
Eigenvalues of the monodromy operator M denoted by μ are called the Floquet
multipliers.

Remark 4 Let q = πm
N

for some positive integers m and N such that 1 ≤ m ≤ N . In
this case, the system of nonlinear equations (4) can be closed into a chain of 2mN

second-order differential equations subject to the periodic boundary conditions (15).
Similarly, the system of linearized equations (36) can also be closed as a system of
2mN second-order equations and the monodromy operator M becomes an infinite
diagonal composition of an identical 4mN -by-4mN Floquet matrix.

We can find eigenvalues of the monodromy operator M by looking for the set of
eigenvectors in the form,

u2n−1(τ ) = U2n−1(τ )eλτ , w2n(τ ) = εW2n(τ )eλτ , τ ∈ R, (41)

where (U2n−1,W2n) are 2π -periodic functions and the admissible values of λ are
found from the existence of these 2π -periodic functions. The admissible values of λ

are called the characteristic exponents and they define the Floquet multipliers μ by
the standard formula μ = e2πλ.
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Eigenvectors (41) are defined as 2π -periodic solutions of the linear eigenvalue
problem,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ü2n−1 + 2λU̇2n−1 + λ2U2n−1
= V ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(εW2n − U2n−1)

− V ′′(u∗(τ + 2qn) − w∗(τ + 2qn − 2q))(U2n−1 − εW2n−2),

Ẅ2n + 2λẆ2n + λ2W2n

= εV ′′(u∗(τ + 2qn + 2q) − w∗(τ + 2qn))(U2n+1 − εW2n)

− εV ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(εW2n − U2n−1).

(42)

Associated with simple imaginary characteristic exponents λ ∈ iR, we define the
Krein signature of such eigenvalues as the sign of the 2-form associated with the
symplectic structure (9):

σ = i
∑
n∈Z

[u2n−1p̄2n−1 − ū2n−1p2n−1 + w2nq̄2n − w̄2nq2n], (43)

where {u2n−1,p2n−1 = u̇2n−1,w2n, q2n = ẇ2n/ε
2}n∈Z is obtained from the corre-

sponding eigenvector (41). By the symmetry of the linear eigenvalue problem (42), it
follows that if λ is an eigenvalue, then λ̄ is also an eigenvalue, whereas the 2-form σ

is constant with respect to τ ∈ R.

Remark 5 The Krein signature plays an important role in the studies of spectral
stability of periodic solutions (see Sect. 4 in Aubry 1997). In particular, instabili-
ties associated with complex characteristic exponents with Re(λ) > 0 typically arise
when two imaginary characteristic exponents λ with opposite Krein signatures coa-
lesce (Bridges 1990; MacKay 1986; Vougalter and Pelinovsky 2006). The count of
eigenvalues of different Krein signatures is also important for the control of the total
number of unstable eigenvalues in Hamiltonian dynamical systems (Chugunova and
Pelinovsky 2010; Kapitula et al. 2004; Pelinovsky 2005).

If ε = 0, the monodromy operator M in (40) is block-diagonal and consists of
an infinite set of 2-by-2 Jordan blocks, because the diatomic granular chain (4) is
decoupled into a countable set of uncoupled second-order differential equations. As
a result, the linear eigenvalue problem (42) with the limiting solution (24) admits an
infinite set of 2π -periodic solutions for λ = 0,

ε = 0 : U
(0)
2n−1 = c2n−1ϕ̇(τ + 2qn), W

(0)
2n = a2n, n ∈ Z, (44)

where {c2n−1, a2n}n∈Z are arbitrary coefficients. Besides eigenvectors (44), there
exists another countable set of generalized eigenvectors for each of the uncoupled
second-order differential equations, which contribute to 2-by-2 Jordan blocks. Each
block corresponds to the double Floquet multiplier μ = 1 or the double character-
istic exponent λ = 0. When ε 
= 0 but ε � 1, the characteristic exponent λ = 0 of
a high algebraic multiplicity splits. We shall study the splitting of the characteristic
exponents λ by the perturbation arguments.

We now formulate the main result of this section.
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Theorem 2 Fix q = πm
N

for some positive integers m and N such that 1 ≤ m ≤ N .

Let (u∗,w∗) ∈ H 2
u × H̃ 2

w be defined by Theorem 1 for sufficiently small positive ε.
Consider the linear eigenvalue problem (42) subject to 2mN -periodic boundary
conditions (15). There is a ε0 > 0 such that, for every ε ∈ (0, ε0), there exists
q0(ε) ∈ (0, π

2 ) such that for every q ∈ (0, q0(ε)) or q ∈ (π − q0(ε),π], no values
of λ with Re(λ) 
= 0 exist, whereas for every q ∈ (q0(ε),π − q0(ε)), there exist char-
acteristic values of λ with Re(λ) > 0.

Remark 6 By Theorem 2, periodic traveling waves are spectrally stable for q ∈
(0, q0(ε)) and q ∈ (π − q0(ε),π] and unstable for q ∈ (q0(ε),π − q0(ε)). The nu-
merical value of q0(ε) as ε → 0 is q0(0) ≈ 0.915. Therefore, the linearized system
(37) for the exact solution (22) with q = π

2 subject to 4-periodic boundary conditions
(m = 1 and N = 2) is unstable for small ε > 0, whereas the linearized system (38) for
the exact solution (23) with q = π subject to 2-periodic boundary conditions (m = 1
and N = 1) is stable for small ε > 0.

Remark 7 The result of Theorem 2 is expected to hold for all values of q in [0,π]
but the spectrum of the linear eigenvalue problem (42) for the characteristic expo-
nent λ becomes continuous and the spectral band is connected to zero. An infinite-
dimensional analog of perturbation theory is required to study the eigenvalues of the
monodromy operator M in this case.

Remark 8 The case q = 0 is degenerate for an application of the perturbation the-
ory. Nevertheless, we show numerically that the linearized system (38) for the exact
solution (23) with q = 0 (m = 1 and N → ∞) is stable for small ε > 0 and all char-
acteristic exponents are at least double for any ε > 0.

4.3 Formal Perturbation Expansions

We would normally expect splitting λ = O(ε1/2) if the limiting linear eigenvalue
problem at ε = 0 is diagonally decomposed into 2-by-2 Jordan blocks (Pelinovsky
and Sakovich 2012). However, in the linearized diatomic granular chain (42), this
splitting occurs in a higher order, that is, λ = O(ε), because the coupling between
the particles of equal masses shows up at the O(ε2) order of the perturbation theory.
Regular perturbation computations in O(ε2) would require V ′′ to be at least C1,
which we do not have. In the computations below, we neglect this obstacle, which is
possible for at least q = π

2 and q = π . For other values of q , the formal perturbation
expansion of this section will be justified in Sect. 4.7 with a kind of renormalization
technique.

Expanding 2π -periodic solutions of the linear eigenvalue problem (42), we write

λ = ελ(1) + ε2λ(2) + o
(
ε2) (45)

and {
U2n−1 = U

(0)
2n−1 + εU

(1)
2n−1 + ε2U

(2)
2n−1 + o(ε2),

W2n = W
(0)
2n + εW

(1)
2n + ε2W

(2)
2n + o(ε2),

(46)
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where the zeroth-order terms are given by (44). To determine corrections of these
expansions uniquely, we shall require that

〈
ϕ̇,U

(j)

2n−1

〉
L2

per
= 〈

1,W
(j)

2n

〉
L2

per
= 0, n ∈ Z, j = 1,2. (47)

Indeed, if U
(j)

2n−1 contains a component, which is parallel to ϕ̇, then the corresponding
term only changes the value of c2n−1 in the eigenvector (44), which is yet to be
determined. Similarly, if a 2π -periodic function W

(j)

2n has a nonzero mean value,

then the mean value of W
(j)

2n only changes the value of a2n in the eigenvector (44),
which is yet to be determined.

The linearized equations (42) are satisfied at the O(ε0) order. Collecting terms at
the O(ε) order, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ü
(1)
2n−1 + α|ϕ(τ + 2qn)|α−1U

(1)
2n−1

= −2λ(1)U̇
(0)
2n−1 + V ′′(−ϕ(τ + 2qn))W

(0)
2n + V ′′(ϕ(τ + 2qn))W

(0)
2n−2,

Ẅ
(1)
2n = −2λ(1)Ẇ

(0)
2n + V ′′(ϕ(τ + 2qn + 2q))U

(0)
2n+1

+ V ′′(−ϕ(τ + 2qn))U
(0)
2n−1.

