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We study a mathematical model of drug release from controlled delivery systems with initial drug load-
ing higher than solubility. The model combines dissolution, diffusion, swelling, and erosion mechanisms
of drug delivery. Multilevel methods are introduced to solve the governing system of diffusion equations
numerically with better accuracy and lower computational costs compared with the finite element methods.
Numerical examples are given to demonstrate the advantages of the multilevel methods. Numerical solutions
are compared to exact and approximate solutions of the reduced models. © 2012 Wiley Periodicals, Inc. Numer
Methods Partial Differential Eq 29: 1391–1415, 2013
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I. INTRODUCTION

To improve the performance of drug delivery systems, controlled release systems (CRS) were pro-
posed to replace the traditional delivery systems (TDS). Compared to TDS, the key advantages
of CRS are the reduction of the dosing frequency and the elimination of the possible overdosing.
The purpose of CRS is to maintain the drug concentration in body tissues at a desired value as
long as possible. To achieve this, the drug release rate is needed to be controlled at the level of the
drug consuming rate. This requires us to simulate the release kinetics from a system of diffusion
equations.

Matrix and membrane systems are popularly used in CRS. The term “matrix” indicates a three-
dimensional network. In this article, we investigate the matrix systems obtained by embedding of
a drug into a polymer. Several mathematical models have been proposed to predict drug release
kinetics from matrix CRS [1–3]. The model we consider deals with hydrophilic and degradable
polymeric matrices and dispersed drug release, where dispersed drug release stands for the drug
release in the case that the initial drug loading C0 is higher than the drug solubility Cd,s. For con-
venience, C0 and Cd,s are defined as volume percentage instead of mass percentage. Furthermore,
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dispersed drug release is typically described under the assumption that dissolution is much faster
than diffusion [4, 5]. In practice, however, many drugs only possess low to medium solubility.
Their release should be controlled by both diffusion and dissolution. Hence, our model combines
not only polymer swelling and erosion but also drug diffusion and dissolution mechanisms.

Various efforts have been made to obtain the analytical solutions of the governing equations
describing dispersed drug release. Higuchi [6, 7] proposed the pseudo steady-state approxima-
tion (PSSA), when a linear distribution is used for the drug concentration, for slabs and spheres
with C0 > Cd,s and C0 � Cd,s, in a perfect sink. An exact solution was developed by Paul and
McSpandden [1] for the planar geometry beyond the PSSA. Lee [4] used an integral method to
obtain more accurate approximate analytical solutions compared with those in PSSA. Using the
PSSA, Zhou and Wu [3, 8] derived analytic solutions for slabs, spheres, and sphere ensembles
with C0 > Cd,s and C0 � Cd,s in a finite medium with boundary layer effects. Analytical solutions
for two-dimensional matrix tablets in a perfect sink were also constructed in Ref. [9].

Exact and approximate analytical solutions are only valid for the release process up to a
time instance when all the dispersed drug is dissolved. Hence, numerical methods are needed to
approximate a solution for the entire release process. Finite element and finite difference meth-
ods are usually applied in numerical simulations of the matrix CRS [2, 5, 10]. To obtain a better
approximation with lower computational costs, we introduce here a multilevel method to solve the
system of diffusion equations numerically. The multilevel methods have been successfully applied
to elliptic equations in the literature [11–14]. Compared with the classical finite element method,
the multilevel scheme achieves the same accuracy much faster. We will provide several numerical
examples to demonstrate advantages of the multilevel methods in the context of modeling of the
matrix CRS.

This article is organized as follows. In Section II, we introduce the model describing dispersed
drug release from swellable and erodible matrix systems. In Section III, we analyze the multilevel
method for solving the governing system of diffusion equations numerically. The resulting linear
system of equations associated with the multilevel scheme is proved to be well-conditioned. In
Section IV, numerical examples are provided to demonstrate the advantages of the multilevel
scheme. We also compare our simulations with exact and approximate solutions of the reduced
models. The summary of our work is given in Section V. Appendices A, B, and C give details of the
derivation of exact and approximate solutions of reduced models, which are used for comparison
with numerical computations.

II. MATHEMATICAL MODEL

We first set up a model describing dispersed drug release from swellable and erodible matrix
system. Then, we use a scaling transformation to construct a dimensionless model that is suitable
for numerical solutions.

A. Formulation

Let’s consider a polymer matrix system with initial drug loading C0 higher than the drug solubility
Cd,s. As dissolved drug diffuses out, undissolved (dispersed) drug dissolves. Fick’s second law
of diffusion and linear dissolution are assumed. Other non-Fickian types of diffusion are also
possible and have been considered in the past [15–17].

The evolution of water penetration, drug diffusion, and dissolution is described by the following
three parabolic equations on the domain � ⊂ R

3 and time t > 0,

Numerical Methods for Partial Differential Equations DOI 10.1002/num



MULTILEVEL COMPUTATIONS OF DISPERSED DRUG RELEASE 1393

∂Cw

∂t
= ∇ · (Dw∇Cw), (1)

∂Cd

∂t
= ∇ · (Dd∇Cd) + kd(Cd,s − Cd)H(Cu), (2)

∂Cu

∂t
= −kd(Cd,s − Cd)H(Cu), (3)

where Cw, Cd, and Cu denote the concentration of water, dissolved, and undissolved (dispersed)
drug as volume percentage, Dw and Dd represent the water penetration and the drug diffusion
coefficients, and kd denotes the dissolution rate constant. Note that H is the Heaviside step function
defined by

H(x) =
{

0, x ≤ 0,
1, x > 0.

The step function in (2)–(3) is presented because dissolution takes place where the concentration
Cu of undissolved (dispersed) drug is greater than 0.

In this article, we study the drug release from a spherical matrix with initial radius R0. Water
penetration causes the polymer swelling which is supposed to be homogeneous in the radial direc-
tion. Polymer erosion is assumed on the surface of the matrix. Hence, the positions R(t) of the
polymer swelling front and erosion front are identical and R0 = R(0). Therefore, the domain
� ⊂ R

3 for system (1)–(3) is a ball of radius R(t), with boundary conditions at the sphere of
radius R(t). In the spherical coordinates under the spherical symmetry, Eqs. (1)–(3) are rewritten
as follows,

∂Cw

∂t
= 1

r2

∂

∂r

(
r2Dw

∂Cw

∂r

)
, (4)

∂Cd

∂t
= 1

r2

∂

∂r

(
r2Dd

∂Cd

∂r

)
+ kd(Cd,s − Cd)H(Cu), (5)

∂Cu

∂t
= −kd(Cd,s − Cd)H(Cu), (6)

where 0 < r < R(t) and t > 0.
Initially, the drug loading C0 is greater than the solubility Cd,s, and no water exists in the matrix.

