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Abstract. We revisit existence and stability of two-pulse solutions in the
fifth-order Korteweg–de Vries (KdV) equation with two new results. First, we
modify the Petviashvili method of successive iterations for numerical (spectral)
approximations of pulses and prove convergence of iterations in a neighborhood
of two-pulse solutions. Second, we prove structural stability of embedded ei-
genvalues of negative Krein signature in a linearized KdV equation. Combined
with stability analysis in Pontryagin spaces, this result completes the proof
of spectral stability of the corresponding two-pulse solutions. Eigenvalues of
the linearized problem are approximated numerically in exponentially weighted
spaces where embedded eigenvalues are isolated from the continuous spectrum.
Approximations of eigenvalues and full numerical simulations of the fifth-order
KdV equation confirm stability of two-pulse solutions associated with the min-
ima of the effective interaction potential and instability of two-pulse solutions
associated with the maxima points.

1. Introduction. One-pulse solutions (solitons) are commonly met in many non-
linear evolution equations where dispersive terms (represented by unbounded dif-
ferential operators) and nonlinear terms (represented by power functions) are taken
in a certain balance. Typical examples of such nonlinear evolution equations with
one-pulse solutions are given by the NLS (nonlinear Schrödinger) equation, the
Klein-Gordon (nonlinear wave) equation and the KdV (Korteweg-de Vries) equa-
tion, as well as their countless generalizations.

One-pulse solutions are the only stationary (traveling) localized solutions of the
simplest nonlinear evolution equations. However, uniqueness is not a generic prop-
erty and bound states of spatially separated pulses can represent other station-
ary (traveling) localized solutions of the same evolution equation. For instance,
two-pulse, three-pulse, and generally N -pulse solutions exist in nonlinear evolution
equations with a higher-order dispersion (represented by a higher-order differen-
tial operator). The prototypical example of such situation is the fifth-order KdV
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equation in the form,

ut + uxxx − uxxxxx + 2uux = 0, x ∈ R, t ∈ R+, (1)

where u : R × R+ 7→ R and all coefficients of the nonlinear PDE are normalized by
a scaling transformation. See Bridges & Derks [4] for a review of history and ap-
plications of the fifth-order KdV equation (1) to magneto-acoustic waves in plasma
and capillary-gravity water waves.

Traveling localized solutions u(x, t) = φ(x − ct) of the fifth-order KdV equation
(1) satisfy the fourth-order ODE

φ(iv) − φ′′ + cφ = φ2, z ∈ R, (2)

where z = x − ct is the traveling coordinate and one integration of the fifth-order
ODE in z is performed subject to zero boundary conditions on φ(z) and its deriva-
tives as |z| → ∞. Existence of localized solutions (homoclinic orbits) to the fourth-
order ODE (2) was considered by methods of the dynamical system theory. See
Champneys [10] for a review of various results on existence of homoclinic orbits in
the ODE (2).

In particular, it is proved with the variational method by Buffoni & Sere [7] and
Groves [22] (see references to earlier works in [10]) that the fourth-order ODE (2)
has the one-pulse solution φ(z) for c > 0, which is the only localized solution of the
ODE (2) for 0 < c < 1

4 up to the translation φ(z − s) for any s ∈ R. The analytical

expression for the one-pulse solution is only available for c = 36
169 < 1

4 with

φ(z) =
105

338
sech4

(
z

2
√

13

)
. (3)

For c > 1
4 , the fourth-order ODE (2) has infinitely many multi-pulse solutions

in addition to the one-pulse solution [7, 22]. The multi-pulse solutions look like
multiple copies of the one-pulse solutions separated by finitely many oscillations
close to the zero equilibrium φ = 0. Stability and evolution of multi-pulse solutions
are beyond the framework of the fourth-order ODE (2) and these questions were
considered by two theories in the recent past.

The pioneer work of Gorshkov & Ostrovsky explains multi-pulse solutions of the
fifth-order KdV equation (1) from the effective interaction potential computed from
the one-pulse solution [19, 20]. When the interaction potential has an alternating
sequence of maxima and minima (which corresponds to the case when the one-pulse
solution φ(z) has oscillatory decaying tails at infinity), an infinite countable sequence
of two-pulse solutions emerge with the property that the distance between the pulses
occurs near the extremal points of the interaction potential. Three-pulse solutions
can be constructed as a bi-infinite countable sequence of three one-pulse solutions
where each pair of two adjacent pulses is located approximately at a distance defined
by the two-pulse solution. Similarly, N -pulse solutions can be formed by a (N −1)-
infinite countable sequence of N copies of one-pulse solutions. The perturbative
procedure in [19] has the advantages that both the linear and nonlinear stability
of multi-pulse solutions can be predicted from analysis of the approximate ODE
system derived for distances between the individual pulses. Numerical evidences of
validity of this procedure in the context of the fifth-order KdV equation are reported
in [8].

A different theory was developed by Sandstede [36] who extended the Lin’s work
on the Lyapunov–Schmidt reductions for nonlinear evolution equations [28]. In this

method, a linear superposition of N one-pulse solutions φ(z) =
∑N

j=1 Φ(z − sj) is a
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solution of the ODE (2) in the case when the distances between pulses are infinite
(i.e. |sj+1 − sj | = ∞, ∀j). The Jacobian of the nonlinear ODE (2) defines a linear
self-adjoint operator from H4(R) to L2(R):

H = c − ∂2
z + ∂4

z − 2φ(z), c > 0, (4)

where the unbounded differential part c−∂2
z +∂4

z is positive and bounded away from
zero while the exponentially decaying potential term −2φ(z) is a relatively compact
perturbation. When φ(z) is a linear superposition of N infinitely-separated one-
pulse solutions Φ(z − sj), the Jacobian H has N zero eigenvalues related to the
eigenfunctions Φ′(z − sj) due to the translational invariance of the ODE (2). The
Lyapunov–Schmidt method leads to a system of bifurcation equations for the dis-
tances between individual pulses. When φ(z) is the N -pulse solution with finitely
separated pulses (i.e. |sj+1−sj| < ∞, ∀j), one zero eigenvalue of the Jacobian oper-
ator H survives beyond the reductive procedure due to the translational invariance
of the N -pulse solution φ(z), while N − 1 real eigenvalues bifurcate from zero. The
reduction method may give not only information about existence of multi-pulse so-
lutions but also prediction of their spectral stability in the linearized time-evolution
problem [36]. The linearized problem for the fifth-order KdV equation takes the
form

∂zHv = λv, z ∈ R, (5)

where v : R 7→ C is an eigenfunction for a small perturbation of φ(z) in the reference
frame z = x − ct and λ ∈ C is an eigenvalue. We say that the eigenvalue λ is
unstable if Re(λ) > 0. We say that the eigenvalue λ is of negative Krein signature
if Re(λ) = 0, Im(λ) > 0, v ∈ H2(R) and (Hv, v) < 0.

Our interest to this well-studied problem is revived by the recent progress in the
spectral theory of non-self-adjoint operators arising from linearizations of nonlinear
evolution equations [12]. These operators can be defined as self-adjoint operators
into Pontryagin space where they have a finite-dimensional negative invariant sub-
space. Two physically relevant problems for the fifth-order KdV equation (1) have
been solved recently by using the formalism of operators in Pontryagin spaces. First,
convergence of the numerical iteration method (known as the Petviashvili method)
for one-pulse solutions of the ODE (2) was proved using the contraction mapping
principle in a weighted Hilbert space (which is equivalent to Pontryagin space with
zero index) [34]. Second, eigenvalues of the spectral stability problem in a lineariza-
tion of the fifth-order KdV equation (1) were characterized in Pontryagin space with
a non-zero index defined by the finite number of negative eigenvalues of H using
the invariant subspace theorem [26, 12].

Both recent works rise some open problems when the methods are applied to
the N -pulse solutions in the fifth-order KdV equation (1), even in the case of two-
pulse solutions (N = 2). The successive iterations of the Petviashvili method do
not converge for two-pulse solutions. The iterative sequence with two pulses leads
either to a single pulse or to a spurious solution with two pulses located at an
arbitrary distance (see Remark 6.5 in [34]). This numerical problem arises due to
the presence of small eigenvalues of H. A modification of the Petviashvili method
is needed to suppress these eigenvalues similarly to the work of Demanet & Schlag
[16] where the zero eigenvalue associated to the translational invariance of the three-
dimensional NLS equation is suppressed. We shall present the modification of the
iterative Petviashvili method in this article. See also [11, 30] and [2, 3] for alternative
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numerical techniques for approximations of multi-pulse solutions of the fifth-order
KdV equation.

