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1. Introduction

The massive Thirring model (MTM) in laboratory coordinates [25] is an example of the nonlinear Dirac equation arising in two-
dimensional quantum field theory [16,17], optical Bragg gratings [7], and diatomic chains with periodic couplings [1]. This model received 
much of attention because of its integrability [19] which was used to study the inverse scattering [13–15,18,23,29,30], soliton solutions 
[2–4,22], spectral and orbital stability of solitons [6,12,24], and construction of rogue waves [8].

Several integrable semi-discretizations of the MTM in characteristic coordinates were proposed in the literature [20,21,26–28] by dis-
cretizing one of the two characteristic coordinates. These semi-discretizations are not relevant for the time-evolution problem related to 
the MTM in laboratory coordinates. It was only recently [11] when the integrable semi-discretization of the MTM in laboratory coordinates 
was derived. The corresponding semi-discrete MTM is written as the following system of three coupled equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4i
dUn

dt
+ Q n+1 + Q n + 2i

h
(Rn+1 − Rn) + U 2

n(R̄n + R̄n+1)

−Un(|Q n+1|2 + |Q n|2 + |Rn+1|2 + |Rn|2) − ih
2 U 2

n(Q̄ n+1 − Q̄ n) = 0,

−2i

h
(Q n+1 − Q n) + 2Un − |Un|2(Q n+1 + Q n) = 0,

Rn+1 + Rn − 2Un + ih

2
|Un|2(Rn+1 − Rn) = 0,

(1)

where h is the lattice spacing of the spatial discretization and n is the discrete lattice variable. R̄n and Q̄ n denote the complex conjugate of 
Rn and Q n respectively. Only the first equation of the system (1) represents the time evolution problem, whereas the other two equations 
represent the constraints which define components of {Rn}n∈Z and {Q n}n∈Z in terms of {Un}n∈Z instantaneously in time t .
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In the continuum limit h → 0, the slowly varying solutions to the system (1) can be represented by

Un(t) = U (x = hn, t), Rn(t) = R(x = hn, t), Q n(t) = Q (x = nh, t),

where the continuous variables satisfy the following three equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2i
∂U

∂t
+ i

∂ R

∂x
+ Q + U 2 R̄ − U (|Q |2 + |R|2) = 0,

−i
∂ Q

∂x
+ U − |U |2 Q = 0,

R − U = 0.

(2)

The system (2) in variables U (x, t) = u(x, t − x) and Q (x, t) = v(x, t − x) yields the continuous MTM system in the form:

⎧⎪⎪⎨
⎪⎪⎩

i

(
∂u

∂t
+ ∂u

∂x

)
+ v = |v|2u,

i

(
∂v

∂t
− ∂v

∂x

)
+ u = |u|2 v.

(3)

It is shown in [11] that the semi-discrete MTM system (1) is the compatibility condition

d

dt
Nn(λ) = Pn+1(λ)Nn(λ) − Nn(λ)Pn(λ), (4)

of the following Lax pair of two linear equations:

�n+1(λ) = Nn(λ)�n(λ), Nn(λ) =

⎛
⎜⎜⎝

λ + 2i
hλ

(
1+ i

2 h|Un|2
1− i

2 h|Un|2
)

2Un

1− i
2 h|Un|2

2Ūn

1− i
2 h|Un|2

2i
hλ

− λ

(
1+ i

2 h|Un|2
1− i

2 h|Un|2
)

⎞
⎟⎟⎠ , (5a)

d

dt
�n(λ) = Pn(λ)�n(λ), Pn(λ) = i

2

(
λ2 − |Rn|2 λRn − Q nλ

−1

λR̄n − Q̄ nλ
−1 |Q n|2 − λ−2

)
, (5b)

where �n(λ) ∈C2 is defined for n ∈Z and λ is a spectral parameter.
Because the passage from the discrete system (1) to the continuum limit (3) involves the change of the coordinates U (x, t) = u(x, t − x)

and Q (x, t) = v(x, t − x), the initial-value problem for the semi-discrete MTM system (1) does not represent the initial-value problem for 
the continuous MTM system (3) in time variable t . In addition, numerical explorations of the semi-discrete system (1) are challenging 
because the last two constraints in the system (1) may lead to appearance of bounded but non-decaying sequences {Rn}n∈Z and {Q n}n∈Z
in response to the bounded and decaying sequence {Un}n∈Z . On the other hand, since the semi-discrete MTM system (1) has the Lax pair 
of linear equations (5), it is integrable by the inverse scattering transform method which implies existence of infinitely many conserved 
quantities, exact solutions, transformations between different solutions, and reductions to other integrable equations [10]. These properties 
of integrable systems were not explored for the semi-discrete MTM system (1) in the previous work [11].

The purpose of this work is to derive the one-fold Darboux transformation between solutions of the semi-discrete MTM system (1). We 
employ the Darboux transformation in order to generate one-soliton and two-soliton solutions on zero background in the exact analytical 
form. By looking at the continuum limit h → 0, we show that the discrete solitons share many properties with their continuous counter-
parts. We also construct one-soliton solutions over the nonzero background. Further properties of the model, e.g. conserved quantities and 
solvability of the initial-value problem, are left for further studies.

The following theorem represents the main result of this work.

Theorem 1. Let �n(λ1) = ( fn, gn)T be a nonzero solution of the Lax pair (5) with λ = λ1 and (Un, Rn, Q n) be a solution of the semi-discrete MTM 
system (1). Another solution of the semi-discrete MTM system (1) is given by

U [1]
n = −2 i(λ̄1| fn|2 + λ1|gn|2)Un − h|λ1|2(λ1| fn|2 + λ̄1|gn|2)Un + 2 i(λ2

1 − λ̄2
1) fn ḡn

2 i(λ1| fn|2 + λ̄1|gn|2) − h|λ1|2(λ̄1| fn|2 + λ1|gn|2) + h(λ2
1 − λ̄2

1) f̄n gnUn
, (6a)

R[1]
n = −

(
λ̄1| fn|2 + λ1|gn|2

)
Rn + (

λ2
1 − λ̄2

1

)
fn ḡn

λ1| fn|2 + λ̄1|gn|2
, (6b)

Q [1]
n = −|λ1|2

(
λ1| fn|2 + λ̄1|gn|2

)
Q n + (

λ2
1 − λ̄2

1

)
fn ḡn

|λ1|2(λ̄1| fn|2 + λ1|gn|2) . (6c)