Thus, we have

t = 0, 0 ≤ r ≤ R0 : Cw = 0, Cd = Cd,s, Cu = C0 − Cd,s > 0. (7)

At the swelling front r = R(t), equilibrium water concentration Cw,e as volume percentage in
fully swollen polymeric matrix is assumed, whereas a perfect sink condition for the dissolved drug
is considered. Symmetry conditions are applied at the center of the matrix. Hence, the boundary
conditions are

t > 0, r = R(t) : Cw = Cw,e, Cd = 0; (8)

t > 0, r = 0 :
∂Cw

∂r
= 0,

∂Cd

∂r
= 0. (9)
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FIG. 1. Dynamics of the drug delivery system. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

The rate of polymer erosion is taken in the form,

1

As

dVp

dt
= −kp,

where Vp stands for the volume of the polymer, kp denotes the polymer erosion constant, and As

represents the surface area of the matrix, which is 4πR(t)2 at time t in our case. At any time,
the total volume of the matrix is sum of the volumes of water, dissolved and dispersed drug.
Therefore, we have

4

3
πR(t)3 =

∫ R(t)

0
4πr2Cw(r , t)dr +

∫ R(t)

0
4πr2[Cd(r , t) + Cu(r , t)]dr

+
(

Vp,0 −
∫ t

0
kp[4πR(t)2]dt

)
, (10)

where Vp,0 stands for the initial volume of the polymer.
Figure 1 shows the dynamics of the drug delivery system. At time t = 0, the boundary (outer

boundary) of the matrix is at r = R0. As time evolves, the outer boundary R(t) moves because of
water penetration and polymer erosion. The boundary (inner boundary) of the dispersed drug is
denoted by ξ(t), which is defined as the smallest value of r where Cu = 0, and the Heaviside step
function H in (5)–(6) is discontinuous. This boundary coincides with the outer boundary before
time t0, when the concentration of the dispersed drug drops to 0 at the outer boundary. Typically
the inner boundary goes inward and reaches r = 0 at time t∗.

The purpose of this work is to develop a fast computational algorithm for solving Eqs. (4)–(6)
for the concentration of water and drug, and then predict the drug release behavior described by
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the relative drug release M(t)/M∞, where M(t) and M∞ denote the volume of drug released at
time t and as t → ∞, respectively. In particular,

M(t) = 4

3
πR3

0C0 −
∫ R(t)

0
4πr2[Cd(r , t) + Cu(r , t)]dr

and M∞ = 4
3πR3

0C0. Therefore, we have

M(t)

M∞
= 1 − 3

R3
0C0

∫ R(t)

0
r2[Cd(r , t) + Cu(r , t)]dr , (11)

which will be used in our numerical computations.

B. Nondimensionalization

When the swelling front is moving, we are not able to find the exact solution analytically. Thus,
numerical methods, such as finite element and finite difference methods, come into play. In this
article, we discuss multilevel methods to achieve a better approximation with cheaper computa-
tional costs compared to traditional methods. We assume the diffusion coefficients are constant
for simplification. The methods also work in the case of nonlinear or inhomogeneous diffusion.

We shall now reformulate the governing system of equations in dimensionless variables to
make it suitable for numerical computations. Differentiating both sides of Eq. (10) with respect
to t , we have

4πR(t)2 dR(t)

dt
= dR(t)

dt
Cw(R(t), t)4πR(t)2 +

∫ R(t)

0
4πr2 ∂Cw(r , t)

∂t
dr

+ dR(t)

dt
[Cd(R(t), t) + Cu(R(t), t)]4πR(t)2

+
∫ R(t)

0
4πr2 ∂(Cd(r , t) + Cu(r , t))

∂t
dr − kp4πR(t)2.

Substituting Eqs. (4), (5), (6), and (8) into the above equation, we obtain

(
1 − Cw,e − Cu|r=R(t)

) dR(t)

dt
= Dw

∂Cw

∂r

∣∣∣∣
r=R(t)

+Dd
∂Cd

∂r

∣∣∣∣
r=R(t)

− kp. (12)

Let’s introduce the following dimensionless variables for convenience,

Cw = Cw

Cw,e
− 1, Cd = Cd

Cd,s
, Cu = Cu

Cd,s
, Dwd = Dw

Dd
,

and

z = r

R0
, τ = tDd

R2
0

, Z(τ) = R(t)

R0
, kd = kdR

2
0

Dd
, kp = kpR0

Dd
.

Note that Cw is scaled to make Cw = 0 at z = Z(τ) for any τ . This boundary condition is suitable
for the construction of our multilevel schemes.
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Thus, the model is transformed to the system of three equations,

∂Cw

∂τ
= Dwd

z2

∂

∂z

(
z2 ∂Cw

∂z

)
, (13)

∂Cd

∂τ
= 1

z2

∂

∂z

(
z2 ∂Cd

∂z

)
+ kd(1 − Cd)H(Cu), (14)

∂Cu

∂τ
= −kd(1 − Cd)H(Cu), (15)

supplemented by the initial condition,

τ = 0, 0 ≤ z ≤ 1 : Cw = −1, Cd = 1, Cu = C0

Cd,s
− 1, (16)

and boundary conditions

τ > 0, z = Z(τ) : Cw = 0, Cd = 0, (17)

τ > 0, z = 0 :
∂Cw

∂z
= 0,

∂Cd

∂z
= 0, (18)

and

(
1 − Cw,e − Cd,sCu|z=Z(τ)

) dZ(τ)

dτ
= Cw,eDwd

∂Cw

∂z

∣∣∣∣∣
z=Z(τ)

+Cd,s
∂Cd

∂z

∣∣∣∣∣
z=Z(τ)

− kp. (19)

The system (13)–(15) with initial (16) and boundary (17)–(19) conditions is a starting point for
our numerical work.

III. MULTILEVEL COMPUTATIONS

The system of diffusion equations (13)–(15) with initial (16) and boundary (17)–(19) conditions is
solved numerically by two methods. The first method uses finite elements, which are conventional
numerical tools in the context of the drug delivery problems. The other method is based on the
multilevel scheme, which is our main contribution to the subject. The convergence of the finite
element method for the diffusion equation (13) with fixed boundary has been studied in Ref. [18].

A. The Finite Element Method

We apply here the finite element method to solve the system of Eqs. (13)–(15) numerically. We
only introduce the numerical scheme for solving the diffusion equation (14) with corresponding
initial and boundary conditions. The other equations can be handled in the same way without any
extra difficulty.

At the discrete time τi = i�τ , i ∈ N0, where �τ is the time step, the domain of the
problem is [0, Z(τi)]. For a positive integer n ∈ N and the uniform partition of [0, Z(τi)],
0 = zi

n,0 < zi
n,1 < · · · < zi

n,2n = Z(τi), with zi
n,j = jZ(τi)/2n, j = 0, . . . , 2n, and �zi = Z(τi)/2n

we define
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φi
n,1(z) := φb

(
2n

Z(τi)
z − 1

)
,

and

φi
n,j (z) := φ

(
2n

Z(τi)
z − j

)
, j = 2, . . . , 2n − 1,

where

φb(z) =
⎧⎨⎩

1 if z ∈ [−1, 0),
1 − z if z ∈ (0, 1],
0 elsewhere,

and φ(z) =
⎧⎨⎩

1 + z if z ∈ [−1, 0),
1 − z if z ∈ (0, 1],
0 elsewhere.

Here, we consider 2n elements in the interval [0, Z(τi)], because the dyadic number of elements
is suitable for multilevel schemes. The elements are represented by the hat-shaped function φ.
The function φb is used to deal with the boundary condition in (18). The boundary condition (17)
is automatically accounted by the function φ.

