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We consider standing waves in the focusing nonlinear Schrödinger (NLS) equation on a

dumbbell graph (two rings attached to a central line segment subject to the Kirchhoff

boundary conditions at the junctions). In the limit of small L2-norm, the ground state

(the orbitally stable standing wave of the smallest energy at a fixed L2-norm) is repre-

sented by a constant solution. However, when the L2-norm is increased, this constant

solution undertakes two bifurcations, where the first is the pitchfork (symmetry break-

ing) bifurcation and the second one is the symmetry preserving bifurcation. As a result

of the first symmetry breaking bifurcation, the standing wave becomes more localized

in one of the two rings. As a result of the second symmetry preserving bifurcation, the

standing wave becomes localized in the central line segment. In the limit of large norm

solutions, both standing waves are represented by a truncated solitary wave localized

in either the ring or the central line segment. Although the asymmetric wave supported

in the ring is a ground state near the symmetry breaking bifurcation of the constant

solution, it is the symmetric wave supported in the central line segment which becomes

the ground state in the limit of large L2-norm. The analytical results are confirmed by

numerical approximations of the ground state on the dumbbell graph.
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1 Introduction

Nonlinear Schrödinger (NLS) equations on quantum graphs have been recently studied

in many physical and mathematical aspects [17]. In the physical literature, mostly in the

context of Bose–Einstein condensation, various types of graphs have been modeled to

show formation and trapping of standing waves [6, 24, 26, 27, 30]. In the mathematical

literature, existence, variational properties, stability, and scattering have been studied

on star graphs, including the Y-shaped graphs [2–4].

More complicated graphs may lead to resonances and nontrivial bifurcations of

standing waves. For example, standing waves were studied on the tadpole graph (a ring

attached to a semi-infinite line) [7, 18]. Besides the standing waves supported in the ring

that bifurcate from eigenvalues of the linear operators closed in the ring, the tadpole

graph also admits the standing waves localized in the ring with the tails extended in

the semi-infinite line. These standing waves bifurcate from the end-point resonance

of the linear operators defined on the tadpole graph and include the positive solution,

which is proved to be orbitally stable in the evolution of the cubic NLS equation near the

bifurcation point [18]. The positive solution bifurcating from the end-point resonance

bears the lowest energy at the fixed L2-norm, called the ground state. Other positive

states on the tadpole graph also exist in parameter space far away from the end-point

resonance but they do not bear smallest energy and they do not branch off the ground

state [7].

The present contribution is devoted to analysis of standing waves (and the

ground state) on the dumbbell graph shown in Figure 1. The dumbbell graph is rep-

resented by two rings (with equal length normalized to 2π ) connected by the central

line segment (with length 2L). At the junctions between the rings and the central line

segment, we apply the Kirchhoff boundary conditions to define the coupling. These

boundary conditions ensure continuity of functions and conservation of the current

flow through the network junctions; they also allow for self-adjoint extension of the

Laplacian operator defined on the dumbbell graph.

Let the central line segment be placed on I0 := [−L, L], whereas the end rings

are placed on I− := [−L − 2π , −L] and I+ := [L, L + 2π ]. The Laplacian operator is defined

piecewise by

ΔΨ =

⎡
⎢⎢⎣

u′′
−(x), x ∈ I−,

u′′
0(x), x ∈ I0,

u′′
+(x), x ∈ I+,

⎤
⎥⎥⎦ , acting on Ψ =

⎡
⎢⎢⎣

u−(x), x ∈ I−,

u0(x), x ∈ I0,

u+(x), x ∈ I+,

⎤
⎥⎥⎦ ,
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x=−L−2π

x=−L x=L

x=L+2π

Fig. 1. Schematic representation of the dumbbell graph.

subject to the Kirchhoff boundary conditions at the two junctions:⎧⎪⎨
⎪⎩

u−(−L − 2π)= u−(−L)= u0(−L),

u′
−(−L)− u′

−(−L − 2π)= u′
0(−L),

(1.1)

and ⎧⎪⎨
⎪⎩

u+(L + 2π)= u+(L)= u0(L),

u′
+(L)− u′

+(L + 2π)= u′
0(L).

(1.2)

The Laplacian operator Δ is equipped with the domain D(Δ) given by a subspace of

H2(I− ∪ I0 ∪ I+) closed with the boundary conditions (1.1) and (1.2). By Theorem 1.4.4 in

[5], the Kirchhoff boundary conditions are symmetric and the operator Δ is self-adjoint

on its domain D(Δ).
The cubic NLS equation on the dumbbell graph is given by

i
∂

∂t
Ψ =ΔΨ + 2|Ψ |2Ψ , Ψ ∈D(Δ), (1.3)

where the nonlinear term |Ψ |2Ψ is also defined piecewise on I− ∪ I0 ∪ I+. The energy of

the cubic NLS equation (1.3) is given by

E(Ψ )=
∫

I−∪I0∪I+

(|∂xΨ |2 − |Ψ |4)dx, (1.4)

and it is conserved in the time evolution of the NLS equation (1.3). The energy is defined

in the energy space E(Δ) given by

E(Δ) :=
{
Ψ ∈ H1(I− ∪ I0 ∪ I+) :

u−(−L − 2π)= u−(−L)= u0(−L)

u+(L + 2π)= u+(L)= u0(L)

}
.
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Local and global wellposedness of the cubic NLS equation (1.3) both in energy space

E(Δ) and domain space D(Δ) can be proved using standard techniques; see [3].

Standing waves of the focusing NLS equation (1.3) are given by the solutions of

the form Ψ (t, x)= eiΛtΦ(x), where Λ and Φ ∈D(Δ) are considered to be real. This pair

satisfies the stationary NLS equation

−ΔΦ − 2|Φ|2Φ =ΛΦ Λ ∈ R, Φ ∈D(Δ). (1.5)

The stationary NLS equation (1.5) is the Euler–Lagrange equation of the energy func-

tional HΛ := E −ΛQ, where the charge

Q(Ψ )=
∫

I−∪I0∪I+
|Ψ |2 dx (1.6)

is another conserved quantity in the time evolution of the NLS equation (1.3).

We shall now define the ground state of the NLS equation on the dumbbell graph

as the standing wave of smallest energy E at a fixed value of Q, that is, a solution of the

constrained minimization problem

E0 = inf{E(Ψ ) :Ψ ∈ E(Δ), Q(Ψ )= Q0}. (1.7)

By Theorem 1.4.11 in [5], although the energy space E(Δ) is only defined by the

continuity boundary conditions, the Kirchhoff boundary conditions for the derivatives

are natural boundary conditions for critical points of the energy functional E(Ψ ) in

the space E(Δ). In other words, using test functions and the weak formulation of the

Euler–Lagrange equations in the energy space E(Δ), the derivative boundary conditions

are also obtained in addition to the continuity boundary conditions. By bootstrapping

arguments, we conclude that any critical point of the energy functional HΛ in E(Δ) is

also a solution of the stationary NLS equation (1.5) in D(Δ). On the other hand, solutions

of the stationary NLS equation (1.5) in D(Δ) are immediately the critical points of the

energy functional HΛ. Therefore, the set of standing wave solutions of the stationary

NLS equation (1.5) is equivalent to the set of critical points of the energy functional HΛ.

Non-existence of ground states on graphs was proved by Adami et al. [4] for

some non-compact graphs. For example, the graph consisting of one ring connected to

two semi-infinite lines does not have a ground state. On the other hand, the tadpole

graph with one ring and one semi-infinite line escapes the non-existence condition of

[4] and has a ground state, in agreement with the results of [18]. Because I− ∪ I0 ∪ I+ is

compact, existence of the global constrained minimizer in (1.7) follows from the stan-

dard results in calculus of variations. As a minimizer of the energy functional HΛ, the
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ground state is orbitally stable in the time evolution of the NLS equation (1.3), see for

instance [13]. The main question we would like to answer is how the ground state looks

like on the dumbbell graph depending on the parameter Q0 for the charge Q. Until now,

no rigorous analysis of the NLS equation (1.3) on a compact graph has been developed.

On the other hand, ground states on compact intervals subject to Dirichlet or periodic

boundary conditions have been considered in the literature [8, 10].

The dumbbell graph resembles the geometric configuration that arises typically

in the double-well potential modeled by the Gross–Pitaevskii equation [9, 11, 15, 16, 22].

From this analogy, one can anticipate that the ground state is a symmetric state dis-

tributed everywhere in the graph in the limit of small values of Q0 but it may become an

asymmetric standing wave residing in just one ring as a result of a pitchfork bifurcation

for larger values of Q0. We show in this paper that this intuitive picture is only partially

correct.

We show that the ground state is indeed represented by a constant (symmetric)

solution for small values of Q0. For larger values of Q0, the constant solution undertakes

two instability bifurcations. At the first bifurcation associated with the anti-symmetric

perturbation, a family of positive asymmetric standing waves is generated. The asym-

metric wave has the lowest energy at the fixed Q0 near the symmetry breaking bifur-

cation. At the second bifurcation associated with the symmetric perturbation of the

constant solution, another family of positive symmetric standing waves is generated.

The symmetric wave does not have the lowest energy at the fixed Q0 near the bifur-

cation but has this property in the limit of large Q0. It is rather surprising that both

the precedence of the symmetry-breaking bifurcation of the constant solution and the

appearance of the symmetric wave as a ground state in the limit of large Q0 do not

depend on the value of the length parameter L relative to π .

Our main result is formulated as the following two theorems. We also include

numerical approximations of the standing waves of the stationary NLS equation (1.5) in

order to illustrate the main result. The numerical work relies on the Petviashvili’s and

Newton’s iterative methods which are commonly used for approximation of standing

waves of the NLS equations [20, 29].

Theorem 1.1. There exist Q∗
0 and Q∗∗

0 ordered as 0< Q∗
0 < Q∗∗

0 <∞ such that the ground

state of the constrained minimization problem (1.7) for Q0 ∈ (0, Q∗
0) is given (up to an

arbitrary rotation of phase) by the constant solution of the stationary NLS equation (1.5):

Φ(x)= p, Λ= −2p2, Q0 = 2(L + 2π)p2. (1.8)
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The constant solution undertakes the symmetry breaking bifurcation at Q∗
0 and the sym-

metry preserving bifurcation at Q∗∗
0 , which result in the appearance of new positive non-

constant solutions. The asymmetric standing wave is a ground state of (1.7) for Q � Q∗
0

but the symmetric standing wave is not a ground state of (1.7) for Q � Q∗∗
0 . �

Theorem 1.2. In the limit of large negative Λ, there exist two standing wave solutions

of the stationary NLS equation (1.5). One solution is a positive asymmetric wave local-

ized in the ring:

Φ(x)= |Λ|1/2 sech(|Λ|1/2(x − L − π))+ Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0, (1.9)

and the other solution is a positive symmetric wave localized in the central line segment:

Φ(x)= |Λ|1/2 sech(|Λ|1/2x)+ Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0, (1.10)

where ‖Φ̃‖H2(I−∪I0∪I+) → 0 and |Q̃0| → 0 as Λ→ −∞ in both cases. The positive symmetric

wave satisfying (1.10) is a ground state of the constrained minimization problem (1.7)

for Q0 sufficiently large. �

Remark 1.3. It follows from Lemmas 3.2, 3.4, and Remark 3.5 that the constant stand-

ing wave (1.8) undertakes a sequence of bifurcations, where the first two bifurcations

at Q∗
0 and Q∗∗

0 lead to the positive asymmetric and symmetric standing waves, respec-

tively. We also show numerically that these same positive waves are connected to the

truncated solitary waves (1.9) and (1.10) as Λ→ −∞. See Figures 6–9. �

Remark 1.4. We show in Lemma 4.9 that the energy difference between the truncated

solitary wave localized in the central segment and the one localized in the ring is expo-

nentially small as Λ→ −∞. Nevertheless, it is only the former wave that appears to

be the ground state of the constrained minimization problem (1.7) as Q0 → ∞. In the

numerical iterations of the Petviashvili’s and Newton’s methods, both standing waves

arise naturally when the initial data are concentrated either in a loop or in a central

link. Figures 10 and 11 illustrate that although the positive asymmetric wave is not a

global constrained minimizer of energy, it is a local constrained minimizer, so that it is

also orbitally stable in the time evolution of the cubic NLS equation (1.3). �

The paper is organized as follows. Section 2 reports a complete characterization

of the linear spectrum of the Laplacian operator on the dumbbell graph. Section 3 is

devoted to the analytical characterization of the constant standing wave (1.8) and the
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first two instability bifurcations when parameter Q0 is increased. Section 4 describes

the analytical characterization of the two standing waves localized in the central seg-

ment and at one of the two rings in the limit of large values of Q0. The proofs of

Theorems 1.1 and 1.2 are furnished by the individual results of Sections 3 and 4.