Another open question arises when spectral stability of multi-pulse solutions
is considered within the linear eigenvalue problem (5). By either the Gorshkov–
Ostrovsky perturbative procedure or the Sandstede–Lin reduction method, the
small eigenvalues of the Jacobian operator H result in small eigenvalues of the
linearized operator ∂zH, which are either pairs of real eigenvalues (one of which
is unstable) or pairs of purely imaginary eigenvalues of negative Krein signature
(which are neutrally stable but potentially unstable). Both cases are possible in the
fifth-order KdV equation in agreement with the count of unstable eigenvalues in
Pontryagin spaces (see Theorem 6 in [12]). (Similar count of unstable eigenvalues
and eigenvalues of negative Krein signatures was developed for the NLS equations
in recent papers [24, 33].) Since the real eigenvalues are isolated from the continu-
ous spectrum of the eigenvalue problem (5), they are structurally stable and persist
with respect to parameter continuations. However, the purely imaginary eigenva-
lues are embedded into the continuous spectrum of the eigenvalue problem (5) and
their destiny remains unclear within the reduction methods. It is well known for the
NLS-type and Klein–Gordon-type equations that embedded eigenvalues are struc-
turally unstable to the parameter continuations [21]. If a certain Fermi golden rule
related to the perturbation term is nonzero, the embedded eigenvalues of negative
Krein signature bifurcate off the imaginary axis to complex eigenvalues inducing
instabilities of pulse solutions [15]. (The embedded eigenvalues of positive Krein
signature simply disappear upon a generic perturbation [15].) This bifurcation does
not contradict the count of unstable eigenvalues [24, 33] and it is indeed observed
in numerical approximations of pulse solutions of the coupled NLS equations [35].

From a heuristic point of view, we would expect that the time evolution of an
energetically stable superposition of stable one-pulse solutions remains stable. (Sta-
bility of one-pulse solutions in the fifth-order KdV equation (1) was established
with the variational theory [27] and the multi-symplectic Evans function method
[4, 5].) According to the Gorshkov-Ostrovsky perturbative procedure, dynamics
of well-separated pulses is represented by the Newton law for particle dynamics
which describes nonlinear stability of oscillations near the minima of the effective
interaction potential [20]. Therefore, we would rather expect (on the contrary to
embedded eigenvalues in the linearized NLS and Klein–Gordon equations) that the
embedded eigenvalues of negative Krein signature are structurally stable in the lin-
ear eigenvalue problem (5) and persist beyond the leading order of the perturbative
procedure. (Multi-pulse solutions of the NLS and Klein–Gordon equations with
well-separated individual pulses are always linearly stable since the small purely
imaginary eigenvalues of the Lyapunov–Schmidt reductions are isolated from the
continuous spectrum of the corresponding linearized problems [40].)

Since the count of unstable eigenvalues in [12] does not allow us to prove struc-
tural stability of embedded eigenvalues of negative Krein signature, we address
this problem separately by using different analytical and numerical techniques. In
particular, we present an analytical proof of persistence (structural stability) of
embedded eigenvalues of negative Krein signature in the linearized problem (5).
We also apply the Fourier spectral method and illustrate the linearized stability of
the corresponding two-pulse solutions numerically. Our analytical and numerical
methods are based on the construction of exponentially weighted spaces for the lin-
ear eigenvalue problem (5). (See [32] for analysis of exponentially weighted spaces
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in the context of the generalized KdV equation.) See [9] for computations of the
Maslov index for two-pulse solutions of the fifth-order KdV equation (1) and [39]
for stability analysis of two-pulse solutions of the coupled KdV equations.

This article is structured as follows. Section 2 contains summary of available re-
sults on existence and stability of one-pulse and two-pulse solutions of the fifth-order
KdV equation (1). Section 3 presents a modification of the iterative Petviashvili
method for convergent numerical approximations of the two-pulse solutions in the
fourth-order ODE (2). Section 4 develops the proof of structural stability of em-
bedded eigenvalues in the eigenvalue problem (5) and numerical approximations
of unstable and stable eigenvalues in an exponentially weighted space. Section 5
describes full numerical simulations of the fifth-order KdV equation (1) to study
nonlinear dynamics of two-pulse solutions.

2. Review of available results on two-pulse solutions. Linearization of the
ODE (2) at the critical point (0, 0, 0, 0) leads to the eigenvalues κ given by roots of
the quartic equation,

κ4 − κ2 + c = 0. (6)

When c < 0, one pair of roots κ is purely imaginary and the other pair is purely
real. When 0 < c < 1

4 , two pairs of roots κ are real-valued. When c > 1
4 , the

four complex-valued roots κ are located symmetric about the axes. We will use
notations k0 = Im(κ) > 0 and κ0 = Re(κ) > 0 for a complex root of (6) in the
first quadrant for c > 1

4 . The following two theorems summarize known results on
existence of one-pulse and two-pulse solutions of the ODE (2).

Theorem 2.1 (One-pulse solutions).

(i) There exists a one-pulse solution φ(z) of the ODE (2) for c > 0 such that
φ ∈ H2(R) ∩ C5(R), φ(−z) = φ(z), and φ(z) → 0 exponentially as |z| → ∞.
Moreover, φ(z) is Cm(R) for any m ≥ 0.

(ii) The Jacobian operator H in (4) associated with the one-pulse solution φ(z)
has exactly one negative eigenvalue with an even eigenfunction and a simple
kernel with the odd eigenfunction φ′(z).

(iii) Assume that the map φ(z) from c > 0 to H2(R) is C1(R+) and that P ′(c) > 0,
where P (c) = ‖φ‖2

L2. The linearized operator ∂zH has a two-dimensional
algebraic kernel in L2(R) and no unstable eigenvalues with Re(λ) > 0.

Proof. (i) Existence of a symmetric solution φ(z) in H2(R) follows by the mountain-
pass lemma and the concentration-compactness principle (see Theorem 8 in [22] and
Theorem 2.3 in [27]). The equivalence between weak solutions of the variational
theory and strong solutions of the ODE (2) is established in Lemma 1 of [22] and
Lemma 2.4 of [27]. The exponential decay of φ(z) follows from the Stable Manifold
Theorem in Appendix A of [7]. Finally, the smoothness of the function φ(z) is
proved from the ODE (2) by the bootstrapping principle [14].

(ii) The Jacobian operator H coincides with the Hessian of the energy functional
J(u) used in the constrained variational problem in [22]. By Proposition 16 in [22],
the one-pulse solution φ(z) is a global minimizer of J(u) subject to the constraint
K(u) = K0, where K(u) =

∫
R

u3dx. By Lemma 2.3 in [34], φ is a minimizer of the
constrained variational problem if H has exactly one negative eigenvalue. Since the
negative eigenvalue corresponds to the ground state of H, the corresponding eigen-
function is even. The kernel of H includes an eigenvalue with the odd eigenfunction
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φ′(z) due to the space translation. The one-pulse solution is isolated, and the ker-
nel of H is hence simple, due to the duality principle in Theorem 4.1 of [7]. If it is
not simple, then global two-dimensional stable and unstable manifolds coincide and
the time for a homoclinic orbit to go from the local unstable manifold to the local
stable manifold is uniformly bounded. However, a sequence of homoclinic solutions
{un}n∈N was constructed in [6] such that the time between local manifolds grows
linearly in n. By the duality principle, no second even eigenfunction exists in the
kernel of H.

(iii) Smoothness of the map φ(z) from c > 0 to H2(R) is a standard assumption
(see Assumption 5.1 in [27]). If P ′(c) > 0, the one-pulse solution is stable, according
to Theorem 4.1 of [27] and Theorem 8.1 of [4]. Therefore, no eigenvalues of ∂zH
with Re(λ) > 0 exist. The two-dimensional algebraic kernel of ∂zH follows from
the derivatives of the ODE (2) in z and c:

Hφ′(z) = 0, H∂cφ(z) = −φ(z). (7)

The algebraic kernel of ∂zH is exactly two-dimensional under the condition P ′(c) 6=
0 [31].

Theorem 2.2 (Two-pulse solutions). There exists an infinite countable set of two-
pulse solutions φ(z) of the ODE (2) for c > 1

4 such that φ ∈ H2(R) ∩ C5(R),
φ(−z) = φ(z), φ(z) → 0 exponentially as |x| → ∞, and φ(z) resembles two copies
of the one-pulse solutions described in Theorem 2.1 which are separated by small-
amplitude oscillatory tails. The members of the set are distinguished by the distance
L between individual pulses which takes the discrete values {Ln}n∈N. Moreover, for
any small δ > 0 there exists γ > 0 such that

∣∣∣∣Ln − 2πn

k0
− γ

∣∣∣∣ < δ, n ∈ N. (8)

Proof. Existence of an infinite sequence of geometrically distinct two-pulse solutions
with the distances distributed by (8) follows by the variational theory in Theorem
1.1 of [7] under the assumption that the single-pulse solution φ(z) is isolated (up to
the space translations). This assumption is satisfied by Theorem 2.1(ii).

The following theorem describes an asymptotic construction of the two-pulse
solutions, which is used in the rest of our paper.

Theorem 2.3. Let c > 1
4 and Φ(z) denote the one-pulse solution described by

Theorem 2.1. Let L = 2s be the distance between two copies of the one-pulse
solutions of the ODE (2) in the decomposition

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z), (9)

where ϕ(z) is a remainder term. Let W (L) be a C2(R+) function defined by

W (L) =

∫

R

Φ2(z)Φ(z + L)dz. (10)

There exists an infinite countable set of extrema of W (L), which is denoted by
{Ln}n∈N.