Theorem 1 is proven in Section 2 using the Lax pair (5) and the dressing method. One-soliton and two-soliton solutions on zero 
background are obtained in Section 3. One-soliton solutions over the nonzero background are constructed in Section 4. Both zero and 
nonzero backgrounds are modulationally stable in the evolution of the semi-discrete MTM system (1). A summary and further directions 
are discussed in Section 5.
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2. Proof of the one-fold Darboux transformation

The one-fold Darboux transformation takes an abstract form (see, e.g., [9]):

�[1](λ) = T (λ)�(λ), (7)

where T (λ) is the Darboux matrix, �(λ) is a solution to the system (5), whereas �[1](λ) is a solution of the transformed system

�
[1]
n+1(λ) = N[1]

n (λ)�
[1]
n (λ),

d

dt
�

[1]
n (λ) = P [1]

n (λ)�
[1]
n (λ), (8)

with N[1]
n (λ) and P [1]

n (λ) having the same form as Nn(λ) and Pn(λ) except that the potentials 
(
Un, Q n, Rn

)
are replaced by (

U [1]
n , Q [1]

n , R[1]
n

)
. By substituting (7) into the linear equations (8) and using the linear equations (5), we obtain the following system 

of equations for the Darboux matrix T (λ):

Tn+1(λ)Nn(λ) = N[1]
n (λ)Tn(λ), (9a)

d

dt
Tn(λ) + Tn(λ)Pn(λ) = P [1]

n (λ)Tn(λ). (9b)

Because (5a) represents the Darboux transformation of the continuous MTM hierarchy [11,28] and (9a) represents permutations of two 
Darboux transformations, the Darboux matrix Tn(λ) takes the form similar to the Darboux matrix Nn(λ). Therefore, we are looking for the 
Darboux matrix T (λ) in the following form (used in [31] in the context of the semi-discrete nonlocal nonlinear Schrödinger equation):

Tn(λ) =
(

λ + an
|λ1|2

λ
bn

cn dnλ + |λ1|2
λ

)
, (10)

where the coefficients {an, bn, cn, dn} are to be computed by using the dressing method from Appendix A in [5]. To do so, we use the 
symmetry properties of the Lax pair (5). This allows us to find simultaneously both the coefficients of T (λ) and the transformations 
between the potentials 

(
U , Q , R

)
and 

(
U [1], Q [1], R[1]).

Lemma 2. Let �(λ1) =
(

f , g)T be a nonzero solution of the Lax pair (5) at λ = λ1 . Then,

[�(λ̄1)]n = �n

( −ḡn

f̄n

)
, [�(−λ1)]n = (−1)n

( − fn

gn

)
, [�(−λ̄1)]n = (−1)n�n

(
ḡn

f̄n

)
, (11)

are solutions of the Lax pair (5) at λ = λ̄1 , λ = −λ1 , and λ = −λ̄1 respectively, where �n(t) satisfies:

�n+1 = −Sn�n, Sn := 1 + i
2 h|Un|2

1 − i
2 h|Un|2

, (12a)

d�n

dt
= Mn�n, Mn := i

2

(
λ̄2

1 − λ̄−2
1 + |Q n|2 − |Rn|2

)
. (12b)

Proof. It follows from (5a) that components of �(λ1) satisfy the system of difference equations:⎧⎪⎨
⎪⎩

fn+1 =
(
λ1 + 2i

hλ1
Sn

)
fn + 2Un

1− i
2 h|Un|2 gn,

gn+1 = 2Ūn

1− i
2 h|Un|2 fn +

(
2i

hλ1
− λ1 Sn

)
gn,

(13)

whereas components of �(λ̄1) satisfy the system of difference equations:⎧⎪⎨
⎪⎩

�n+1 ḡn+1 =
(
λ̄1 + 2i

hλ̄1
Sn

)
�n ḡn − 2Un

1− i
2 h|Un|2 �n f̄n,

�n+1 f̄n+1 = − 2Ūn

1− i
2 h|Un|2 �n ḡn +

(
2i

hλ̄1
− λ̄1 Sn

)
�n f̄n.

(14)

Dividing (14) by �n+1 and taking the complex conjugation yields (13) if and only if � satisfies the difference equation (12a). Similarly, it 
follows from (5b) that components of �(λ1) satisfy the time evolution equations:⎧⎨

⎩
dfn
dt = i

2

[
(λ2

1 − |Rn|2) fn + (λ1 Rn − λ−1
1 Q n)gn

]
,

dgn
dt = i

2

[
(λ1 R̄n − λ−1

1 Q̄ n) fn + (−λ−2
1 + |Q n|2)gn

]
,

(15)

whereas components of �(λ̄1) satisfy the time evolution equations:⎧⎨
⎩

d�n
dt ḡn + �n

dḡn
dt = i

2

[
(λ̄2

1 − |Rn|2)�n ḡn − (λ̄1 Rn − λ̄−1
1 Q n)�n f̄n

]
,

d�n
dt f̄n + �n

d f̄n
dt = i

2

[
−(λ̄1 R̄n − λ̄−1

1 Q̄ n)�n ḡn + (−λ̄−2
1 + |Q n|2)�n f̄n

]
.

(16)

Taking the complex conjugation of (16) yields (15) if and only if � satisfies the time evolution equation (12b). The other two solutions in 
(11) are obtained by the symmetry of the system (5) with respect to the reflection λ → −λ. �
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Lemma 3. Let �(λ1) = ( f , g)T be in the kernel of the Darboux matrix T (λ1) and �(λ̄1) = �
(− ḡ, f̄

)T
be in the kernel of T (λ̄1). Then, the coefficients 

of T (λ) in (10) are given by

an = − �̄n

�n
, bn = −

(
λ2

1 − λ̄2
1

)
fn ḡn

�n
, cn =

(
λ2

1 − λ̄2
1

)
f̄n gn

�n
, dn = − �̄n

�n
, (17)

where �n := λ̄1| fn|2 + λ1|gn|2 . Furthermore, �(−λ1) and �(−λ̄1) in (11) are in the kernel of T (−λ1) and T (−λ̄1) respectively.

Proof. We rewrite the linear equations for T (λ1)�(λ1) = 0 and T (λ̄1)�(λ̄1) = 0 in the following explicit form:⎧⎪⎪⎨
⎪⎪⎩

(λ1 + anλ̄1) fn + bn gn = 0,

cn fn + (dnλ1 + λ̄1)gn = 0,

−(λ̄1 + anλ1)ḡn + bn f̄n = 0,

−cn ḡn + (dnλ̄1 + λ1) f̄n = 0,

(18)

where the scalar factor � has been canceled out. Solving the linear system (18) with Cramer’s rule yields (17). Then, it follows from (10)
and (17) that Tn(λ) can be written in the form:

Tn(λ) = (λ2 − λ2
1)(λ

2 − λ̄2
1)

2λ�n
T̂n(λ), (19)

where

T̂n(λ) = 1

λ − λ1

(
ḡn

f̄n

)(
gn − fn

) + 1

λ + λ1

( −ḡn

f̄n

)(
gn fn

) + 1

λ − λ̄1

(
fn

−gn

)(
f̄n ḡn

) + 1

λ + λ̄1

(
fn

gn

)( − f̄n ḡn
)
.