Let 	i
n := {φi

n,j }2n−1
j=1 and V i

n := span{	i
n}. It is easy to see that 	i

n is linearly independent.
Moreover,

φi
n,1 = φi

n+1,1 + φi
n+1,2 + 1

2
φi

n+1,3

and

φi
n,j = 1

2
φi

n+1,2j−1 + φi
n+1,2j + 1

2
φi

n+1,2j+1, j = 2, . . . , 2n − 1,

thus we have V i
n ⊂ V i

n+1 for n ∈ N. This relation is crucial, because we need to construct
complementary subspace Wi

n of V i
n in V i

n+1 to propose our multilevel scheme.
The Galerkin method is to seek

C
i

d := Cd(z, τi) =
2n−1∑
j=1

xi
n,jφ

i
n,j (z)

satisfying for j = 1, 2, . . . , 2n − 1,∫ Z(τi )

0
z2

[
∂Cd

∂τ
φi

n,j + ∂Cd

∂z
(φi

n,j )
′ + kdCdH(Cu)φ

i
n,j

]
dz = kd

∫ Z(τi )

0
z2H(Cu)φ

i
n,j dz

Next, we use the backward Euler method for discretization with respect to the time variable
τ . This method is defined by replacing the time derivative by a backward difference quotient and
leads to solving a sequence of matrix equations,

Ei
nx

i
n = ξ i

n, i ∈ N, (20)

where

Ei
n = Ai

n + �τBi
n + �τkdG

i
n

with

Ai
n =

(∫ Z(τi )

0
z2σφdz

)
σ ,φ∈	i

n

, Bi
n =

(∫ Z(τi )

0
z2σ ′φ′dz

)
σ ,φ∈	i

n

,
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and

Gi
n =

(∫ Z(τi )

0
z2H(C

i−1

u )σφdz

)
σ ,φ∈	i

n

.

Here xi
n = (xφ)φ∈	i

n
and

ξ i
n =

(
�τkd

∫ Z(τi )

0
z2H(C

i−1

u )φdz

)
φ∈	i

n

+ Hi
nx

i−1
n ,

where Hi
n =

(∫ Z(τi )

0 z2σφdz
)

σ∈	i
n ,φ∈	i−1

n

.

Finally, we have to calculate the moving boundary position Z(τi). We use the following
difference scheme to discretize the differential equation (19):(

1 − Cw,e − Cd,sC
i−1

u (zi−1
n,2n)
) Z(τi) − Z(τi−1)

�τ

= Cw,eDwd

C
i−1

w (zi−1
n,2n) − C

i−1

w (zi−1
n,2n−1)

�zi−1
+ Cd,s

C
i−1

d (zi−1
n,2n) − C

i−1

d (zi−1
n,2n−1)

�zi−1
− kp. (21)

This explicit scheme was introduced by Murray and Carey [19]. By using this equation, we are
able to track the boundary position Z(τi) from data at the previous time τi−1. There are many other
strategies to deal with the moving boundary in the literature. For example, a predictor-corrector
method was also discussed in Ref. [19], where the two methods were analyzed and compared. It
turns out that, to achieve equivalent accuracy, larger time steps can be taken with the predictor–
corrector method. However, the predictor–corrector method requires more computational efforts
per each step. We choose the explicit scheme (21) for simplicity and take the time steps not so
large. The algorithm works well using the explicit scheme.

In summary, the computational algorithm using the finite element method for solving the
system of diffusion equations (13)–(15) with initial (16) and boundary (17)–(19) conditions is
outlined as follows.

Step 1 Set n, �τ , τ0 = 0 and Z(τ0) = 1. Set C
0

w, C
0

d and C
0

u using the initial condition. In

particular, write C
0

w, C
0

d and C
0

u as linear combinations of the basis functions in 	0
n, respectively,

according to (16).

Step 2 For i = 1, 2, . . .,

2.1 τi = τi−1 + �τ .
2.2 Solve the difference equation (21) for Z(τi).
2.3 Divide the interval [0, Z(τi)] into 2n subintervals with equal length, use the finite element

basis 	i
n and backward Euler method to discretize equation (14), solve the resulting linear

system (20) by the conjugate gradient (CG) method and obtain C
i

d. Obtain C
i

w and C
i

u in a
similar way.

Step 3 Stop when C
i

d = 0.

Here, we do not use the front-fixing method, which was proposed by Landau [20] and
applied to moving boundary problems in controlled drug release [2, 10]. By introducing a vari-
able η = z/Z(τ), the computational domain is mapped to the unit interval in the front-fixing
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method. However, this technique adds first-order derivative terms with respect to variable η with
complicated variable coefficients. The cost of dealing with these additional terms in numerical
computations may be comparable to the cost of updating the finite elements according to the
moving boundary. More importantly, these additional terms make the resulting linear systems to
be nonsymmetric, and it is more challenging to develop efficient algorithms for nonsymmetric
systems. In addition, it is not easy to extend the front-fixing method to a higher dimensional case.

B. The Multilevel Scheme

The reason we use the backward Euler method instead of the explicit methods is that the stabil-
ity requirements of the latter impose stringent conditions on the time step size. However, when
the time step size is large, the stiffness matrix Bi

n dominates. Its condition number dramatically
increases as the level n increases, so does the condition number of Ei

n. This will be explained
in details in Section IIIC. Hence, the computational cost of a numerical solution of the matrix
system (20) is expensive. To achieve a better approximation with lower computational costs, we
follow the idea in Ref. [21] to construct a multilevel basis in V i

n , which replaces the basis 	i
n and

improves the condition number of the resulting linear system.
For n ∈ N0, we define

ψi
n,1 = 1√

Z(τi)
2n/2+1/2φi

n+1,1

and

ψi
n,j = 1√

Z(τi)
2n/2−kφi

n+1,2j−1 for 2k−1 + 1 ≤ j ≤ 2k and k = 1, 2, . . . , n.

Let 
i
n := {ψi

n,j }2n

j=1 and Wi
n := span{
i

n}. It is easy to see that

V i
n+1 = V i

n + Wi
n, n ∈ N.

Consequently, for any positive integer n, we have

V i
n = Wi

0 + Wi
1 + · · · + Wi

n−1

and �i
n :=⋃n−1

k=0 
i
k is a basis of V i

n other than 	i
n. Note that 	i

n and �i
n are two bases of V i

n , there
exists a unique invertible matrix transformation Si

n such that

�i
n = Si

n	
i
n.

Applying the basis �i
n instead of 	i

n, we obtain a sequence of matrix system,

F i
ny

i
n = ηi

n, i ∈ N, (22)

where

F i
n = Āi

n + �τB̄i
n + �τkdḠ

i
n

with

Āi
n =

(∫ Z(τi )

0
z2χψdz

)
χ ,ψ∈�i

n

, B̄i
n =

(∫ Z(τi )

0
z2χ ′ψ ′dz

)
χ ,ψ∈�i

n

,
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and

Ḡi
n =

(∫ Z(τi )

0
z2H(C

i−1

u )χψdz

)
χ ,ψ∈�i

n

.