(48)

Let us define solutions of the following linear inhomogeneous equations:

v̈ + α|ϕ|α−1v = −2ϕ̈, (49)

ÿ± + α|ϕ|α−1y± = V ′′(±ϕ), (50)

z̈± = V ′′(±ϕ)ϕ̇. (51)

If we can find uniquely 2π -periodic solutions of these equations such that

〈ϕ̇, v〉L2
per

= 〈ϕ̇, y±〉L2
per

= 〈1, z±〉L2
per

= 0,

then the perturbation equations (48) at the O(ε) order are satisfied with the solution:
{

U
(1)
2n−1 = c2n−1λ

(1)v(τ + 2qn) + a2ny−(τ + 2qn) + a2n−2y+(τ + 2qn),

W
(1)
2n = c2n+1z+(τ + 2qn + 2q) + c2n−1z−(τ + 2qn).

(52)

The linearized equations (42) are now satisfied up to the O(ε) order. Collecting
terms at the O(ε2) order, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü
(2)
2n−1 + α|ϕ(τ + 2qn)|α−1U

(2)
2n−1

= −2λ(1)U̇
(1)
2n−1 − 2λ(2)U̇

(0)
2n−1 − (λ(1))2U

(0)
2n−1

+ V ′′(−ϕ(τ + 2qn))W
(1)
2n + V ′′(ϕ(τ + 2qn))W

(1)
2n−2

− V ′′′(−ϕ(τ + 2qn))(w
(2)∗ (τ + 2qn) − u

(2)∗ (τ + 2qn))U
(0)
2n−1

− V ′′′(ϕ(τ + 2qn))(u
(2)∗ (τ + 2qn) − w

(2)∗ (τ + 2qn − 2q))U
(0)
2n−1,

Ẅ
(2)
2n = −2λ(1)Ẇ

(1)
2n − 2λ(2)Ẇ

(0)
2n − (λ(1))2W

(0)
2n

+ V ′′(ϕ(τ + 2qn + 2q))(U
(1)
2n+1 − W

(0)
2n )

+ V ′′(−ϕ(τ + 2qn))(U
(1)
2n−1 − W

(0)
2n ),

(53)
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where corrections u
(2)∗ and w

(2)∗ are defined by expansion (26).
To solve the linear inhomogeneous equations (53), the source terms have to satisfy

the Fredholm conditions because both operators L and L0 defined by (29) and (30)
have one-dimensional kernels. Therefore, we require the first equation of system (53)
to be orthogonal to ϕ̇ and the second equation of system (53) to be orthogonal to
1 on [−π,π]. Substituting (44) and (52) to the orthogonality conditions and taking
into account the symmetry between couplings of lattice sites on Z, we obtain the
difference equations for {c2n−1, a2n}n∈Z:

{
KΛ2c2n−1 = M1(c2n+1 + c2n−3 − 2c2n−1) + L1Λ(a2n − a2n−2),

Λ2a2n = M2(a2n+2 + a2n−2 − 2a2n) + L2Λ(c2n+1 − c2n−1),
(54)

where Λ ≡ λ(1), and (K,M1,M2,L1,L2) are numerical coefficients to be computed
from the projections. In particular, we obtain

K =
∫ π

−π

(
2v̇(τ ) + ϕ̇(τ )

)
ϕ̇(τ )dτ,

M1 =
∫ π

−π

V ′′(−ϕ(τ)
)
ϕ̇(τ )z+(τ + 2q)dτ =

∫ π

−π

V ′′(ϕ(τ)
)
ϕ̇(τ )z−(τ − 2q)dτ,

M2 = 1

2π

∫ π

−π

V ′′(ϕ(τ + 2q)
)
y−(τ + 2q)dτ = 1

2π

∫ π

−π

V ′′(−ϕ(τ)
)
y+(τ )dτ,

L1 = −2
∫ π

−π

ẏ−(τ )ϕ̇(τ )dτ = 2
∫ π

−π

ẏ+(τ )ϕ̇(τ )dτ,

L2 = 1

2π

∫ π

−π

V ′′(ϕ(τ + 2q)
)
v(τ + 2q)dτ = − 1

2π

∫ π

−π

V ′′(−ϕ(τ)
)
v(τ)dτ.

Note that the coefficients M1 and M2 need not to be computed at the diagonal
terms c2n−1 and a2n thanks to the fact that the difference equations (54) with Λ = 0
must have eigenvectors with equal values of {c2n−1}n∈Z and {a2n}n∈Z, which corre-
spond to the two symmetries of the system of linearized equations (36) related to the
symmetries (7) and (8). This fact shows that the problem of limited smoothness of
V ′′, which is C but not C1 near zero, is not a serious obstacle in the derivation of
the reduced system (54). Indeed, we show in Sect. 4.7 how to fix the perturbation
expansion and to avoid this obstacle.

Difference equations (54) give a necessary and sufficient condition to solve the
linear inhomogeneous equations (53) at the O(ε2) order and to continue the perturba-
tion expansions beyond this order. Before justifying this formal perturbation theory,
we shall explicitly compute the coefficients (K,M1,M2,L1,L2) of the difference
equations (54).

Note that the system of difference equations (54) presents a quadratic eigenvalue
problem with respect to the spectral parameter Λ. Such quadratic eigenvalue problem
appear often in the context of spectral stability of nonlinear waves (Chugunova and
Pelinovsky 2009; Kollar 2011).
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4.4 Explicit Computations of the Coefficients

We shall prove the following technical result.

Lemma 1 Coefficients K , M2, L1, and L2 are independent of q and are given by

K = − 4π2

T ′(E0)
, M2 = 2

πT ′(E0)(ϕ̇(0))2
,

L1 = 2πL2 = 2(2π − T ′(E0)(ϕ̇(0))2)

T ′(E0)ϕ̇(0)
.

Consequently, K > 0, whereas M2,L1,L2 < 0. On the other hand, coefficient M1
depends on q and is given by

M1 = − 2

π

(
ϕ̇(0)

)2 + I (q),

where

I (q) = I (π − q) := −
∫ π

π−2q

ϕ̈(τ )ϕ̈(τ + 2q)dτ for q ∈
[

0,
π

2

]
.

To prove Lemma 1, we first uniquely solve the linear inhomogeneous equations
(49), (50), and (51). For Eq. (49), we note that a general solution is

v(τ) = −τ ϕ̇(τ ) + b1ϕ̇(τ ) + b2∂EϕE0(τ ), τ ∈ [−π,π],
where (b1, b2) are arbitrary constants and ∂EϕE0 is the derivative of the T (E)-
periodic solution ϕE of the nonlinear oscillator equation (16) with the first integral
(17) satisfying initial conditions ϕE(0) = 0 and ϕ̇E(0) = √

2E at the value of energy
E = E0, for which T (E0) = 2π . We note the equation

∂EϕE0(±π) = ∓1

2
T ′(E0)ϕ̇(±π), (55)

that follows from the differentiation of equation ϕE(±T (E)/2) = 0 with respect to
E at E = E0.

To define v uniquely, we require that 〈ϕ̇, v〉L2
per

= 0. Because ϕ̇ is even in τ ,
whereas τ ϕ̇ and ∂EϕE0 are odd, we hence have b1 = 0 and v(0) = 0. Hence v is
odd in τ and, in order to satisfy the 2π -periodicity, we shall only require v(π) = 0,
which uniquely specifies the value of b2 by virtue of (55),

b2 = πϕ̇(π)

∂EϕE0(π)
= − 2π

T ′(E0)
.

As a result, we obtain

v(τ) = −τ ϕ̇(τ ) − 2π

T ′(E0)
∂EϕE0(τ ), τ ∈ [−π,π]. (56)
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For Eq. (50), we can use ϕ(τ) ≥ 0 for τ ∈ [0,π] and ϕ(τ) ≤ 0 for τ ∈ [−π,0]. We
can also use the symmetry ϕ̇(π) = −ϕ̇(0). Integrating equations for y± separately,
we obtain

y+(τ ) =
{

1 + a+ϕ̇ + b+∂EϕE0 , τ ∈ [−π,0],
c+ϕ̇ + d+∂EϕE0, τ ∈ [0,π],

y−(τ ) =
{

a−ϕ̇ + b−∂EϕE0, τ ∈ [−π,0],
1 + c−ϕ̇ + d−∂EϕE0 , τ ∈ [0,π].