It follows from (19) that

Tn(λ1)

(
fn

gn

)
=

(
0
0

)
, Tn(−λ1)

( − fn

gn

)
=

(
0
0

)
, Tn(λ̄1)

( −ḡn

f̄n

)
=

(
0
0

)
, Tn(−λ̄1)

(
ḡn

f̄n

)
=

(
0
0

)
,

hence T (±λ1)�(±λ1) = 0 and T (±λ̄1)�(±λ̄1) = 0. �
Lemma 4. Let the Darboux matrix T (λ) be in the form (10) with the coefficients given by Eqs. (17). Then, the determinant of T (λ) is given by

det Tn(λ) = − (λ2 − λ2
1)(λ

2 − λ̄2
1)

λ2

�̄n

�n
. (20)

Proof. Expanding det Tn(λ) given by (10) yields

det Tn(λ) = dnλ
2 + andn|λ1|2 − bncn + |λ1|2 + an|λ1|4λ−2. (21)

Since ±λ1 and ±λ̄1 are the roots of det T (λ), we obtain (20) by substituting (17) into (21). �
For λ �= ±λ1 and λ �= ±λ̄1, we define

adTn(λ) = detTn(λ)[Tn(λ)]−1 =
(

dnλ + |λ1|2
λ

−bn

−cn λ + an
|λ1|2

λ

)
, (22)

and obtain adTn(λ) from (10) and (17) in the form:

adTn(λ) = (λ2 − λ2
1)(λ

2 − λ̄2
1)

2λ�n
adT̂n(λ), (23)

where

adT̂n(λ) = 1

λ − λ1

(
fn

gn

)( − f̄n ḡn
) + 1

λ + λ1

(
fn

−gn

)(
f̄n ḡn

)
+ 1

λ − λ̄1

(
ḡn

− f̄n

)( −gn − fn
) + 1

λ + λ̄1

(
ḡn

f̄n

)(
gn − fn

)
.

New potentials N[1]
n (λ) and P [1]

n (λ) are derived from Eqs. (9) by using the Darboux matrix T (λ). Assuming λ �= ±λ1 and λ �= ±λ̄1, we 
obtain from (9) and (23) that

N[1]
n (λ) = 1

detTn(λ)
Tn+1(λ)Nn(λ)adTn(λ) = − λ

2�̄n
Tn+1(λ)Nn(λ)adT̂n(λ) (24)

and

P [1]
n (λ) = 1

[
d

Tn(λ) + Tn(λ)Pn(λ)

]
adTn(λ) = − λ

¯
[

d
Tn(λ) + Tn(λ)Pn(λ)

]
adT̂n(λ), (25)
detTn(λ) dt 2�n dt
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where the expressions (20) and (23) have been used.
First, we compute the products in the right-hand side of Eq. (24). By Lemma 2 and direct computations, we obtain

Nn(λ)

(
fn

gn

)
=

(
fn+1
gn+1

)
+ (λ − λ1)

(
1 − 2 i

hλλ1
Sn 0

0 − 2 i
hλλ1

− Sn

)(
fn

gn

)
, (26a)

Nn(λ)

(
fn

−gn

)
=

( − fn+1
gn+1

)
+ (λ + λ1)

(
1 + 2 i

hλλ1
Sn 0

0 2 i
hλλ1

− Sn

)(
fn

−gn

)
, (26b)

Nn(λ)

(
ḡn

− f̄n

)
= −Sn

(
ḡn+1

− f̄n+1

)
+ (λ − λ̄1)

(
1 − 2 i

hλλ̄1
Sn 0

0 − 2 i
hλλ̄1

− Sn

)(
ḡn

− f̄n

)
, (26c)

Nn(λ)

(
ḡn

f̄n

)
= Sn

(
ḡn+1

f̄n+1

)
+ (λ + λ̄1)

(
1 + 2 i

hλλ̄1
Sn 0

0 2 i
hλλ̄1

− Sn

)(
ḡn

f̄n

)
, (26d)

where Sn is defined in Eq. (12a). By using this table, we compute the first product in (24):

Nn(λ)adT̂n(λ) = 1

λ − λ1

(
fn+1
gn+1

)( − f̄n ḡn
) + 1

λ + λ1

( − fn+1
gn+1

)(
f̄n ḡn

)
+ 1

λ − λ̄1
Sn

(
ḡn+1

− f̄n+1

)(
gn fn

) + 1

λ + λ̄1
Sn

(
ḡn+1

f̄n+1

)(
gn − fn

) + 4i

hλ|λ1|2
(

Sn�n 0
0 −�̄n

)
.

By Lemma 3 and direct computations, we obtain

Tn(λ)

(
fn

gn

)
= (λ − λ1)

(
1 − an

λ̄1
λ

0

0 dn − λ̄1
λ

)(
fn

gn

)
, (27a)

Tn(λ)

(
fn

−gn

)
= (λ + λ1)

(
1 + an

λ̄1
λ

0

0 dn + λ̄1
λ

)(
fn

−gn

)
, (27b)

Tn(λ)

(
ḡn

− f̄n

)
= (λ − λ̄1)

(
1 − an

λ1
λ

0
0 dn − λ1

λ

)(
ḡn

− f̄n

)
, (27c)

Tn(λ)

(
ḡn

f̄n

)
= (λ + λ̄1)

(
1 + an

λ1
λ

0
0 dn + λ1

λ

)(
ḡn

f̄n

)
. (27d)

By using this table, we compute the second product in (24):

Tn+1(λ)Nn(λ)adT̂n(λ) = 2

⎛
⎝ −

(
fn+1 f̄n − Sn ḡn+1 gn

)
− an+1

λ

(
λ̄1 fn+1 ḡn + Snλ1 ḡn+1 fn

)
1
λ

(
λ̄1 gn+1 f̄n + Snλ1 f̄n+1 gn

)
dn+1

(
gn+1 ḡn − Sn f̄n+1 fn

)
⎞
⎠

+ 4i

hλ|λ1|2
(

λ + an+1
|λ1|2

λ
bn+1

cn+1 dn+1λ + |λ1|2
λ

)(
Sn�n 0

0 −�̄n

)
.