Section 5 reports numerical approximations of the standing waves of the stationary

NLS equation (1.5).

2 Linear Spectrum of the Laplacian on the Dumbbell Graph

The linear spectrum of the Laplacian on the dumbbell graph is defined by solutions of

the spectral problem

−ΔU = λU , λ ∈ R, U ∈D(Δ). (2.1)

Because I− ∪ I0 ∪ I+ is compact, the spectrum of −Δ is purely discrete. Let us denote it by

σ(−Δ). Because Δ is self-adjoint with the domain D(Δ) in L2(I− ∪ I0 ∪ I+), the spectrum

σ(−Δ) consists of real positive eigenvalues of equal algebraic and geometric multiplic-

ities. The distribution of eigenvalues is given by the following result.

Proposition 2.1. σ(−Δ) consists of a simple zero eigenvalue with the constant eigen-

function and the union of the following three countable sequences of eigenvalues:

• A sequence of double eigenvalues {n2}n∈N. The corresponding eigenfunctions

are compactly supported on either I− or I+ and are odd with respect to the

middle point in I±.

• A sequence of simple eigenvalues {ω2
n}n∈N, where ωn is given by a positive root

of the transcendental equation

D(even)
L (ω) := 2 tan(ωπ)+ tan(ωL)= 0. (2.2)

The corresponding eigenfunctions are distributed everywhere in I− ∪ I0 ∪ I+
and are even with respect to the middle point in I0.

• A sequence of simple eigenvalues {Ω2
n}n∈N, where Ωn is given by a positive root

of the transcendental equation

D(odd)
L (ω) := 2 tan(ωπ)− cot(ωL)= 0. (2.3)

The corresponding eigenfunctions are distributed everywhere in I− ∪ I0 ∪ I+
and are odd with respect to the middle point in I0. �
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Proof. Let us decompose U in the components {u−, u0, u+} defined on {I−, I0, I+}, respec-

tively. We first observe the following reduction of the spectral problem (2.1): if u0 is

identically zero, then u+ and u− are uncoupled, and each satisfies the over-determined

boundary-value problem ⎧⎪⎨
⎪⎩

−u′′
±(x)= λu±(x), x ∈ I±,

u±(x) ∈ H2
per,0(I±),

(2.4)

where H2
per,0(I±) denotes the subspace of H2

per(I±) subject to the additional Dirichlet

boundary conditions at the end points of I±. The over-determined problem (2.4) can be

solved in the space of functions that are odd with respect to the middle point in I±. In

this way, a complete set of solutions of the boundary-value problem (2.4) is given by the

set of double eigenvalues {n2}n∈N with two linearly independent eigenfunctions

u+(x)= sin[n(x − L − π)], u−(x)= 0 (2.5)

and

u+(x)= 0, u−(x)= sin[n(x + L + π)]. (2.6)

We next consider other solutions of the spectral problem (2.1), for which u0 is

not identically zero. By the parity symmetry on I− ∪ I0 ∪ I+, the eigenfunctions are either

even or odd with respect to the middle point in I0. Since σ(−Δ) consists of real positive

eigenvalues of equal algebraic and geometric multiplicities, we parameterize λ=ω2. For

even functions, we normalize the eigenfunction U by

u0(x)= cos(ωx), x ∈ I0, u−(−x)= u+(x), x ∈ I+. (2.7)

The most general solution of the differential equation (2.1) on I+ is given by

u+(x)= Acos[ω(x − L − π)] + B sin[ω(x − L − π)], (2.8)

where the coefficients A and B, as well as the spectral parameter ω is found from the

Kirchhoff boundary conditions in (1.2). However, since u+(L + 2π)= u+(L), we have B 
= 0

if and only if sin(πω)= 0. This condition is satisfied for ω= n∈ N, when the uncoupled

eigenfunction (2.5) arise for the B-term of the decomposition (2.8). Therefore, without

loss of generality, we can consider other eigenfunctions by setting B = 0. Then, the

Kirchhoff boundary conditions (1.2) yield the constraints⎧⎪⎨
⎪⎩

Acos(ωπ)= cos(ωL),

2Aω sin(ωπ)= −ω sin(ωL).



106 J. L. Marzuola and D. E. Pelinovsky

Eliminating A := cos(ωL)/cos(ωπ), we obtain the dispersion relation (2.2) that admits a

countable set of positive roots {ωn}n∈N in addition to the zero root ω= 0 that corresponds

to the constant eigenfunction.

For odd functions, we normalize the eigenfunction U by

u0(x)= sin(ωx), x ∈ I0, u−(−x)= −u+(x), x ∈ I+. (2.9)

Representing the most general solution of the differential equation (2.1) on I+ by (2.8),

we have the same reasoning to set B = 0. Then, the Kirchhoff boundary conditions (1.2)

yield the constraints

⎧⎪⎨
⎪⎩

Acos(ωπ)= sin(ωL),

2Aω sin(ωπ)=ω cos(ωL).

Eliminating A := sin(ωL)/cos(ωπ), we obtain the dispersion relation (2.3) that admits

a countable set of positive roots {Ωn}n∈N. The root ω= 0 is trivial since it corre-

sponds to the zero solution for U . Therefore, λ= 0 is a simple eigenvalue of the spec-

tral problem (2.1) with constant eigenfunction U . All assertions of the proposition

are proved. �

Remark 2.2. When L is a rational multiplier of π/2, one double eigenvalue in the

sequence {n2}n∈N is actually a triple eigenvalue. Indeed, if L = πm/2n, then in addition

to the eigenfunctions (2.5) and (2.6), we obtain the third eigenfunction for λ= n2. If m is

even, the third eigenfunction is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0(x)= cos(nx), x ∈ I0,

u+(x)= (−1)n+m/2 cos[n(x − L − π)], x ∈ I+,

u−(x)= u+(−x), x ∈ I−

(2.10)

whereas if m is odd, the eigenfunction is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0(x)= sin(nx), x ∈ I0,

u+(x)= (−1)n+(m−1)/2 cos[n(x − L − π)], x ∈ I+,

u−(x)= −u+(−x), x ∈ I−.

(2.11)

We say that a resonance occurs if L is a rational multiplier of π/2. �
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Figure 2 show graphical solutions of the dispersion relations (2.2) and (2.3) for

L = π/2 with the roots {ωn}n∈N and {Ωn}n∈N clearly marked. The graphical solution per-

sists for any L <π as seen from the vertical asymptotics of the functions tan(ωπ),

tan(ωL), and cot(ωL). As a result, for every L <π the first positive roots of the dispersion

relations (2.2) and (2.3) satisfy

0<Ω1 <
1

2
<ω1 <min

{
1,
π

2L

}
≤Ω2 < · · · (2.12)

With similar analysis, it follows that for every L ≥ π , the first roots satisfy

0<Ω1 <
π

2L
≤ω1 ≤ min

{
1

2
,
π

L

}
<Ω2 < · · · (2.13)

In either case, the smallest positive eigenvalueΩ2
1 ∈ σ(−Δ) corresponds to the odd eigen-

function with respect to the middle point in I0, whereas the second positive eigenvalue

ω2
1 ∈ σ(−Δ) corresponds to the even eigenfunction. As is shown in Section 3, the order

of eigenvalues in (2.12) or (2.13) is important for analysis of the first two bifurcations of

the constant standing wave of the stationary NLS equation (1.5).

Remark 2.3. Since Ω1 <
1
2 , Ω1 <ω1 <Ω2, and ω1 < 1, the first two positive eigenvalues

in σ(−Δ) are simple, according to Proposition 2.1. �

For further references, we give the explicit expression for the eigenfunction U

corresponding to the smallest positive eigenvalue Ω2
1 in σ(−Δ):

U (x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− sin(Ω1L)

cos(Ω1π)
cos(Ω1(x + L + π)), x ∈ I−,

sin(Ω1x), x ∈ I0,

sin(Ω1L)

cos(Ω1π)
cos(Ω1(x − L − π)), x ∈ I+.

(2.14)

The value Ω1 is found from the first positive root of the transcendental equation

2 sin(ωπ) sin(ωL)= cos(ωπ) cos(ωL). (2.15)

The following proposition summarizes on properties of the root Ω1.

Proposition 2.4. For every L > 0, the first positive root Ω1 of the dispersion relation

(2.15) satisfies Ω1 <
1
2 and Ω1 <π/2L. Moreover, Ω1 → 1

2 as L → 0 and 2LΩ1 → π as

L → ∞. �

Proof. The bounds Ω1 <
1
2 and Ω1 <π/2L follow from the orderings (2.12) and (2.13).
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Fig. 2. Graphical solutions of the dispersion relations (2.2) (top) and (2.3) (bottom) for L = π/2.

From the bound Ω1 <
1
2 and the algebraic equation (2.15), we realize that

sin(LΩ1)→ 0 and cos(πΩ1)→ 0 as L → 0. Therefore, Ω1 → 1
2 as L → 0.

On the other hand, from the bound Ω1 <π/2L and the algebraic equation (2.15),

we realize that sin(πΩ1)→ 0 and cos(LΩ1)→ 0 as L → ∞. Therefore, 2LΩ1 → π as

L → ∞. �

3 Proof of Theorem 1.1

As we discussed in the introduction, critical points of the energy functional

HΛ := E −ΛQ in E(Δ) are equivalent to the strong solutions of the stationary NLS
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equation (1.5). Among all solutions of the stationary NLS equation (1.5), we are

interested in the solutions that yield the minimum of energy denoted by E0 at the

fixed charge denoted by Q0. These solutions correspond to the ground states of the

constrained minimization problem (1.7). There exists a mapping between parameters Λ

and Q0 for the ground state solutions.

The first elementary result describes the local bifurcation of the constant stand-

ing wave (1.8) as a ground state of the minimization problem (1.7) for small charge Q0.

Lemma 3.1. There exists Q∗
0 such that the constant standing wave (1.8) is a ground

state of the constrained minimization problem (1.7) for Q0 ∈ (0, Q∗
0). �

Proof. The spectrum of −Δ equipped with the domain D(Δ)⊂ L2(I− ∪ I0 ∪ I+) is given

by eigenvalues described in Proposition 2.1. The simple zero eigenvalue is the lowest

eigenvalue in σ(−Δ) corresponding to the constant eigenfunction.

By the local bifurcation theory [14, 20], the ground state of the constrained min-

imization problem (1.7) for small values of Q0 is the standing wave bifurcating from the

constant eigenfunction of −Δ in D(Δ). Since the constant solution Φ(x)= p exists for

the stationary NLS equation (1.5) with Λ= −2p2 for every Λ< 0, the bifurcating ground

state is the constant standing wave given by (1.8). The relation between Q0 and Λ is

computed explicitly from the definition (1.6):

Q0 = 2(L + 2π)p2 = (L + 2π)|Λ|.

This concludes the proof of the lemma. �

We shall now consider bifurcations of new standing waves of the stationary

NLS equation (1.5) from the constant solution (1.8). For both L <π and L ≥ π , the low-

est nonzero eigenvalue in σ(−Δ) in Proposition 2.1 is the positive eigenvalue Ω2
1 , which

corresponds to the odd eigenfunction in I− ∪ I0 ∪ I+, see orderings (2.12) and (2.13). This

smallest nonzero eigenvalue induces the symmetry-breaking bifurcation of the ground

state of the constrained minimization problem (1.7) at Q∗
0. This bifurcation only marks

the first bifurcation in a sequence of bifurcations of new standing waves from the con-

stant solution (1.8). The second bifurcation is induced due to the positive eigenvalue ω2
1

in σ(−Δ), which corresponds to the even eigenfunction in I− ∪ I0 ∪ I+. The correspond-

ing result is described in the following lemma.