Continuity of y± and ẏ± across τ = 0 defines uniquely d± = b± and c± = a± ± 1
ϕ̇(0)

.
With this definition, ẏ±(−π) = ẏ±(π), whereas condition y±(−π) = y±(π) sets up
uniquely

b± = ± 2

T ′(E0)ϕ̇(0)
,

whereas constants a± are not specified.
To define y± uniquely, we again require that 〈ϕ̇, y±〉L2

per
= 0. This yields the con-

straint on a±,

a± = ∓ 1

2ϕ̇(0)
∓

2〈ϕ̇, ∂EϕE0〉L2
per

T ′(E0)ϕ̇(0)〈ϕ̇, ϕ̇〉L2
per

.

As a result, we obtain

y+(τ ) = a+ϕ̇(τ ) + b+∂EϕE0(τ ) +
{

1, τ ∈ [−π,0],
ϕ̇(τ )
ϕ̇(0)

, τ ∈ [0,π], (57)

and

y−(τ ) = a−ϕ̇(τ ) + b−∂EϕE0(τ ) +
{

0, τ ∈ [−π,0],
1 − ϕ̇(τ )

ϕ̇(0)
, τ ∈ [0,π], (58)

where (a±, b±) are uniquely defined above.
For Eq. (51), we integrate separately on [−π,0] and [0,π] to obtain

ż+(τ ) =
{

c+ − |ϕ(τ)|α, τ ∈ [−π,0],
c+, τ ∈ [0,π],

and

ż−(τ ) =
{

c−, τ ∈ [−π,0],
c− + |ϕ(τ)|α, τ ∈ [0,π],

where (c+, c−) are constants of integration and continuity of ż± across τ = 0 have
been used. To define z± uniquely, we require that 〈1, z±〉L2

per
= 0. Integrating the

equations above under this condition, we obtain

z+(τ ) =
{

c+τ + d+ − ϕ̇(τ ), τ ∈ [−π,0],
c+τ − d+, τ ∈ [0,π],
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and

z−(τ ) =
{

c−τ + d−, τ ∈ [−π,0],
c−τ − d− − ϕ̇(τ ), τ ∈ [0,π],

where (d+, d−) are constants of integration. Continuity of z± across τ = 0 uniquely
sets coefficients d± = ± 1

2 ϕ̇(0). Periodicity of ż±(−π) = ż±(π) is satisfied. Period-
icity of z±(−π) = z±(π) uniquely defines coefficients c± = ± 1

π
ϕ̇(0). As a result,

we obtain

z+(τ ) = 1

2π

{
ϕ̇(0)(2τ + π) − 2πϕ̇(τ ), τ ∈ [−π,0],
ϕ̇(0)(2τ − π), τ ∈ [0,π], (59)

and

z−(τ ) = 1

2π

{−ϕ̇(0)(2τ + π), τ ∈ [−π,0],
−ϕ̇(0)(2τ − π) − 2πϕ̇(τ ), τ ∈ [0,π]. (60)

We can now compute the coefficients (K,M1,M2,L1,L2) of the difference equa-
tions (54). For coefficients K , we integrate by parts, use Eqs. (16), (17), (56), and
obtain

K =
∫ π

−π

ϕ̇(ϕ̇ + 2v̇)dτ

=
∫ π

−π

(
ϕ̇2 − 2vϕ̈

)
dτ

=
[
τ ϕ̇2 + 2π

T ′(E0)
∂EϕE0 ϕ̇

]∣∣∣∣
τ=π

τ=−π

+ 2π

T ′(E0)

∫ π

−π

(∂EϕE0 ϕ̈ − ∂Eϕ̇E0 ϕ̇)dτ

= − 4π

T ′(E0)

∫ π

0
∂E

(
1

2
ϕ̇2 + 1

1 + α
ϕ1+α

)
E0

dτ

= − 4π2

T ′(E0)
.

Because T ′(E0) < 0, we find that K > 0.
For M1, we use Eq. (51), solution (60), and obtain

M1 =
∫ π

−π

V ′′(−ϕ(τ)
)
ϕ̇(τ )z+(τ + 2q)dτ

=
∫ π

−π

z̈−(τ )z+(τ + 2q)dτ

= −
∫ π

−π

ż−(τ )ż+(τ + 2q)dτ

=
∫ π

0
ϕ̈(τ )ż+(τ + 2q)dτ,
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hence, the sign of M1 depends on q . Using solution (59), for q ∈ [0, π
2 ], we obtain

M1 = 1

π
ϕ̇(0)

∫ π

0
ϕ̈(τ )dτ −

∫ π

π−2q

ϕ̈(τ )ϕ̈(τ + 2q)dτ

= − 2

π

(
ϕ̇(0)

)2 + I (q),

where

I (q) := −
∫ π

π−2q

ϕ̈(τ )ϕ̈(τ + 2q)dτ.

On the other hand, for q ∈ [π
2 ,π], we obtain

M1 = − 2

π

(
ϕ̇(0)

)2 + Ĩ (q),

where

Ĩ (q) := −
∫ 2π−2q

0
ϕ̈(τ )ϕ̈(τ + 2q)dτ,

so that

Ĩ (π − q) = −
∫ 2q

0
ϕ̈(τ )ϕ̈(τ − 2q)dτ = −

∫ 0

−2q

ϕ̈(τ )ϕ̈(τ + 2q)dτ = I (q),

because the mean value of a periodic function does not depend on the limits of inte-
gration.

For M2, we use Eq. (50) and obtain

M2 = 1

2π

∫ π

−π

V ′′(−ϕ)y+ dτ

= α

2π

∫ π

0
ϕα−1y+ dτ

= − 1

2π

∫ π

0
ÿ+ dτ

= 1

π
b+∂Eφ̇E0(0)

= 2

πT ′(E0)(ϕ̇(0))2
,

hence, M2 < 0.
For L1, we use Eqs. (16), (17), (58), and obtain

L1 = −2
∫ π

−π

ẏ−ϕ̇ dτ

= −2b−
∫ π

−π

∂Eϕ̇E0 ϕ̇ dτ
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= 4

T ′(E0)ϕ̇(0)

[∫ π

0
(∂Eϕ̇E0 ϕ̇ − ∂EϕE0 ϕ̈)dτ + ϕ̇∂EϕE0

∣∣∣∣
τ=π

τ=0

]

= 2(2π − T ′(E0)(ϕ̇(0))2)

T ′(E0)ϕ̇(0)
.

Because ϕ̇(0) > 0 and T ′(E0) < 0, we find that L1 < 0.
For L2, we use Eqs. (16), (17), (56), and obtain

L2 = − 1

2π

∫ π

−π

V ′′(−ϕ)v dτ

= − α

2π

∫ π

0
ϕα−1v dτ

= 1

T ′(E0)

∫ π

0
∂E(ϕE0)

α dτ − 1

2π

∫ π

0
ϕαdτ

=
[

1

2π
ϕ̇ − 1

T ′(E0)
∂Eϕ̇E0

]∣∣∣∣
τ=π

τ=0

= 2π − T ′(E0)(ϕ̇(0))2

πT ′(E0)ϕ̇(0)

= 1

2π
L1,

hence, L2 < 0.
The proof of Lemma 1 is complete.

4.5 Eigenvalues of the Difference Equations

Because the coefficients (K,M1,M2,L1,L2) of the difference equations (54) are
independent of n, we can solve these equations by the discrete Fourier transform.
Substituting

c2n−1 = Ceiθ(2n−1), a2n = Aei2θn, (61)

where θ ∈ [0,π] is the Fourier spectral parameter, we obtain the system of linear
homogeneous equations,

{
KΛ2C = 2M1(cos(2θ) − 1)C + 2iL1Λ sin(θ)A,

Λ2A = 2M2(cos(2θ) − 1)A + 2iL2Λ sin(θ)C.
(62)

A nonzero solution of the linear system (62) exists if and only if Λ is a root of the
characteristic polynomial,

D(Λ; θ) = KΛ4 + 4Λ2(M1 + KM2 + L1L2) sin2(θ) + 16M1M2 sin4(θ) = 0. (63)

Since this equation is bi-quadratic, it has two pairs of roots for each θ ∈ [0,π]. For
θ = 0, both pairs are zero, which recovers the characteristic exponent λ = 0 of al-
gebraic multiplicity of (at least) 4 in the linear eigenvalue problem (42). For a fixed
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Table 1 Squared roots of the
characteristic equation (63) Coefficients Roots

Δ < 0 Λ2
1 < 0 < Λ2

2
0 < Δ ≤ Γ 2, Γ > 0 Λ2

1 ≤ Λ2
2 < 0

0 < Δ ≤ Γ 2, Γ < 0 Λ2
2 ≥ Λ2

1 > 0

Δ > Γ 2 Im(Λ2
1) > 0, Im(Λ2

2) < 0

θ ∈ (0,π), the two pairs of roots are generally nonzero, say Λ2
1 and Λ2

2. The follow-
ing result specifies their location.

Lemma 2 There exists a q0 ∈ (0, π
2 ) such that Λ2

1 ≤ Λ2
2 < 0 for q ∈ [0, q0) ∪ (π −

q0,π] and Λ2
1 < 0 < Λ2

2 for q ∈ (q0,π − q0).