(i) Assume that W ′′(Ln) 6= 0 for a given n ∈ N. There exists a unique symmetric
two-pulse solution φ(z) described by Theorem 2.2, such that

|L − Ln| ≤ Cne−κ0L, ‖ϕ‖H2(R) ≤ C̃ne−κ0L, (11)
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for some Cn, C̃n > 0.
(ii) The Jacobian H associated with the two-pulse solution φ(z) has exactly two

finite negative eigenvalues with even and odd eigenfunctions, a simple ker-
nel with the odd eigenfunction φ′(z) and a small eigenvalue µ with an even
eigenfunction, such that

∣∣∣∣µ +
2W ′′(Ln)

Q(c)

∣∣∣∣ ≤ Dne−2κ0L (12)

for some Dn > 0, where Q(c) = ‖Φ′‖2
L2 > 0. In particular, the small eigenva-

lue µ is negative when W ′′(Ln) > 0 and positive when W ′′(Ln) < 0.
(iii) There exists a pair of small eigenvalues λ of the linearized operator ∂zH as-

sociated with the two-pulse solution φ(z), such that
∣∣∣∣λ

2 +
4W ′′(Ln)

P ′(c)

∣∣∣∣ ≤ D̃ne−2κ0L, (13)

for some D̃n > 0, where P (c) = ‖Φ‖2
L2 and P ′(c) > 0. In particular, the pair

is real when W ′′(Ln) < 0 and purely imaginary (up to the leading order) with
negative Krein signature when W ′′(Ln) > 0.

Proof. When the tails of the one-pulse solution Φ(z) are decaying and oscillatory
(i.e. when c > 1

4 ), the function W (L) in (10) is decaying and oscillatory in L and
an infinite set of extrema {Ln}n∈N exists. Let us pick Ln for a fixed value of n ∈ N

such that W ′(Ln) = 0 and W ′′(Ln) 6= 0.
(i) When the decomposition (9) is substituted into the ODE (2), we find the

ODE for ϕ(z):
(
c − ∂2

z + ∂4
z − 2Φ(z − s) − 2Φ(z + s)

)
ϕ − ϕ2 = 2Φ(z − s)Φ(z + s). (14)

Let ǫ = e−κ0L be a small parameter that measures the L∞-norm of the overlapping
term Φ(z−s)Φ(z+s) in the sense that for each ǫ > 0 there exist constants C0, s0 > 0
such that

‖Φ(z − s)Φ(z + s)‖L∞ ≤ C0ǫ ∀s ≥ s0. (15)

Denote L = 2s and ǫΨ(z; L) = 2Φ(z)Φ(z + L) and rewrite the ODE (14) for
ϕ̃(z) = ϕ(z + s):

(
c − ∂2

z + ∂4
z − 2Φ(z)

)
ϕ̃ − 2Φ(z + L)ϕ̃ − ϕ̃2 = ǫΨ(z; L). (16)

The vector field of the ODE (16) is closed in function space H2(R), while the
Jacobian for the one-pulse solution

H = c − ∂2
z + ∂4

z − 2Φ(z)

has a simple kernel with the odd eigenfunction Φ′(z) by Theorem 2.1(ii). By the
Lyapunov–Schmidt reduction method (see [18]), there exists a unique solution ϕ̃ =
ϕ̃ǫ(z; L) ∈ H2(R), such that (Φ′, ϕ̃ǫ) = 0, ϕ̃0(z; L) = 0 and ϕ̃ǫ(z; L) is smooth in ǫ,
provided L solves the bifurcation equation Fǫ(L) = 0, where

Fǫ(L) = ǫ (Φ′(z), Ψ(z; L)) + 2 (Φ′(z), Φ(z + L)ϕ̃ǫ(z; L)) +
(
Φ′(z), ϕ̃2

ǫ(z; L)
)

= ǫ (Φ′(z), Ψ(z; L))− ǫ (∂LΨ(z; L), ϕ̃ǫ(z; L)) − ǫ (Ψ(z; L), ∂zϕ̃ǫ(z; L))

+
(
Φ′(z), ϕ̃2

ǫ(z; L)
)
.
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Since ϕ̃ǫ(z; L) is smooth in ǫ and ϕ̃0(z; L) = 0, then ‖ϕ̃ǫ(z; L)‖H2(R) ≤ Cǫ for
some C > 0 such that

Fǫ(L) = −W ′(L) + F̃ǫ(L),

where |W ′(L)| ≤ C1ǫ and |F̃ǫ(L)| ≤ C2ǫ
2 for some C1, C2 > 0. The statement

follows by the Implicit Function Theorem applied to the scalar equation 1
ǫ Fǫ(L) = 0

under the assumption that the root Ln of W ′(L) is simple.
(ii) The Jacobian H associated with the two-pulse solution φ(z) in (9) has the

form:
H = c − ∂2

z + ∂4
z − 2Φ(z − s) − 2Φ(z + s) − 2ϕ(z).

In the limit s → ∞, the Jacobian H has a double negative eigenvalue and a double
zero eigenvalue. By a linear combination of eigenfunctions, one can construct one
even and one odd eigenfunctions for each of the double eigenvalues. By continuity
of eigenvalues of self-adjoint operators, the double negative eigenvalue splits and
the two simple eigenvalues remain negative for sufficiently large s. By reversibil-
ity of the system, eigenfunctions for simple eigenvalues are either even or odd and
by continuity of eigenfunctions, there is exactly one even and one odd eigenfunc-
tions for the two negative eigenvalues. By the translation invariance, the double
zero eigenvalue splits into a simple zero eigenvalue which corresponds to the odd
eigenfunction φ′(z) and a small non-zero eigenvalue that corresponds to an even
eigenfunction. The splitting of the double zero eigenvalue in the problem Hv = µv
is considered by the perturbation theory,

v(z) = α1Φ
′(z − s) + α2Φ

′(z + s) + V (z), (17)

where (α1, α2) are coordinates of the projections to the kernel of H in the limit
s → ∞ and V (z) is the remainder term. By projecting the eigenvalue problem
Hv = µv to the kernel of H and neglecting the higher-order terms, we obtain a
reduced eigenvalue problem:

µQ(c)α1 = −W̃α1 + W ′′(Ln)α2, µQ(c)α2 = W ′′(Ln)α1 − W̃α2,

where Q(c) = ‖Φ′‖2
L2 > 0, W ′′(Ln) is computed from (10) and

W̃ = 2
(
[Φ′(z − s)]2, ϕ(z) + Φ(z + s)

)
= 2

(
[Φ′(z)]2, ϕ̃(z) + Φ(z + L)

)
.

Since one eigenvalue must be zero with the odd eigenfunction φ′(z), the zero eigen-
value corresponds to the eigenfunction (17) with α1 = α2 up to the leading order.
By looking at the linear system, we find that the zero eigenvalue corresponding to
α1 = α2 exists only if W̃ = W ′′(Ln). The other eigenvalue at the leading order
is µ = −2W ′′(Ln)/Q(c) and it corresponds to the even eigenfunction (17) with
α1 = −α2. By continuity of isolated eigenvalues of H with respect to perturbation
terms and estimates of Theorem 2.3(i), we obtain the result (12).

(iii) In the limit s → ∞, the linearized operator ∂zH for the two-pulse solution
φ(z) has a four-dimensional algebraic kernel according to the two-dimensional kernel
of the one-pulse solution (7). By the translation invariance, the two-dimensional
algebraic kernel survives for any s with the eigenfunctions {φ′(z), ∂cφ(z)}. Two
eigenvalues λ of the operator ∂zH may bifurcate from the zero eigenvalue. The
splitting of the zero eigenvalue in the problem ∂zHv = λv is considered by the
perturbation theory,

v(z) = −α1Φ
′(z − s) − α2Φ

′(z + s) + β1∂cΦ(z − s) + β2∂cΦ(z + s) + V (z), (18)

where (α1, α2, β1, β2) are coordinates of the projections to the algebraic kernel of
∂zH in the limit s → ∞ and V (z) is the remainder term. By projecting the
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eigenvalue problem ∂zHv = λv to the algebraic kernel of the adjoint operator −H∂z

and neglecting the higher-order terms, we find at the leading order that βj = λαj ,
j = 1, 2 and (α1, α2) satisfy a reduced eigenvalue problem:

1

2
λ2P ′(c)α1 = −W̃α1 + W ′′(Ln)α2,

1

2
λ2P ′(c)α2 = W ′′(Ln)α1 − W̃α2,

where P (c) = ‖Φ‖2
L2 and W̃ = W ′′(Ln). The non-zero squared eigenvalue λ2 at the

leading order is

λ2 =
2Q(c)µ

P ′(c)
= −4W ′′(Ln)

P ′(c)
.