Substituting this expression into (24), we finally obtain

N[1]
n (λ) =

(
δ0λ + 2 i

hλ
δ1 δ2

δ3
2 i
hλ

− δ4λ

)
, (28)

where

δ0 = f̄n fn+1 − Sn gn ḡn+1

�̄n
− 2 i

h

Sn�n

|λ1|2�̄n
,

δ1 = −an+1 Sn�n

�̄n
,

δ2 = an+1
λ̄1 fn+1 ḡn + Snλ1 ḡn+1 fn

�̄n
+ 2 ibn+1

h|λ1|2 ,

δ3 = − λ̄1 gn+1 f̄n + Snλ1 f̄n+1 gn

�̄n
− 2 icn+1 Sn�n

h|λ1|2�̄n
,

δ4 = −2 idn+1

h|λ1|2 + dn+1
gn+1 ḡn − Sn f̄n+1 fn

�̄n
.

It follows from substitution of (13) and (14) for fn+1, gn+1, f̄n+1 and ḡn+1 that
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f̄n fn+1 − Sn gn ḡn+1 = �̄n + 2 iSn�n

h|λ1|2
and

gn+1 ḡn − Sn f̄n+1 fn = −Sn�n + 2 i�̄n

h|λ1|2 .

As a result, we verify that δ0 = 1 and δ1 = δ4. We represent N[1]
n (λ) in (28) in the same form as Nn(λ) in (5a), therefore, we write

δ1 = 1 + i
2 hWn

1 − i
2 hWn

, δ2 = 2Yn

1 − i
2 hWn

, δ3 = 2Zn

1 − i
2 hWn

(29)

for some Yn , Zn , and Wn . Using Eqs. (17) for an+1, bn+1, and cn+1 and solving Eq. (29) for Wn , Yn , and Zn yield

Wn = 2 i(�̄n�n+1 − Sn�̄n+1�n)

h(�̄n�n+1 + Sn�̄n+1�n)
, (30a)

Yn = −h|λ1|2�̄n+1
(
λ1 Sn fn ḡn+1 + λ̄1 fn+1 ḡn

) + 2 i(λ2
1 − λ̄2

1)�̄n fn+1 ḡn+1

h|λ1|2(�̄n�n+1 + Sn�̄n+1�n)
, (30b)

Zn = −
h|λ1|2�n+1

(
λ1 Sn f̄n+1 gn + λ̄1 f̄n gn+1

)
+ 2 i(λ2

1 − λ̄2
1)Sn�n f̄n+1 gn+1

h|λ1|2(�̄n�n+1 + Sn�̄n+1�n)
. (30c)

Substituting Eqs. (13) and (14) into Eqs. (30b)–(30c) simplifies Yn and Zn to the form:

Yn = h|λ1|2�̄nUn − 2i
(
λ2

1 − λ̄2
1

)
fn ḡn − 2i�nUn

h
(
λ2

1 − λ̄2
1

)
f̄n gnUn − h|λ1|2�n + 2i�̄n

, (31a)

Zn = h|λ1|2�nŪn − 2i
(
λ2

1 − λ̄2
1

)
gn f̄n + 2i�̄nŪn

h
(
λ̄2

1 − λ2
1

)
fn ḡnŪn − h|λ1|2�̄n − 2i�n

. (31b)

It follows from Eqs. (31) that Yn = Z̄n . We have checked with the aid of Wolfram’s MATHEMATICA from Eq. (30a) that Wn = Yn Zn

is satisfied. As a result, we conclude that N[1]
n (λ) in (28) is the same as that of Nn(λ) in (5a) with the correspondence: U [1]

n = Yn , 
U [1]

n = Zn = Ȳn , and |U [1]
n |2 = Wn = |Yn|2. Thus, Eq. (6a) follows from the transformation formula (31a).

Next, we use Eq. (25) and derive the transformations for Rn and Q n in Eqs. (6b) and (6c). Again, using Lemma 2 and direct computa-
tions, we obtain

Pn(λ)

(
fn

gn

)
=

(
fn,t

gn,t

)
+ (λ − λ1)H1(λ)

(
fn

gn

)
, (32a)

Pn(λ)

(
fn

−gn

)
=

(
fn,t

−gn,t

)
+ (λ + λ1)H2(λ)

(
fn

−gn

)
, (32b)

Pn(λ)

(
ḡn

− f̄n

)
=

(
ḡn,t

− f̄n,t

)
+ Mn

(
ḡn

− f̄n

)
+ (λ − λ̄1)H3(λ)

(
ḡn

− f̄n

)
, (32c)

Pn(λ)

(
ḡn

f̄n

)
=

(
ḡn,t

f̄n,t

)
+ Mn

(
ḡn

f̄n

)
+ (λ + λ̄1)H4(λ)

(
ḡn

f̄n

)
, (32d)

where Mn is defined in Eq. (12b) and matrices H1,2,3,4(λ) are given by

H1(λ) = i

2

(
λ + λ1 Rn + 1

λλ1
Q n

R̄n + 1
λλ1

Q̄ n
λ+λ1
λ2λ2

1

)
,

H2(λ) = i

2

(
λ − λ1 Rn − 1

λλ1
Q n

R̄n − 1
λλ1

Q̄ n
λ−λ1
λ2λ2

1

)
,

H3(λ) = i

2

⎛
⎝ λ + λ̄1 Rn + 1

λλ̄1
Q n

R̄n + 1
λλ̄1

Q̄ n
λ+λ̄1
λ2λ̄2

1

⎞
⎠ ,

H4(λ) = i

2

⎛
⎝ λ − λ̄1 Rn − 1

λλ̄1
Q n

R̄n − 1
λλ̄1

Q̄ n
λ−λ̄1
λ2λ̄2

1

⎞
⎠ .

Based on the results in Eqs. (32), the product in the right-hand side of Eq. (25) can be obtained as
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[
d

dt
Tn(λ) + Tn(λ)Pn(λ)

]
adT̂n(λ)

= 1

λ − λ1

[
Tn(λ)

(
fn

gn

)]
t

( − f̄n ḡn
) + 1

λ + λ1

[
Tn(λ)

(
fn

−gn

)]
t

(
f̄n ḡn

)
+ 1

λ − λ̄1

[
Tn(λ)

(
ḡn

− f̄n

)]
t

( −gn − fn
) + 1

λ + λ̄1

[
Tn(λ)

(
ḡn

f̄n

)]
t

(
gn − fn

)
+ Tn(λ)H1(λ)

(
fn

gn

)( − f̄n ḡn
) + Tn(λ)H2(λ)

(
fn

−gn

)(
f̄n ḡn

)
+ Tn(λ)H3(λ)

(
ḡn

− f̄n

)( −gn − fn
) + Tn(λ)H4(λ)

(
ḡn

f̄n

)(
gn − fn

)
+ Mn

[
1

λ − λ̄1
Tn(λ)

(
ḡn

− f̄n

)( −gn − fn
) + 1

λ + λ̄1
Tn(λ)

(
ḡn

f̄n

)(
gn − fn

)]
.