To classify the nonzero roots of the characteristic polynomial (63), we define

Γ := M1 + KM2 + L1L2, Δ := 4KM1M2. (64)

The two pairs of roots are determined in Table 1.
Using the explicit computations of the coefficients (K,M1,M2,L1,L2), we ob-

tain

Γ = − 8

T ′(E0)
+ I (q), Δ = 64

(T ′(E0))2

(
1 − πI (q)

2(ϕ̇(0))2

)
.

Because I (q) is symmetric about q = π
2 , we can restrict our consideration to the

values q ∈ [0, π
2 ] and use the explicit definition from Lemma 1:

I (q) = −
∫ π

π−2q

ϕ̈(τ )ϕ̈(τ + 2q)dτ, q ∈
[

0,
π

2

]
.

We claim that I (q) is a positive, monotonically increasing function in [0, π
2 ] starting

with I (0) = 0.
Because ϕ̈(τ ) = −|ϕ(τ)|α−1ϕ(τ), we realize that ϕ̈(τ ) ≤ 0 for τ ∈ [0,π], whereas

ϕ̈(τ + 2q) ≥ 0 for τ ∈ [π − 2q,π]. Hence, I (q) ≥ 0 for any 2q ∈ [0,π]. Moreover,
I is a continuously differentiable function of q , because the first derivative,

I ′(q) = −2
∫ π

π−2q

ϕ̈(τ )
...
ϕ(τ + 2q)dτ

= 2
∫ π

π−2q

...
ϕ(τ)ϕ̈(τ + 2q)dτ

= −2α

∫ π

π−2q

∣∣ϕ(τ)
∣∣α−1

ϕ̇(τ )ϕ̈(τ + 2q)dτ,

is continuous for all 2q ∈ [0,π]. Because ϕ̇(τ ) and ϕ̈(τ ) are odd and even with re-
spect to τ = π

2 , respectively, and ϕ̇(τ ) ≥ 0 for τ ∈ [0, π
2 ], we have I ′(q) ≥ 0 for all
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2q ∈ [0,π]. Therefore, I (q) is monotonically increasing from I (0) = 0 to

I

(
π

2

)
= −

∫ π

0
ϕ̈(τ )ϕ̈(τ + π)dτ =

∫ π

0

(
ϕ̈(τ )

)2 dτ > 0.

Hence, for all q ∈ [0, π
2 ], we have Γ > 0 and

Γ 2 − Δ = I (q)

(
I (q) − 16

T ′(E0)
+ 32π

(T ′(E0)ϕ̇(0))2

)
≥ 0,

where Δ = Γ 2 if and only if q = 0. Therefore, only the first two lines of Table 1 can
occur.

For q = 0, I (0) = 0, hence M1 < 0, Δ > 0 and Δ = Γ 2. The second line of
Table 1 gives Λ2

1 = Λ2
2 < 0. All characteristic exponents are purely imaginary and

degenerate, thanks to the explicit computations:

Λ2
1 = Λ2

2 = − 4

π2
sin2(θ). (65)

The proof of Lemma 2 is achieved if there is q0 ∈ (0, π
2 ) such that the first line

of Table 1 yields Λ2
1 < 0 < Λ2

2 for q ∈ (q0,
π
2 ] and the second line of Table 2 yields

Λ2
1 < Λ2

2 < 0 for q ∈ (0, q0). Because I is a monotonically increasing function of
q and Δ > 0 for q = 0, the existence of q0 ∈ (0, π

2 ) follows by continuity if Δ < 0
for q = π

2 . Since K > 0 and M2 < 0, we need to prove that M1 > 0 for q = π
2 or,

equivalently,

I

(
π

2

)
>

2

π

(
ϕ̇(0)

)2
.

Because ϕ̇ is a 2π -periodic function with zero mean, the Poincaré inequality yields

I

(
π

2

)
= 1

2

∫ π

−π

(
ϕ̈(τ )

)2 dτ ≥ 1

2

∫ π

−π

(
ϕ̇(τ )

)2 dτ.

On the other hand, using Eqs. (16), (17), and integration by parts, we obtain

1

2

∫ π

−π

(
ϕ̇(τ )

)2 dτ = −1

2

∫ π

−π

ϕ(τ)ϕ̈(τ )dτ = 1

2

∫ π

−π

∣∣ϕ(τ)
∣∣α+1dτ = 2π(α + 1)

(α + 3)
E,

where the last equality is obtained by integrating the first invariant (17) on [−π,π].
Therefore, we obtain

I

(
π

2

)
≥ 2π(α + 1)

(α + 3)
E = π(α + 1)

(α + 3)

(
ϕ̇(0)

)2
>

2

π

(
ϕ̇(0)

)2
,

where the last inequality is obtained for α = 3
2 based on the fact that 5π2

18 ≈ 2.74 > 1.
Therefore, M1 > 0 and hence, Δ < 0 for q = π

2 . The proof of Lemma 2 is complete.
Numerical approximations of coefficients Γ and Δ versus q is shown on Fig. 2.

We can see from the figure that the sign change of Δ occurs at q0 ≈ 0.915.
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Fig. 2 Coefficients Γ (left) and Δ (right) versus q

4.6 Krein Signature of Eigenvalues

Because the eigenvalue problem (62) is symmetric with respect to reflection of θ

about π
2 , that is, sin(θ) = sin(π − θ), some roots Λ ∈ C of the characteristic polyno-

mial (63) produce multiple characteristic exponents λ in the linear eigenvalue prob-
lem (42) at the O(ε) order of the asymptotic expansion (45). To control splitting and
persistence of the imaginary characteristic values of λ with respect to perturbations,
we shall look at the Krein signature of the 2-form σ defined by (43). The following
result allows us to compute σ asymptotically as ε → 0.

Lemma 3 For every q ∈ (0, q0), the 2-form σ for every eigenvector of the linear
eigenvalue problem (42) generated by the perturbation expansion (46) associated
with the root Λ ∈ iR+ of the characteristic equation (63) is nonzero.

Using the representation (41) for λ = iω with ω ∈ R+, we rewrite σ in the form

σ = 2ω
∑
n∈Z

[∣∣U2n−1
∣∣2 + |W2n|2

]

+ i
∑
n∈Z

[U2n−1
˙̄U2n−1 − Ū2n−1U̇2n−1 + W2n

˙̄W2n − W̄2nẆ2n].

Now using perturbation expansion ω = εΩ + O(ε2), where Λ = iΩ ∈ iR+ is a root
of the characteristic equation (63), and the perturbation expansions (46) for the eigen-
vector, we compute

σ = ε
∑
n∈Z

σ (1)
n + O

(
ε2),

where

σ (1)
n = 2Ω

(|c2n−1|2ϕ̇2(τ + 2qn) + |a2n|2
)

+ i
(
c2n−1

˙̄U(1)
2n−1 − c̄2n−1U̇

(1)
2n−1

)
ϕ̇(τ + 2qn)

− i
(
c2n−1Ū

(1)
2n−1 − c̄2n−1U

(1)
2n−1

)
ϕ̈(τ + 2qn) + i

(
a2n

˙̄W(1)
2n − ā2nẆ

(1)
2n

)
.
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Using representation (52), this becomes

σ (1)
n = 2Ω

(|c2n−1|2E0 + |a2n|2
) + i(c2n−1ā2n − c̄2n−1a2n)E−

+ i(c2n−1ā2n−2 − c̄2n−1a2n−2)E+,

where E0 and E± are τ -independent constants from the first integrals:

E0 = ϕ̇2 + ϕ̇v̇ − ϕ̈v,

E± = ϕ̇ẏ± − ϕ̈y± − ż±.

Using explicit computations (56)–(60) of functions v, y±, and z±, we obtain

E0 = − 2π

T ′(E0)
, E± = ±2π − T ′(E0)(ϕ̇(0))2

πT ′(E0)ϕ̇(0)
,

and hence we have

σ (1)
n = 2Ω

(
K

2π
|c2n−1|2 + |a2n|2

)

− iL2(c2n−1ā2n − c̄2n−1a2n − c2n−1ā2n−2 + c̄2n−1a2n−2).