Isolated eigenvalues ∂zH are continuous with respect to perturbation terms, so that
we immediately obtain the result (13) for λ ∈ R when W ′′(Ln) < 0. In order to
prove (13) for λ ∈ iR when W ′′(Ln) > 0, we compute the energy quadratic form at
the leading order

(Hv, v) = −4W ′′(Ln) − P ′(c)|λ|2,
where v(z) is given by the eigenfunction (18) with α1 = −α2 = 1 and βj = λαj ,
j = 1, 2. When λ ∈ iR and W ′′(Ln) > 0, we have (Hv, v) < 0 up to the leading
order, such that λ ∈ iR is an eigenvalue of negative Krein signature. Persistence of
the eigenvalues of negative Krein signature (even although the eigenvalues λ ∈ iR
are embedded into the continuous spectrum of ∂zH) follows from Theorem 1 in [12].
In the exponentially weighted spaces [32], the eigenvalues of negative Krein signature
are isolated and hence continuous, such that they satisfy the bound (13).

Remark 1. Theorem 2.3 is a modification of more general Theorems 1 and 2 in [36]
(see also [28]). We note that the persistence of eigenvalues (13) on the imaginary axis
for W ′′(Ln) > 0 cannot be proved with the Lyapunov–Schmidt reduction method
since the continuous spectrum of ∂zH occurs on the imaginary axis (contrary to the
standard assumption of Theorem 2 in [36] that the continuous spectrum is located
in the left half-plane.)

The following conjecture from the Gorshkov–Ostrovsky perturbative procedure
[19, 20] illustrates the role of W (L) as the effective interaction potential for the slow
dynamics of a two-pulse solution:
Conjecture: Let C1, C2 be some positive constants. For the initial time interval
0 ≤ t ≤ C1e

κ0L/2 and up to the leading order O(e−κ0L), the two-pulse solutions of
the fifth-order KdV equation (1) can be written as the decomposition

u(x, t) = Φ(x − ct − s(t)) + Φ(x − ct + s(t)) + U(x, t),

where ‖U‖L∞ ≤ C2e
−κ0L and the slow dynamics of L(t) = 2s(t) is represented by

the Newton law:
P ′(c)L̈ = −4W ′(L). (19)

Although rigorous bounds on the time interval and the truncation error of the New-
ton law were recently found in the context of NLS solitons in external potentials (see
[17]), the above conjecture was not proved yet in the context of two-pulse solutions
of the fifth-order KdV equation (1). We note that perturbation analysis that leads
to the Newton law (19) cannot be used to claim persistence and topological equiv-
alence of dynamics of the second-order ODE (19) to the full dynamics of two-pulse
solutions in the fifth-order KdV equation (1).

According to Theorem 2.3, an infinite set of extrema of W (L) generates a se-
quence of equilibrium configurations for the two-pulse solutions in Theorem 2.2. If
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P ′(c) > 0, the maxima points of W (L) correspond to a pair of real eigenvalues λ
of the spectral problem (5), while the minima points of W (L) correspond to a pair
of purely imaginary eigenvalues λ. The two-pulse solutions at the maxima points
are thus expected to be linearly and nonlinearly unstable. The two-pulse solutions
at the minima points are stable within the leading-order approximation (13) and
within the Newton law (19) (a particle with the coordinate L(t) performs a periodic
oscillation in the potential well). Correspondence of these predictions to the original
PDE (1) is a subject of the present article. We will compute the interaction poten-
tial W (L) and the sequence of its extrema points {Ln}n∈N, as well as the numerical
approximations of the two-pulse solutions of the ODE (2) and of the eigenvalues of
the operator ∂zH in (5).

3. Iterations of the Petviashvili method for two-pulse solutions. We ad-
dress the Petviashvili method for numerical approximations of solutions of the
fourth-order ODE (2) with c > 0. See review of literature on the Petviashvili
method in [34]. By using the standard Fourier transform

φ̂(k) =

∫

R

φ(z)e−ikzdz, k ∈ R,

we reformulate the ODE (2) as a fixed-point problem in the Sobolev space H2(R):

φ̂(k) =
φ̂2(k)

(c + k2 + k4)
, k ∈ R, (20)

where φ̂2(k) can be represented by the convolution integral of φ̂(k) to itself. An
even real-valued solution φ(−z) = φ(z) of the ODE (2) in H2(R) is equivalent to

the even real-valued solution φ̂(−k) = φ̂(k) of the fixed-point problem (20). Let us
denote the space of all even functions in H2(R) by H2

ev(R) and consider solutions
of the fixed-point problem (20) in H2

ev(R).
Let {ûn(k)}∞n=0 be a sequence of Fourier transforms in H2

ev(R) defined recursively
by

ûn+1(k) = M2
n

û2
n(k)

(c + k2 + k4)
, (21)

where û0(k) ∈ H2
ev(R) is a starting approximation and Mn ≡ M [ûn] is the Petvi-

ashvili factor defined by

M [û] =

∫
R
(c + k2 + k4) [û(k)]

2
dk

∫
R

û(k)û2(k)dk
. (22)

If un ∈ H2(R), then u ∈ L3(R) due to the Sovolev embedding theorem, and both
the nominator and denominator of M [û] are bounded. It follows from the fixed-

point problem (20) that M [φ̂] = 1 for any solution φ̂ ∈ H2
ev(R). The following

theorem was proved in [34] and reviewed in [16].

Theorem 3.1. Let φ̂(k) be a solution of the fixed-point problem (20) in H2
ev(R).

Let H be the Jacobian operator (4) evaluated at the corresponding solution φ(z) of
the ODE (2). If H has exactly one negative eigenvalue and a simple zero eigenvalue
and if

either φ(z) ≥ 0 or

∣∣∣∣ inf
z∈R

φ(z)

∣∣∣∣ <
c

2
, (23)
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then there exists an open neighborhood of φ̂ in H2
ev(R), in which φ̂ is the unique

fixed point and the sequence of iterations {ûn(k)}∞n=0 in (21)–(22) converges to φ̂.

Proof. We review the basic steps of the proof, which is based on the contraction

mapping principle in a local neighborhood of φ̂ in H2
ev(R). The linearization of the

iteration map (21) at the solution φ is rewritten in the physical space z ∈ R as
follows:

vn+1(z) = −2αnφ(z) + vn(z) − (c − ∂2
z + ∂4

z )−1Hvn(z), (24)

where αn is a projection of vn onto φ2 in L2(R):

αn =
(φ2, vn)

(φ2, φ)
,

such that un = φ + vn and Mn = 1 − αn to the linear order. The operator
T = (c − ∂2

z + ∂4
z )−1H is a self-adjoint operator in Pontryagin space Π0 defined

by the inner product

∀f, g ∈ Π0 : [f, g] = ((c − ∂2
z + ∂4

z )f, g).

See [12] for review of Pontryagin spaces and the invariant subspace theorem. Since
c > 0, the Pontryagin space Π0 has zero index and, by the invariant subspace
theorem, the operator T in Π0 has exactly one negative eigenvalue, a simple kernel
and infinitely many positive eigenvalues. (Since T is an identity operator with a
compact perturbation, the spectrum of T is purely discrete.) The eigenfunctions
for the negative and zero eigenvalues are known exactly as

T φ = −φ, T φ′(z) = 0.

Due to orthogonality of the eigenfunctions in the Pontryagin space Π0 and the
relation

φ2 = (c − ∂2
z + ∂4

z )φ,

we observe that αn is a projection of vn to φ in Π0, which satisfies the trivial
iteration map:

αn+1 = 0, n ≥ 1,

no matter what the value of α0 is. In addition, projection of vn to φ′ in Π0 is
zero since vn ∈ H2

ev(R). As a result, the linearized iteration map (24) defines a
contraction map if the maximal positive eigenvalue of T in L2(R) is smaller than
2. However,

σ

(
T

∣∣∣∣
L2

)
− 1 ≤ −2 inf

‖u‖
L2=1

(
u, (c − ∂2

z + ∂4
z )−1φ(z)u

)
. (25)

If φ(z) ≥ 0 on z ∈ R, the right-hand-side of (25) is zero. Otherwise, the right-hand-
side of (25) is bounded from above by 2

c |infz∈R φ(z)|, which leads to the condition
(23).

Corollary 1. Let φ(z) be a one-pulse solution of the ODE (2) with c > 0 defined
by Theorem 2.1. Then, the iteration method (21)–(22) converges to φ(z) in a local
neighborhood of φ in H2

ev(R) provided that the condition (23) is met.

The condition (23) is satisfied for the positive exact solution (3), which exists
for c = 36

169 . Since the one-pulse solution is positive definite for 0 < c < 1
4 [1], it is

also satisfied for all values of c ∈
(
0, 1

4

)
. However, the solution is sign-indefinite for

c ≥ 1
4 , such that the condition (23) must be checked a posteriori, after a numerical

approximation of the solution is obtained.
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Besides the convergence criterion described in Theorem 3.1, there are additional
factors in the numerical approximation of the one-pulse solution of the ODE (2)
which comes from the discretization of the Fourier transform, truncation of the
resulting Fourier series, and termination of iterations within the given tolerance
bound. These three numerical factors are accounted by three parameters:

(i) d - the half-period of the computational interval z ∈ [−d, d] where the solution
φ(z) is represented by the Fourier series for periodic functions;

(ii) N - the number of terms in the partial sum for the truncated Fourier series
such that the grid size h of the discretization is h = 2d/N ;

(iii) ε - the small tolerance distance that measures deviation of Mn from 1 and the
distance between two successive approximations, such that the method can
be terminated at the iteration n if

EM ≡ |Mn − 1| < ε and E∞ ≡ ‖un+1 − un‖L∞ < ε.