Lemma 3.2. For Λ<− 1
2Ω

2
1 , the constant solution (1.8) is no longer the ground state

of the constrained minimization problem (1.7) for Q0 > Q∗
0 := 1

2 (L + 2π)Ω2
1 . Moreover,
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the constant solution (1.8) is a saddle point of E(Ψ ) under fixed Q(Ψ )= Q0 with one

negative eigenvalues for Q0 ∈ (Q∗
0, Q∗∗

0 ) and two negative eigenvalues for Q0 � Q∗∗
0 :=

1
2 (L + 2π)ω2

1. �

Proof. When the perturbation to the constant solution (1.8) is decomposed into the real

and imaginary parts U and W, the second variation of HΛ = E −ΛQ is defined by two

Schrödinger operators L+ and L− as follows:

δ2 HΛ := 〈L+U , U 〉L2 + 〈L−W, W〉L2 , (3.1)

where

L+ = −Δ−Λ− 6Φ2, (3.2)

L− = −Δ−Λ− 2Φ2. (3.3)

Because Φ2 is bounded on I− ∪ I0 ∪ I+, the operators L+ and L− are also defined on the

domain D(Δ)⊂ L2(I− ∪ I0 ∪ I+). If Φ is the constant solution (1.8), then

L− = −Δ and L+ = −Δ+ 2Λ.

Therefore, the smallest eigenvalue of L− is located at zero and it is simple. It corre-

sponds to the phase rotation of the standing wave Φ.

Let us now recall the theory of constrained minimization from Shatah–Strauss

[25] and Weinstein [28]. If L+ has only one negative eigenvalue, then Φ is not a minimizer

of energy HΛ. Nevertheless, it is a constrained minimizer of energy HΛ if a certain slope

condition is satisfied. Associated with the constraint Q(Ψ )= Q0, we can introduce the

constrained L2 space by

L2
c := {

U ∈ L2(I− ∪ I0 ∪ I+) : 〈U ,Φ〉L2 = 0
}

. (3.4)

The number of negative eigenvalues of L+ is reduced by one in the constrained space

(3.4) if and only if (d/dΛ)Q(Φ)≤ 0 [25, 28]. Moreover, if (d/dΛ)Q(Φ) < 0, the constrained

minimizer is non-degenerate with respect to the real part of the perturbation U .

If Λ< 0, the smallest eigenvalue of L+ is negative and the second eigenvalue of

L+ is located atΩ2
1 + 2Λ. Since (d/dΛ)Q(Φ)= −(L + 2π) < 0, the constant standing wave

(1.8) is a constrained minimizer of E(Ψ ) if Λ ∈ (− 1
2Ω

2
1 , 0) but it is no longer the ground

state if Λ ∈ (−∞, − 1
2Ω

2
1 ).

By Remark 2.3, the eigenvalues Ω2
1 and ω2

1 in σ(−Δ) are simple. As a result, oper-

ator L+ has exactly two negative eigenvalues for − 1
2ω

2
1 <Λ<− 1

2Ω
2
1 and exactly three
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negative eigenvalues for Λ� − 1
2ω

2
1. The number of negative eigenvalues of L+ is reduced

by one in the constrained space L2
c . Therefore, the constant solution (1.8) is a saddle

point of E(Ψ ) under fixed Q(Ψ )= Q0 with exactly one negative eigenvalue for Q0 ∈
(Q∗

0, Q∗∗
0 ) and exactly two negative eigenvalues for Q0 � Q∗∗

0 , where Q∗
0 := 1

2 (L + 2π)Ω2
1

and Q∗∗
0 := 1

2 (L + 2π)ω2
1. �

Remark 3.3. Lemmas 3.1 and 3.2 prove the first assertion of Theorem 1.1. �

We shall now describe the first (symmetry-breaking) bifurcation of the constant

standing wave (1.8) at Λ= − 1
2Ω

2
1 or Q0 = Q∗

0. We will show that it is a pitchfork bifur-

cation, which leads to a family of positive asymmetric standing waves of the stationary

NLS equation (1.5) forΛ� − 1
2Ω

2
1 . The asymmetric states are the ground states of the con-

strained minimization problem (1.7) for Q0 � Q∗
0. The corresponding result is described

in the following lemma.

Lemma 3.4. Let Λ0 := − 1
2Ω

2
1 . There exists Λ∗ ∈ (−∞,Λ0) such that the stationary NLS

equation (1.5) with Λ ∈ (Λ∗,Λ0) admits a positive asymmetric standing wave Φ, which

converges to the constant solution (1.8) in the H2-norm asΛ→Λ0. Moreover, there exists

Q̃∗
0 ∈ (Q∗

0, ∞) such that the positive asymmetric standing wave is a ground state of the

constrained minimization problem (1.7) for Q0 ∈ (Q∗
0, Q̃∗

0). �

Proof. By Proposition 2.1, the eigenfunction U corresponding to the eigenvalue Ω2
1 in

σ(−Δ) is odd with respect to the central point x = 0, whereas the constant solution (1.8)

is even. Therefore, we have the symmetry-breaking bifurcation, which is similar to the

one studied in [15]. In order to unfold the bifurcation, we study how the odd mode U can

be continued as Λ is defined near the bifurcation value Λ0 := − 1
2Ω

2
1 . We use the explicit

expression for U given by (2.14) and the characterization of the values of Ω1 given by

Proposition 2.4. By Remark 2.3, Ω2
1 is a simple eigenvalue in σ(−Δ).

Using a simplified version of the Lyapunov–Schmidt reduction method [15],

we consider a regular perturbation expansion for solutions of the stationary NLS

equation (1.5) near the constant solution (1.8) at Λ=Λ0. Thus, we expand

Λ= − 1
2Ω

2
1 + a2Ω + O (

a4) , Φ(x)= 1
2Ω1 + aU (x)+ a2Φ2(x)+ a3Φ3(x)+ OH2

(
p4) , (3.5)

where a is a small parameter for the amplitude of the critical odd eigenfunction U of

the operator −Δ in D(Δ), whereas the corrections Ω and {Φn}n≥2 ∈D(Δ) are defined

uniquely under the constraints 〈U ,Φk〉L2 = 0, k≥ 2. Note that the decomposition (3.5)
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already incorporates the near-identity transformation that removes quadratic terms in

a and ultimately leads to the normal-form equation, derived in a similar context in [15].

At a2, we obtain the inhomogeneous linear equation

(−Δ−Ω2
1

)
Φ2 = 1

2Ω1
(
Ω + 6U2) . (3.6)

Since U is odd, the right-hand side is even. Thus, the Fredholm solvability condition is

satisfied and there exists a unique even solution for Φ2, which can be represented in the

form

Φ2(x)= − Ω

2Ω1
+ 3Ω1Φ̃2(x), (3.7)

where the even function Φ̃2 is uniquely defined from the linear inhomogeneous equation

(−Δ−Ω2
1

)
Φ̃2 = U2. (3.8)

At a3, we obtain another inhomogeneous linear equation

(−Δ−Ω2
1

)
Φ3 =ΩU + 6Ω1UΦ2 + 2U3. (3.9)

The right-hand side is now odd and the Fredholm solvability condition produces a non-

trivial equation for Ω:

Ω‖U‖2
L2 + 6Ω1〈U2,Φ2〉L2 + 2‖U‖4

L4 = 0. (3.10)

Substituting (3.7) into (3.10), we obtain

Ω‖U‖2
L2 = 9Ω2

1

〈
U2, Φ̃2

〉
L2

+ ‖U‖4
L4 . (3.11)

We need to show that the right-hand side of equation (3.11) is negative, which

yields Ω < 0. In view of the decomposition (3.5), for a sufficiently small, the new solu-

tion Φ represents a positive asymmetric standing wave satisfying the stationary NLS

equation (1.5) with Λ�Λ0. This would imply the first assertion of the lemma.

Using the explicit representations (2.14) and (2.15), we obtain an explicit solution

of the linear inhomogeneous equation (3.8):

Φ̃2(x)=

⎧⎪⎪⎨
⎪⎪⎩

Acos(Ω1x)− 1

6Ω2
1

[cos(2Ω1x)+ 3] , x ∈ I0,

B cos(Ω1(x − L − π))+ sin2
(LΩ1)

6Ω2
1 cos2(πΩ1)

[cos(2Ω1(x − L − π))− 3] , x ∈ I+,

where A and B are constants of integration to be defined, the symmetry Φ̃2(−x)=
Φ̃2(x) can be used, and the homogeneous sinusoidal solutions are thrown away since

sin(πΩ1) 
= 0.
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Using Kirchhoff boundary conditions (1.2), we uniquely determine constants A

and B from the following linear system of algebraic equations:

⎡
⎣cos(LΩ1) − cos(πΩ1)

sin(LΩ1) 2 sin(πΩ1)

⎤
⎦[

A

B

]
= 1

6Ω2
1

⎡
⎢⎢⎢⎣

3 + cos(2LΩ1)+ sin2
(LΩ1)

cos2(πΩ1)
(cos(2πΩ1)− 3)

2 sin(2LΩ1)− 4
sin2

(LΩ1)

cos2(πΩ1)
sin(2πΩ1)

⎤
⎥⎥⎥⎦ .

(3.12)

Using the transcendental equation (2.15), we can see that the second entry in the right-

hand side of (3.12) is zero. As a result, the second equation of the system (3.12) yields

sin(LΩ1)A+ 2 sin(πΩ1)B = 0. (3.13)

Let us prove that the system (3.12) admits the unique solution in the following explicit

form:

A= 1

2Ω2
1

cos3(LΩ1), B = −sin2
(LΩ1) cos2(LΩ1)

2Ω2
1 cos(πΩ1)

. (3.14)

Indeed, the constraint (3.13) is satisfied with the solution (3.14). Furthermore, the first

equation of the system (3.12) is satisfied with the exact solution (3.14) if and only if the

following transcendental equation is met:

1 − sin2
(LΩ1)

cos2(πΩ1)
+ 1

3

[
cos(2LΩ1)+ sin2

(LΩ1)

cos2(πΩ1)
cos(2πΩ1)

]
= cos2(LΩ1). (3.15)

Using the transcendental equation (2.15), we rewrite equation (3.15) in the equiva-

lent form

1 − sin2
(LΩ1)

cos2(πΩ1)
= 3

4
cos2(LΩ1), (3.16)

which is satisfied identically, thanks again to the transcendental equation (2.15).

Using (3.14) in the expression for Φ̃2, we rewrite the expression for U2 + 9Ω2
1 Φ̃2

explicitly as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

9

2
cos3(LΩ1) cos(Ω1x)− 2 cos(2Ω1x)− 4, x ∈ I0,

sin2
(LΩ1)

cos2(πΩ1)

[
−9

2
cos2(LΩ1) cos(πΩ1) cos(Ω1(x − L − π))

+ 2 cos(2Ω1(x − L − π))− 4

]
, x ∈ I+.
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After computations of the integrals and simplifications with the help of the transcen-

dental equation (2.15), the right-hand side of equation (3.11) is simplified to the form

9Ω2
1 〈U2, Φ̃2〉L2 + ‖U‖4

L4

= −3L
(

1 − sin(2LΩ1)

2LΩ1

)
− 6π

sin4
(LΩ1)

cos4(πΩ1)
− 3 sin3

(LΩ1) cos(LΩ1)

Ω1 cos2(πΩ1)

[
1 + 2 cos2(LΩ1)

]
.

(3.17)

By Proposition 2.4, we have 2LΩ1 <π for every L, so that every term in (3.17) is negative.

Therefore, Ω < 0 in (3.11).

Thus, the first assertion of the lemma is proved. In order to prove the second

assertion of the lemma, which states that the positive asymmetric standing wave Φ

given by the decomposition (3.5) is a minimizer of the constrained minimization prob-

lem (1.7) for Q0 � Q∗
0, we need to compute the negative eigenvalues of the operators L+

and L− in (3.2) and (3.3) for Φ. Since L−Φ = 0 and Φ is positive, the zero eigenvalue of

L− is the smallest eigenvalue of L−. The smallest eigenvalue is simple. It corresponds

to the phase rotation of the standing wave Φ.

Since Φ bifurcates from the constant solution (1.8), the operator L+ has a unique

negative eigenvalue and a simple zero eigenvalue at Λ=Λ0. We shall now construct a

regular perturbation expansion for small |Λ−Λ0| in order to prove that the zero eigen-

value becomes a small positive eigenvalue for the bifurcating solution (3.5). Therefore,

we expand

L+ = −Δ−Ω2
1 − 6aΩ1U − 6a2Ω1Φ2 − 6a2U2 − a2Ω + OL∞

(
a3) .