Substituting the discrete Fourier transform representation (61) of the eigenvector
of the reduced eigenvalue problem (54), we obtain

σ (1)
n = 2Ω

(
K

2π
C2 + A2

)
− 4L2 sin(θ)CA

= 1

πΩ

(
Ω2KC2 + 8πM2 sin2(θ)A2),

where the second equation of the linear system (62) has been used. Using now the
first equation of the linear system (62), we obtain

σ (1)
n = C2

πL1L2Ω3

[
KL1L2Ω

4 + M2
(
KΩ2 − 4M1 sin2(θ)

)2]
. (66)

Note that σ
(1)
n is independent of n, hence periodic boundary conditions are used to

obtain a finite expression for the 2-form σ .
We consider q ∈ (0, q0) and θ ∈ (0,π), so that Ω 
= 0 and C 
= 0. Then, σ

(1)
n = 0

if and only if

KL1L2Ω
4 + M2

(
KΩ2 − 4M1 sin2(θ)

)2 = 0.

Using the explicit expressions for coefficients (K,M1,M2,L1,L2) in Lemma 1, we
factorize the left hand side as follows:

KL1L2Ω
4 + M2

(
KΩ2 − 4M1 sin2(θ)

)2

= (
Ω2 + T ′(E0)M1M2 sin2(θ)

)
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×
(

32π2

(T ′(E0))2

(
1 − T ′(E0)(ϕ̇(0))2

4π

)
Ω2 + 16

T ′(E0)
M1 sin2(θ)

)
. (67)

For every q ∈ (0, q0), M1 < 0, so that the second bracket is strictly positive (recall
that T ′(E0) < 0). Now the first bracket vanishes at

Ω2 = −2M1

π(ϕ̇(0))2
sin2(θ).

Substituting this constraint to the characteristic equation (63) yields after straightfor-
ward computations:

D(iΩ; θ) = 8M1 sin4(θ)

πϕ̇2(0)

(
1 − 2π

T ′(E0)ϕ̇2(0)

)
I (q),

which is nonzero for all q ∈ (0, q0) and θ ∈ (0,π). Therefore, σ
(1)
n does not vanish if

q ∈ (0, q0) and θ ∈ (0,π). By continuity of the perturbation expansions in ε, σ does
not vanish too. The proof of Lemma 3 is complete.

Remark 9 For every q ∈ (0, q0), all roots Λ ∈ iR+ of the characteristic equation (63)
are divided into two equal sets, one has σ

(1)
n > 0 and the other one has σ

(1)
n < 0. This

follows from the factorization

D(iΩ; θ) = − 4π2

T ′(E0)

(
Ω2 − 4

π2
sin2(θ)

)2

− 4I (q)

(
Ω2 − 8

πT ′(E0)(ϕ̇(0))2
sin2(θ)

)
sin2(θ).

As q → 0, I (q) → 0 and perturbation theory for double roots (65) for q = 0 yields

Ω2 = 4

π2
sin2(θ) ± 2

π2
sin2(θ)

√∣∣T ′(E0)
∣∣I (q)

(
1 − 2π

T ′(E0)(ϕ̇(0))2

)
+ O

(
I (q)

)
.

Using the factorization formula (67), the sign of σ
(1)
n is determined by the expression

Ω2 + T ′(E0)M1M2 sin2(θ) = ± 2

π2
sin2(θ)

√∣∣T ′(E0)
∣∣I (q)

(
1 − 2π

T ′(E0)(ϕ̇(0))2

)

+ O
(
I (q)

)
,

which justifies the claim for small positive q . By Lemma 3, σ
(1)
n does not vanish for

all q ∈ (0, q0) and θ ∈ (0,π), therefore the splitting of all roots Λ ∈ iR+ into two
equal sets persists for all values of q ∈ (0, q0).
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4.7 Proof of Theorem 2

To conclude the proof of Theorem 2, we develop rigorous perturbation theory in the
case when q = πm

N
for some positive integers m and N such that 1 ≤ m ≤ N . In

this case, the linear eigenvalue problem (42) can be closed at 2mN second-order
differential equations subject to 2mN -periodic boundary conditions (15) and we are
looking for 4mN eigenvalues λ, which are characteristic exponents for a 4mN ×
4mN Floquet matrix.

At ε = 0, we have 2mN double Jordan blocks for λ = 0. The 2mN eigenvectors
are given by (44). The 2mN -periodic boundary conditions are incorporated in the
discrete Fourier transform (61) if

θ = πk

mN
≡ θk(m,N), k = 0,1, . . . ,mN − 1.

Because the characteristic equation (63) for each θk(m,N) returns 4 roots, we count
4mN roots of the characteristic equation (63), as many as there are eigenvalues λ

in the linear eigenvalue problem (42) closed at 2mN second-order differential equa-
tions. As long as the roots are non-degenerate (if Δ 
= Γ 2) and different from zero (if
Δ 
= 0), the first-order perturbation theory predicts splitting of λ = 0 into symmetric
pairs of nonzero eigenvalues. The zero eigenvalue of multiplicity 4 persists and cor-
responds to the value θ0(m,N) = 0. It is associated with the symmetries (7) and (8)
of the diatomic granular chain.

The nonzero eigenvalues are located hierarchically with respect to the values of
sin2(θ) for θ = θk(m,N) with 1 ≤ k ≤ mN − 1. Because sin(θ) = sin(π − θ), every
nonzero eigenvalue corresponding to θk(m,N) 
= π

2 is double. Because all eigenval-

ues λ ∈ iR+ have a definite Krein signature by Lemma 3 and the sign of σ
(1)
n in (66) is

same for both eigenvalues with θ and π − θ , the double eigenvalues λ ∈ iR are struc-
turally stable with respect to parameter continuations (Chugunova and Pelinovsky
2010) in the sense that they split along the imaginary axis beyond the leading-order
perturbation theory.

Remark 10 The argument based on the Krein signature cannot be applied to the case
of double real eigenvalues Λ ∈ R+, which may split off the real axis to the com-
plex domain. However, both real and complex eigenvalues contribute to the count of
unstable eigenvalues with the account of their multiplicities.

It remains to address the issue that the perturbation theory in Sect. 4.3 uses com-
putations of V ′′′, which is not a continuous function of its argument. To deal with this
issue, we use a renormalization technique. We note that if (u∗,w∗) is a solution of the
differential advance–delay equations (14) given by Theorem 1, then differentiation of
the first equation of the system yields

...
u∗(τ ) = V ′′(w∗(τ ) − u∗(τ )

)(
ẇ∗(τ ) − u̇∗(τ )

)
− V ′′(u∗(τ ) − w∗(τ − 2q)

)(
u̇∗(τ ) − ẇ∗(τ − 2q)

)
, (68)

where the right-hand side is a continuous function of τ .



716 J Nonlinear Sci (2013) 23:689–730

Using (68), we substitute

U2n−1 = c2n−1u̇∗(τ + 2qn) + U2n−1, W2n = W2n,

for an arbitrary choice of {c2n−1}n∈Z, into the linear eigenvalue problem (42) and
obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü2n−1 + 2λU̇2n−1 + λ2 U2n−1
= V ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(εW2n − U2n−1)

− V ′′(u∗(τ + 2qn) − w∗(τ + 2qn − 2q))(U2n−1 − εW2n−2),

− (2λü∗(τ + 2qn) + λ2u̇∗(τ + 2qn))c2n−1
− V ′′(w∗(τ + 2qn) − u∗(τ + 2qn))ẇ∗(τ + 2qn)c2n−1
− V ′′(u∗(τ + 2qn) − w∗(τ + 2qn − 2q))ẇ∗(τ + 2qn − 2q)c2n−1,

Ẅ2n + 2λẆ2n + λ2 W2n

= εV ′′(u∗(τ + 2qn + 2q) − w∗(τ + 2qn))(U2n+1 − εW2n)

− εV ′′(w∗(τ + 2qn) − u∗(τ + 2qn))(εW2n − U2n−1)

+ εV ′′(u∗(τ + 2qn + 2q) − w∗(τ + 2qn))u̇∗(τ + 2qn + 2q)c2n−1
+ εV ′′(w∗(τ + 2qn) − u∗(τ + 2qn))u̇∗(τ + 2qn)c2n−1.