Expanding the above equation and substituting it into (25) gives

P [1]
n (λ) = 1

�̄n

( −λ̄1 f̄n (an fn)t − λ1 gn (an ḡn)t λ
(

fn ḡn,t − fn,t ḡn
)

λdn

(
f̄n gn,t − f̄n,t gn

)
λ1 fn f̄n,t + λ̄1 ḡn gn,t

)

+ i

2

⎛
⎜⎜⎝

λ2 + |λ1|2an + bn
|λ1|2

(
�n
�̄n

Q̄ n − λ2
1−λ̄2

1
|λ1|2�̄n

f̄n gn

)
−

(
an
λ

+ λ

|λ1|2
)

Q n − bn
λ|λ1|2

λcn +
(

1
λ

+ λdn
|λ1|2

)(
�n
�̄n

Q̄ n − λ2
1−λ̄2

1
|λ1|2�̄n

gn f̄n

)
− 1

λ2 − (dn+cn Q n)

|λ1|2

⎞
⎟⎟⎠

+ Mn

(
λ1
�n

|gn|2 λ

�̄n
fn ḡn

λ
�n

f̄n gn
λ1
�̄n

| fn|2
)

, (33)

where we have used Eq. (17) in obtaining the last term. Thus, P [1]
n can be formally written in the form

P [1]
n (λ) = i

2

(
λ2 − π1π3 π1λ − π2λ

−1

π3λ − π4λ
−1 π2π4 − λ−2

)
. (34)

Comparing Eqs. (33) and (34) and using Eqs. (17) together with (15), we can express πi ’s (1 ≤ i ≤ 4) as

π1 = −�n Rn + (
λ2

1 − λ̄2
1

)
fn ḡn

�̄n
, (35a)

π2 = −|λ1|2�̄n Q n + (
λ2

1 − λ̄2
1

)
fn ḡn

|λ1|2�n
, (35b)

π3 = − �̄n R̄n + (
λ̄2

1 − λ2
1

)
f̄n gn

�n
, (35c)

π4 = −|λ1|2�n Q̄ n + (
λ̄2

1 − λ2
1

)
f̄n gn

|λ1|2�̄n
, (35d)

where Wolfram’s MATHEMATICA has been used for simplification. It is obvious from (35) that π̄1 = π3 and π̄2 = π4. As a result, we 
conclude that P [1]

n (λ) in (33) is the same as that of Pn(λ) in (5b) with the correspondence: R[1]
n = π1 and Q [1]

n = π2. Thus, Eqs. (6b)–(6c)
follow from the transformation formulas (35a)–(35b). Theorem 1 is proven with the algorithmic computations.

3. Soliton solutions on zero background

Here we use the one-fold Darboux transformation of Theorem 1 and construct soliton solutions on zero background. Hence we take 
zero potentials (U , R, Q ) = (0, 0, 0) in the transformation formulas (6) and obtain

U [1]
n = − 2 i(λ2

1 − λ̄2
1) fn ḡn

2 i(λ1| fn|2 + λ̄1|gn|2) − h|λ1|2(λ̄1| fn|2 + λ1|gn|2)
, (36a)

R[1]
n = − (λ2

1 − λ̄2
1) fn ḡn

λ1| fn|2 + λ̄1|gn|2
, (36b)

Q [1]
n = − (λ2

1 − λ̄2
1) fn ḡn

|λ1|2(λ̄1| fn|2 + λ1|gn|2) , (36c)

where �n(λ1) = ( fn, gn)T is a nonzero solution of the Lax pair (5) with λ = λ1 at the zero background. First, we prove that the zero 
background is linearly stable in the semi-discrete MTM system (1). Next, we construct Jost solutions of the Lax pair (5) at the zero 
background. At last, we obtain and study the exact expressions for one-soliton and two-soliton solutions.
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3.1. Stability of zero background

Linearization of the semi-discrete MTM system (1) at the zero background is written as the linear system⎧⎪⎨
⎪⎩

4i
dun

dt
+ qn+1 + qn + 2i

h
(rn+1 − rn) = 0,

qn+1 − qn + ihun = 0,

rn+1 + rn − 2un = 0.

(37)

Thanks to the linear superposition principle, we use the discrete Fourier transform on the lattice,

un = 1

2π

π∫
−π

û(θ)einθdθ, n ∈Z, (38)

invert the second and third equations of the differential-difference system (37), and obtain the following differential equation with pa-
rameter θ ∈ (−π, π)\{0}:

h
dû

dt
=

(
h2

4

eiθ + 1

eiθ − 1
− eiθ − 1

eiθ + 1

)
û. (39)

Separating variables in û = û0(θ)e−itω(θ) yields the dispersion relation for the Fourier mode û0(θ):

ω(θ) = 1

h sin θ

[(
h2

4
+ 1

)
+

(
h2

4
− 1

)
cos θ

]
, θ ∈ (−π,π)\{0}. (40)

Since ω(θ) ∈R for every θ ∈ (−π, π)\{0}, the zero background is linearly stable. Note however that |ω(θ)| → ∞ as θ → 0 and θ → ±π . 
Divergences of the dispersion relation in (40) as θ → 0 and θ → ±π are related to inversion of the second and third difference equations 
in the linear system (37).

3.2. Solutions of the Lax pair (5) at zero background

Lax pair (5) at the zero background is decoupled into two systems which admit the following two linearly independent solutions:

[�+(λ)]n(t) = α

(
1
0

)
μn+e

iλ2
2 t, [�−(λ)]n(t) = β

(
0
1

)
μn−e

− i
2λ2 t

, (41)

where α, β ∈C\{0} are parameters and

μ±(λ) := 2 i

hλ
± λ.