Here yi
n = (yψ

)
ψ∈�i

n
and

ηi
n =

(
�τkd

∫ Z(τi )

0
z2H(C

i−1

u )ψdz

)
ψ∈�i

n

+ H̄ i
ny

i−1
n ,

where H̄ i
n =

(∫ Z(τi )

0 z2χψdz
)

χ∈�i
n ,ψ∈�i−1

n

.

It follows from explicit expressions that

Āi
n = Si

nA
i
n(S

i
n)

T , B̄i
n = Si

nB
i
n(S

i
n)

T , Ḡi
n = Si

nG
i
n(S

i
n)

T , ηi
n = Si

nξn.

Consequently F i
n = Si

nE
i
n(S

i
n)

T , hence, the system (22) is equivalent to

Si
nE

i
n(S

i
n)

T yi
n = Si

nξ
i
n. (23)

Because Ai
n, Bi

n, and Gi
n are symmetric and positive definite, so are Ei

n and Si
nE

i
n(S

i
n)

T as �τ

and kd are positive. If the condition number of Si
nE

i
n(S

i
n)

T is uniformly bounded (independent
of n), the linear system (23) can be solved by the CG method. The number of iterations needed
to achieve the same accuracy at each time step is independent of n. Although the CG method
for solving (23) is equivalent to the preconditioned CG (PCG) method for solving (20), it has a
higher computational cost. Therefore, we will apply PCG to solve (20) with preconditioner Si

n.
Consequently, the computational algorithm using the multilevel scheme for solving the system of
diffusion equations (13)–(15) with initial (16) and boundary (17)–(19) conditions is obtained by
replacing the CG method with the PCG method, using the preconditioner Si

n constructed in this
section.

C. Stability Analysis

We prove here that Si
n is a good preconditioner for Ei

n for fixed i and time step �τ . In other words,
we show that for fixed i and �τ , the condition number of Si

nE
i
n(S

i
n)

T is uniformly bounded as
n → ∞. Our proof is motivated by the techniques used in Ref. [21]. Recall that, for a symmetric
positive definite matrix A, its condition number is given by

κ(A) = λmax,A

λmin,A
,

where λmax,A and λmin,A stands for the maximal and minimal eigenvalues of A, respectively.

Lemma 3.1. For any x ∈ R
2n−1, we have

�τxT Bi
nx ≤ xT Ei

nx ≤ μi�τxT Bi
nx, μi = 1 + 4(1 + �τkd)

9�τ
(Z(τi))

2.
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Proof. Suppose x = (x1, x2, . . . , x2n−1)
T ∈ R

2n−1 and let f =∑2n−1
j=1 xjφ

i
n,j . We have∫ Z(τi )

0
z2f 2dz ≤ 4

9
(Z(τi))

2

∫ Z(τi )

0
z2|f ′|2dz. (24)

Indeed, ∫ Z(τi )

0
z2f 2dz =

∫ Z(τi )

0
z2f 2dz

= 1

3
z3f 2

∣∣∣∣Z(τi )

0

− 2

3

∫ Z(τi )

0
z3ff ′dz

≤ 2

3

∫ Z(τi )

0
Z(τi)

∣∣zf zf ′∣∣ dz

≤ 2

3
Z(τi)

(∫ Z(τi )

0
z2f 2dz

)1/2 (∫ Z(τi )

0
z2|f ′|2dz

)1/2

.

Squaring both sides and dividing by
∫ Z(τi )

0 z2f 2dz, we obtain (24). Note that

xT Ei
nx = xT Ai

nx + �τxT Bi
nx + �τkdx

T Gi
nx

=
∫ Z(τi )

0
z2f 2dz + �τ

∫ Z(τi )

0
z2|f ′|2dz + �τkd

∫ Z(τi )

0
z2H(C

i−1

u )f 2dz.

Thus, on one hand,

xT Ei
nx ≥ �τ

∫ Z(τi )

0
z2|f ′|2dz = �τxT Bi

nx.

On the other hand,

xT Ei
nx ≤

∫ Z(τi )

0
z2f 2dz + �τ

∫ Z(τi )

0
z2|f ′|2dz + �τkd

∫ Z(τi )

0
z2f 2dz

= (1 + �τkd)

∫ Z(τi )

0
z2f 2dz + �τ

∫ Z(τi )

0
z2|f ′|2dz

≤
(

4

9
(Z(τi))

2(1 + �τkd) + �τ

)
xT Bi

nx.

The last inequality is obtained using (24).

For any eigenvalue λBi
n

of Bi
n, there exists a column vector x such that

λBi
n

= xT Bi
nx

xT x
.

From Lemma 3.1, we have

λmin,Ei
n

μi�τ
≤ 1

μi�τ

xT Ei
nx

xT x
≤ λBi

n
≤ 1

�τ

xT Ei
nx

xT x
≤ λmax,Ei

n

�τ
.
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Therefore, we have κ(Ei
n) ≥ κ(Bi

n)/μi . As the condition number of the matrix Bi
n increases

dramatically as n increases [22], so does the condition number of Ei
n for fixed i and �τ .

To show that Si
n is a good preconditioner of Ei

n, we only need to show Si
nB

i
n(S

i
n)

T is well-
conditioned. In the following, we first construct a matrix B̃i

n such that κ(Si
nB

i
n(S

i
n)

T ) can be

controlled by κ(Si
nB̃

i
n(S

i
n)

T ) multiplied by a constant, and then verify that κ(Si
nB̃

i
n(S

i
n)

T ) is
uniformly bounded as n → ∞.

Let

wi
n :=

n∑
k=1

2−kZ(τi)χ[2−kZ(τi ),2−k+1Z(τi )] and ui
n,j := wi

n(φ
i
n,j )

′,

where χ is the characteristic function. Define 	̃i
n := {ui

n,j }2n−1
j=1 and Ṽ i

n := span{	̃i
n}. It is easy to

check that 	̃i
n is linearly independent. Moreover, we have

ui
n,1 = ui

n+1,1 + ui
n+1,2 + 1

2
ui

n+1,3

and

ui
n,j = 1

2
ui

n+1,2j−1 + ui
n+1,2j + 1

2
ui

n+1,2j+1, j = 2, . . . , 2n − 1,

almost everywhere. Thus, we have Ṽ i
n ⊂ Ṽ i

n+1 for n ∈ N. We shall now define B̃i
n = (̃bi

jk)1≤j ,k≤2n−1

and b̃i
jk = ∫ Z(τi )

0 ui
n,ju

i
n,kdz.

Lemma 3.2. For any x ∈ R
2n−1, we have

xT B̃i
nx ≤ xT Bi

nx ≤ 4xT B̃i
nx.

Proof. Suppose x = (x1, x2, . . . , x2n−1)
T ∈ R

2n−1 and denote

f =
2n−1∑
j=1

xjφ
i
n,j and g =

2n−1∑
j=1

xju
i
n,j .