(69)

When we repeat decompositions of the perturbation theory in Sect. 4.3, we write

λ = ελ(1) + ε2λ(2) + o
(
ε2),

U2n−1 = εU (1)
2n−1 + ε2 U (2)

2n−1 + o
(
ε2),

W2n = a2n + εW (1)
2n + ε2 W (2)

2n + o
(
ε2),

for an arbitrary choice of {a2n}n∈Z. Substituting this decomposition to system (69),
we obtain equations at the O(ε) and O(ε2) orders, which do not require computations
of V ′′′. Hence, the system of difference equations (54) is justified at the O(ε2) order
and the splitting of the eigenvalues λ obeys roots of the characteristic equation (63).
Persistence of roots beyond the O(ε2) order holds by the standard perturbation theory
for isolated eigenvalues of the Floquet matrix. The proof of Theorem 2 is complete.

5 Numerical Results

We obtain numerical approximations of the periodic traveling waves (12) in the case
q = π

N
, where N is an integer, when the diatomic granular chain (4) can be closed as

the following system of 2N differential equations:

{
ü2n−1(t) = (w2n(t) − u2n−1(t))

α+ − (u2n−1(t) − w2n−2(t))
α+,

ẅ2n(t) = ε2(u2n−1(t) − w2n(t))
α+ − ε2(w2n(t) − u2n+1(t))

α+,
(70)

subject to the periodic boundary conditions

u−1 = u2N−1, u2N+1 = u1, w0 = w2N, w2N+2 = w2. (71)
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The periodic traveling waves (12) corresponds to 2π -periodic solutions of system
(70) satisfying the reduction

u2n+1(t) = u2n−1

(
t + 2π

N

)
, w2n+2(t) = w2n

(
t + 2π

N

)
, (72)

For convenience and uniqueness, we look for an odd function u1(t) = −u1(−t) with

u1(0) = 0 and u̇1(0) > 0. (73)

By Theorem 1, the traveling wave solutions satisfying (72) and (73) are continued
uniquely for small values of ε from the limiting solution with u1 = ϕ and w2 = 0.
We continue numerically this branch of solutions with respect to parameter ε in the
interval [0,1].

5.1 Existence of Periodic Traveling Waves

In order to obtain 2π -periodic traveling wave solutions to the nonlinear system (70),
we use the shooting method. Our shooting parameters are given by the initial condi-
tions {

u2n−1(0), u̇2n−1(0),w2n(0), ẇ2n(0)
}

1≤n≤N
.

Since u1(0) = 0, this gives a set of 2N − 1 shooting parameters. However, for so-
lutions satisfying the traveling wave reduction (72), we can use symmetries of the
nonlinear system of differential equations (70) to reduce the number of shooting pa-
rameters to N parameters.

For two particles (N = 1 or q = π ), the existence and stability problems are trivial.
The exact solution (23) is uniquely continued for all ε ∈ [0,1] and matches at ε =
1 with the exact solution of the homogeneous granular chain considered in James
(2012). This solution is spectrally stable with respect to 2-periodic perturbations for
all ε ∈ [0,1] because the characteristic exponent λ = 0 has algebraic multiplicity four,
which coincides with the total number of admissible characteristic values of λ in the
linearized system (38) closed at two second-order differential equations.

For four particles (N = 2 or q = π
2 ), the nonlinear system (70) is written explicitly

as ⎧⎪⎪⎨
⎪⎪⎩

ü1(t) = (w4(t) − u1(t))
α+ − (u1(t) − w2(t))

α+,

ẅ2(t) = ε2(u1(t) − w2(t))
α+ − ε2(w2(t) − u3(t))

α+,

ü3(t) = (w2(t) − u3(t))
α+ − (u3(t) − w4(t))

α+,

ẅ4(t) = ε2(u3(t) − w4(t))
α+ − ε2(w4(t) − u1(t))

α+.

(74)

We are looking for 2π -periodic functions satisfying the traveling wave reduction:

u3(t) = u1(t + π), w4(t) = w2(t + π). (75)

We note that the system (74) is invariant with respect to the following transformation:

u1(−t) = −u1(t), w2(−t) = −w4(t),

u3(−t) = −u3(t), w4(−t) = −w2(t).
(76)
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Table 2 Error between
numerical and exact solutions
for branch 1

AbsTol of Shooting
Method

AbsTol of ODE
solver

L∞ error

O(10−12) O(10−15) 4.5 × 10−14

O(10−10) 3.0 × 10−11

O(10−8) O(10−15) 4.5 × 10−14

O(10−10) 3.0 × 10−11

A 2π -periodic solution of this system satisfying (76) must also satisfy u1(π) =
u3(π) = 0 and w2(π) = −w4(π). Then, the constraints of the traveling wave re-
duction (75) yields the additional condition w4(π) = w2(0).

To approximate a solution of the initial-value problem for the nonlinear system
(74) satisfying (76), we only need four shooting parameters (a1, a2, a3, a4) in the
initial condition:

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = 0, u̇3(0) = a4, w4(0) = −a2, ẇ4(0) = a3.

The solution of the initial-value problem corresponds to a 2π -periodic traveling wave
solution only if the following four conditions are satisfied:

u1(π) = 0, w2(π) + w4(π) = 0, w2(0) − w4(π) = 0, u3(π) = 0. (77)

These four conditions fully specify the shooting method for the four parameters
(a1, a2, a3, a4). Additionally, the solution of the initial-value problem must satisfy
two more conditions:

ẇ2(π) − ẇ4(π) = 0, ẇ2(0) − ẇ4(π) = 0, (78)

but these additional conditions are redundant for the shooting method. We have been
checked conditions (78) a posteriori, after the shooting method has converged to a
solution.

We are now able to run the shooting method based on conditions (77). The error of
this numerical method is composed from the error of an ODE solver and the error in
finding zeros for the functions above. We use the built-in MATLAB function ode113
on the interval [0,π] as an ODE solver and then use the transformation (76) to extend
the solutions to the interval [−π,π] or [0,2π].

Figure 3 (top left) plots w2(0) versus ε for the three solution branches obtained
by the shooting method. The first solution branch (labeled branch 1) exists for all
ε ∈ [0,1] and is shown on the top right panel for ε = 1. This branch coincides with
the exact solution (22). The error in the supremum norm between the numerical and
exact solutions ‖u1 − ϕ‖L∞ can be found in Table 2.

We can see from the top left panel of Fig. 3 that a pitchfork bifurcation occurs at
ε = ε0 ≈ 0.72 and results in the appearance of two symmetrically reflected branches
(labeled branches 2 and 2′). These branches with w2(0) 
= 0 extend to ε = 1 (bot-
tom panels) to recover two traveling wave solutions of the homogeneous granular
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Fig. 3 Traveling wave solutions for N = 2: the solution of the diatomic granular chain continued from
ε = 0 to ε = 1 (top right) and two solutions of the homogeneous granular chain at ε = 1 (bottom left and
right). The top left panel shows the value of w2(0)/ε for all three solutions branches versus ε

chain (6). The solution of branch 2 satisfies the traveling wave reduction Un+1(t) =
Un(t + π

2 ) and was previously approximated numerically by James (2012). The other
solution of branch 2′ satisfies the traveling wave reduction Un+1(t) = Un(t − π

2 ) and
was previously obtained numerically by Starosvetsky and Vakakis (2010).

For N = 2 (q = π
2 ), the solution of branch 2′ given by {ũ2n−1, w̃2n}n∈{1,2} is ob-

tained from the solution of branch 2 given by {u2n−1,w2n}n∈{1,2}, by means of the
symmetry

ũ1(t) = −u3(t), w̃2(t) = −w2(t), ũ3(t) = −u1(t), w̃4(t) = −w4(t), (79)

which holds for any ε > 0. (Of course, both solutions 2 and 2′ exist only for ε ∈ (ε0,1]
because of the pitchfork bifurcation at ε = ε0 ≈ 0.72.) The solution of branch 1 is the
invariant reduction ũ2n−1 = u2n−1, w̃2n = w2n with respect to the symmetry (79) so
that it satisfies w2(t) = w4(t) = 0 for all t .
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For six particles (N = 3 or q = π
3 ), the nonlinear system (70) is written explicitly

as ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ü1(t) = (w6(t) − u1(t))
α+ − (u1(t) − w2(t))

α+,

ẅ2(t) = ε2(u1(t) − w2(t))
α+ − ε2(w2(t) − u3(t))

α+,

ü3(t) = (w2(t) − u3(t))
α+ − (u3(t) − w4(t))

α+,

ẅ4(t) = ε2(u3(t) − w4(t))
α+ − ε2(w4(t) − u5(t))

α+,

ü5(t) = (w4(t) − u5(t))
α+ − (u5(t) − w6(t))

α+,

ẅ6(t) = ε2(u5(t) − w6(t))
α+ − ε2(w6(t) − u1(t))

α+.