We say that �(λ) is the Jost function if λ ∈C yields either |μ+(λ)| = 1 or |μ−(λ)| = 1, in which case one of the two fundamental solutions 
in (41) is bounded in the limit |n| → ∞. Constraints |μ±(λ)| = 1 for λ = |λ|eiθ/2 in the polar form are equivalent to the following equation:

|λ|2 ± 4

h
sin(θ) + 4

h2|λ|2 = 1. (42)

Roots of Eq. (42) in the complex plane for λ ∈C are shown on Fig. 1 for h < 4 (left) and h > 4 (right). For every λ on each curve of the 
Lax spectrum, there exists one Jost function in (41) which remains bounded in the limit |n| → ∞. On the other hand, thanks to the time 
dependence in (41), Jost functions remain bounded also in the limit |t| → ∞ if and only if λ2 ∈R. No such Jost functions exist for h < 4
as is seen from the left panel of Fig. 1. In other words, all Jost functions diverge exponentially either as t → −∞ or as t → +∞ if h < 4.

3.3. One-soliton solutions

Fix λ1 ∈C such that μ±(λ1) �= 0 and λ2
1 /∈R. Taking a general solution for �(λ1) = ( f , g)T , we write f and g in the form:

fn(t) = α1eξ1,n(t), gn(t) = β1eη1,n(t), (43)

where

ξ1,n(t) = n log
(
λ1 + 2i

hλ1

)
+ i

2
λ2

1t, η1,n(t) = n log
(

− λ1 + 2i

hλ1

)
− it

2λ2
1

, (44)

and α1, β1 ∈C\{0} are parameters. Without loss of generality, we set λ1 = δ1eiθ1/2 with some δ1 > 0 and θ1 ∈ (0, π). Substituting Eq. (43)
into Eqs. (36) yields the exact one-soliton solution in the form:
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Fig. 1. Solutions to the transcendental equation (42) in the complex plane for h = 2 (left) and h = 6 (right). Each curve encloses a point λ0 where either μ+(λ0) = 0 or 
μ−(λ0) = 0.

U [1]
n = − 4iδ1α1β̄1 sin θ1eiθ1/2

|β1|2(2 + ihδ2
1eiθ1)eη1,n−ξ1,n + |α1|2(2eiθ1 + ihδ2

1)e−η̄1,n+ξ̄1,n
, (45a)

R[1]
n = − 2iδ1α1β̄1 sin θ1eiθ1/2

|β1|2eη1,n−ξ1,n + |α1|2e−η̄1,n+ξ̄1,n+iθ1
, (45b)

Q [1]
n = − 2iα1β̄1 sin θ1eiθ1/2

δ1(|β1|2eη1,n−ξ1,n+iθ1 + |α1|2e−η̄1,n+ξ̄1,n )
, (45c)

where

ξ1,n(t) − η1,n(t) = n log
(2 − ihδ2

1eiθ1

2 + ihδ2
1eiθ1

)
+ i

2

(
δ2

1 + 1

δ2
1

)
cos θ1t − 1

2

(
δ2

1 − 1

δ2
1

)
sin θ1t.

Fig. 2(a)–2(c) presents the one-soliton solutions (45) for α1 = 1, β1 = 1 + i, δ1 = 2, θ1 = 2π/5, and h = 1.
Let us check that the discrete solitons (45) recover solitons of the continuous MTM system (2) in the particularly simple case δ1 = 1. 

By defining xn = hn, n ∈Z and taking the limit h → 0, we obtain for δ1 = 1:

U [1]
n → U (x, t) = − 2iα1β̄1 sin θ1ei cos θ1(t−x)

|α1|2esin θ1x+iθ1/2 + |β1|2e− sin θ1x−iθ1/2
, (46a)

R[1]
n → R(x, t) = − 2iα1β̄1 sin θ1ei cos θ1(t−x)

|α1|2esin θ1x+iθ1/2 + |β1|2e− sin θ1x−iθ1/2
, (46b)

Q [1]
n → Q (x, t) = − 2iα1β̄1 sin θ1ei cos θ1(t−x)

|α1|2esin θ1x−iθ1/2 + |β1|2e− sin θ1x+iθ1/2
, (46c)

which agree with the stationary MTM solitons in the continuous system (2). Parameters α1, β1 ∈ C\{0} determine translations in space 
and rotation in time, whereas θ1 ∈ (0, π) determines the frequency ω1 := cos θ1 ∈ (−1, 1) of the stationary MTM solitons. In the limit 
ω1 → 1 (θ1 → 0), the MTM soliton (46) degenerates to the zero solution, whereas in the limit ω1 → −1 (θ1 → π ) and α1 = β1, it 
becomes the algebraic soliton:

U (x, t) → Ua(x, t) = −e−i(t−x)

x − i/2
. (47)

Discrete solitons (45) enjoy the same properties as the continuous solitons. In particular, let us recover the discrete algebraic soliton 
for the case α1 = β1 and δ1 = 1 in the limit θ1 → π . By setting θ1 = π − ε and expanding to the first order in ε , we obtain from (45a)

U [1]
n = 4(ε +O(ε2))e−it

(2 − ih − εh +O(ε2))
(

2−ih+iε(2+ih)/2+O(ε2)

2+ih+iε(2−ih)/2+O(ε2)

)n − (2 − ih − 2iε +O(ε2))
(

2−ih−iε(2+ih)/2+O(ε2)

2+ih−iε(2−ih)/2+O(ε2)

)n .

This expression yields in the limit ε → 0 the discrete algebraic soliton

U [1]
n → [Ua]n = − 4e−it

8nh(2−ih)

4+h2 − 2i + h

(
2 + ih

2 − ih

)n

. (48)

If xn = hn, n ∈Z, the discrete algebraic soliton (48) reduces in the limit h → 0 to the continuous algebraic soliton (47). Similarly, one can 
prove that the discrete soliton (45) degenerates to the zero solution in the limit θ1 → 0.
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Fig. 2. An example of the one-soliton solutions (45). The following components are shown: |Un|2 (left), |Rn|2 (middle), and |Q n|2 (right).

Fig. 3. An example of the two-soliton solutions.