Then, φ̃ ≡ un(z) can be taken as the numerical approximation of the solution
φ(z).

The numerical approximation depends weakly of the three parameters, provided
(i) d is much larger than the half-width of the one-pulse solution, (ii) N is sufficiently
large for convergence of the Fourier series, and (iii) ε is sufficiently small above the
level of the round-off error. Indeed, the constraint (i) ensures that the truncation
error is exponentially small when the one-pulse solution is replaced by the periodic
sequence of one-pulse solutions in the trigonometric approximation [37]. The con-
straint (ii) ensures that the remainder of the Fourier partial sum is smaller than
any inverse power of N (by Theorem 2.1(i), all derivatives of the function φ(z) are
continuous) [38]. The constraint (iii) specifies the level of accuracy achieved when
the iterations of the method (21)–(22) are terminated. While we do not proceed
with formal analysis of the three numerical factors (see [16] for an example of this
analysis), we illustrate the weak dependence of three numerical factors on the exam-

ple of the numerical approximation φ̃(z) of the exact one-pulse solution (3), which
exists for c = 36

169 . Numerical implementation of the iteration method (21)–(22) was
performed in MATLAB according to a standard spectral method [38].

Figure 1 displays the distance E = ‖φ̃−φ‖L∞ versus the three numerical factors
d, h, and ε described above. The left panel shows that the error E converges to the
numerical zero, which is O(10−15) in MATLAB under the Windows platform, when
the step size h is reduced, while d = 50 and ε = 10−15 are fixed. The middle panel
computed for h = 1 and ε = 10−15 shows that the error E converges to the level
O(10−13) when the half-width d is enlarged. The numerical zero is not reached in
this case because the step size h is not sufficiently small. The right panel computed
for h = 1 and d = 50 shows that the error E converges to the same level O(10−13) as
the tolerance bound ε is reduced. In all approximations that follow, we will specify
h = 0.01, d = 50 and ε = 10−15 to ensure that the error of the iteration method
(21)–(22) for one-pulse solutions is on the level of the numerical zero O(10−15).

Figure 2 (left) shows the numerical approximation of the one-pulse solutions for
c = 4, where the small-amplitude oscillations of the exponentially decaying tail
are visible. We check a posteriori the condition (23) for non-positive one-pulse
solutions |infz∈R φ(z)| < 2 for c = 4. Figure 2 (right) displays convergence of the
errors EM = |Mn − 1| and E∞ = ‖un+1 − un‖L∞ computed dynamically at each n
as n increases. We can see that the error EM converges to zero much faster than
the error E∞, in agreement with the decomposition of the linearized iterative map



TWO-PULSE SOLUTIONS IN THE FIFTH-ORDER KDV EQUATION 785

Figure 1. The distance E = ‖φ̃ − φ‖L∞ for the ODE (2) with
c = 36

169 versus the half-period d of the computational interval, the
step size h of the discretization, and the tolerance bound ε.

(24) into the one-dimensional projection αn and the infinite-dimensional orthogonal
complement (see the proof of Theorem 3.1). In all further approximations, we will
use the error E∞ for termination of iterations and detecting its minimal values since
E∞ is more sensitive compared to EM .

Figure 3 shows the dependence of P̃ (c) = ‖φ̃‖2
L2(R) on c > 0. Since the depen-

dence of P̃ (c) is strictly increasing and the approximation error is controlled in the
numerical method, the assumption of Theorem 2.1(iii) that P ′(c) > 0 is verified.

Since the numerical approximations φ̃(z) of one-pulse solutions can be computed

for any value of c > 0, one can use φ̃(z) for a given c and compute the effective
interaction potential (10), which defines the extremal values {Ln}n∈N. Theorem
2.3 guarantees that the two-pulse solution φ(z) consists of two copies of the one-
pulse solutions separated by the distance L near the point Ln where W ′(Ln) = 0
and W ′′(Ln) 6= 0. Table 1 shows the first four values of the sequence {Ln}∞n=1 for
c = 1 (where sn = Ln/2 is the half-distance between the pulses). It also shows
the corresponding values from the first four numerical approximations of two-pulse
solutions φ(z) (obtained below) and the computational error computed from the
difference of the two numerical approximations. We can see that the error decreases
for larger indices n in the sequence {Ln}n∈N since the Lyapunov–Schmidt reductions
of Theorem 2.3 become more and more accurate in this limit.

solution effective potential root finding error
s = s1 5.058733328146916 5.079717398028492 0.02098406988158
s = s2 8.196800619090793 8.196620796452045 1.798226387474955 · 10−4

s = s3 11.338414567609066 11.338406246900558 8.320708507980612 · 10−6

s = s4 14.479997655627219 14.479996635578457 1.020048761901649 · 10−6

Table 1: The first four members of the sequence of two-pulse solutions for c = 1.
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Figure 2. One-pulse solutions of the ODE (2) with c = 4 (left)
and convergence of the errors EM and E∞ to zero versus the num-
ber of iterations n.
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Figure 3. The squared L2-norm of the one-pulse solutions of the
ODE (2) versus c.

By Theorem 2.3(ii), the Jacobian operator H associated with a two-pulse solution
φ(z) has one finite negative eigenvalue in the space of even functions and one small
eigenvalue which is either negative or positive depending on the sign of W ′′(Ln).
This small eigenvalue leads to either weak divergence or weak convergence of the
Petviashvili method in a local neighborhood of φ in H2

ev(R). Even if the small
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eigenvalue is positive and the algorithm is weakly convergent, the truncation error
from the numerical discretization may push the small eigenvalue to a negative value
and lead thus to weak divergence of the iterations.

Figure 4 illustrates typical behaviors of the errors EM and E∞ versus n for the
starting approximation

u0(z) = U0(z − s) + U0(z + s), (26)

where U0(z) is a starting approximation of a sequence {un(z)}n∈N which converges
to the one-pulse solution Φ(z) and s is a parameter defined near Ln/2 for the
two-pulse solution φ(z). The left panel shows iterations for s near s1 and the
right panel shows iterations for s near s2. Since W ′′(L1) > 0 and W ′′(L2) < 0,
the iteration method (21)–(22) diverges weakly near the former solution, while it
converges weakly near the latter solution.

At the initial stage of iterations, both errors EM and E∞ quickly drops to small
values, since the starting iterations U0(z ∓ s) converge to the one-pulse solutions
Φ(z ∓ s) while the contribution from the overlapping tails of Φ(z ∓ s) is negligible.
However, at the later stage of iterations, both errors either start to grow (the left
panel of Figure 4) or stop to decrease (the right panel). As it is explained above, this
phenomenon is related to the presence of zero eigenvalue of H in the space of even
functions which bifurcates to either positive or negative values due to overlapping
tails of Φ(z ∓ s) and due to the truncation error. At the final stage of iterations on
the left panel of Figure 4, the numerical approximation un(z) converges to the one-
pulse solution Φ(z) centered at z = 0 and both errors quickly drop to the numerical
zero, which occurs similarly to the right panel of Figure 2. No transformation of
the solution shape occurs for large n on the right panel of Figure 4.

The following theorem defines an effective numerical algorithm, which enables
us to compute the two-pulse solutions from the weakly divergent iterations of the
Petviashvili method (21)–(22).

Theorem 3.2. Let φ(z) be the two-pulse solution of the ODE (2) defined by Theo-
rems 2.2 and 2.3. There exists s = s∗ near s = Ln/2 such that the iteration method
(21)–(22) with the starting approximation u0(z) = Φ(z − s)+ Φ(z + s) converges to
φ(z) in H2

ev(R).

Proof. The iteration operator (21)–(22) in a neighborhood of the two-pulse solution
φ(z) in H2

ev(R) can be represented into an abstract form

vn+1 = M(ǫ)vn + N(vn, ǫ), n ∈ N,

where the linear operator M(ǫ) has a unit eigenvalue at ǫ = 0 and the nonlinear
vector field N(vn, ǫ) is C∞ in vn ∈ H2

ev and ǫ ∈ R, such that N(0, 0) = DvN(0, 0) =
0. Here vn is a distance between un and the fixed point φ and ǫ is a small parameter
for two-pulse solutions defined in Theorem 2.3. By the Center Manifold Reduction
for quasi-linear discrete systems (Theorem 1 in [23]), there exists a one-dimensional
smooth center manifold of the discrete system above in a local neighborhood of φ
in H2

ev(R). Let ξ be a coordinate of the center manifold such that ξ ∈ R, ξ = 0
corresponds to v = 0, and the dynamics on the center manifold is

ξn+1 = µ(ǫ)ξn + f(ξn, ǫ), n ∈ N,

where µ(ǫ) satisfies µ(0) = 1 and f(ξn, ǫ) is C∞ in ξ ∈ R and ǫ ∈ R, such
that f(0, 0) = ∂ξf(0, 0) = 0. Consider the one-parameter starting approxima-
tion u0(z) = Φ(z − s) + Φ(z + s) in a neighborhood of φ in H2

ev(R), where s is
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close to the value s = sn defined in Theorem 2.3. By the time evolution of the
hyperbolic component of vn (see Lemma 2 in [23]), the sequence vn approaches to
the center manifold with the coordinate ξn. Iterations of ξn are sign-definite in a
neighborhood of ξ = 0. Moreover, there exists s1 < sn and s2 > sn, such that the
sequences {ξn(s1)}n∈N and {ξn(s2)}n∈N are of opposite signs. By smoothness of vn

and ξn from parameter s, there exists a root s∗ in between s1 < s∗ < s2 such that
ξn(s∗) = 0 for all n ∈ N.