(80)

We are looking for 2π -periodic functions satisfying the traveling wave reduction:

u5(t) = u3

(
t + 2π

3

)
= u1

(
t + 4π

3

)
,

w6(t) = w4

(
t + 2π

3

)
= w2

(
t + 4π

3

)
.

(81)

We note that the system (80) is invariant with respect to the following transformation:

u1(−t) = −u1(t), w2(−t) = −w6(t),

u3(−t) = −u5(t), w4(−t) = −w4(t).
(82)

A 2π -periodic solution of this system satisfying (82) must also satisfy u1(π) =
w4(π) = 0, w2(π) = −w6(π), and u3(π) = −u5(π). Then, the constraints of the
traveling wave reduction (81) yield the conditions u3(π) = −u1(

π
3 ) and w4(π) =

−w2(
π
3 ).

To approximate a solution of the initial-value problem for the nonlinear system
(80) satisfying (82), we only need six shooting parameters (a1, a2, a3, a4, a5, a6) in
the initial condition:

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = a4, u̇3(0) = a5, w4(0) = 0, ẇ4(0) = a6,

u5(0) = −a4, u̇5(0) = a5, w6(0) = −a2, ẇ6(0) = a3.

This solution corresponds to a 2π -periodic traveling wave solution only if it satisfies
the following six conditions:

u1(π) = 0, w2(π) + w6(π) = 0, u3(π) + u5(π) = 0,

u1

(
π

3

)
+ u3(π) = 0, w2

(
π

3

)
+ w4(π) = 0, w4(π) = 0.

The six conditions determines the shooting method for the six parameters (a1, a2, a3,

a4, a5, a6). Additional conditions,

ẇ2(π) − ẇ6(π) = 0, u̇3(π) − u̇5(π) = 0,

u̇1

(
π

3

)
− u̇3(π) = 0, ẇ2

(
π

3

)
− ẇ4(π) = 0,

are to be checked a posteriori, after the shooting method has converged to a solution.
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Fig. 4 Traveling wave solutions for N = 3: the solution of branch 1 is continued from ε = 0 to ε = 1 (top
right) and the solution of branch 2 is continued from ε = 1 (bottom left) to ε = 0.985 (bottom right). The
top left panel shows the value of w2(0)/ε for solution branches 1 and 2 versus ε

Figure 4 (top left) shows two solution branches obtained by the shooting method.
Again, w2(0) is plotted versus ε. Branch 1 is continued from ε = 0 to ε = 1 (top
right) without any pitchfork bifurcation in ε ∈ (0,1). Branch 2 is continued from
ε = 1 (bottom left) starting with a numerical solution of the homogeneous granular
chain (6) satisfying the reduction Un+1(t) = Un(t + π

3 ) to ε = 0.985 (bottom right),
where the branch terminates according to our shooting method. We have not been
able so far to detect numerically any other branch of traveling wave solutions near
branch 2 for ε = 0.985. This unusual bifurcation may be induced by discontinuity
in the nonsmooth dynamical system (80). Detailed analysis of this bifurcation will
remain opened for further studies. See di Bernardo and Hogan (2010) for a review of
discontinuity-induced bifurcations.

We use the same technique for N = 4 and show similar results on Fig. 5. Branch
1 is uniquely continued from ε = 0 to ε = 1 (top right), whereas branch 2 is contin-
ued from ε = 1 (bottom left) starting with a numerical solution of the homogeneous
granular chain (6) satisfying the reduction Un+1(t) = Un(t + π

4 ) to ε = 0.9 (bottom
right), where the branch terminates.

Note the occurrence of the free flight near t = 0 and the shock near t = π in the
component u1 of the solution of branch 2 at ε = 1 on Figs. 4 and 5, which were
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Fig. 5 Traveling wave solutions for N = 4: the solution of branch 1 continued from ε = 0 to ε = 1 (top
right) and the solution of branch 2 continued from ε = 1 (bottom left) to ε = 0.9 (bottom right). The top
left panel shows the value of w2(0)/ε for solution branches 1 and 2 versus ε

studied in James (2012). For the solution of branch 1 at ε = 1, the dynamics of beads
is compensated so that no free flights or shocks are observed. Also note that similar
traveling wave solutions in diatomic granular chains with N = 2,3,4 were observed
numerically in Jayaprakash et al. (2012).

5.2 Stability of Periodic Traveling Waves

To determine stability of the different branches of periodic traveling wave solutions
of the diatomic granular chain (4), we compute Floquet multipliers of the monodromy
matrix for the linearized system (36). To do this, we use the traveling wave solution
obtained with the shooting method and the MATLAB function ode113 to compute
the fundamental matrix solution of the linearized system (36) on the interval [0,2π].

By Theorem 2, the traveling waves of branch 1 for N = 2 (q = π
2 ) are unstable for

small values of ε. Figure 6 (top) shows real and imaginary parts of the characteristic
exponents associated with branch 1 for all values of ε in [0,1]. Only positive values
of Re(λ) and Im(λ) are shown, moreover, Im(λ) ∈ [0, 1

2 ] because of 1-periodicity of
the characteristic exponents along the imaginary axis.
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Fig. 6 Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for N = 2 for
branch 1 (top) and branch 2 (bottom). Solid lines on the top panels display the asymptotic results from the
roots of the characteristic equation (63), whereas dots show the numerical approximations of characteristic
exponents

Thanks to the periodic boundary conditions, the system of linearized equations
(37) for N = 2 is closed at four second-order linearized equations, which have 8
characteristic exponents as follows. The exponent λ = 0 has multiplicity 4 for small
positive ε, and two pairs of nonzero exponents (one is real, the other one is purely
imaginary) bifurcate according to the roots of the characteristic equation (63) for
θ = π

2 . These asymptotic approximations are shown on the top panels of Fig. 6 by
solid lines, in excellent agreement with the numerical data (dots). We see that the
unstable real λ persist for all values of ε in [0,1]. The pitchfork bifurcation at ε =
ε0 ≈ 0.72 in Fig. 3 (top left) corresponds to the coalescence of the pair of purely
imaginary characteristic exponents on Fig. 6 (top right) and appearance of a new pair
of real characteristic exponents for ε > ε0 on Fig. 6 (top left). Therefore, the branch
continued from ε = 0 is unstable for all ε ∈ [0,1].

Bottom panels on Fig. 6 shows real and imaginary parts of the characteristic ex-
ponents associated with branch 2 (same for 2′ by symmetry) for all values of ε in
[ε0,1]. We see that these traveling waves are spectrally stable near ε = 1, in agree-
ment with the numerical results of James (2012). When ε is decreased, these traveling
waves lose spectral stability near ε = ε1 ≈ 0.86 because of coalescence of a pair of
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Fig. 7 Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for N = 3 for
branch 1 (top) and branch 2 (bottom). Solid lines and dots have the same meaning as in Fig. 6

purely imaginary characteristic exponents, which creates a pair of real characteristic
exponents for ε < ε1. The two solution branches disappear as a result of the pitchfork
bifurcation at ε = ε0 ≈ 0.72, which is also induced by the coalescence of the second
pair of purely imaginary characteristic exponents.

For N = 3 (q = π
3 ), the system of linearized equations (36) is closed at six second-

order linearized equations. Besides the characteristic exponent λ = 0 of multiplicity
four, we have 8 nonzero characteristic exponents λ. The characteristic equation (63)
with θ = π

3 and θ = 2π
3 predicts a double pair of real λ and a double pair of purely

imaginary λ. Figure 7 (top) shows Re(λ) (left) and Im(λ) (right) for solutions of
branch 1. The double pair of purely imaginary λ split along the imaginary axis for
small ε > 0, as explained in Sects. 4.6 and 4.7. On the other hand, the double pair
of real λ splits along the transverse direction and results in occurrence of a quartet
of complex-valued λ for small ε > 0. These complex characteristic exponents ap-
proach the imaginary axis at ε = ε1 ≈ 0.43 (Neimark–Sacker bifurcation) and then
split along the imaginary axis as two pairs of purely imaginary λ for ε > ε1. We also
have one pair of purely imaginary λ continued from ε = 0 that approaches the line ± i

2
(corresponding to the Floquet multiplier at −1) at ε = ε2 ≈ 0.72 (period-doubling bi-
furcation). That pair splits in a complex plane for ε > ε2 (the corresponding Floquet
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multipliers are real and negative). In summary, the periodic traveling wave of branch
1 for N = 3 is stable for ε ∈ (ε1, ε2) but unstable near ε = 0 and ε = 1.