By the definition of φi
n,j , it is easy to see that f ′ = 0 and g = 0 on (0, 2−nZ(τi)). Then, we have

xT Bi
nx =

∫ Z(τi )

0
z2|f ′|2dz =

∫ Z(τi )

2−nZ(τi )

z2|f ′|2dz

=
∫ Z(τi )

2−nZ(τi )

z2

∣∣∣∣∣
2n−1∑
j=1

xj (φ
i
n,j )

′
∣∣∣∣∣
2

dz

=
n∑

k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

z2

∣∣∣∣∣
2n−1∑
j=1

xj (φ
i
n,j )

′
∣∣∣∣∣
2

dz

≤
n∑

k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

(2−k+1Z(τi))
2

∣∣∣∣∣
2n−1∑
j=1

xj (φ
i
n,j )

′χ[2−kZ(τi ),2−k+1Z(τi )]

∣∣∣∣∣
2

dz
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= 4
n∑

k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

∣∣∣∣∣
2n−1∑
j=1

xj 2−kZ(τi)χ[2−kZ(τi ),2−k+1Z(τi )](φ
i
n,j )

′
∣∣∣∣∣
2

dz

= 4
n∑

k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

∣∣∣∣∣
2n−1∑
j=1

xjw
i
n(φ

i
n,j )

′
∣∣∣∣∣
2

dz

= 4
n∑

k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

∣∣∣∣∣
2n−1∑
j=1

xju
i
n,j

∣∣∣∣∣
2

dz

= 4
∫ Z(τi )

2−nZ(τi )

|g|2dz = 4
∫ Z(τi )

0
|g|2dz

= 4xT B̃i
nx.

Similarly,

xT Bi
nx ≥

n∑
k=1

∫ 2−k+1Z(τi )

2−kZ(τi )

(2−kZ(τi))
2

∣∣∣∣∣
2n−1∑
j=1

xj (φ
i
n,j )

′χ[2−kZ(τi ),2−k+1Z(τi )]

∣∣∣∣∣
2

dz = xT B̃i
nx.

This completes the proof.

Next, we show that κ(Si
nB̃

i
n(S

i
n)

T ) is uniformly bounded as n → ∞. For n ∈ N0, similar to the
definition of ψi

n,j , we define

vi
n,1 = 1√

Z(τi)
2n/2+1/2ui

n+1,1

and

vi
n,j = 1√

Z(τi)
2n/2−kui

n+1,2j−1 for 2k−1 + 1 ≤ j ≤ 2k and k = 1, 2, . . . , n.

Let 
̃i
n := {vi

n,j }2n

j=1 and W̃ i
n := span{
̃i

n}. It is easy to see that

Ṽ i
n+1 = Ṽ i

n + W̃ i
n, n ∈ N.

Consequently, for any positive integer n, we have

Ṽ i
n = W̃ i

0 + W̃ i
1 + · · · + W̃ i

n−1

and �̃i
n :=⋃n−1

k=0 
̃i
k is a basis of Ṽ i

n other than 	̃i
n. From the definition, we have �̃i

n = Si
n	̃

i
n and

Si
nB̃

i
n(S

i
n)

T = Si
n

(∫ Z(τi )

0
uvdz

)
u,v∈	̃i

n

(Si
n)

T =
(∫ Z(τi )

0
uvdz

)
u,v∈�̃i

n

.

We use this formula to prove the following.
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Lemma 3.3. Si
nB̃

i
n(S

i
n)

T is a (2n − 1) × (2n − 1) identity matrix.

Proof. To prove the lemma, we show that �̃i
n is an orthonormal basis of Ṽ i

n .
First, we show that Ṽ i

l and W̃ i
l are orthogonal with respect to the inner product in L2 for any

l ∈ N. Indeed, vi
l,1 is orthogonal to ui

l,j ′ for any j ′ = 1, . . . , 2l − 1, because their supports do not
overlap. For j = 2, . . . , 2l , there exists k such that 2k−1 + 1 ≤ j ≤ 2k and, by definition, we have

vi
l,j = 1√

Z(τi)
2l/2−kui

l+1,2j−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
Z(τi)

2l/2, x ∈
(

2j − 2

2l+1
Z(τi),

2j − 1

2l+1
Z(τi)

)
,

− 1√
Z(τi)

2l/2, x ∈
(

2j − 1

2l+1
Z(τi),

2j

2l+1
Z(τi)

)
,

0, elsewhere.

We can see that the support of vi
l,j is [ j−1

2l Z(τi),
j

2l Z(τi)] and the integral of vi
l,j on this interval is

zero. Because ui
l,j ′ for any j ′ = 1, . . . , 2l − 1 is a constant inside this interval, vi

l,j is orthogonal
to ui

l,j ′ for any j = 2, . . . , 2l and j ′ = 1, . . . , 2l − 1.
Second, we show that vi

l,j is orthogonal to vi
l,j ′ for any 1 ≤ j , j ′ ≤ 2l and j 
= j ′. This is so

because their supports do not overlap.
Finally, we establish the normalization conditions for vi

l,j . For any j = 2, . . . , 2l , there exists
k such that 2k−1 + 1 ≤ j ≤ 2k , then

∫ Z(τi )

0
|vi

l,j |2dz =
∫ 2j−1

2l+1 Z(τi )

2j−2
2l+1 Z(τi )

1

Z(τi)
2ldz +

∫ 2j

2l+1 Z(τi )

2j−1
2l+1 Z(τi )

1

Z(τi)
2ldz = 1.

For j = 1, we have

vi
l,1 = 1√

Z(τi)
2l/2+1/2ui

l+1,1 =
{− 1√

Z(τi )
2l/2+1/2, x ∈ (

2j−1
2l+1 Z(τi),

2j

2l+1 Z(τi)),

0, elsewhere,

and hence,

∫ Z(τi )

0
|vi

l,1|2dz =
∫ 2

2l+1 Z(τi )

1
2l+1 Z(τi )

1

Z(τi)
2l+1dz = 1.

Therefore, for any u, v ∈ �̃i
n, ∫ Z(τi )

0
uvdz =

{
1, u = v,
0, u 
= v.

The assertion of the lemma is proved.

Based on the three lemmas above, we have the following theorem.

Theorem 3.4. Given the time step �τ , for any i = 1, 2, . . ., we have κ(Si
nE

i
n(S

i
n)

T ) ≤ 4μi .
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Proof. According to the above lemmas, for any column vector x of size (2n − 1), on one
hand,

xT Si
nE

i
n(S

i
n)

T x = [(Si
n)

T x]T Ei
n[(Si

n)
T x] ≤ �τμi[(Si

n)
T x]T Bi

n[(Si
n)

T x]
≤ 4�τμi[(Si

n)
T x]T B̃i

n[(Si
n)

T x]
= 4�τμix

T x.

On the other side,

xT Si
nE

i
n(S

i
n)

T x = [(Si
n)

T x]T Ei
n[(Si

n)
T x] ≥ �τ [(Si

n)
T x]T Bi

n[(Si
n)

T x] ≥ �τ [(Si
n)

T x]T B̃i
n[(Si

n)
T x]

= �τxT x.

For any eigenvalue λ of Si
nE

i
n(S

i
n)

T , there exists a vector x such that

λ = xT Si
nE

i
n(S

i
n)

T x

xT x
.

Thus λ ∈ [�τ , �τμi]. Consequently,

κ(Si
nE

i
n(S

i
n)

T ) = λmax,Si
nEi

n(Si
n)T

λmin,Si
nEi

n(Si
n)T

≤ 4μi ,

which proves the assertion of the theorem.