Remark 2. The proof of Theorem 3.2 does not require that the root s∗ be unique
for the one-parameter starting approximation u0(z) = Φ(z − s) + Φ(z + s). Our
numerical computations starting with a more general approximation (26) show,
however, that the root s∗ is unique near s = sn.

To capture the two-pulse solutions according to Theorem 3.2, we compute the
minimum of the error E∞ for different values of s and find numerically a root s = s∗
of the function

f(s) = min
0≤n≤n0

(E∞),

where n0 is the number of the iteration after which the value of E∞ increases (in
case of the left panel of Figure 4) or remains unchanged (in case of the right panel
of Figure 4). The numerical root s = s∗ is found by using the secant method:

sk =
sk−2f(sk−1) − sk−1f(sk−2)

f(sk−1) − f(sk−2)
. (27)

The Petviashvili method (21)–(22) with the starting approximation (26), where s is
close to the root s = s∗ near the point s = sn, converges to the two-pulse solution
φ(z) within the accuracy of the round-off error.

Figure 5 shows the graph of f(s) near the value s = s1 for c = 1. (The graph
of f(s) near s = s2 as well as other values of sn look similar to Figure 5.) The
left panel shows uniqueness of the root, while the right panel shows the linear
behavior of f(s) near s = s∗, which indicates that the root is simple. Numerical
approximations for the first four values of the sequence {sn}n∈N obtained in this
root finding algorithm are shown in Table 1. We note that the number of iterations
Nh of the secant method (27) decreases with larger values of n, such that Nh = 14
for n = 1, Nh = 12 for n = 2, Nh = 10 for n = 3 and Nh = 9 for n = 4, while
the number of iterations of the Petviashili method for each computation does not
exceed 100 iterations.

Figure 6 shows numerical approximations of the two-pulse solutions for c = 1
and c = 4. We can see from the right panel that two-pulse solutions with c = 4
resemble the two copies of the one-pulse solutions from the left panel of Figure 2,
separated by the small-amplitude oscillatory tails.

The three-pulse and multi-pulse solutions of the fixed-point problem (20) cannot
be approximated numerically with the use of the Petviashili method (21)–(22).
The Jacobian operator H associated with the three-pulse solution has two finite
negative eigenvalues and one small eigenvalue in the space of even functions, while
the stabilizing factor of Theorem 3.1 and the root finding algorithm of Theorem 3.2
can only be useful for one finite negative eigenvalue and one zero eigenvalue. The
additional finite negative eigenvalue introduces a strong divergence of the iterative
method, which leads to failure of numerical approximations for three-pulse solutions.
This numerical problem remains open for further analysis.
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Figure 4. Errors EM and E∞ versus the number of iterations n
for the starting approximation (26) with s = 5.079 (left panel) and
s = 8.190 (right panel). The other parameters are: c = 1, d = 50,
h = 0.01 and ε = 10−15.
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Figure 6. Numerical approximation of the first four two-pulse
solutions of the ODE (2) for c = 1 (left) and c = 4 (right).

4. Eigenvalues of the stability problem for two-pulse solutions. We address
spectral stability of the two-pulse solution by analyzing the linearized problem (5),
where the operator H : H4(R) 7→ L2(R) is the Jacobian operator (4) evaluated at
the two-pulse solution φ(z).

By Theorem 2.3(ii), operator H has two finite negative eigenvalue, a simple kernel
and one small eigenvalue, which is negative when W ′′(Ln) > 0 and positive when
W ′′(Ln) < 0. Persistence (structural stability) of these isolated eigenvalues beyond
the leading order (12) is a standard property of perturbation theory of self-adjoint
operators in Hilbert spaces (see Section IV.3.5 in [25]).

By Theorem 2.3(iii), operator ∂zH has a pair of small eigenvalues, which are
purely imaginary when W ′′(Ln) > 0 and real when W ′′(Ln) < 0. We first prove
that no other eigenvalues may induce instability of two-pulse solutions (i.e. no
other bifurcations of eigenvalues of ∂zH with Re(λ) > 0 may occur). We then
prove persistence (structural stability) of the purely imaginary eigenvalues beyond
the leading order (13). Combined together, these two results lead to the theorem
on spectral stability of the two-pulse solution φ(z) that corresponds to Ln with
W ′′(Ln) > 0.

Theorem 4.1. Let Nreal be the number of real positive eigenvalues of the linearized
problem (5), Ncomp be the number of complex eigenvalues in the first open quadrant,
and N−

imag be the number of simple positive imaginary eigenvalues with (Hv, v) ≤ 0,

where v(x) is the corresponding eigenfunction for λ ∈ iR+. Assume that the kernel
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of H is simple and P ′(c) > 0, where P = ‖φ‖2
L2 . Then,

Nreal + 2Ncomp + 2N−
imag = n(H) − 1, (28)

where n(H) is the number of negative eigenvalues of H.

Proof. The statement is equivalent to Theorem 6 in [12] in the case (H−1φ, φ) =
−(∂cφ, φ) = − 1

2P ′(c) < 0. The result follows from the invariant subspace theorem
in the Pontryagin space Πκ, where κ = n(H).

Corollary 2. Let φ(z) ≡ Φ(z) be a one-pulse solution defined by Theorem 2.1.
Then, it is a spectrally stable ground state in the sense that Nreal = Ncomp =
N−

imag = 0.

Corollary 3. Let φ(z) be a two-pulse solution defined by Theorem 2.3. Then,

(i) the solution corresponding to Ln with W ′′(Ln) < 0 is spectrally unstable in
the sense that Nreal = 1 and Ncomp = N−

imag = 0 for sufficiently large Ln

(ii) the solution corresponding to Ln with W ′′(Ln) > 0 satisfies Nreal = 0 and
Ncomp + N−

imag = 1 for sufficiently large Ln.

Proof. It follows from Theorem 2.3 for sufficiently large Ln that the kernel of H is
simple for W ′′(Ln) 6= 0 and the only pair of imaginary eigenvalues with (Hv, v) < 0
in the case W ′′

n (Ln) > 0 is simple. Therefore, assumptions of Theorem 4.1 are sat-
isfied for the two-pulse solutions φ(z) with W ′′(Ln) 6= 0. By the count of Theorem
2.3(ii), n(H) = 3 for W ′′(Ln) > 0 and n(H) = 2 for W ′′(Ln) < 0. Furthermore, per-
sistence (structural stability) of simple real eigenvalues of the operator ∂zH follows
from the perturbation theory of isolated eigenvalues of non-self-adjoint operators
(see Section VIII.2.3 in [25]).

There exists one uncertainty in Corollary 3(ii) since it is not clear if the eigenva-
lue of negative Krein signature in Theorem 2.3(iii) remains imaginary in N−

imag or
bifurcates to a complex eigenvalue in Ncomp. This question is important for spec-
tral stability of the corresponding two-pulse solutions since the former case implies
stability while the latter case implies instability of solutions. We will remove the
uncertainty and prove that N−

imag = 1 and Ncomp = 0 for sufficiently large Ln. To

do so, we rewrite the linearized problem (5) in the exponentially weighted space
[32]:

L2
α =

{
v ∈ L2

loc(R) : eαzv(z) ∈ L2(R)
}

. (29)

The linearized operator ∂zH transforms to the form

Lα = (∂z − α)
(
c − (∂z − α)2 + (∂z − α)4 − 2φ(z)

)
, (30)

which acts on the eigenfunction vα(z) = eαzv(z) ∈ L2(R). The absolute continuous
part of the spectrum of Lα is located at λ = λα(k), where

λα(k) = (ik − α)(c − (ik − α)2 + (ik − α)4), k ∈ R. (31)

A simple analysis shows that

d

dk
Re(λα(k)) = −2αk(10k2 − 10α2 + 3),

d

dk
Im(λα(k)) = c − 3α2 + 5α4 + 3k2(1 − 10α2) + 5k4.