Figure 7 (bottom) shows Re(λ) (left) and Im(λ) (right) for solutions of branch 2
that exist only for ε ∈ [ε∗,1], where ε∗ ≈ 0.985. All four pairs of the characteris-
tic exponents λ are purely imaginary near ε = 1. This corresponds to the numerical
results for stability of traveling waves in the homogeneous granular chain in James
(2012). Two pairs coalesce at ε ≈ 0.995 and split in a complex quartet of characteris-
tic exponents (Neimark–Sacker bifurcation). Another pair approaches the line ± i

2 at
ε ≈ 0.989 and then splits in a complex plane to yield real and negative Floquet mul-
tipliers (period-doubling bifurcation). The final remaining pair of purely imaginary λ

crosses zero near ε = ε∗ ≈ 0.985 that indicates that termination of branch 2 is related
to a local (discontinuity-induced ?) bifurcation.

Recall that the coefficient M1 changes sign at q ≈ 0.915, as explained in Sect. 4.5.
Therefore, for N ≥ 4, the characteristic equation (63) for any values of θ predicts
pairs of purely imaginary λ only. This is illustrated on the top panels of Fig. 8 for
N = 4 (q = π

4 ). We can see that all double pairs of purely imaginary λ split along
the imaginary axis for small ε > 0 and that the periodic traveling waves of branch
1 remain stable for all ε ∈ [0,1]. The figure also illustrate the validity of asymptotic
approximations obtained from roots of the characteristic equation (63).

It is interesting that Fig. 8 (top right) shows safe coalescence of characteris-
tic exponents for larger values of ε. Recall from Remark 9 that the character-
istic exponents have opposite Krein signature for small values of ε in such a
way that larger exponents on Fig. 8 (top right) have negative Krein signature and
smaller exponents have positive Krein signature. It is typical to observe instabil-
ities arise after the coalescence of two purely imaginary eigenvalues of the op-
posite Krein signature (MacKay 1986) but this only happens when the double
eigenvalue at the coalescence point is not semi-simple. When the double eigen-
value is semi-simple or if some perturbation terms to the Jordan blocks are iden-
tically zero, the coalescence does not introduce any instabilities (Bridges 1990;
Vougalter and Pelinovsky 2006). This is precisely what we observe in Fig. 8 (top
right). After coalescence, for larger values of ε, the purely imaginary characteristic
exponents λ reappear as simple exponents with opposite Krein signature, that is, the
exponents with positive Krein signature are now above the ones with negative Krein
signature.

Figure 8 (bottom) shows Re(λ) (left) and Im(λ) (right) for solutions of branch 2
that exist only for ε ∈ [ε∗,1], where ε∗ ≈ 0.90. Besides three pairs of purely imag-
inary characteristic exponents λ, there is one pair of real λ and a complex quartet
near ε = 1. The pair of real λ corresponds to the numerical results for instability of
traveling waves in the homogeneous granular chain (James 2012), for which instabil-
ity occurs for q � 0.9. The quartet of complex λ gives additional instability, which
is not captured by the reductions to the homogeneous granular chain. Several more
instabilities arise as ε is decreased from ε = 1 for solutions of branch 2 because of
bifurcations of pairs of purely imaginary exponents λ. Branch 2 is unstable in the
entire existence interval [ε∗,1].

Figure 9 shows the stability of solutions of branch 1 for N = 5 (left) and N = 6
(right). These figures are included to illustrate the safe splitting of purely imaginary
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Fig. 8 Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for N = 4 for
branch 1 (top) and branch 2 (bottom). Solid lines and dots have the same meaning as in Fig. 6

exponents along the imaginary axis near ε = 0, as well as safe coalescence of purely
imaginary exponents of opposite Krein signature that never results in the occurrence
of complex exponents. The solutions of branch 1 for N = 5,6 remain stable for all
values of ε ∈ [0,1].

5.3 Stability of the Uniform Periodic Oscillations

The periodic solution with q = 0 (which is no longer a traveling wave but a uniform
oscillation of all sites of the diatomic granular chain) is given by the exact solution
(23). Spectral stability of this solution is obtained from the linearized system (38).
Using the boundary conditions

u2n+1 = e2iθu2n−1, w2n+2 = e2iθw2n, n ∈ Z,

where θ ∈ [0,π] is a continuous parameter, we close the system at two second-order
equations,

{
ü + α

1+ε2 |ϕ|α−1u = 1
1+ε2 (V ′′(−ϕ) + V ′′(ϕ)e−2iθ )w,

ẅ + αε2

1+ε2 |ϕ|α−1w = ε2

1+ε2 (V ′′(−ϕ) + V ′′(ϕ)e2iθ )u.
(83)
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Fig. 9 Imaginary parts of the characteristic exponents λ versus ε for N = 5 (left) and N = 6 (right). The
real part of all the exponents is zero. Solid lines and dots have the same meaning as in Fig. 6

Fig. 10 Imaginary parts of the characteristic exponents λ versus ε for θ = π
2 (left) and θ = π

4 (right).
The real part of all the exponents is zero. Solid lines and dots have the same meaning as in Fig. 6

The characteristic equation (63) for q = 0 predicts a double pair (65) of purely imag-
inary Λ for any θ ∈ (0,π). We confirm numerically that the double pair is preserved
for all ε ∈ [0,1].

Figure 10 shows the imaginary part of the characteristic exponents λ of the lin-
earized system (83) for θ = π

2 (left) and θ = π
4 (right). Similar results are obtained

for other values of θ . Therefore, the periodic solution with q = 0 remains stable for
all values of ε ∈ [0,1].

The pattern on Fig. 10 suggests a hidden symmetry in this case. Suppose λθ is a
characteristic exponent of the system (83) for the eigenvector

[
u

w

]
=

[
Uθ(t)

Wθ(t)

]
eλθ t , (84)

where Uθ(t) and Wθ(t) are 2π -periodic and the subscript θ indicates that the sys-
tem (83) depends explicitly on θ . Recall that the unperturbed solution satisfies the
symmetry ϕ(t + π) = −ϕ(t) for all t . Using this symmetry and the trivial identity
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e2π i = 1, we can verify that there is another solution of the system (83) with the same
θ for the characteristic exponent λπ−θ :

[
u

w

]
=

[
Uπ−θ (t + π)

e2iθWπ−θ (t + π)

]
eλπ−θ t . (85)

From the symmetry of roots (65) and the corresponding characteristic exponents, we
have λθ = λπ−θ . The eigenvectors (84) and (85) are generally linearly independent
and coexist for the same value of λ = λθ = λπ−θ . This argument explains the double
degeneracy of characteristic exponents λ for the case q = 0 for all values of ε ∈ [0,1].

6 Conclusion

We have studied periodic traveling waves in a diatomic granular chain by continuing
these solutions from the anti-continuum limit, when the mass ratio between the light
and heavy beads is zero. We have shown that every limiting periodic wave is uniquely
continued for small mass ratios. Although the vector fields of the granular dimer chain
equations are not C2 at the origin, we can still use the implicit function theorem to
guarantee that the continuation is C1 with respect to the mass ratio parameter ε2.
We have also used rigorous perturbation theory to compute characteristic exponents
in the linearized stability problem. From this theory, we have seen that the periodic
waves with a wavelength larger than a certain critical value are spectrally stable for
small mass ratios.

Numerical computations are developed to show that the stability of these periodic
waves with larger wavelengths extends all way to the limit of equal mass ratio. On the
other hand, we have also computed periodic traveling waves that are continued from
solutions of the homogeneous granular chain at the equal mass ratio, their spectral
stability, and their terminations for smaller mass ratios.

Among open problems, we have not clarified the nature of bifurcation, where the
solutions of branch 2 terminate at a ε∗ ∈ (0,1) for N = 3,4. We have not been able to
find another solution for ε near ε∗. Safe coalescence of purely imaginary character-
istic exponents λ of opposite Krein signatures is also amazing and we have not been
able to find the hidden symmetry that would explain why the eigenvalues of opposite
Krein signatures remain stable past the coalescence point. These problems as well as
analysis of the periodic traveling wave solutions for other values of q will wait for
further studies.

Finally, our paper may inspire further experimental work with diatomic granu-
lar crystals. We hope that some stable configurations of periodic traveling waves in
a periodic granular chain of finitely many beads produced in our studies might be
found experimentally to play important role in the dynamics of uncompressed gran-
ular crystals.
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