In Theorem 3.4, the upper bound is independent of n, thus the condition number of Si
nE

i
n(S

i
n)

T

is uniformly bounded as n → ∞.

IV. NUMERICAL RESULTS AND COMPARISON

We compare performance of the finite element and multilevel schemes in numerical simulations
of the system of diffusion equations (13)–(15) supplemented by initial (16) and boundary (17)–
(19) conditions. We first solve the system numerically up to time τ to obtain the concentration of
water, dissolved drug, and dispersed drug at τ . Then, we can use Eq. (11) to obtain the relative
drug release. In our numerical computation, we choose the following values for the parameters
appearing in the model,

R0 = 0.1 cm, C0 = 3Cd,s, Dw = 2.9 × 10−6 cm2s−1, Dd = 1.5 × 10−6 cm2s−1,

kd = 3.448, Cd,s = 0.01, Cw,e = 0.3, kp = 6.11 × 10−3.

These values have been used by pharmaceutical researchers [2,5]. Both the finite element method
and the multilevel scheme give the same results but the latter one performs much faster.

Figure 2 illustrates distribution of the concentrations in the drug delivery system at different
times, t = 1, 8, 28, 78 min. In particular, Fig. 2A gives the dimensionless concentration of the
water. We see that as time evolves, the water concentration becomes higher and higher because
of water penetration. Figure 2(B,C) show that the concentrations of dissolved drug and dispersed
drug decrease as drug diffuses out and dissolves, respectively. Figure 2D provides the total drug
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FIG. 2. Concentrations versus radius at different times. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

concentration. In Fig. 2C, the dispersed drug concentration is positive everywhere in the matrix
at t = 1, 8, 28 min. However, this concentration is zero near the outer boundary at t = 78 min.
Because of this difference, we may also notice that, in Fig. 2(B,D), the curves at t = 78 min looks
different from the other three.

Figure 3A depicts how the boundary of the drug release system (outer boundary) and the
boundary of dispersed drug (inner boundary) move in time. We see that the outer boundary first
moves outward because of polymer swelling. As the polymer approaches its fully swollen status,
polymer erosion prevails, which causes the boundary to decrease. Moreover, the inner boundary
first coincides with the outer boundary. At time t0, it separates from the outer boundary, goes
inward, and reaches 0 at time t∗. Figure 3B gives the relative drug release in time which describes
the drug release behavior. The separation of the inner and outer boundaries results in the change
in slope of M(τ) near 0.3.

A. Comparison of the Finite Element and Multilevel Methods

Although the finite element and multilevel schemes give the same results, they require different
computational efforts. To compare their performance, we solve the same problem by these two
methods. For the finite element method, the CG algorithm is applied to solve the linear system (20)
at each time step. For the multilevel scheme, we solve the same system by the PCG algorithm
with preconditioner Si

n at each time step. The concentration of water, dispersed and dissolved
drugs can be obtained similarly by these two methods. We set the threshold to be 10−8 in both
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FIG. 3. Moving boundaries and relative drug release versus time. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

algorithms and compare the number of iterations needed to achieve this accuracy. In particular,
the problem is solved up to 2300 s, which yields τ = 0.345 after rescaling.

The parameters in the model are given above. For different time step size �τ and different
level n, the number of CG and PCG iterations needed for solving the linear equation (14) for
dissolved drug is listed inside and outside the brackets in Table I, respectively. Table II lists the
number of iterations for solving the linear equation (13) for water concentration. We note that the
tables list the number of iterations needed at the last time step of numerical computations.

We see that the number of iterations in the multilevel scheme is much less than that needed
for the finite element method. For fixed time step size �τ , as the level n increases, the number of
CG iterations increases rapidly. However, the number of PCG iterations remains nearly the same.
This shows that the multilevel method is well-conditioned, and its condition number is uniformly
bounded for larger values of n. Moreover, for fixed level n, as time step size increases, the number
of CG iterations increases, but the number of PCG iterations decreases. This is reasonable, because
as time step size increases, the linear system (20) becomes more and more ill-conditioned. At the
same time, the multilevel method has additional advantages when the time step size increases.

TABLE I. Number of iterations by the multilevel and finite element (in the parentheses) schemes for
dissolved drug.

n = 8 n = 9 n = 10

�τ = 0.003 14 (761) 13 (1807) 13 (4211)
�τ = 0.0015 16 (538) 15 (1308) 14 (2965)
�τ = 0.00075 21 (354) 19 (811) 17 (1711)

TABLE II. Number of iterations by the multilevel and the finite element (in the parentheses) schemes
for water.

n = 8 n = 9 n = 10

�τ = 0.003 16 (752) 20 (1921) 20 (4682)
�τ = 0.0015 19 (710) 22 (1777) 21 (4129)
�τ = 0.00075 25 (537) 28 (1243) 23 (2629)
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FIG. 4. Left: the numerical and exact solutions for a scalar diffusion equation for Cd/Cd,s on [0, t0] in the
case of no water and polymer erosion. Right: The distance between the two solutions. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

B. Comparison of Numerical and Exact Solutions

In all future computations, we will omit water and neglect polymer swelling and erosion.
Because the system of diffusion equations (5)–(6) is nonlinear, it is impossible to derive an

exact solution. However, if we only consider the time interval [0, t0], when Cu > 0 everywhere,
the exact solution can be obtained by the method of separation of variables. Appendix A gives
details of this exact solution.

The exact solutions for the dimensionless dissolved drug concentration Cd/Cd,s at different
times, t = 1000 s, 2000 s, 3000 s, 4000 s, and 5000 s, follow from Eq. (34). As the condition
Cu > 0 is only valid for a short time interval [0, t0], these exact solutions can only be used to
verify our numerical computations on this interval. Figure 4A shows the exact solutions as blue
curve with the dot marker. The red curves in the same figure represent the numerical solutions
at level n = 9 in this special case. The parameters are chosen to be the same in the exact and
numerical solutions. In particular, we choose

R0 = 1 cm, C0 = 2Cd,s, Dd = 1.5 × 10−6 cm2s−1, kd = 0.667.

Here, we choose R0 = 1 cm to simplify the computation of Cd/Cd,s using the explicit solution
(34). We see that the numerical solutions match the exact solutions perfectly. Figure 4B shows
that the numerical error decreases as the time evolves. Table III gives the magnitude of the error
in the supremum norm for different time instances.

C. Comparison of Numerical and Approximate Solutions

It is always assumed in the mathematical models describing dispersed drug release that dissolution
is much faster than diffusion. Moreover, in the limit of kd → ∞, the system of diffusion equations
(5)–(6) (when again water penetration is neglected) reduces to the scalar diffusion equation with

TABLE III. The error of numerical computations in the supremum norm for different times.

t 1000 s 2000 s 3000 s 4000 s 5000 s

Error 4.3 × 10−5 2.2 × 10−5 1.5 × 10−5 1.2 × 10−5 8.0 × 10−6
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FIG. 5. Left: the numerical and approximate solutions for M(τ)/M∞ in the system of diffusion equations
(5)–(6) on [t0, t∗] in the case of no water and polymer erosion. Right: The distance between the two solutions.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

an inner boundary,

∂Cd

∂t
= 1

r2

∂

∂r

(
r2Dd

∂Cd

∂r

)
, ξ(t) < r < R(t), (25)

The inner boundary ξ(t) is determined by the boundary condition Cd(ξ(t), t) = Cd,s and the
mass balance equation,

(C0 − Cd,s)
dξ(t)

dt
= Dd

∂Cd

∂r

∣∣∣∣
r=ξ(t)

. (26)

System (25)–(26) is valid for the time interval [t0, t∗], where t0 is the time instance when
Cu(R(t), t) = 0 from Appendix A. Appendix B gives justification of system (25)–(26) in the
limit kd → ∞.