The following lemma gives a precise location of the dispersion relation λ = λα(k)
on λ ∈ C.
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Lemma 4.2. The dispersion relation λ = λα(k) is a simply-connected curve located
in the left half-plane of λ ∈ C if

0 < α <
1√
10

, c >
1

4
. (32)

Proof. The mapping k 7→ Im(λα) is one-to-one provided that c−3α2 +5α4 > 0 and

1−10α2 > 0. Since c−3α2 +5α4 reaches the minimum value on α ∈
[
0, 1√

10

]
at the

right end α = 1√
10

and the minimum value is positive if c > 1
4 , the first inequality is

satisfied under (32). The second inequality is obviously satisfied if |α| < 1√
10

. The

mapping k 7→ Re(λα) has a single extremal point at k = 0 provided 3 − 10α2 > 0,
which is satisfied if |α| < 1√

10
. The extremal point is the point of maximum and

the entire curve is located in the left half-plane of λ ∈ C if 0 < α < 1√
10

.

The following two lemmas postulate properties of eigenfunctions corresponding
to embedded eigenvalues of negative Krein signature.

Lemma 4.3. Let v0(z) be an eigenfunction of ∂zH for a simple eigenvalue λ0 ∈ iR+

in L2(R). Then, λ0 ∈ iR+ is also an eigenvalue in L2
α(R) for sufficiently small α.

Proof. Let k = k0 ∈ R be the unique real root of the dispersion relation λ0(k) = λ0

(with α = 0) for a given eigenvalue λ0 ∈ iR+. The other four roots k = k1,2,3,4

for a given λ0 ∈ iR+ are complex with |Re(kj)| ≥ κ0 > 0. By the Stable and
Unstable Manifolds Theorem in linearized ODEs [13], the decaying eigenfunction
v0(z) ∈ L2(R) is exponentially decaying with the decay rate greater than κ0 > 0
and it does not include the bounded term eik0z as z → ±∞. By construction,
vα(z) = eαzv0(z) is also exponentially decaying as z → ±∞ for sufficiently small
|α| < κ0. Since v0 ∈ L2(R) and due to the exponential decay of vα(z) as |z| → ∞,
we have vα ∈ L2(R) for any small α.

Lemma 4.4. Let v0 ∈ H2(R) be an eigenfunction of ∂zH for a simple eigenvalue
λ0 ∈ iR+ with (Hv0, v0) < 0. Then, there exists w0 ∈ H2(R), such that v0 =
w′

0(x) and w0(z) is an eigenfunction of H∂z for the same eigenvalue λ0. Moreover,
(w0, v0) ∈ iR+.

Proof. Since H : H4(R) 7→ L2(R), the eigenfunction v0(z) of the eigenvalue problem
∂zHv0 = λ0v0 for any λ0 6= 0 must satisfy the constraint

∫
R

v0(z)dz = 0. Let
v0 = w′

0(z). Since v0(z) decays exponentially as |z| → ∞ and (1, v0) = 0, then
w0(z) decays exponentially as |z| → ∞, so that w0 ∈ H2(R). By construction,
H∂zw0 = Hv0 = λ0

∫
v0(z)dz = λw0. The values of (w0, v0) are purely imaginary

as

(w0, v0) =

∫

R

w̄0v0dz =

∫

R

w̄0∂zw0dz = −
∫

R

w0∂zw̄0dz = −
∫

R

w0v̄0dz = −(w0, v0).

Since Hv0 = λ0w0 with λ0 ∈ iR+ and (Hv0, v0) < 0, we have (w0, v0)

= λ−1
0 (Hv0, v0) ∈ iR+.

The following theorem states that the embedded eigenvalues of negative Krein
signature are structurally stable in the linearized problem (5).

Theorem 4.5. Let λ0 ∈ iR+ be a simple eigenvalue of ∂zH with the eigenfunction
v0 ∈ H2(R) such that (Hv0, v0) < 0. Then, it is structurally stable to parameter
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continuations, e.g. for any V ∈ L∞(R) and sufficiently small δ, there exists an
eigenvalue λδ ∈ iR+ of ∂z (H + δV (z)) in L2(R), such that |λδ −λ0| ≤ Cδ for some
C > 0.

Proof. By Lemma 4.3, λ0 is also an eigenvalue of Lα in L2(R) for sufficiently small
α. Let α be fixed in the bound (32). There exists a small neighborhood of λ0,
which is isolated from the absolute continuous part of the spectrum of Lα. By the
perturbation theory of isolated eigenvalues of non-self-adjoint operators (see Section
VIII.2.3 in [25]), there exists a simple eigenvalue λδ of ∂z(H + δV (z)) in L2

α(R) for
the same value of α and sufficiently small δ in a local neighborhood of λ0, such that
|λδ − λ0| ≤ Cδ for some C > 0.

It remains to show that the simple eigenvalue λδ is purely imaginary for the
same value of α > 0. Denote the eigenfunction of ∂z(H + δV (z)) in H2

α(R) for the
eigenvalue λδ by vδ(z), such that eαzvδ ∈ H2(R). If vδ /∈ H2(R), then the count of
eigenvalues (28) is discontinuous at δ = 0: the eigenvalue λ0 in the number N−

imag

at δ = 0 disappears from the count for δ 6= 0. If vδ ∈ H2(R), then (1, vδ) = 0
and since vδ(z) is exponentially decaying as |z| → ∞, there exists wδ(z) ∈ H2(R)
such that vδ = w′

δ(z). The 2-form (wδ, vδ) is invariant with respect to the weight
α since if eαzvδ(z) is an eigenfunction of ∂z(H + δV (z)) for the eigenvalue λδ (i.e.
vδ ∈ H2

α(R)), then e−αzwδ(z) is an eigenfunction of (H + δV (z))∂z for the same
eigenvalue λδ (i.e. wδ ∈ H2

−α(R)). Computing (wδ, vδ) at α = 0, we have

λδ(wδ, vδ) = (Hvδ, vδ) ∈ R.

Since (wδ, vδ) is continuous in δ and (wδ, vδ) ∈ iR by Lemma 4.4, then λδ ∈ iR for
any δ 6= 0.

Corollary 4. Let φ(z) be a two-pulse solution defined by Theorem 2.3 that cor-
responds to Ln with W ′′(Ln) > 0. Then, it is spectrally stable in the sense that
Nreal = Ncomp = 0 and N−

imag = 1 for sufficiently large Ln.

Remark 3. Using perturbation theory in exponentially weighted spaces for a fixed
value α > 0, one cannot a priori exclude the shift of eigenvalue λ0 to λδ with
Re(λδ) > 0. Even if v0(z) for λ0 contains no term eik0z as z → −∞ (see Lemma
4.3), the eigenfunction vδ(z) for λδ may contain the term eikδz as z → −∞ with
Im(kδ) < 0 and limδ→0 kδ = k0 ∈ R. However, when Theorem 4.5 holds (that
is under the assumptions that v0 ∈ H2(R) and (Hv0, v0) < 0), the eigenvalue λδ

remains on iR and the eigenfunction vδ(z) must have no term eikδz as z → −∞ for
any sufficiently small δ. The hypothetical bifurcation above can however occur if
v0 /∈ H2(R) but v0 ∈ H2

α(R) with α > 0. We do not know any example of such a
bifurcation.

Remark 4. When the potential is symmetric (i.e. φ(−z) = φ(z)), the stability
problem ∂zHv = λv admits a symmetry reduction: if v(z) is an eigenfunction for

λ, then v(−z) is the eigenfunction for −λ̄. If λ0 ∈ iR is a simple eigenvalue and
v0 ∈ H2

α(R) with α ≥ 0, the above symmetry shows that v0 ∈ H2
−α(R) with −α ≤ 0.

If Re(λδ) > 0 and vδ ∈ H2
α(R), then −vδ(−z) ∈ H2

−α(R) is an eigenfunction of the

same operator for eigenvalue Re(−λδ) = −Re(λδ) and Im(−λδ) = Im(λδ). Thus,
the hypothetical bifurcation in Remark 3 implies that the embedded eigenvalue
λ0 ∈ iR may split into two isolated eigenvalues λδ and −λδ as δ 6= 0. Theorem 4.5
shows that such splitting is impossible if v0 ∈ H2(R) and (Hv0, v0) < 0.
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We confirm results of Corollaries 3 and 4 with numerical computations of eigen-
values in the linearized problem (5). Throughout computations, we use the values
α = 0.04 and c = 1, which satisfy the constraint (32). The spectra of the oper-
ators H in L2(R) and ∂zH in L2

α(R) are computed by using the Fourier spectral
method. This method is an obvious choice since the solution φ(z) is obtained by
using the spectral approximations in the iterative scheme (21)–(22). As in the pre-
vious section, we use numerical parameters d = 100, h = 0.01 and ε = 10−15 for
the Petviashvili method (21)–(22).

Eigenvalues of the discretized versions of the operators H and Lα are obtained
with the MATLAB eigenvalue solver eig. The spectra are shown on Figure 7 for
the two-pulse solution φ1(z) and on Figure 8 for the two-pulse solution φ2(z). The
inserts show zoomed eigenvalues around the origin and the dotted line connects
eigenvalues of the discretized operators that belong to the absolutely continuous
part of the spectra. Figures 7 and 8 clearly illustrate that the small eigenvalue of
H is negative for φ1(z) and positive for φ2(z), while the pair of small eigenvalues
of Lα is purely imaginary for φ1(z) and purely real for φ2(z). This result is in
agreement with Corollaries 3 and 4. We have observed the same alternation of
small eigenvalues for two-pulse solutions φ3(z) and φ4(z), as well as for other values
of parameters c and α.