3.4. Two-soliton solutions

In order to construct the two-soliton solutions, one needs to use the one-fold Darboux transformation (6) twice. Fix λ1, λ2 ∈C\{0} such 
that μ±(λ1,2) �= 0, λ2

1,2 /∈R, λ2 �= ±λ1, and λ2 �= ±λ̄1. A general solution of the Lax pair (5) with λ = λ1 and λ = λ2 at zero background is 
written in the form

[�(λ1)]n(t) =
(

α1eξ1,n(t)

β1eη1,n(t)

)
, [�(λ2)]n(t) =

(
α2eξ2,n(t)

β2eη2,n(t)

)
, (49)

where ξ j,n and η j,n with j = 1, 2 are given by (44) for λ1,2, and α1,2, β1,2 ∈C\{0} are parameters.
By using the one-fold Darboux transformation (6) with zero potentials, λ = λ1, and � = �(λ1), we obtain the one-soliton solutions 

(U [1]
n , R[1]

n , Q [1]
n ) in the form (45). The transformed eigenfunction �[1](λ2) = T [1](λ2)�(λ2) satisfies the Lax pair (5) with the potentials 

(U [1]
n , R[1]

n , Q [1]
n ) and λ = λ2. By using the one-fold Darboux transformation (6) with (Un, Rn, Q n) replaced by (U [1]

n , R[1]
n , Q [1]

n ), λ1 replaced 
by λ2, and �(λ1) replaced by �[1](λ2), we obtain the two-soliton solutions (U [2]

n , R[2]
n , Q [2]

n ) in the explicit form (which is not given here).
Fig. 3(a)–3(c) shows the two-soliton solutions for α1 = 1, β1 = 1 + i, α2 = 1, β2 = 1, δ1 = √

3, θ = π/3, δ2 = √
5, θ2 = arctan 2, and 

h = 1. The two-soliton solutions feature elastic collisions of two individual solitons with preservation of their shapes. Such collisions are 
very common in integrable equations including the continuous MTM system (3).

4. Soliton solutions over the nonzero background

Here we use the one-fold Darboux transformation of Theorem 1 and construct soliton solutions over the nonzero background 
(U , R, Q ) = (ρ, ρ, ρ−1), where ρ > 0 is a real parameter. Similarly to Section 3, we prove that the nonzero background is linearly sta-
ble in the semi-discrete MTM system (1) for every ρ > 0, construct Jost solutions of the Lax pair (5), and then finally obtain the exact 
expressions for one-soliton solutions.

4.1. Stability of the nonzero background

Linearization of the semi-discrete MTM system (1) at the nonzero background (U , R, Q ) = (ρ, ρ, ρ−1) with ρ > 0 yields the linear 
system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4i
dun

dt
+ 2

(
ρ2 − 1

ρ2

)
un +

(
1 + ihρ2

2

)(
2i

h
rn+1 − q̄n+1

)
−

(
1 − ihρ2

2

)(
2i

h
rn + q̄n

)
= 0,(

1 + ihρ2

2

)
q̄n+1 −

(
1 − ihρ2

2

)
q̄n + ihun = 0,(

1 + ihρ2

2

)
rn+1 +

(
1 − ihρ2

2

)
rn − 2un = 0.

(50)

By using the discrete Fourier transform on the lattice (38), we close the linear system (50) at the following differential equation with 
parameter θ ∈ (−π, π):
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ih
dû

dt
+ h

2

(
ρ2 − 1

ρ2

)
û +

⎛
⎝h2

4

cos θ
2 − hρ2

2 sin θ
2

sin θ
2 + hρ2

2 cos θ
2

− sin θ
2 + hρ2

2 cos θ
2

cos θ
2 − hρ2

2 sin θ
2

⎞
⎠ û = 0. (51)

The dispersion relation following from linear equation (51) is purely real, which implies that the nonzero background is linearly stable 
for every ρ > 0. Note that the linear equation (51) does not reduce to equation (39) in the limit ρ → 0 because the nonzero background 
(U , R, Q ) = (ρ, ρ, ρ−1) is singular in this limit, hence the variable q in the linearized system (37) is replaced by q̄ in the system (50).

Note that (u, v) = (ρ, ρ−1) is also the nonzero solution of the continuous MTM system (3). However, computations similar to those in 
(50) and (51) show that the nonzero background for any ρ > 0 is modulationally unstable. This is different from the conclusion that holds 
for the semi-discrete MTM system (1).

4.2. Solutions of the Lax pair (5) at nonzero background

Solving Lax pair (5) with the potentials (U , R, Q ) = (ρ, ρ, ρ−1), we have two linearly independent solutions:

[�+(λ)]n(t) = α

(
ρ
−λ

)
μn+e

i
2

(
1

ρ2 −ρ2
)

t
, [�−(λ)]n(t) = β

(
λ

ρ

)
μn−e

i
2

(
λ2− 1

λ2

)
t
, (52)

where α, β ∈C\{0} are parameters and

μ+(λ) :=
(

2 i

hλ
− λ

)
1 + ihρ2

2

1 − ihρ2

2

, μ−(λ) := 2 i

hλ
+ λ.

Similarly to the case of zero potentials, we say that �(λ) is a Jost function if λ ∈C yields either |μ+(λ)| = 1 or |μ−(λ)| = 1. Interestingly, 
the constraints |μ±(λ)| = 1 with λ = |λ|eiθ/2 yield the same equation (42). Hence, any point on each curve of the Lax spectrum shown on 
Fig. 1 gives one Jost function in (52) which remains bounded in the limit |n| → ∞. The function of �+(λ) is always bounded in the limit 
|t| → ∞ since ρ > 0. On the other hand, �−(λ) is bounded as |t| → ∞ if and only if λ2 ∈R, and no such Jost functions exist for �−(λ)

if h < 4.

4.3. One-soliton solutions

Fix λ1 ∈C such that μ±(λ1) �= 0 and λ2
1 /∈R. Let �(λ1) = ( f , g)T be the general solution of Lax pair (5) with (U , R, Q ) = (ρ, ρ, ρ−1)

and λ = λ1. We write f and g in the form

f1,n = α1ρ eμ1,n(t) + β1λ1eν1,n(t), g1,n = −α1λ1eμ1,n(t) + β1ρ eν1,n(t), (53)

with

μ1,n(t) = n log

⎡
⎣(

2 i

hλ1
− λ1

)
1 + ihρ2

2

1 − ihρ2

2

⎤
⎦ + i

2

(
1

ρ2
− ρ2

)
t, ν1,n(t) = n log

(
λ1 + 2i

hλ1

)
+ i

2

(
λ2

1 − 1

λ2
1

)
t,

where α1, β1 ∈C\{0} are parameters. Substituting Eq. (53) into Eqs. (6), we obtain the one-soliton solutions over the nonzero background 
in the form:

U [1]
n = −|α1|2ρλ̄1hλ1 χ̄1e�1,n + |β1|2ρλ1hλ̄1

χ1e−�1,n + ᾱ1β1|λ1|2hρ(λ2
1 − λ̄2

1)e−i �1,n

|α1|2λ1hλ1 χ̄1e�1,n + |β1|2λ̄1hλ̄1
χ1e−�1,n − ᾱ1β1ρhρ(λ2

1 − λ̄2
1)e−i �1,n

, (54a)