An approximate analytical solution for system (25)–(26) in the case, when Dd is a constant and
R(t) = R0 is not moving, has been obtained by Lee [4]. Appendix C reviews details of derivation
of this solution, which becomes an approximate solution for system (5)–(6).

The relative drug release is given by (45) and plotted as blue curve with cross marker in Fig. 5A
for

R0 = 0.1 cm, C0 = 3Cd,s, Dd = 1.0 × 10−6 cm2s−1.

Note that the relative release curve is reasonable for the drug release up to time t∗ = 4301 s.
Let us now solve numerically system (5)–(6), where we remove the polymer swelling and

erosion mechanisms and choose the dissolution rate much bigger than the diffusion coefficient.
In particular, we choose kd = 1.0 × 10−1s−1, which is reasonable in pharmaceutical research.

The numerical solution is plotted as red curve in Figure 5A. Those two curves are very close.
Figure 5B shows the difference between these solutions. In particular, the error in the supremum
norm is 0.0263.

This computation shows that the model (25)–(26) gives a good approximation for solutions of
the system of diffusion equations (5)–(6) on the time interval [t0, t∗].
Numerical Methods for Partial Differential Equations DOI 10.1002/num
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V. CONCLUSION

In this article, the dispersed drug release from hydrophilic polymer systems in spherical geometry
is investigated by using a mathematical model incorporating diffusion, dissolution, swelling, and
erosion mechanisms. We introduce a multilevel scheme to solve the governing diffusion equa-
tions and achieve a better approximation than the finite element method with lower computational
costs. At the same level of accuracy, the multilevel scheme is much faster than the finite element
method. The bigger the time step size is or the larger the linear system is, the more advantages our
numerical multilevel scheme has over the finite element method. We also confirm that numerical
solutions of the full model agree well with the exact and approximate solutions of the reduced
models derived earlier.

APPENDIX A: EXACT SOLUTION FOR FIXED BOUNDARY ON [0, t0]

We derive here an exact solution for the diffusion equation for dissolved drug,

∂Cd

∂t
= Dd

r2

∂

∂r

(
r2 ∂Cd

∂r

)
+ kd(Cd,s − Cd), (27)

coupled together with the equation for dispersed drug,

∂Cu

∂t
= −kd(Cd,s − Cd). (28)

We use the initial data,

t = 0, 0 ≤ r ≤ R0 : Cd = Cd,s, Cu = C0 − Cd,s > 0, (29)

and the boundary conditions

t > 0, r = R0 : Cd = 0. (30)

This model corresponds to system (5)–(6) without considering polymer swelling and erosion
under the assumption Cu > 0. This assumption is only valid for an initial time interval [0, t0].
We have also simplified the model by considering no water penetration and the fixed boundary
of a polymer (no erosion). To justify the assumption Cu > 0, we note that Cu drops fastest at
r = R0 and reaches zero at t0 because Cd = 0 at the surface and Cd > 0 inside (0, R0). Integrate
both sides of Eq. (28) from 0 to t0 at R0 and use the fact that Cu(R0, t0) = 0, Cd(R0, t) = 0, and
Cu(R0, 0) = C0 − Cd,s, we obtain

t0 = C0 − Cd,s

Cd,skd
.

To derive an exact solution for Cd, we use Eqs. (27), (29), and (30). Then, we solve for Cu by
using Eqs. (28) and (29). Using the variable

ud = rCd

Cd,s
ekd t ,

Numerical Methods for Partial Differential Equations DOI 10.1002/num



MULTILEVEL COMPUTATIONS OF DISPERSED DRUG RELEASE 1411

Eq. (27) becomes

∂ud

∂t
− Dd

∂ud

∂r2
= kdre

kd t , (31)

subject to the initial data ud(r , 0) = r for r ∈ [0, R0] and the Dirichlet boundary conditions
ud(0, t) = ud(R0, t) = 0. We can use separation of variables to solve the inhomogeneous diffusion
equation (31).

Expanding ud(r , t) and kdre
kd t into

ud(x, t) =
∞∑

n=1

un(t) sin

(
nπr

R0

)
,

and

kdre
kd t =

∞∑
n=1

hn(t) sin

(
nπr

R0

)
, hn(t) = −2R0kde

kd t cos(nπ)

nπ
.

and using the orthogonality of sine functions, we obtain an uncoupled system of differential
equations,

dun(t)

dt
+ Dd

n2π 2

R2
0

un(t) = hn(t) (32)

complemented with the initial data

un(0) = −2R0 cos(nπ)

nπ
. (33)

Solving (32) and (33), we have

un(t) = − 2R0 cos(nπ)

Ddn2π 2 + kdR
2
0

⎛⎝R2
0kd

nπ
ekd t + Ddnπe

− Ddn2π2

R2
0

t

⎞⎠ .

Therefore, the exact solution for (27) is

Cd(r , t)

Cd,s
=

∞∑
n=1

−2R0 cos(nπ)

Ddn2π 2 + kdR
2
0

⎛⎝R2
0kd

nπ
+ Ddnπe

− Ddn2π2

R2
0

t−kd t

⎞⎠ 1

r
sin

(
nπr

R0

)
. (34)

Substitute (34) into Eq. (28), we obtain the exact solution for dispersed drug,

Cu(r , t)

Cd,s
= C0

Cd,s
− 1 − kdt + kd

∞∑
n=1

En(t)

r
sin

(
nπr

R0

)
, (35)

where

En(t) = −2R0 cos(nπ)

Ddn2π 2 + kdR
2
0

⎛⎝ DdnπR2
0

Ddn2π 2 + kdR
2
0

+ R2
0kd

nπ
t − DdnπR2

0

Ddn2π 2 + kdR
2
0

e
− Ddn2π2

R2
0

t−kd t

⎞⎠ .

These expressions are compared with numerical numerical solutions in Section IVC.
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APPENDIX B: DERIVATION OF THE REDUCED MODEL ON [t0, t∗]

We rewrite the system of diffusion equations (5)–(6) in the two domains [0, ξ(t)] and [ξ(t), R0]
separated by the boundary r = ξ(t), where Cu(ξ(t), t) = 0. This separation is valid for t ∈ [t0, t∗],
where t0 is defined in Appendix A as the first time instance when Cu(R0, t) = 0 and t∗ is the time
instance when ξ(t) = 0 (or t∗ = ∞ if this does not happen in a finite time). In the first domain
r ∈ (0, ξ(t)) for t ∈ (0, t∗), we have

∂Cd

∂t
= 1

r2

∂

∂r

(
r2Dd

∂Cd

∂r

)
+ kd(Cd,s − Cd), (36)

∂Cu

∂t
= −kd(Cd,s − Cd), (37)

subject to the boundary condition ∂Cd
∂r

= 0 at r = 0 and the initial conditions Cd = Cd,s and
Cu = C0 − Cd,s > 0 at t = 0. In the second domain r ∈ (ξ(t), R(t)) for t ∈ (t0, t∗) (when
ξ(t) < R0), we have

∂Cd

∂t
= 1

r2

∂

∂r

(
r2Dd

∂Cd

∂r

)
, (38)

subject to the boundary conditions Cd = 0 at r = R0. The inner boundary ξ(t) is defined by the
condition Cu(ξ(t), t) = 0 and the continuity conditions for Cd and its derivative ∂Cd

∂r
.

