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Abstract

Evolution of perturbed embedded solitons in the general Hamiltonian fifth-order Korteweg—de Vries (KdV) equation is
studied. When an embedded soliton is perturbed, it sheds a one-directional continuous-wave radiation. It is shown that
the radiation amplitude is not minimal in general. A dynamical equation for velocity of the perturbed embedded soliton is
derived. This equation shows that a neutrally stable embedded soliton is in fact semi-stable. When the perturbation increases
the momentum of the embedded soliton, the perturbed state approaches asymptotically the embedded soliton, while when
the perturbation reduces the momentum of the embedded soliton, the perturbed state decays into radiation. Classes of initial
conditions to induce soliton decay or persistence are also determined. Our analytical results are confirmed by direct numerical
simulations of the fifth-order KdV equation.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Embedded solitons are solitary wave solutions of nonlinear evolution equations which reside at discrete points
inside the continuous spectrum of the linear wave system. The existence of such waves has been known in various
physical systems such as the fifth-order Korteweg—de Vries (KdV) equatie8k extended nonlinear Schrédinger
equation$4,5], coupled KdV equation$], second-harmonic-generation (SHG) sysféimmassive Thirring model
[8,9], three-wave systefil0], and many othed 1,12] In[7], such waves were given the name “embedded solitons”,
and their distinct semi-stability property was revealed on heuristic ground. This semi-stability means that when a
perturbation increases a certain positive-definite quantity (energy or momentum) associated with the embedded
soliton, then the perturbed state approaches asymptotically the embedded soliton. However, when the perturbation
decreases energy (momentum) of the embedded soliton, the perturbed state decays into radiation.

The semi-stability property was later proved rigorously for embedded solitons in the perturbed integrable
fifth-order KdV equation13] and in the generalized SHG syst¢td]. The method i{13] follows the soliton
perturbation technique and describes embedded solitons as critical points of a first-order dynamical system. Both
location and stability of critical points can be studied within the reduced system. The othefjpgmEvelops the
normal form analysis which relies on the known existence and linearized stability properties of embedded solitons.
It proves the nonlinear semi-stability of embedded solitons through wave resonance mechanisms. The latter method
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does not rely on the integrability of the original system, and it can be extended to any embedded-soliton-bearing
system under certain assumptions.

Nonlinear semi-stability of embedded solitons is an interesting phenomenon because it occurs beyond the lin-
ear stability. The linear stability of solitary waves in the fifth-order KdV equation was studied by using the
energy—momentum methofts5,16] and the symplectic Evans matrix methdd3]. A solitary wave is linearly
unstable if the linearization operator possesses an eigenvalue with a positive real part. If all eigenvalues lie on the
imaginary axis, the wave is called neutrally stable. A neutrally stable wave can, however, still be unstable due to
algebraic instabilitie$18]. For embedded solitons, the situation is different. Single-hump embedded solitons are
generally neutrally stable in the linearized problem. However, a discrete zero eigenvalue of the linearization operator
is embedded inside the continuous spectrum of this operator. Because of this, a nonlinear resonance between tt
embedded zero eigenvalue and the continuous spectrum can tunnel energy of a perturbed embedded soliton int
continuous-wave radiation. The energy loss does not always destroy the embedded soliton though. If the perturba
tion increases the energy (momentum) of the embedded soliton, then the radiation becomes weaker and weaker &
the perturbed state asymptotically approaches the embedded soliton. But if the perturbation decreases the energ
(momentum) of the embedded soliton, the radiation becomes stronger and stronger, and the embedded soliton i
then destroyed. Thus, the semi-stability of embedded solitons is an intrinsically nonlinear phenomenon beyond
linear stability.

Besides single-humped embedded soliton in the fifth-order KdV equation, multi-humped embedded solitons may
also exisf3,19]. However, they are typically linearly unstaljliel,12]. The nonlinear semi-stability may occur in
the system only if the linear instability is suppressed. Thus, it makes sense to consider here only neutrally stable
single-humped embedded solitons.

We emphasize that semi-stability is not the same as instability. By controlling the energy (momentum) of the
initial perturbation, we can induce either asymptotic persistence of the embedded soliton or its rapid disappearance
This is an ideal mechanism for switching (quantization) applications.