The zero eigenvalue of −Δ−Ω2
1 corresponds again to the eigenfunction U . For a suffi-

ciently small, we expand the eigenvalue λ and the eigenfunction u of the operator L+:

λ= a2Λ+ O (
a3) , u(x)= U (x)+ aU1(x)+ a2U2(x)+ OH2

(
a3) , (3.18)

where the corrections Λ and {Un}n≥1 ∈D(Δ) are defined uniquely under the constraints

〈U , Uk〉L2 = 0, k≥ 1. At a, we obtain the inhomogeneous linear equation

(−Δ−Ω2
1

)
U1 = 6Ω1U2, (3.19)

which has the unique even solution U1 = 6Ω1Φ̃2. At a2, we obtain the inhomogeneous

linear equation

(−Δ−Ω2
1

)
U2 = 6Ω1UU1 + 6Ω1Φ2U + 6U3 −ΩU +ΛU . (3.20)
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With the account of (3.7), (3.11), and U1 = 6Ω1Φ̃2, the Fredholm solvability condition

yields

Λ‖U‖2
L2 = −18Ω2

1 〈U2, Φ̃2〉L2 − 2‖U‖4
L4 . (3.21)

Comparison with (3.11) yields Λ= −2Ω. Since we have already proved that Ω < 0, we

obtain Λ> 0, so that for |Λ−Λ0| sufficiently small, the operator L+ has a small positive

eigenvalue bifurcating from the zero eigenvalue as Λ→Λ0. Thus, the operator L+ has

only one simple negative eigenvalue for Λ�Λ0.

It remains to show that Q computed at the positive asymmetric standing wave Φ

given by the decomposition (3.5) is an increasing function of the amplitude parameter a.

In this case, the slope condition (d/dΛ)Q(Φ) < 0 holds and the only negative eigenvalue

of operator L+ is removed by the constraint in L2
c defined by (3.4). From (1.6), (3.5), (3.6),

and (3.8), we obtain

Q(Φ)= Q∗
0 + a2 (Ω1〈1,Φ2〉L2 + ‖U‖2

L2

) + O (
a3)= Q∗

0 − a2 (Ω(L + 2π)+ 2‖U‖2
L2

) + O (
a3) .

We observe Ω(L + 2π)+ 2‖U‖2
L2 < 0 if and only if

(L + 2π)
(
9Ω2

1 〈U2, Φ̃2〉L2 + ‖U‖4
L4

)
+ 2‖U‖4

L2 < 0. (3.22)

Using (3.17) and

‖U‖2
L2 = L − sin(LΩ1) cos(LΩ1)+ 2

sin2
(LΩ1)

cos2(πΩ1)

[
π + sin(πΩ1) cos(πΩ1)

]
= L + 2π

sin2
(LΩ1)

cos2(πΩ1)
,

the left-hand side of (3.22) can be written as

− 3(L + 2π)

{
L
(

1 − sin(2LΩ1)

2LΩ1

)
+ 2π

sin4
(LΩ1)

cos4(πΩ1)

+ sin3
(LΩ1) cos(LΩ1)

Ω1 cos2(πΩ1)

[
1 + 2 cos2(LΩ1)

]} + 2

[
L + 2π

sin2
(LΩ1)

cos2(πΩ1)

]2

.

We regroup these terms as the sum I + I I + I I I , where

I = −3(L + 2π)

[
3L

4
+ 2π

sin4
(LΩ1)

cos4(πΩ1)

]
+ 2

[
L + 2π

sin2
(LΩ1)

cos2(πΩ1)

]2

I I = −3

4
(L + 2π)L

[
1 − sin(2LΩ1)

2LΩ1

]

I I I = −3(L + 2π)
sin(LΩ1) cos(LΩ1)

Ω1

{
sin2

(LΩ1)

cos2(πΩ1)

[
1 + 2 cos2(LΩ1)

] − 3

4

}
.
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After expanding the brackets, the first term becomes

I = −1

4
L2 − 1

2
πL

[
9 − 16

sin2
(LΩ1)

cos2(πΩ1)
+ 12

sin4
(LΩ1)

cos4(πΩ1)

]
− 4π2 sin4

(LΩ1)

cos4(πΩ1)
,

where every term is negative because f(x)= 9 − 16x2 + 12x4 ≥ 11
3 > 0. Hence, I < 0. Fur-

thermore, I I < 0 holds. Since LΩ1 <π/2 by Proposition 2.4, then I I I < 0 if and only if

g(Ω1) > 0, where

g(Ω1) := sin2
(LΩ1)

cos2(πΩ1)

[
1 + 2 cos2(LΩ1)

] − 3

4
.

Using equation (3.16), we rewrite this expression as follows:

g(Ω1)=
[
1 − 3

4 cos2(LΩ1)
] [

1 + 2 cos2(LΩ1)
] − 3

4

= 1
4

[
1 − cos2(LΩ1)

] [
1 + 6 cos2(LΩ1)

]
,

from which it follows that g(Ω1) > 0 for every L > 0. Thus, I I I < 0, so that Q(Φ) is an

increasing function of the amplitude parameter a.

Since (d/dΛ)Q(Φ) < 0, the operator L+ does not have a negative eigenvalue in

the constrained space L2
c , so that Φ is a ground state of the constrained minimization

problem (1.7) for Q0 � Q∗
0. The statement of the lemma is proved. �

Remark 3.5. Asymptotic expansions similar to the ones used in the proof of Lemma 3.4

can be developed for the second (symmetry-preserving) bifurcation of the constant

standing wave (1.8) at Λ= − 1
2ω

2
1 or Q0 = Q∗∗

0 := 1
2 (L + 2π)ω2

1, where the positive eigen-

value ω2
1 in σ(−Δ) corresponds to the even eigenfunction. As a result of this bifurcation,

a new family of positive symmetric standing waves exists for Λ� − 1
2ω

2
1 or Q0 � Q∗∗

0 . The

positive symmetric wave is not, however, the ground state of the constrained minimiza-

tion problem (1.7) for Q0 � Q∗∗
0 , because the operator L+ has two negative eigenvalue and

a simple zero eigenvalue at Λ= − 1
2ω

2
1. Even if the zero eigenvalue becomes small posi-

tive eigenvalue for Λ� − 1
2ω

2
1 and if one negative eigenvalue is removed by a constraint

in L2
c , there operator L+ still has one negative eigenvalue in L2

c . �

Remark 3.6. Lemma 3.4 and the result stated in Remark 3.5 prove the second assertion

of Theorem 1.1. �

4 Proof of Theorem 1.2

Here we study standing wave solutions of the stationary NLS equation (1.5) in the limit

Λ→ −∞. The standing wave solutions are represented asymptotically by a solitary wave
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of the stationary NLS equation on the infinite line. We use the scaling transformation

Φ(x)= |Λ|1/2Ψ (z), z= |Λ|1/2x, (4.1)

and consider the positive solutions of the stationary NLS equation (1.5) for Λ< 0. The

stationary problem can then be written in the equivalent form

−ΔzΨ + Ψ − 2Ψ 3 = 0, z∈ J− ∪ J0 ∪ J+, (4.2)

where Δz is the Laplacian operator in variable z and the intervals on the real line are

now given by

J− := [−(L + 2π)μ, −Lμ] , J0 := [−Lμ, Lμ] , J+ := [Lμ, (L + 2π)μ] ,

with μ := |Λ|1/2. The Kirchhoff boundary conditions (1.1) and (1.2) are to be used at the

two junction points.

The stationary NLS equation −ΔzΨ + Ψ − 2Ψ 3 = 0 on the infinite line is satisfied

by the solitary wave

Ψ∞(z)= sech(z), z∈ R. (4.3)

To yield a suitable approximation of the stationary equation (4.2) on the dumbbell graph

J− ∪ J0 ∪ J+, we have to satisfy the Kirchhoff boundary conditions at the two junction

points. Two particular configurations involving a single solitary wave will be consid-

ered below: one where the solitary wave is located in the central line segment and

the other one where the solitary wave is located in one of the two loops. As follows

from numerical results reported on Figures 6–9, these configurations are continua-

tions of the two families of positive non-constant standing waves in Lemma 3.4 and

Remark 3.5.

4.1 Symmetric solitary wave

We are looking for the symmetric standing wave

Ψ0(−z)=Ψ0(z), z∈ J0, Ψ−(−z)=Ψ+(z), z∈ J+. (4.4)

We will first provide an approximation of the solitary wave with the required Kirchhoff

boundary conditions by using the limiting solitary wave (4.3). Then, we will develop

analysis based on the fixed-point iterations to control the correction terms to this

approximation. The following lemma summarizes the corresponding result.
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Lemma 4.1. There exist μ0 > 0 sufficiently large and a positive μ-independent constant

C such that the stationary NLS equation (4.2) for μ ∈ (μ0, ∞) admits a symmetric stand-

ing wave Ψ near Ψ∞ satisfying the estimate

‖Ψ − Ψ∞‖L∞(J−∪J0∪J+) ≤ Cμ3/2 e−Lμ. (4.5)

�

Proof. The proof consists of two main steps.

Step 1 : Approximation. We denote the approximation of Ψ in J0 by G0 and set

it to

G0(z)= sech(z), z∈ J0. (4.6)

The approximation of Ψ in J+, denoted by G+, cannot be defined from a solution of the

linear equation G ′′
+ − G+ = 0 because the second-order differential equation does not

provide three parameters to satisfy the three Kirchhoff boundary conditions:

G+(Lμ)= G+((L + 2π)μ)= G0(Lμ), G ′
+(Lμ)− G ′

+((L + 2π)μ)= G ′
0(Lμ). (4.7)

Instead, we construct a polynomial approximation to the Kirchhoff boundary condi-

tions, which does not solve any differential equation. Using quadratic polynomials,

we satisfy the boundary conditions (4.7) for the solitary wave (4.6) with the following

approximation:

G+(z)= sech(Lμ)
[
1 + tanh(Lμ)

4πμ
(z − Lμ)(z − (L + 2π)μ)

]
. (4.8)

Note that the maximum of G+ occurs at the middle point of J+ at z= (L + π)μ, and for

sufficiently large μ, we have

‖G+‖L∞(J+) ≤ Cμ e−Lμ (4.9)

for a positive μ-independent constant C . Also, the first and second derivatives of G+ do

not exceed the upper bound in (4.9).

Step 2 : Fixed-point arguments. Next, we consider the correction terms to the

approximation G in (4.6) and (4.8). Using the decomposition Ψ = G + ψ , we obtain the

persistence problem in the form

Lμψ = Res(G)+ N(G,ψ), (4.10)

where Lμ := −Δz + 1 − 6G2, Res(G) :=ΔzG − G + 2G3, and N(G,ψ) := 6Gψ2 + 2ψ3. Since

the approximation G satisfies Kirchhoff boundary conditions, which are linear and

homogeneous, the correction term ψ is required to satisfy the same Kirchhoff boundary
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conditions. The residual term Res(G) is supported in J− and J+ and it satisfies the same

estimate as in (4.9). Transferring this estimate to the L2-norm, since the length of J+
grows linearly in μ, we have for all sufficiently large μ,

‖Res(G)‖L2(J−∪J0∪J+) ≤ Cμ3/2 e−Lμ, (4.11)

where the positive constant C is μ-independent.

The operator Lμ is defined on L2(J− ∪ J0 ∪ J+) with the domain in D(Δz), that

incorporates homogeneous Kirchhoff boundary conditions. As μ→ ∞, the operator Lμ

converges pointwise to the operator

L∞ := − d2

dz2
+ 1 − 6 sech2

(z) : H2(R)→ L2(R),

which has a one-dimensional kernel spanned by Ψ ′
∞(z), whereas the rest of the spectrum

of L∞ includes an isolated eigenvalue at −3 and the continuous spectrum for [1, ∞).