In the limit kd → ∞, we can neglect the small diffusion term in the first system (36)–(37)
and obtain the constant solution of the initial-value problem for any t ∈ (0, t∗) and r ∈ [0, η(t)],
where η(t) < ξ(t) is fixed for any fixed t ,

Cd(r , t) = Cd,s, Cu(r , t) = C0 − Cd,s. (39)

We claim that for sufficiently small ε = 1/kd, there is constant A > 0 such that

sup
t∈[t0,t∗]

sup
r∈[0,η(t)]

(∣∣Cd − Cd,s

∣∣+ ∣∣∣∣∂Cd

∂r

∣∣∣∣+ ∣∣Cu − (C0 − Cd,s)
∣∣) ≤ Aε. (40)

Neglecting the small remainder term and sending η(t) → ξ(t) for any t ∈ (t0, t∗), we can now
close the second Eq. (38) as a boundary-value problem on [ξ(t), R0] subject to the boundary
conditions Cd = Cd,s at r = ξ(t) and Cd = 0 at r = R0. This boundary-value problem is posed
for t ∈ (t0, t∗) starting with the initial condition Cd = Cd,s at ξ(t) = R0 and t = t0.

To determine the equation for the inner boundary ξ(t), we represent the solution for Cu on
[0, R0] by using the Heaviside step function H ,

Cu(r , t) = (C0 − Cd,s)H(ξ(t) − r).

The diffusion equation (5) becomes now

r2 ∂Cd

∂t
= ∂

∂r

(
r2Dd

∂Cd

∂r

)
− r2 ∂Cu

∂t
.
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Integrating over r ∈ [η(t), ξ(t)], using bound (40), and sending η(t) → ξ(t) for any t ∈ (t0, t∗),
we obtain∫ ξ(t)

η(t)

r2 ∂Cd

∂t
dr = r2Dd

∂Cd

∂r

∣∣∣∣r=ξ(t)

r=η(t)

+ (C0 − Cd,s)
dξ(t)

dt

∫ ξ(t)

η(t)

r2 d

dr
H(ξ(t) − r)dr ,

and hence

0 = Ddξ(t)2 ∂Cd

∂r

∣∣∣∣
r=ξ(t)

− (C0 − Cd,s)
dξ(t)

dt
ξ(t)2,

which yields Eq. (26).

APPENDIX C: AN APPROXIMATE SOLUTION FOR THE REDUCED MODEL

There exists an exact solution of the reduced model (25)–(26) in the space of one dimension [1]
when the boundary is fixed R(t) = R0. In three dimensions, we can construct an approximate
analytic solution by using a method developed by Lee [4].

Differentiating Cd(ξ(t), t) = Cd,s with respect to t and using (25) and (26), we obtain(
∂Cd

∂r

)2
∣∣∣∣∣
r=ξ(t)

+ (C0 − Cd,s)
1

r2

∂

∂r

(
r2 ∂Cd

∂r

)∣∣∣∣
r=ξ(t)

= 0. (41)

This additional condition is more convenient than (26).
By introducing variables

θ = r

R0

(
Cd,s − Cd

Cd,s

)
, τ = t

Dd

R2
0

, ξ = R0 − r

R0
,

the model is transformed to the diffusion equation

∂θ

∂τ
= ∂2θ

∂ξ 2
, 0 < ξ < δ(τ) := 1 − ξ(t)

R0
, (42)

subject to the boundary conditions θ(δ(τ ), τ) = 0 and θ(0, τ) = 1, and the mass balance equation

∂θ

∂ξ

∣∣∣∣
ξ=δ(τ )

=
(

1 − C0

Cd,s

)
(1 − δ)

dδ

dτ
, (43)

or equivalently, (
∂θ

∂ξ

)2
∣∣∣∣∣
ξ=δ(τ )

=
(

C0

Cd,s
− 1

)
(1 − δ)

∂2θ

∂ξ 2

∣∣∣∣
ξ=δ(τ )

. (44)

Double integration of (42) gives∫ δ

0
dx

∫ δ

x

∂θ

∂τ
dξ =

∫ δ

0
dx

∫ δ

x

∂2θ

∂ξ 2
dξ .
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Let us assume that there exists a self-similar solution θ(ξ , τ) = θ(η) of the diffusion equation
(42) with η = ξ/δ. Letting y = x/δ and integrating by parts, we obtain∫ δ

0
dx

∫ δ

x

∂θ

∂τ
dξ = −δ

dδ

dτ

∫ 1

0
dy

∫ 1

y

η
dθ

dη
dη

= δ
dδ

dτ

[∫ 1

0
yθ(y)dy +

∫ 1

0
dy

∫ 1

y

θdη

]

= 2δ
dδ

dτ

∫ 1

0
dy

∫ 1

y

θdη.

On the other hand, using the boundary conditions and the mass balance equation (43), we obtain∫ δ

0
dx

∫ δ

x

∂2θ

∂ξ 2
dξ =

(
1 − C

Cd,s

)
(1 − δ)δ

dδ

dτ
+ 1.

Combining these two computations together, we have

d(g1δ
2 + g2δ

3)

dτ
= 1 ⇒ g1δ

2 + g2δ
3 = τ ,

where

g1 =
∫ 1

0
dy

∫ 1

y

θdη + 1

2

(
C0

Cd,s
− 1

)
and g2 = −1

3

(
C0

Cd,s
− 1

)
.

To approximate a solution, we need to properly choose θ as a function of η. Langford [23]
showed that a quadratic polynomial gives a good accuracy,

θ = a1 + a2η + a3η
2,

if the coefficients are found from the boundary conditions and the mass balance equation (44),

a1 = 1,
a2 = −a3 − 1,

a3 = 1 +
(

C0

Cd,s
− 1

)
(1 − δ) −

√[
1 +

(
C0

Cd,s
− 1

)
(1 − δ)

]2

− 1.

Therefore, we have

τ = 1

12

[
6

(
C0

Cd,s

)
− 4 − a3

]
δ2 − 1

3

(
C0

Cd,s
− 1

)
δ3.

The relative mass of the drug release in (11) is now approximated by the explicit expression,

M

M∞
= [1 − (1 − δ)3]

(
1 − Cd,s

C0

)
+ 3δ

(
Cd,s

C0

)[(
a1 + a2

2
+ a3

3

)
−
(a1

2
+ a2

3
+ a3

4

)
δ
]

.

(45)

This expression is compared with numerical solutions in Section IVC.

The authors are grateful to Shirley Wu and Yousheng Zhou for introduction to the problem,
inspiring discussions, and valuable references.
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