In this paper, we study the evolution of perturbed neutrally stable embedded solitons in a general Hamilto-
nian fifth-order KdV equation. We use the normal form analysis developg#irbut simplify many statements
and proofs. We show that when an embedded soliton in the fifth-order KdV equation is perturbed, it sheds the
continuous-wave radiation in front of the soliton. The radiation amplitude is not minimal in general. We also de-
rive the velocity equation for the perturbed state which proves the semi-stability property of embedded solitons.
In addition, we determine what initial condition leads to soliton decay, and what initial condition leads to soliton
persistence. Numerical simulations of the fifth-order KdV equation show excellent agreement with the analytical
predictions.

2. Tail amplitudes of symmetric nonlocal waves

We consider the general Hamiltonian fifth-order KdV equation

Uy + txex + txoox + [N ()] =0, (2.1)
where the nonlinear teri¥ (1) is of the form

N@u) = oou? + aqUlyy + azuf + azus. (2.2)
The equations above are Hamiltonian if and onkyif= 2«5, [13]. The conserved Hamiltonian functiondl(x) is

H@u) = [m |:§u — Sk + Sl — 5 Ul + 2 dx. (2.3)

WhenEgq. (2.1)is Hamiltonian, it also conserves a positive-definite quantity

P(u) = /OO u? dx, (2.4)
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which is interpreted as momentum. Whetlier. (2.1)is Hamiltonian or not, it always conserves the quantity
M(u) = ff°oo u dx, which is interpreted as mass.
We look for moving stationary solutions iq. (2.1)of the form

ulx,t)=Ux —ct) =U&), (2.5)

wherec is the wave velocity. Substitutirtgg. (2.5)into (2.1)and integrating once, we obtain the ordinary differential
equation (ODE) foU (¢) as

Uggge + Ugg —cU+ N(U) =0, (2.6)

subject to zero boundary conditions at infinity: |in, . U(§) = 0. WhenU — 0, Eq. (2.6)becomes linear, and
its characteristic equation is quartic. The roots of this characteristic equatigtifaesd+«, where

k=k(c) =/ 3(V1+4c+1), Kk =k(c) =/ 3(V1+4c—1). (2.7)

Whenc¢ > 0, roots+ik are imaginary and:« real; when 0> ¢ > —1/4, all four roots are imaginary; when

¢ < —1/4, all four roots are complex. The embedded soliton, if it exists, arises from a saddle-node bifytction

when the stable—unstable manifolds (real roots) correspond to the exponential tails of the embedded soliton, while
the center manifold (imaginary roots) correspond to the tails of the continuous-wave radiation whose amplitude
vanishes. Therefore, the embedded soliton may exigigin(2.6)only for ¢ > 0. We notice that nonembedded
solitary waves with oscillatory and decaying tails may exigEq (2.6)for ¢ < —1/4 [20], but such solutions are
beyond the scope of this paper.

Only symmetric embedded solitons Bf. (2.6)are considered here. Based on energy flux consideration, it is
generally believed that asymmetric embedded solitorisgf(2.6)do not exisf21,22] If the system(2.1) is the
perturbed integrable fifth-order KdV equation, the nonexistence of asymmetric embedded sokiqn&i)was
proved in[13].

Whenc > 0, the tail amplitude of symmetric nonlocal wavesay. (2.6)is given asymptotically as

UE;c,8) — r(c,d)sink|&|+8), |&] — oo. (2.8)

Herer is the amplitude of the oscillatory tail, addhe tail phase. Embedded solitons can be found numerically by a
shooting method foEq. (2.6)with U’(0) = U"(0) = 0. Parameters of the shooting mettia@) andU"” (0) satisfy

only one condition that removes the exponentially growing teref'¢!. It implies that one parameter in symmetric
nonlocal wave solutions dEq. (2.6)is free in addition to the wave velocity We choose this free parameter to be

the tail phasé. The tail amplitude (¢, §) may vanish at certain discrete velocity values cgs (in such cases, the

phases becomes irrelevant). When it happens, we get embedded solitons. TResgnédded solitons iq. (2.1)

has been investigated comprehensivelyliji3], and a family of one, two, ando embedded solitons have been
shown to exist in different parameter regions. Single-humped and multi-humped solut{@réafere studied also

in [19]. We assume here the generic case of a co-dimension one bifurcation, when the embedded-soliton velocity
cesis a simple zero of the tail amplitud€c, §), i.e.,

r(c,8) = R(8)(c — ces) + O(c — cgs)?, (2.9)
where
d
R() = a—Z(cEs, 8) # 0 (2.10)

is the slope of the tail amplitude of the symmetric nonlocal waves at the embedded-soliton velogiyand
phases.