Since the operator L∞ is invertible in the space of even functions, it follows that the

operator Lμ :D(Δz)→ L2(J− ∪ J0 ∪ J+), is also invertible with a bounded inverse on the

space of even functions if μ is sufficiently large. In other words, there is a positive

μ-independent constant C such that for every even f ∈ L2(J− ∪ J0 ∪ J+) and sufficiently

large μ, the even function L−1
μ f satisfies the estimate

∥∥L−1
μ f

∥∥
H2(J−∪J0∪J+)

≤ C‖ f‖L2(J−∪J0∪J+). (4.12)

Hence we can analyze the fixed-point problem

ψ = L−1
μ [Res(G)+ N(G,ψ)] , ψ ∈D(Δz) (4.13)

with the contraction mapping method. By using (4.11), (4.12), and the Banach algebra

properties of H2(J− ∪ J0 ∪ J+) in the estimates of the nonlinear term N(G,ψ), we deduce

the existence of a small unique solution ψ ∈D(Δz) of the fixed-point problem (4.13) sat-

isfying the estimate

‖ψ‖H2(J−∪J0∪J+) ≤ Cμ3/2 e−Lμ, (4.14)

for sufficiently large μ and a positive μ-independent constant C . By the construction

above, there exists a solution Ψ = G + ψ of the stationary NLS equation (4.2) that is

close to the solitary wave (4.3) placed symmetrically in the central line segment. The

estimate (4.5) is obtained from (4.14) by Sobolev’s embedding of H2(J− ∪ J0 ∪ J+) to

L∞(J− ∪ J0 ∪ J+). �
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Remark 4.2. The method in the proof of Lemma 4.1 cannot be used to argue that Ψ is

positive, although positivity of Ψ is strongly expected. In particular, G+ is not positive

on J+ and the correction term ψ+ is comparable with G+ in J+. Similarly, the approx-

imation G of the solution Ψ is not unique, although for every G, there exists a unique

correction ψ by the contraction mapping method used in analysis of the fixed-point

problem (4.13). We will obtain a better result in Lemma 4.7 with a more sophisticated

analytical technique in order to remove these limitations of Lemma 4.1. �

4.2 Solitary wave in the ring

We are now looking for an approximation of the solution Ψ of the stationary NLS

equation (4.2), which represents as μ→ ∞ a solitary wave residing in one of the rings,

for example, in J+. Because of the Kirchhoff boundary conditions in J+, the approxima-

tion of Ψ in J+, denoted by G+, must be symmetric with respect to the middle point in

J+. Therefore, we could take

G+(z)= sech(z − Lμ− πμ), z∈ J+. (4.15)

However, the method used in the proof of Lemma 4.1 fails to continue the approximation

(4.15) with respect to finite values of parameter μ. Indeed, the linearization operator

Lμ :D(Δz)→ L2(J− ∪ J0 ∪ J+) defined on the approximation G+ has zero eigenvalue in

the limit μ→ ∞, which becomes an exponentially small eigenvalue for large values of μ.

Since no spatial symmetry can be used for the correction term ψ+ to G+ on J+ because of

the Kirchhoff boundary conditions in J+, it becomes very hard to control the projection

of Ψ+ to the subspace of D(Δz) related to the smallest eigenvalue of Lμ.

To avoid the aforementioned difficulty and to prove persistence of the approx-

imation (4.15), we develop here an alternative analytical technique. We solve the exis-

tence problem on J+ in terms of Jacobi elliptic functions with an unknown parameter

and then transform the existence problem on J− ∪ J0 with the unknown parameter to

the fixed-point problem. After a unique solution is obtained, we define a unique value

of the parameter used in the Jacobi elliptic functions. The following lemma summarizes

the corresponding result.

Lemma 4.3. There exist μ0 > 0 sufficiently large and a positive μ-independent constant

C such that the stationary NLS equation (4.2) for μ ∈ (μ0, ∞) admits a unique positive

asymmetric standing wave Ψ given by

Ψ+(z)= 1√
2 − k2

dn
(

z − Lμ− πμ√
2 − k2

; k
)

, z∈ J+ (4.16)
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and satisfying the estimate

‖Ψ0‖H2(J0) + ‖Ψ−‖H2(J−) ≤ C e−πμ, (4.17)

where dn(ξ ; k) is the Jacobi elliptic function defined for the elliptic modulus parameter

k∈ (0, 1). The unique value of k satisfies the asymptotic expansion

√
1 − k2 = 4√

3
e−πμ [1 + O(μ e−2πμ, e−4Lμ)

]
as μ→ ∞. (4.18)

�

Remark 4.4. It is well known (see, e.g., Lemma 2 in [21] for similar estimates) that if

μ→ ∞ and k→ 1 according to the asymptotic expansion (4.18), then the dnoidal wave

(4.16) is approximated by the solitary wave (4.15) on J+ such that

‖Ψ+ − G+‖L∞(J+) ≤ C e−πμ, (4.19)

where the positive constant C is μ-independent. Therefore, for sufficiently large μ, we

have justified the bound

‖Ψ − Ψ∞(· − Lμ− πμ)‖L∞(G−∪G0∪G+) ≤ C e−πμ,

for the asymmetric standing wave of Lemma 4.3. �

Proof. The proof of Lemma 4.3 consists of three main steps.

Step 1 : Dnoidal wave solution. The second-order differential equation (4.2) is

integrable and all solutions can be studied on the phase plane (Ψ ,Ψ ′). The trajectories

on the phase plane correspond to the level set of the first-order invariant

I :=
(

dΨ

dz

)2

− Ψ 2 + Ψ 4 = const. (4.20)

The level set of I is shown in Figure 3. There are two families of periodic solutions. One

family is sign-indefinite and the corresponding trajectories on the phase plane (Ψ ,Ψ ′)

surround the three equilibrium points. This family is expressed in terms of the Jacobi

cnoidal function. The other family of periodic solutions is strictly positive and the cor-

responding trajectories on the phase plane (Ψ ,Ψ ′) are located inside the positive homo-

clinic orbit. This other family is expressed in terms of the Jacobi dnoidal function.

Because of the Kirchhoff boundary condition Ψ+(Lμ)=Ψ+(Lμ+ 2πμ), we con-

sider a trajectory on the phase plane (Ψ ,Ψ ′), which is symmetric about the middle point

in J+ at z= (L + π)μ. Since the trajectory is supposed to converge to G+ given by (4.15)
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Fig. 3. Level set (4.20) on the phase plane (Ψ ,Ψ ′).

as μ→ ∞, we select an incomplete orbit with Ψ ′
+(Lμ)= −Ψ ′

+(Lμ+ 2πμ). For the trajec-

tory inside the homoclinic orbit, the corresponding solution of the first-order invariant

(4.20) is given by the exact expression (4.16). We now define

p(k,μ) :=Ψ+(Lμ)= 1√
2 − k2

dn
(

πμ√
2 − k2

; k
)

, (4.21)

q(k,μ) :=Ψ ′
+(Lμ)=

k2

2 − k2
sn

(
πμ√
2 − k2

; k
)

cn
(

πμ√
2 − k2

; k
)

(4.22)

and consider the range of the values of k for which q(k,μ)≥ 0. Since cn(ξ ; k) vanishes

at ξ = K(k), where K(k) is the complete elliptic integrals of the first kind, we can define

k∗(μ) from the unique root of the equation

πμ=
√

2 − k2∗ K(k∗). (4.23)

Therefore, q(k∗(μ),μ)= 0. On the other hand, we have

q(k,μ)→ q∗(μ) := tanh(πμ)sech(πμ)= 2 e−πμ + O (
e−3πμ) as k→ 1. (4.24)

Since (see [12, 8.113])

K(k)= log
(

4√
1 − k2

)
+ O (

(1 − k2)| log(1 − k2)|) as k→ 1, (4.25)

the root k∗(μ) of the transcendental equation (4.23) satisfies the asymptotic expansion√
1 − k2∗ = 4 e−πμ + O (

e−3πμ) as μ→ ∞.
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Fig. 4. The graphs of p (solid blue), q (solid red), and 2q (dashed red) versus k in (k∗(μ), 1) for

μ= 2. The dotted line shows a graphical solution of the equation p= 2q at k0(μ).

Thus, the entire interval (k∗(μ), 1) is exponentially small in terms of large μ. With

this asymptotic in mind, we compute the limiting values of the function p(k,μ) for

k∈ (k∗(μ), 1). At one end, we obtain

p(k∗(μ),μ)=
√

1 − k2∗√
2 − k2∗

= 4 e−πμ + O (
e−3πμ) as μ→ ∞, (4.26)

whereas at the other end, we obtain

p(k,μ)→ p∗(μ) := sech(πμ)= 2 e−πμ + O (
e−3πμ) as k→ 1. (4.27)

Figure 4 shows the dependencies of p and q versus k in (k∗(μ), 1) for a particular

value μ= 2. The graph illustrates that q(k,μ) is a monotonically increasing function

with respect to k in k∈ (k∗(μ), 1) from 0 to q∗(μ), whereas p(k,μ) is a monotonically

decreasing function from p(k∗(μ),μ) to p∗(μ).

Step 2 : Fixed-point arguments. By substituting the explicit solution (4.16) to

the stationary NLS equation (4.2), we close the system of two second-order differential

equations ⎧⎪⎨
⎪⎩

−Ψ ′′
0 + Ψ0 − 2Ψ 2

0 = 0, z∈ J0,

−Ψ ′′
− + Ψ− − 2Ψ 2

− = 0, z∈ J−,
(4.28)
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with five boundary conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ−(−Lμ)=Ψ−(−Lμ− 2πμ)=Ψ0(−Lμ),

Ψ ′
−(−Lμ)− Ψ ′

−(−Lμ− 2πμ)=Ψ ′
0(−Lμ),

Ψ0(Lμ)= p(k,μ), Ψ ′
0(Lμ)= 2q(k,μ),

(4.29)

where p(k,μ) and q(k,μ) are explicit functions of an unknown parameter k defined in

the interval (k∗(μ), 1). Thus, although the five boundary conditions over-determine the

system of differential equations (4.28), the parameter k can be used to complete the set

of unknowns. For this step, we will neglect the last boundary condition in (4.29) given

by Ψ ′
0(Lμ)= 2q(k,μ). Existence and uniqueness of solutions of such a boundary-value

problem for small p(k,μ) follow by standard methods.

Let us define the approximation of the solution to the system (4.28), denoted by

(G−, G0) by the solution of the linear system⎧⎪⎨
⎪⎩

−G ′′
0 + G0 = 0, z∈ J0,

−G ′′
− + G− = 0, z∈ J−,

(4.30)

subject to the four boundary conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G−(−Lμ)= G−(−Lμ− 2πμ)= G0(−Lμ),

G−(−Lμ)− G ′
−(−Lμ− 2πμ)= G ′

0(−Lμ),

G0(Lμ)= p(k,μ).

(4.31)

The boundary-value problem has the unique solution

G−(z)= p(k,μ)
cosh(z + Lμ+ πμ)

cosh(πμ) cosh(2Lμ)+ 2 sinh(πμ) sinh(2Lμ)
, (4.32)

G0(z)= p(k,μ)
cosh(πμ) cosh(z + Lμ)+ 2 sinh(πμ) sinh(z + Lμ)

cosh(πμ) cosh(2Lμ)+ 2 sinh(πμ) sinh(2Lμ)
. (4.33)

It follows from the explicit solution (4.32) and (4.33) that for μ> 0 sufficiently large, we

have

‖G−‖H2(J−) ≤ C p(k,μ) e−2Lμ, ‖G0‖H2(J0) ≤ C p(k,μ), (4.34)

where p(k,μ)=O(e−πμ) as μ→ ∞ for every k∈ (k∗(μ), 1) and C is a positive μ-

independent constant.

Remark 4.5. Compared with the estimates (4.9) and (4.11), where we are losing μ1/2

between the L∞ and L2 bounds, the estimate (4.34) works equally well in L∞ and L2

thanks to the integration of the explicit solutions (4.32) and (4.33). �
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Applying the decomposition

Ψ−(z)= G−(z)+ ψ−(z), Ψ0(z)= G0(z)+ ψ0(z),

we obtain the following persistence problem:⎧⎪⎨
⎪⎩

−ψ ′′
0 + ψ0 = 2(G0 + ψ0)

3, z∈ J0,

−ψ ′′
− + ψ− = 2(G− + ψ−)3, z∈ J−,

(4.35)

subject to the four homogeneous boundary conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ−(−Lμ)=ψ−(−Lμ− 2πμ)=ψ0(−Lμ),

ψ ′
−(−Lμ)− ψ ′

−(−Lμ− 2πμ)=ψ ′
0(−Lμ),

ψ0(Lμ)= 0.

(4.36)

Since 1 −Δz is invertible on L2(J− ∪ J0) with a bounded inverse in H2(J− ∪ J0) due to

the four symmetric homogeneous boundary conditions (4.36) and the inhomogeneous

term is estimated by using the bound (4.34), a contraction mapping method applies to

the fixed-point problem (4.35). As a result, there exists a small unique solution for ψ−
and ψ0 of the persistence problem (4.35) satisfying the estimate

‖ψ−‖H2(J−) + ‖ψ0‖H2(J0) ≤ C p(k,μ)3, (4.37)

where p(k,μ)=O(e−πμ) as μ→ ∞ for every k∈ (k∗(μ), 1) and the positive constant C is

μ-independent.