R[1]
n = −|α1|2ρλ̄1χ̄1e�1,n + |β1|2ρλ1χ1e−�1,n − ᾱ1β1|λ1|2(λ2

1 − λ̄2
1)e−i �1,n

|α1|2λ1χ̄1e�1,n + |β1|2λ̄1χ1e−�1,n + ᾱ1β1ρ(λ2
1 − λ̄2

1)e−i �1,n
, (54b)

Q [1]
n = − |α1|2λ̄3

1χ1e�1,n + |β1|2λ3
1χ̄1e−�1,n + α1β̄1ρ

3(λ2
1 − λ̄2

1)ei �1,n

ρ|λ1|2
[|α1|2λ̄1χ1e�1,n + |β1|2λ1χ̄1e−�1,n − α1β̄1ρ(λ2

1 − λ̄2
1)ei �1,n

] , (54c)

where

�1,n = Re(μ1,n − ν1,n), �1,n = Im(μ1,n − ν1,n),

χ1 = ρ2 + λ2
1, χ̄1 = ρ2 + λ̄2

1, hλ1 = −2i + hλ2
1, hλ̄1

= −2i + hλ̄2
1, hρ = 2i + hρ2.

Due to the presence of the oscillatory terms ei �1,n and e−i �1,n , solutions (54), in general, exhibit localized solitons which oscillate period-
ically both in n and t . Fig. 4(a)–4(c) illustrates the one-soliton solutions (54) over the nonzero background for α1 = 1, β1 = 1 + i, ρ = 1, 
δ1 = 2, θ = π/4, and h = 3/4.

No periodic oscillations occur in the one-soliton solutions (54) if and only if �1,n = 0. In this case, solutions (54) describe traveling 
solitons illustrated on Fig. 5(a)–5(c) for α1 = 1, β1 = 1 + i, ρ = 23/4/71/4, δ1 = 71/4/61/4, θ1 = 5π/6, and h = √

3.
We show that the one-soliton solutions (54) feature no periodic oscillations if the modulus and argument of λ1 are given by

|λ1| = 1

ρ

√
2

h
, arg(λ1) = 1

2
arccos

(
2h

1 − ρ4

4 − h2ρ4

)
(55)
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Fig. 4. An example of the one-soliton solutions (54) with periodic oscillations.

Fig. 5. An example of the one-soliton solutions (54) without periodic oscillations.

in the two regions described by

either h >
2

ρ4
, ρ < 1, or 0 < h <

2

ρ4
, ρ > 1. (56)

Note that the two regions intersect at ρ = 1, h = 2, for which |λ1| = 1 whereas arg(λ1) is not determined. In fact, we show that arg(λ1) ∈
( π

4 , π2 ). The existence region for non-oscillating one-soliton solutions (54) on the (h, ρ) plane is displayed in Fig. 6.
In order to verify (55), we note that the condition �1,n = 0 is equivalent to the system of two equations⎧⎨

⎩
2
ρ2 − 2ρ2 − λ̄2

1 − λ2
1 + 1

λ̄2
1

+ 1
λ2

1
= 0,

4ρ2

h|λ1|2 − h|λ1|2ρ2 + 2
h

(
λ̄1
λ1

+ λ1
λ̄1

)(
1 − h2ρ4

4

)
= 0,

(57)

subject to the constraint(
4

h2|λ1|2 − |λ1|2
)(

1 − h2ρ4

4

)
− 2ρ2

(
λ̄1

λ1
+ λ1

λ̄1

)
> 0. (58)

By using the polar form λ1 = δ1eiθ1/2 with δ1 > 0 and θ1 ∈ (0, π), we rewrite the constraints (57)–(58) in the form:⎧⎨
⎩

1
ρ2 − ρ2 +

(
1
δ2

1
− δ2

1

)
cos θ1 = 0,

δ4
1h2ρ2 + δ2

1

(
h2ρ4 − 4

)
cos θ1 − 4ρ2 = 0,

(59)

subject to the constraint(
δ4

1h2 − 4
) (

h2ρ4 − 4
)

4δ2
1h2

− 4ρ2 cos θ1 > 0. (60)

Let us first assume that δ1 �= 1, in which case the first equation in (59) gives a unique solution for θ1:

cos θ1 = ρ2 − ρ−2

δ−2
1 − δ2

1

. (61)

Substituting (61) into the second equation in (59) yields the following equation

δ8
1h2ρ4 − δ4

1(h2ρ8 + 4) + 4ρ4 = 0

with two roots δ4
1 = ρ4 and δ4

1h2ρ4 = 4. Since δ1 = ρ implies cos θ1 = −1 in (61), which is not admissible, we only have one positive root 
for δ1 given by
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Fig. 6. Region on the (h,ρ) plane given by (56).

δ1 =
√

2

ρ
√

h
, (62)

which implies

cos θ1 = 2h
1 − ρ4

4 − h2ρ4
(63)

thanks to (61). Solutions (62) and (63) are equivalent to (55). The constraint (60) with the solutions (62)–(63) is rewritten in the form

(1 − ρ4)(h2ρ4 + 4)2

2hρ2(h2ρ4 − 4)
> 0,

from which the two regions in (56) follow. In the exceptional case, δ1 = 1, we have from the first equation in (59) that ρ = 1 whereas 
cos θ1 is not determined. Then, the second equation in (59) implies that h = 2 since cos θ1 = −1 is not admissible. The constraint (60)
yields cos θ1 < 0 so that θ1 ∈ (

π
2 ,π

)
.

5. Conclusion

We derived the one-fold Darboux transformation between solutions of the semi-discrete MTM system using the Lax pair and the dress-
ing method. When one solution of the semi-discrete MTM system is either zero or nonzero, the one-fold Darboux transformation generates 
one-soliton solution on zero or nonzero backgrounds, respectively. When the one-fold Darboux transformation is used recursively, it also 
allows us to construct two-soliton solutions and generally multi-soliton solutions. We showed that properties of the discrete solitons in 
the semi-discrete MTM system are very similar to properties of the continuous MTM solitons.

Among further problems related to the semi-discrete MTM system, we mention construction of conserved quantities which may clarify 
orbital stability of the discrete MTM solitons, similar to the work [24]. Another direction is to develop the inverse scattering transform 
for solutions of the Cauchy problem associated with the semi-discrete MTM system, similar to the work [23]. Since numerical simulations 
of the semi-discrete MTM system (1) present serious challenges, it may be interesting to look for another version of the integrable 
semi-discretization of the continuous MTM system (3).
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