In the rest of this section, we derive the analytical expression for the tail amplited® when the nonlocal
wave velocityc is close to the embedded-soliton veloditys. For this purpose, we expand the nonlocal solution
U(&; ¢, §) as a perturbation series:

UE; ¢, 8) = Ugs(§) + (¢ — ces)U1(€; 8) + O(c — cgs)?. (2.11)
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When this expansion is substituted itfiig. (2.6) the functionU1(§; §) is found to satisfy the following inhomoge-
neous linear equation:

LU1(§; 6) = Ues(é), (2.12)
where/ is the linearization operator &q. (2.6)at embedded-soliton velocitys, i.e.,

v

dZUEs d d
L= @ + @ — cgs + 209Ugs + 30(3U|§S+ o1 +a1— <UES—> . (2.13)

dg2 dé dg
Here the Hamiltonian conditiam = 25 has been utilized. Note that the operatas self-adjointin the Hamiltonian
case.
In order to solve the inhomogeneoeguation (2.12)we need to know homogeneous solutions. Operéatoas
four homogeneous solutions, (1 < n < 4). The first solution is symmetric and bounded with asymptotic behavior

Y1(§) — sin(k 1§+ 38s), 6] — oo, (2.14)

wherek, = k(cgs) is the resonant wavenumber akhds the tail phase. The second solution is anti-symmetric and
bounded with asymptotic behavior

Y2(§) = sin(k,& £82), & — oo, (2.15)

wheres, is the tail phase. The third solution is anti-symmetric and localiggt;) = ULg(£). Itis related to spatial
translational invariance of the systéghl1). The last solutiony4 (&) is symmetric and unbounded.

Now we can solve the inhomogeneaagiation (2.12jor U;. Since we only consider symmetric nonlocal waves,
the correction ternt/1(£) is symmetric as well. Note thatU (§; ces, §)/dc is an inhomogeneous solution Bf.
(2.12)for any $ values. This can be seen by differentiatiag. (2.6)with respect ta, and then setting ascgs.
Thus the general bounded symmetric solutiozqf (2.12)can be written as

oU

U1(§) = 5(5; CES, 80) + Y1v1(§). (2.16)

Heredp is any fixed phase, ang is an arbitrary constant. The homogeneous solutipx§) andy3(£) are not
included as they are anti-symmetric, while the solutjai¢) is unbounded.
The asymptotic oscillatory behavior of a gendvalsolution(2.16)can be obtained frofgs. (2.8) and (2.14s

U1(§: 8) — R(80) sin(k,|§] + do) + yrsin(k.|§] +ds), [ — oo, (2.17)

where functionR (8) is defined byEq. (2.10) On the other hand, expanding the tail asymptdfc8) of the nonlocal
waveU (§; ¢, §) into a power series af— cesand then comparing it witkq. (2.11) we conclude that the asymptotic
behavior of a generdl; solution should also be

U1(§) — R(S) sin(k, 5] +6), 15| — oo. (2.18)

For convenience, we fix hebg asdg = §s+ /2 and then equate the two asymptotizs 7) and (2.18)As aresult,
we find that
_ R(Gs+7/2)

R() = = (2.19)

andy; = R(8s+ 7 /2) cot(§ — s). Consequently, to leading order in— cgs, the tail amplitude- of symmetric
nonlocal waves is
_ R(@s+7/2)

r(c,8) = SinG — o0 (¢ — ces) + O(c — cEs)z. (2.20)
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From this formula, we conclude that at a given veloeitiose tocgs, the tail amplitudér| of symmetric nonlocal
waves is minimal at the value= 8min, Wwhere

Smin = (55 ¥ %) mod (). (2.21)

Formulag(2.20) and (2.21are the main results of this section.