Step 3 : Unique value for the parameter k in the interval (k∗(μ), 1). It remains to

satisfy the fifth boundary condition in (4.29), which can be written in the following form:

2q(k,μ)= G ′
0(Lμ)+ ψ ′

0(Lμ)= p(k,μ)+ O (
e−πμ−4Lμ, e−3πμ) as μ→ ∞, (4.38)

where we have used the exact result (4.33) yielding

G ′
0(Lμ)= p(k,μ)

(
1 + e−2Lμ 2 sinh(πμ)− cosh(πμ)

cosh(πμ) cosh(2Lμ)+ 2 sinh(πμ) sinh(2Lμ)

)
,

as well as the estimate (4.37) with the account that p(k,μ)=O(e−πμ) as μ→ ∞ for every

k∈ (k∗(μ), 1).

Figure 5 illustrates graphically that q(k,μ) is monotonically increasing with

respect to k in the interval (k∗(μ), 1) from 0 to q∗(μ)= 2 e−πμ + O(e−3πμ), whereas

p(k,μ) is monotonically decreasing with respect to k in the interval (k∗(μ), 1) from
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p(k∗(μ),μ)= 4 e−πμ + O(e−3πμ) to p∗(μ)= 2 e−πμ + O(e−3πμ). Therefore, there exists

exactly one solution k0(μ) ∈ (k∗(μ), 1) of the equation (4.38).

In order to prove monotonicity of p and q in k, as well as the asymptotic

expansion (4.18), we study the rate of change of the functions p and q with respect to k.

From the explicit expression (4.21), we obtain

∂k p(k,μ)= k√
(2 − k2)3

dn
(

πμ√
2 − k2

; k
)

− πμk3

(2 − k2)2
sn

(
πμ√
2 − k2

; k
)

cn
(

πμ√
2 − k2

; k
)

+ 1√
2 − k2

∂k dn (ξ ; k)

∣∣∣∣
ξ=πμ/√2−k2

. (4.39)

For every k∈ (k∗(μ), 1) and sufficiently large μ, the first term in (4.39) is exponentially

small of the order of O(e−πμ), whereas the second term is larger of the order of O(μ e−πμ).

Nevertheless, we show that the last term in (4.39) is dominant as it is exponentially

large as μ→ ∞. To show this, we use the following result proved in Appendix.

Proposition 4.6. For every ξ ∈ R, it is true that

sn(ξ ; 1)= tanh(ξ), ∂ksn(ξ ; 1)= − 1
2

[
sinh(ξ) cosh(ξ)− ξ

]
sech2

(ξ), (4.40)

cn(ξ ; 1)= sech(ξ), ∂kcn(ξ ; 1)= 1
2

[
sinh(ξ) cosh(ξ)− ξ

]
tanh(ξ)sech(ξ), (4.41)

dn(ξ ; 1)= sech(ξ), ∂k dn(ξ ; 1)= − 1
2

[
sinh(ξ) cosh(ξ)+ ξ

]
tanh(ξ) sech(ξ). (4.42)

Moveover, if μ is sufficiently large, then for every ξ ∈ (0,πμ) and every k∈ (k∗(μ), 1),

there is a positive μ-independent constant C such that

|∂k sn(ξ ; k)− ∂k sn(ξ ; 1)| + |∂k cn(ξ ; k)− ∂k cn(ξ ; 1)|
+ |∂k dn(ξ ; k)− ∂k dn(ξ ; 1)| ≤ Cμ e−πμ. (4.43)

�

From (4.42) and (4.43), we obtain the dominant contribution of (4.39) for every

k∈ (k∗(μ), 1):

∂k p(k,μ)= − 1
2 eπμ + O(μ e−πμ) as μ→ ∞. (4.44)

Similarly, we differentiate (4.22) in k, use (4.40), (4.41), and (4.43), and obtain the

asymptotic expansion for every k∈ (k∗(μ), 1):

∂kq(k,μ)= 1
2 eπμ + O(μ e−πμ) as μ→ ∞. (4.45)
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Fig. 5. The graphs of p (solid blue), q (solid red), and 2p (dashed blue) versus k in (k∗(μ), 1) for

μ= 2 and L = π . The dotted line shows a graphical solution of the equation q = 2p at k0(μ).

It follows from (4.44) and (4.45) that p(k,μ) and q(k,μ) are monotonically decreasing

and increasing functions with respect to k as k→ 1, in agreement with the behavior on

Figure 4. Furthermore, the algebraic equation (4.38) can be analyzed in the asymptotic

limit of large μ. Indeed, multiplying (4.38) by e−πμ, we obtain

4 e−2πμ + 1
2 (k − 1)+ O (

e−4πμ, (k − 1)μ e−2πμ)
= 2 e−2πμ − 1

4 (k − 1)+ O (
e−4πμ, (k − 1)μ e−2πμ, e−2πμ−4Lμ) , (4.46)

where remainder terms are all smooth in their variables. By the Implicit Function

Theorem, we obtain the unique root of the algebraic equation (4.46) denoted by k0(μ).

The root satisfies the asymptotic expansion

k0(μ)= 1 − 8
3 e−2πμ [1 + O (

μ e−2πμ, e−4Lμ)] ,

which justifies the asymptotic expansion (4.18). Furthermore, the bound (4.17) follows

from estimates (4.34) and (4.37).

Finally, because the perturbation term (ψ−,ψ0) is triply exponentially small,

whereas the leading-order approximation (G−, G0) is exponentially small and positive,

we deduce that (Ψ−,Ψ0) is positive on J− ∪ J0. From the exact representation (4.16), we

also know that Ψ+ is positive on J+. Thus, the asymmetric standing wave is positive on

J− ∪ J0 ∪ J+. The proof of the lemma is complete. �
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The same method in the proof of Lemma 4.3 can be applied to construct the

symmetric solitary wave described in Lemma 4.1. However, because of the Kirchhoff

boundary conditions, we need to take the symmetric orbit outside of the homoclinic

orbit in Figure 3. The following lemma summarizes the corresponding result.

Lemma 4.7. There exist μ0 > 0 sufficiently large and a positive μ-independent constant

C such that the stationary NLS equation (4.2) for μ ∈ (μ0, ∞) admits a unique positive

symmetric standing wave Ψ given by

Ψ0(z)= k√
2k2 − 1

cn
(

z√
2k2 − 1

; k
)

, z∈ J0 (4.47)

and satisfying the estimate

‖Ψ+‖H2(J+) + ‖Ψ−‖H2(J−) ≤ C e−Lμ, (4.48)

where cn(ξ ; k) is the Jacobi elliptic function defined for the elliptic modulus parameter

k∈ (0, 1). The unique value for k satisfies the asymptotic expansion

√
1 − k2 = 4√

3
e−Lμ [1 + O (

μ e−2Lμ, e−4πμ)] as μ→ ∞. (4.49)

�

Proof. We only outline the minor differences in the computations compared to the

proof given in Lemma 4.3. For the trajectory outside the homoclinic orbit, the corre-

sponding solution of the first-order invariant (4.20) is given by the exact expression

(4.47). We now define

p(k,μ) :=Ψ0(Lμ)= k√
2k2 − 1

cn
(

Lμ√
2k2 − 1

; k
)

, (4.50)

q(k,μ) := −Ψ ′
0(Lμ)=

k

2k2 − 1
sn

(
Lμ√

2k2 − 1
; k
)

dn
(

Lμ√
2k2 − 1

; k
)

. (4.51)

The trajectory is already even in z. We consider the range of the values of k for which

p(k,μ)≥ 0. Therefore, k is defined in (k∗(μ), 1), where k∗(μ) is the root of the algebraic

equation

μL =
√

2k2∗ − 1K(k∗),

which is expanded asymptotically as√
1 − k2∗ = 4 e−Lμ + O (

e−3Lμ) as μ→ ∞.

Again, the interval (k∗(μ), 1) is exponentially small as μ→ ∞.
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Figure 5 shows the dependencies of p and q versus k in (k∗(μ), 1) for a particular

value μ= 2. The graph illustrates that p(k,μ) is a monotonically increasing function

with respect to k from 0 at k= k∗(μ) to

p∗(μ) := sech(Lμ)= 2 e−Lμ + O (
e−3Lμ)

as k→ 1, whereas q(k,μ) is a monotonically decreasing function in k from

q(k∗(μ),μ)= k∗
√

1 − k2∗
2k2∗ − 1

= 4 e−Lμ + O (
e−3Lμ)

at k= k∗(μ) to

q∗(μ) := tanh(Lμ) sech(Lμ)= 2 e−Lμ + O (
e−3Lμ)

as k→ 1. Again, there is a unique root k= k0(μ) in (k∗(μ), 1) of the algebraic equation

q(k,μ)= 2p(k,μ)+ O (
e−3Lμ, e−Lμ−4πμ) as μ→ ∞.

The bound (4.48), the asymptotic expansion (4.49), and the positivity of the symmetric

wave are proved by similar estimates to those in Lemma 4.3. �

Remark 4.8. Lemma 4.7 gives an improvement of Lemma 4.1, since the symmetric

standing wave Ψ is now proved to be strictly positive and the estimate (4.5) is now

improved to be

‖Ψ − Ψ∞‖L∞(J−∪J0∪J+) ≤ C e−Lμ, (4.52)

where the positive constant C is μ-independent. �

4.3 The symmetric standing wave as a ground state

There exists a simple argument why the ground state of the constrained minimization

problem (1.7) is represented by a single solitary wave in the asymptotic limit Λ→ −∞.

Indeed, computing asymptotically E0 and Q0 at the representation (1.10), we obtain

E0 ∼ − 2
3 |Λ|3/2, Q0 ∼ 2|Λ|1/2, as Λ→ −∞. (4.53)

For N solitary waves packed in the same graph I− ∪ I0 ∪ I+ at different points, we esti-

mate Q0 and E0 roughly by multiplying (4.53) by N, so that if Q0 is preserved, then

|Λ|1/2 ∼ Q0

2N
⇒ E0 ∼ − Q3

0

12N2
. (4.54)

Therefore, the standing wave of minimal energy as Λ→ −∞ corresponds to N = 1. Two

single solitary waves are given by Lemmas 4.3 and 4.7. The following lemma specifies



130 J. L. Marzuola and D. E. Pelinovsky

that the symmetric solitary wave of Lemma 4.7 is a ground state of the constrained

minimization problem (1.7).

Lemma 4.9. For sufficiently large negative Λ, the symmetric wave of Lemma 4.7 has

a smaller Q0 at a fixed Λ compared with the asymmetric wave of Lemma 4.3. Conse-

quently, it has smaller E0 at fixed Q0 for sufficiently large Q0. �

Proof. By the scaling transformation (4.1), we have Q0 =μQ̃0, where

Q̃0 = ‖Ψ ‖2
L2(J−∪J0∪J+) and μ= |Λ|1/2.

We represent Q̃0 at the asymmetric wave of Lemma 4.3 as the sum of three terms

Q̃0 = ‖Ψ+‖2
L2(J+) + ‖Ψ0‖2

L2(J0)
+ ‖Ψ−‖2

L2(J−).

By the estimate (4.17), there exists a positive μ-independent constant C such that for

sufficiently large μ, we have

‖Ψ0‖2
L2(J0)

+ ‖Ψ−‖2
L2(J−) ≤ C e−2πμ. (4.55)

On the other hand, by the explicit expression (4.16), we have

‖Ψ+‖2
L2(J+) =

2√
2 − k2

∫ πμ/
√

2−k2

0
dn(ξ ; k)2 dξ

= 2√
2 − k2

∫ K(k)

0
dn(ξ ; k)2 dξ + 2√

2 − k2

∫ πμ/
√

2−k2

K(k)
dn(ξ ; k)2 dξ . (4.56)

It follows from the asymptotic expansions (4.18) and (4.25) that the second term has the

following asymptotic behavior as μ→ ∞:∣∣∣∣∣
∫ πμ/

√
2−k2

K(k)
dn(ξ ; k)2 dξ

∣∣∣∣∣=
∫ πμ+log(

√
3)+O(μ e−2πμ,e−4Lμ)

πμ+O(μ e−πμ)
dn(ξ ; k)2 dξ =O (

e−2πμ) , (4.57)

since dn(ξ ; k)2 =O(e−2πμ) for every ξ =O(μ) and k∈ (k∗(μ), 1) as μ→ ∞. Therefore, the

second term in (4.56) is comparable with the other remainder terms in (4.55). We will

show that the first term in (4.56) has the larger value as μ→ ∞. We recall that (see 8.114

in [12])

E(k) :=
∫ K(k)

0
dn(ξ ; k)2 dξ

= 1 + 1

2

(
1 − k2) [log

4√
1 − k2

− 1

2

]
+ O (

(1 − k2)2| log(1 − k2)|) as k→ 1,
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where E(k) is a complete elliptic integral of the second kind. As a result, we obtain

2√
2 − k2

∫ K(k)

0
dn(ξ ; k)2 dξ = 2 + 16

3
e−2πμ

[
πμ+ log(

√
3)− 3

2

]
+ O(μ e−4πμ, e−2πμ−4Lμ).