The numerical discretization based on the Fourier spectral method shifts eigenva-
lues of the operators H and Lα. In order to measure the numerical error introduced
by the discretization, we compute the numerical value for the “zero” eigenvalue
corresponding to the simple kernel of H and the double zero eigenvalue of Lα. Ta-
ble II shows numerical values for the “zero” and small eigenvalues for two-pulse
solutions φn(z) with n = 1, 2, 3, 4. It is obvious from the numerical data that the
small eigenvalues are still distinguished (several orders higher) than the numerical
approximations for zero eigenvalues for n = 1, 2, 3 but they become comparable
for the two-pulse solution with n = 4. This behavior is understood from Theorem
2.3 since the small eigenvalues becomes exponentially small for larger values of s
(larger n) in the two-pulse solution (9) and the exponentially small contribution is
negligible compared to the numerical error of discretization.

φ1(z) φ2(z) φ3(z) φ4(z)
“Zero” EV of H 1.216 · 10−9 2.668 · 10−9 1.474 · 10−9 1.894 · 10−9

Small EV of H 1.785 · 10−2 7.664 · 10−5 3.334 · 10−7 2.921 · 10−9

“Zero” EVs of Lα 0.365 · 10−5 0.532 · 10−5 0.783 · 10−5 1.237 · 10−5

Re of small EVs of Lα 4.529 · 10−6 3.285 · 10−3 6.326 · 10−5 1.652 · 10−5

Im of small EVs of Lα 0.502 · 10−1 1.152 · 10−8 2.167 · 10−4 5.444 · 10−6

Table II: Numerical approximations of the zero and small eigenvalues (EVs) of
operators H and Lα for the first four two-pulse solutions with c = 1, α = 0.04,

d = 100, h = 0.01 and ε = 10−15. The absolute values are shown.

We have confirmed numerically the analytical predictions that all two-pulse so-
lutions corresponding to the points Ln with W ′′(Ln) < 0 (which are maxima of
the effective interaction potential) are unstable with a simple real positive eigenva-
lue, while all two-pulse solutions corresponding to the points Ln with W ′′(Ln) > 0
(which are minima of the effective interaction potential) are spectrally stable. The
stable two-pulse solutions are not, however, ground states since the corresponding
linearized problem has a pair of eigenvalues of negative Krein signature.
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Figure 7. Numerical approximations of the spectra of operators
H and Lα for the two-pulse solution φ1(z) with c = 1 and α = 0.04.
The insert shows zoom of small eigenvalues and the dotted curve
connects eigenvalues of the continuous spectrum of Lα.

Figure 8. The same as Figure 7 but for the two-pulse solution φ2(z).
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5. Nonlinear dynamics of two-pulse solution. The Newton law (19) is a useful
qualitative tool to understand the main results of our article. Existence of an infi-
nite countable sequence of two-pulse solution {φn(z)}n∈N is related to existence of
extremal points {Ln}n∈N of the effective potential function W (L), while alternation
of stability and instability of the two-pulse solutions is related to the alternation of
minima and maxima points of W (L). It is natural to ask if the Newton law (19) ex-
tends beyond the existence and spectral stability analysis. In particular, one can ask
if the purely imaginary (embedded) eigenvalues of the linearized problem (5) lead
to nonlinear asymptotic stability of two-pulse solutions or at least to their nonlinear
stability in the sense of Lyapunov. From a more technical point of view, one can
ask whether the Newton law (19) serves as the center manifold reduction for slow
nonlinear dynamics of two-pulse solutions in the PDE (1) and whether solutions of
the full problem are topologically equivalent to solutions of the Newton law. While
we do not attempt to develop mathematical analysis of these questions, we illustrate
nonlinear dynamics of two-pulse solutions with explicit numerical simulations.

The numerical pseudo-spectral method for solutions of the fifth-order KdV equa-
tion (1) is described in details in [29]. The main idea of this method is to compute
analytically the linear part of the PDE (1) by using the Fourier transform and to
compute numerically its nonlinear part by using an ODE solver. Let û(k, t) denote
the Fourier transform of u(x, t) and rewrite the PDE (1) in the Fourier domain:

ût = i(k3 + k5)û − ikû2. (33)

In order to compute û2(k, t) we evaluate u2(x, t) on x ∈ R and apply the discrete

Fourier transform. Substitution û = s(k, t)ei(k3+k5)t transforms the evolution equa-
tion (33) to the form:

st = −ike−i(k3+k5)tû2(k, t). (34)

The fourth-order Runge-Kutta method is used to integrate the evolution equation
(34) in time with time step △t. To avoid large variations of the exponent for large
values of k and t, the substitution above is updated after m time steps as follows:

û = sm(k, t)ei(k3+k5)(t−m△t), m△t ≤ t ≤ (m + 1)△t. (35)

The greatest advantage of this numerical method is that no stability restriction
arising from the linear part of (33) is posed on the timestep of numerical integration.
On contrast, the standard explicit method for the fifth-order KdV equation (1) has a
serious limitation on the timestep of the numerical integration since the fifth-order
derivative term brings stiffness to the evolution problem. The small timestep is,
however, an obstacle for the long time integration of the evolution problem due to
accumulation of computational errors.

Numerical simulations of the PDE (33) are started with the initial condition:

u(x, 0) = Φ(x − s) + Φ(x + s), (36)

where Φ(x) is the one-pulse solution and 2s is the initial separation between the two
pulses. The one-pulse solution Φ(x) is constructed with the iteration method (21)–
(22) for c = 4. The numerical factors of the spectral approximation are L = 100,
N = 212, ε = 10−15, while the timestep is set to △t = 10−4.

Figure 9 shows six individual simulations of the initial-value problem (33) and
(36) with s = 2.3, s = 2.8, s = 3.6, s = 4.2, s = 4.5 and s = 4.7. Figure 10 brings

these six individual simulations on the effective phase plane (L, L̇) computed from
the distance L(t) between two local maxima (humps) of the two-pulse solutions.
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Figure 9. Individual simulations of the initial data (36) with s =
2.3 (top left), s = 2.8 (top right), s = 3.6 (middle left), s = 4.2
(middle right), s = 4.5 (bottom left) and 4.7 (bottom right).

Figure 10. The effective phase plane (L, L̇) for six simulations
on Figure 9, where L is the distance between two pulses. The
black dots denote stable and unstable equilibrium points which
correspond to the two-pulse solutions φ1(x) and φ2(x).
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When the initial distance (s = 2.3) is taken far to the left from the stable equilib-
rium point (which corresponds to the two-pulse solution φ1(x)), the two pulses repel
and diverge from each other (trajectory 1). When the initial distance (s = 2.8) is
taken close to the left from the stable equilibrium point, we observe small-amplitude
oscillations of two pulses relative to each other (trajectory 2). When the initial dis-
tances (s = 3.6) and (s = 4.2) are taken to the right from the stable equilibrium
point, we continue observing stable oscillations of larger amplitudes and larger pe-
riod (trajectories 3 and 4). The oscillations are destroyed when the initial distances
are taken close to the unstable equilibrium point (which corresponds to the two-
pulse solution φ2(x)) from either left (s = 4.5) or right (s = 4.7). In either case,
the two pulses repel and diverge from each other (trajectories 5 and 6). Ripples
in the pictures are due to radiation effect and the numerical integration does not
make sense after t ≈ 500 because the ripples reach the left end of the computational
interval and appear from the right end due to periodic boundary conditions.

The numerical simulations of the full PDE problem (1) indicate the validity
of the Newton law (19). Due to the energy conservation, all equilibrium points
in the Newton law are either centers or saddle points and the center points are
surrounded by closed periodic orbits in the interior of homoclinic loops from the
stable and unstable manifolds of the saddle points. Trajectories 2,3, and 4 are
taken inside the homoclinic orbit from the saddle point corresponding to φ2(x)
and these trajectories represent periodic oscillations of two-pulse solutions near the
center point corresponding to φ1(x). Trajectories 1 and 6 are taken outside the
homoclinic orbit and correspond to unbounded dynamics of two-pulse solutions.
The only exception from the Newton law (19) is trajectory 5, which is supposed
to occur inside the homoclinic loop but turns out to occur outside the loop. This
discrepancy can be explained by the fact that the Newton law (19) does not exactly
represent the dynamics of the PDE (33) generated by the initial condition (36) but
it corresponds to an asymptotic solution after the full solution is projected into
the discrete and continuous parts and the projection equations are truncated (see
details in [17] in the context of the NLS equations).

Summarizing, we have studied existence, spectral stability and nonlinear dynam-
ics of two-pulse solutions of the fifth-order KdV equation. We have proved that the
two-pulse solutions can be numerically approximated by the Petviashili method sup-
plemented with a root finding algorithm. We have also proved structural stability
of embedded eigenvalues with negative Krein signature and this result completes
the proof of spectral stability of two-pulse solutions related to the minima points of
the effective interaction potential. The validity of the Newton law is illustrated by
the full numerical simulations of the fifth-order KdV equation (1).
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