Combining this estimate with (4.55–4.57), we obtain for the asymmetric wave of

Lemma 4.3 that

Qasym
0 = 2|Λ|1/2 + 16

3 π |Λ| e−2π |Λ|1/2 + O
(
|Λ|1/2 e−2π |Λ|1/2

)
as Λ→ −∞. (4.58)

We now report a similar computation for the symmetric wave of Lemma 4.7. We

represent Q̃0 for the symmetric wave as the sum of two terms

Q̃0 = ‖Ψ0‖2
L2(J0)

+ 2‖Ψ+‖2
L2(J+).

By the estimate (4.48), there exists a positive μ-independent constant C such that for

sufficiently large μ, we have

‖Ψ+‖2
L2(J+) ≤ C e−2Lμ. (4.59)

On the other hand, by the explicit expression (4.47), we have

‖Ψ0‖2
L2(J0)

= 2k2

√
2k2 − 1

∫ μL/
√

2k2−1

0
cn(ξ ; k)2 dξ

= 2√
2k2 − 1

∫ μL/
√

2k2−1

0
dn(ξ ; k)2 dξ − 2(1 − k2)μL

2k2 − 1

= 2√
2k2 − 1

∫ K(k)

0
dn(ξ ; k)2 dξ − 2(1 − k2)μL

2k2 − 1

+ 2√
2k2 − 1

∫ μL/
√

2k2−1

K(k)
dn(ξ ; k)2 dξ . (4.60)

By the same estimate as in (4.57), the last term in (4.60) is comparable with the estimate

(4.59), whereas the other two terms give a larger contribution. We now compute these

terms explicitly

2√
2k2 − 1

E(k)− 2(1 − k2)μL

2k2 − 1
= 2 − 16

3
e−2Lμ

[
Lμ+ log(

√
3)− 3

2

]
+ O(μ e−4Lμ, e−2Lμ−4πμ).

Combining this estimate with (4.59) and (4.60), we obtain for the symmetric wave of

Lemma 4.7 that

Qsym
0 = 2|Λ|1/2 − 16

3 L|Λ| e−2L|Λ|1/2 + O
(
|Λ|1/2 e−2L|Λ|1/2

)
as Λ→ −∞. (4.61)

For sufficiently large |Λ|, we have Qsym
0 < 2|Λ|1/2 < Qasym

0 , which proves the first assertion

of the lemma.
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We shall now prove that this estimate for Q0 at a fixed Λ can be transferred to

the similar estimate for E0 at a fixed Q0. This is done from the variational principle for

the standing wave solutions of the stationary NLS equation (1.5):

dE0

dΛ
=Λ

dQ0

dΛ
,

which implies that
dE0

dQ0
=Λ, (4.62)

where Λ is supposed to be expressed from Q0. Since Q0 =O(|Λ|1/2) as Λ→ −∞, the

dependence Λ �→ Q0 is a decreasing diffeomorphism, which can be inverted. Indeed, for

the symmetric wave of Lemma 4.7, we have

|Λ|1/2 = 1
2 Q0 + 2

3 L Q2
0 e−L Q0 + O (

Q0 e−L Q0
)

, as Q0 → ∞,

so that (4.62) implies that

Esym
0 + 1

12
Q3

0 =
∫ Q0

+∞

[
2

3
L Q2

0 e−L Q0 + O (
Q0 e−L Q0

)]
dQ0 < 0 as Q0 → ∞.

On the other hand, for the asymmetric wave of Lemma 4.3, we have

|Λ|1/2 = 1
2 Q0 − 2

3πQ2
0 e−πQ0 + O(Q0 e−πQ0), as Q0 → ∞,

so that (4.62) implies that

Easym
0 + 1

12
Q3

0 =
∫ Q0

+∞

[
−2

3
πQ2

0 e−πQ0 + O (
Q0 e−πQ0

)]
dQ0 > 0 as Q0 → ∞.

Therefore, for sufficiently large Q0, we have Esym
0 <− 1

12 Q3
0 < Easym

0 , which proves the

second assertion of the lemma. �

Lemma 4.10. There exists Q̃∗∗
0 ∈ (Q∗∗

0 , ∞) such that the symmetric wave is the ground

state of the constrained minimization problem (1.7) for Q0 ∈ (Q̃∗∗
0 , ∞). In particular, the

second eigenvalue of the linearization operator L+ at the symmetric wave of Lemma 4.7

is strictly positive. �

Proof. By using the scaling transformation (4.1), we transform the linearized operators

L+ and L− given by (3.2) and (3.3) to the form L± = |Λ|�±, where

�+ = −Δz + 1 − 6Ψ 2,

�− = −Δz + 1 − 2Ψ 2,
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where both operators are defined on the domain D(Δz) in L2(J− ∪ J− ∪ J+). We consider

the symmetric standing wave Ψ given by Lemma 4.7.

Since �−Ψ = 0 and Ψ (z) > 0 for every z∈ J− ∪ J− ∪ J+ by Lemma 4.7, the operator

�− is positive definite. Therefore, we only need to show that the operator �+ has a simple

negative eigenvalue and no zero eigenvalue. It is clear that �+ is not positive definite

because 〈�+Ψ ,Ψ 〉L2 = −4‖Ψ ‖4
L4 < 0.

In the limit μ→ ∞, �+ converges pointwise to the operator

�∞
+ = − d2

dz2
+ 1 − 6 sech2

(z) : H2(R)→ L2(R),

which admits a simple negative eigenvalue and a simple zero eigenvalue. Therefore, we

only need to show that the simple zero eigenvalue of �∞
+ becomes a positive eigenvalue

of �+ for large but finite μ.

We note that �+Ψ ′(z)= 0, although Ψ ′(z) does not satisfy the Kirchhoff bound-

ary conditions in D(Δz). To correct the boundary conditions, we write an eigenfunction

U ∈D(Δz) of the eigenvalue problem �+U = λU in the product form U (z)= a(z)Ψ ′(z). The

amplitude function a : J− ∪ J− ∪ J+ → R ensures that the eigenfunction U satisfies the

Kirchhoff boundary conditions.

If Ψ is even, then Ψ ′ is odd. We recall that

Ψ ′
+(Lμ)= −Ψ ′

+(Lμ+ 2πμ)= 1
2Ψ

′
0(Lμ),

due to spatial symmetry of the component Ψ+. Therefore, the continuity boundary con-

ditions

a0(Lμ)Ψ
′
0(Lμ)= a+(Lμ)Ψ ′

+(Lμ)= a+(Lμ+ 2πμ)Ψ ′
+(Lμ+ 2πμ)

yield the boundary values for a:

2a0(Lμ)= a+(Lμ)= −a+(Lμ+ 2πμ). (4.63)

On the other hand, Ψ ′′ is expressed by the stationary NLS equation (4.2), so that Ψ ′′ is

continuous at the vertex points. Therefore, the derivative boundary condition

U ′
0(Lμ)= U ′

+(Lμ)− U ′
+(Lμ+ 2πμ)

yields the boundary values for the derivative of a:

Ψ ′
+(Lμ)

[
2a′

0(Lμ)− a′
+(Lμ)− a′

+(Lμ+ 2πμ)
]= 3

2a0(Lμ)Ψ
′′
+(Lμ). (4.64)

Thanks to the symmetry condition, we are looking for odd U and even a, so that the

conditions on a at the other vertex point repeat boundary conditions (4.63) and (4.64).
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After the boundary conditions (4.63) and (4.64) are identified, we substitute the

product form U (z)= a(z)Ψ ′(z) into the eigenvalue problem �+U = λU . After multiplying

the resulting equation by Ψ ′(z), we obtain

− d

dz

[(
Ψ ′)2 da

dz

]
= λ

(
Ψ ′)2

a.

After multiplying this equation by a and integrating by parts, we obtain

λ‖aΨ ′‖2
L2 = ‖a′Ψ ′‖2

L2 −
[
aa′ (Ψ ′)2

]
, (4.65)

where the squared brackets indicate the total jump at the vertex points:

[ f ] := f−(−Lμ)− f−(−Lμ− 2πμ)+ f0(Lμ)− f0(−Lμ)+ f+(Lμ+ 2πμ)− f+(Lμ).

To compute the total jump explicitly, we use the symmetry on a and Ψ ′, as well as the

boundary conditions (4.63) and (4.64). As a result of straightforward computations, we

obtain [
aa′ (Ψ ′)2

]
= 3a+(Lμ)2Ψ ′

+(Lμ)Ψ
′′
+(Lμ).

By Lemma 4.7, for sufficiently large μ, we have Ψ ′′
+(Lμ)> 0 and Ψ ′

+(Lμ)< 0, therefore,

[aa′(Ψ ′)2]< 0. The quadratic form (4.65) implies that the corresponding eigenvalue λ is

positive. This completes the proof of the lemma. �

Remark 4.11. Lemmas 4.9 and 4.10 prove the assertions of Theorem 1.2. �

Remark 4.12. The method of the proof of Lemma 4.10 is inconclusive for the asymmet-

ric standing wave given by Lemma 4.3. Indeed, the total jump condition without spatial

symmetry of the asymmetric standing wave Ψ is given by[
aa′ (Ψ ′)2

]
= 3

2a+(Lμ)2Ψ ′
+(Lμ)Ψ

′′
+(Lμ)− 3

2a−(−Lμ)2Ψ ′
−(−Lμ)Ψ ′′

−(−Lμ),

where Ψ ′
±(±Lμ)> 0 and Ψ ′′

±(±Lμ)> 0 if μ is sufficiently large. Therefore, the sign of

[aa′(Ψ ′)2] depends on the balance between a+(Lμ) and a−(−Lμ) relative to Ψ+(Lμ) and

Ψ−(−Lμ). �

5 Numerical Approximations of the Ground State

Here, we illustrate numerically the construction of the standing waves of the stationary

NLS equation (1.5) and the corresponding ground state of the constrained minimization

problem (1.7).
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5.1 Numerical methods

To compute solutions of the stationary NLS equation (1.5) for a given Λ, we will use

both a Newton’s method (largely the Matlab based program nsoli), as well as the Petvi-

ashvilli method [20, 29]. Rigorous convergence estimates for the Petviashvili method

have been established in [23] and recently refined in [19]. Often, we will use the Petvi-

ashvilli method to initially land on a branch, then continue using the more delicate New-

ton’s method machinery. The basic approach to the Petviashvilli method starts with an

initial guess u0, which will generally take to be a Gaussian function centered either at

the central link or at one of the two loops. Then, for a givenΛ< 0, we construct solutions

to the stationary NLS equation (1.5) by defining

un+1 = M[un]γ (|Λ| −Δ)−1 (2|un|2un
)

with

M[u] = 〈(|Λ| −Δ)u, u〉L2

2‖u‖4
L4

and γ = 3
2 . We iterate until |un+1 − un|< 10−14, then declare such the final state to be a

good numerical approximation to a fixed point. Once we have constructed a solution

that is centered either at the central link or at one of the two loops, the Newton solver

can be used to continue that branch with great accuracy.

In order to set up our discretization, we approximate the Laplacian operator Δ

using a second-order symmetric finite difference stencil with N uniformly space grid

points of size h= 2π/N on each of the two loops of length 2π and M grid points on the

interior section of length 2L. In order to allow an approximation of the O(h2) order,

we first ensure that the discretized Laplacian operator is symmetric by taking L = mπ

for m ∈ N or 1/m ∈ N and choose N such that M = NL/π ∈ N. To enforce the Kirchhoff

boundary conditions (1.1), we take the higher order difference calculations

u′
0(−L)= −u0(−L + 2h)+ 4u0(−L + h)− 3u0(−L)

2h
,

u′
−(−L)= u−(−L − 2h)− 4u−(−L − h)+ 3u−(−L)

2h
,

u′
−(−L − 2π)= −u−(−L − 2π + 2h)+ 4u−(−L − 2π + h)− 3u−(−L)

2h
,

which allows us to replace u0(−L)= u−(−L)= u−(−L − 2π) everywhere it appears in the

symmetric difference for the Laplacian. There is a symmetric argument for the other

Kirchhoff boundary condition in (1.2).
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Fig. 6. Solutions of the stationary NLS equation (1.5) for L = π/2, when the initial iterate is local-

ized on the central link, for Λ= −0.01 (top left), Λ= −0.1 (top right), Λ= −1.5 (bottom left), and

Λ= −10.0 (bottom right). The values at ±L are marked with a red circle.

5.2 Numerical findings

Using the graph Laplacian approximated to the second order and various meth-

ods for constructing solutions of the stationary NLS equation (1.5) for a given Λ<

0, we attempt to verify various properties the ground state branches discussed

in Theorems 1.1 and 1.2. We present the results of our various numerical stud-

ies in Figures 6–11. The code for computing these are made publicly available at

www.unc.edu/∼marzuola/mp graph code/.

In Figure 6, we plot the form of the ground state computed using Petviashvili’s

method with symmetric initial guess localized in the center link for L = π/2 and a variety

of Λ values. For values of Λ= −0.01, −0.1, −1.5, −10.0, we observe the computed ground

state go from the constant solution (1.8) as in Lemma 3.1, to the positive asymmetric
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Fig. 7. The same as in Figure 6 but for the initial iterate being localized on the right ring.

wave as in Lemma 3.4, then in an intermediate region to the positive asymmetric wave

as in Lemma 4.3, finally, settling on the positive symmetric wave as in Lemma 4.7. This

confirms the predictions of ground states in Theorems 1.1 and 1.2.

Figure 7 plots the form of the stationary solution computed using Petvi-

ashvili’s method with a loop centered initial iterate for L = π/2 and Λ values

−0.01, −0.1, −1.5, −10.0. Compared with the outcome in Figure 6, we observe that the

positive asymmetric wave remains to exist at least up to Λ= −10. Thus, both positive

waves (1.9) and (1.10) coexist for large negative Λ as in Theorem 1.2.

Figure 8 plots standing waves for Λ= −10 localized in the central link and in

one of the two rings and compares them to the appropriately rescaled solitary wave

(4.3). The agreement illustrate the representations (1.9) and (1.10) in Theorem 1.2.
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Fig. 8. Comparison of the standing waves (solid line) localized in the central link (left) and in one

of the rings (right) to the rescaled solitary wave profile (dots) for L = π/2 (top) and L = 2π (bottom)

for Λ= −10.0.

Figure 9 shows the evolution of the charge Q0 with respect to Λ for the constant

solution and the two positive waves continuing from the constant state for L = 2π (left)

and L = π/2 (right). We compute these branches by using both Petviashvili’s method

for sufficiently large |Λ|, then continuing with Newton’s method toward the constant

branch. The bifurcation of positive waves from the constant state is the pitchfork bifur-

cation as shown in Lemma 3.4 and claimed in Remark 3.5.

In Figures 10 and 11, we numerically continue to large values of |Λ| and explore

two properties discussed in Lemmas 4.9 and 4.10 for L = 2π and L = π/2, respectively.

The left panels show the bifurcation diagram zoomed for an interval of large |Λ|. The
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Fig. 9. The bifurcation diagram for two positive solutions localized in the central link and in one

of the two rings as well as for the constant solution for L = 2π (left) and L = π/2 (right).
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Fig. 10. Left: comparison of the bifurcation diagram for positive solutions localized in the cen-

tral link and in one of the two rings for L = 2π . Right: the second eigenvalue of the linearization

operator L+ associated with the two positive solutions plotted with respect to Λ in a semilogy

plot.

two positive waves are computed via Newton iteration from peaked states at Λ= 10.0

concentrated in either the loop or the center link. In agreement with Lemma 4.9, we

can see that the positive symmetric wave becomes the ground state of the constrained

minimization problem (1.7) for a large negative Λ, because it has the smaller value of Q0

for a fixed Λ. We also observe that the values of Q0 are much closer for large L than for
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Fig. 11. The same as Figure 10 but for L = π/2.

small L. Although only a short interval of Λ values is shown, the same trend continues

all way to Λ= −10.

The right panels of Figures 10 and 11 show the evolution of the second eigen-

value of the linearized operator L+ for both the positive waves. In agreement with

Lemma 4.10, the positivity of the second eigenvalue of L+ for the positive symmetric

wave represented by (1.10) is observed to be quite robust for both L = 2π and L = π/2.

However, we also observe that the second eigenvalue of L+ for the positive asymmetric

wave represented by (1.9) is also positive, which implies that the positive asymmetric

wave is also a local constrained minimizer of energy at a fixed charge.

Appendix. Proof of Proposition 4.6

Proposition 4.6 generalizes formal asymptotic expansions given by formulas 16.15 in [1]:

sn(ξ ; k)= tanh(ξ)+ 1
4 (1 − k2)

[
sinh(ξ) cosh(ξ)− ξ

]
sech2

(ξ)+ O((1 − k2)2), (A.1)

cn(ξ ; k)= sech(ξ)− 1
4 (1 − k2)

[
sinh(ξ) cosh(ξ)− ξ

]
tanh(ξ)sech(ξ)+ O((1 − k2)2), (A.2)

dn(ξ ; k)= sech(ξ)+ 1
4 (1 − k2)

[
sinh(ξ) cosh(ξ)+ ξ

]
tanh(ξ) sech(ξ)+ O((1 − k2)2), (A.3)

where the expansion is understood in the sense of the power series in (1 − k2) as k→ 1

uniformly in ξ . In the same sense, formulas (4.40–4.42) follow from expansions (A.1–

A.3). Here we give a rigorous proof of these asymptotical representations, as well as the

bound on the first derivative given by (4.43). We only give the proof for the Jacobi elliptic

function dn. The proof for other Jacobi elliptic functions is similar.
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First, let us recall the basic identities for the Jacobi elliptic functions

dn2
(ξ ; k)+ k2 sn2(ξ ; k)= 1, cn2(ξ ; k)+ sn2(ξ ; k)= 1, (A.4)

from which it follows that dn(ξ ; k) is monotonically decreasing from dn(0; k)= 1 to

dn(K(k); k)= √
1 − k2, when ξ changes from 0 to K(k), where K(k) is the complete ellip-

tic integral. Also recall that dn(ξ ; k) is an even, 2K(k)-periodic function of ξ for every

k∈ (0, 1).

From the integral representation 8.144 in [12], for every k∈ (0, 1) and every ξ ∈
(0, K(k)), we have

ξ =
∫ 1

dn(ξ ;k)

dt√
1 − t2

√
t2 − 1 + k2

. (A.5)

Let u0(ξ) := dn(ξ ; 1). Using the parametrization t = sech(x), we obtain from (A.5) for every

ξ ∈ R
+:

ξ =
∫ 1

u0(ξ)

dt

t
√

1 − t2
=
∫ x0

0
dx = x0,

where x0 is a positive root of sech(x)= u0. Therefore, u0(ξ)= sech(x0)= sech(ξ) as in the

first formula of (4.42).

Differentiating (A.5) in k and using the identities (A.4), we obtain

∂k dn(ξ ; k)= −k3 sn(ξ ; k) cn(ξ ; k)
∫ 1

dn(ξ ;k)

dt√
1 − t2

√
(t2 − 1 + k2)3

. (A.6)

Let v0(ξ) := ∂k dn(ξ ; 1). Using the first formulas in (4.40) and (4.41), as well as the same

parametrization t = sech(x), we obtain

v0(ξ)= − tanh(ξ) sech(ξ)
∫ 1

u0(ξ)

dt

t3
√

1 − t2

= − tanh(ξ) sech(ξ)
∫ ξ

0
cosh2

(x)dx

= −1

2
tanh(ξ) sech(ξ)

[
sinh(ξ) cosh(ξ)+ ξ

]
, (A.7)

which justifies the second formula in (4.42).

It remains to justify the bound (4.43) on the first derivative of u(ξ ; k) := dn(ξ ; k)

in k for ξ ∈ (0,πμ) and k∈ (k∗(μ), 1), where μ is sufficiently large. We recall that u(·; k)

satisfies the second-order differential equation for every k∈ (0, 1):

− d2u

dξ2
+ (2 − k2)u− 2u3 = 0, ξ ∈ (−K(k), K(k)). (A.8)
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Let us introduce the linearization operator

Lk := − d2

dξ2
+ 2 − k2 − 6u2(ξ ; k) : H2

per(−K(k), K(k))→ L2
per(−K(k), K(k)). (A.9)

As k→ 1, the linearization operator Lk defined by (A.9) converges in some sense to the

limiting linearization operator

Lk=1 := − d2

dξ2
+ 1 − 6 sech2

(ξ) : H2(R)→ L2(R), (A.10)

which has a negative eigenvalue at −3 associated with the even eigenfunction u2
0, the

zero eigenvalue associated with the odd eigenfunctions u′
0, and the essential spectrum

at [1, ∞), where u0(ξ)= dn(ξ ; 1)= sech(ξ).

For convenience, we drop the first argument ξ in the definition of u(ξ ; k)≡ u(k),

so that we can denote the partial derivative of u with respect to k by a prime. Then, we

note that

Lku′(k)= 2ku(k). (A.11)

Since ∂ξu= −k2 sn(ξ ; k) cn(ξ ; k) solves Lk∂ξu= 0, we obtain the unique 2K(k)-periodic and

even solution of the differential equation (A.11) by variation of a constant:

u′(k)= −ksn(ξ ; k) cn(ξ ; k)
∫ ξ

0

dξ ′

cn2(ξ ′; k)
. (A.12)

This representation is complementary to (A.6) and it admits the same expression as in

(A.7) if the limiting values of the Jacobi elliptic functions in (A.1–A.3) are used.

Now we note that although the inhomogeneous equation (A.11) can be uniquely

solved in the limit k→ 1 in H2(R) because u0 is orthogonal to ker(Lk=1)= span(u′
0), the

limiting expression for u′(1) contains an exponentially growing function of ξ as per the

explicit expression (A.7). This is because the homogeneous equation Lk=1v= 0 admits an

even exponentially growing solution v(ξ)= cosh(ξ)+ ṽ(ξ), where ṽ ∈ H2(R).

Using further differentiation of (A.11) in k, we obtain a chain of linear inhomo-

geneous equations

Lku′′(k)= 4ku′(k)+ 2u(k)+ 12u(k)(u′(k))2,

Lku′′′(k)= 6ku′′(k)+ 6u′(k)+ 36u(k)u′(k)u′′(k)+ 12(u′(k))3,

Lku′′′′(k)= 8ku′′′(k)+ 12u′′(k)+ 48u(k)u′(k)u′′′(k)+ 72(u′(k))2u′′(k)+ 36u(k)(u′′(k))2.

Inspecting the right-hand sides of these linear inhomogeneous equations in the limit

k→ 1 and inverting Lk=1 on the even right-hand sides, we obtain that all derivatives of
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u in k are exponential growing functions of ξ with the following growth rates:

u′′(1)=O(ξ sinh(ξ)), u′′′(1)=O(cosh(3ξ)), u′′′′(1)=O(ξ sinh(3ξ)), as ξ → ±∞.

It follows by induction (the proof is omitted) that for every k∈ N, we have

u(2k+1)(1)=O(cosh((2k + 1)ξ)), u(2k+2)(1)=O(ξ sinh((2k + 1)ξ)), as ξ → ±∞, (A.13)

where the implicit constants grow polynomially in k. The Nth partial sum of the Taylor

series

SN :=
N∑

n=1

1

n!
(k − 1)nu(n+1)(1)

converges for every ξ ∈ (−πμ,πμ) and k∈ (k∗(μ), 1), where k∗(μ)= 1 − 8 e−2πμ + O(e−4πμ)

as μ→ ∞. Therefore, u′(k)− u′(1)= limN→∞ SN is well defined by the majorant power

series in the corresponding domain. Moreover, if μ is sufficiently large, then

|u′(k)− u′(1)| ≤ C |k − 1|(1 + |ξ |) cosh(ξ), ξ ∈ (−πμ,πμ), k∈ (k∗(μ), 1),

where C is a positive μ-independent constant C . This bound is equivalent to the third

bound in (4.43).
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