3. Dynamics of embedded solitons under perturbations

In this section, we study dynamics of a linearly neutrally stable embedded soliton under small perturbations.
We assume that the linearization operator has no unstable eigenvalues. This assumption is necessary as the wea
nonlinear semi-stability would be ineffective in the presence of strong linear instability. We also assume that
the linearization operator has no discrete nonzero embedded eigenvalues. This assumption is necessary as the
nonzero embedded eigenmodes may be in resonance with the continuous spectrum through nonlinear coupling,
thus affecting the dynamics of embedded solitons. Thirdly, we assume that the zero eigenvalue corresponds to the
localized eigenfunctio/L(¢) and has algebraic multiplicity 2 with an associated eigenfundigyioc(é; 5).

For embedded solitons, the zero eigenvalue is always embedded into the continuous spectrum of the linearization
operator. Eigenvalues that correspond to localized eigenfunctions occur as zeros of the Evans function (a determinant
of scattering coefficientd)L7]. The algebraic multiplicity of eigenvalues is defined as the multiplicity of zeros of

the Evans function. Thus, our last assumption is that the Evans function has a doubleizer6 af the linearized
operator.

We will use below the internal perturbation analysis describé¢tdh(see als¢18]). The idea is to recognize that
under small perturbations, the eigenfunctiéris,(é) andaU /dc(&; ) for the double embedded eigenvalue- 0
of the linearized problem renormalize the location and velocity of the embedded soliton. For small perturbations,
the velocityc(¢) of the embedded soliton changes on a slow time scale. We will derive a dynamical equation for
c¢(t) by separating the slow and fast changes in evolution of a perturbed embedded soliton.

In the moving coordinate,

E:x—/;cdt—xo, (3.1)
the fifth-order KdVequation (2.1kan be written as
Uy — CUg + ugee + ugeeee + [N(w)]e = 0. 3.2)
We expand the perturbed embedded soliton and its slowly varying velocity into the following perturbation series:
u(E, 1) = Ues(®) + ect(Tur (€, 1) + €%un (€, 1, T) + O, (3:3)
and
¢(T) = ces+ ecy(T) + O(e?), (3.4)

whereT = ¢t, ande is a small parameter. At order we obtain the governing equation fer(¢, r) as

ui + [L:Ml]s = UI/ES(‘i:)s (3-5)
whereL is the same linearization operator as defindddn(2.13) The initial condition folEg. (3.5)can be obtained
from Eq. (3.3)as

,0)— U
u1(,0) = ME)T(O)ES@). (3.6)
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The initial value for the soliton velocity; (0) can be found by projecting the initial deviatio(, 0) — Ugs(€) onto
U (§; ces, 8a)/9c, where the phas&, is given by(2.15) The projection is based on the spectral decomposition
developed iM\ppendix A(see(A.4)) and is given by

22, Ues®)[u(&, 0) — Ues(8)] dg
[, Ues()(@U /dc) (£; cEs, 8a) dE

Next, we solve the inhomogeneoceguation (3.5)We adopt a less formal but more intuitive approach here. A more
rigorous calculation of the same results is presentegpipendix A

The inhomogeneous term kifg. (3.5)acts as a driving localized force. The homogeneous part at|grgalues
supports oscillatory solutions with wavenumlaer Thus, due to forcing and resonance, these oscillatory tails will
be excited over time. The group velocity of these oscillatory tails in the moving f(&mgcan be found from
the dispersion relation agr = 2k,2(2kr2 — 1), which is always positive sincess > 0 andk, > 1. Thus, these
oscillatory tails always appear ahead of the embedded soliton. Behind the embedded soliton, there is the possibility
that a flat shelf may develop as in the perturbed KdV equdf8r24] (see alsq18]). If a shelf develops, it moves
to the regiont <« —1 at the velocity—cgs in the moving coordinate systef8.1).

Thus, at large times>>> 1, the boundary conditions for the solutien(€, ¢) are

RragSin(k,& + Srad) H (cgrt — &), &> 1,
ui(E, 1) — (3.8)
RoH(—§ — cest), £k -1,

whereR;aq is the oscillatory tail amplitudes;aq is its phaseRg the height of the trailing shelf, anH (x) the step
function, i.e.,H = 1 whenx > 0, andH = 0 otherwise. Below, we determine the tail ampliti®lgq and the phase
Srag- We also show that the shelf is not excited in the present situationRp e, 0.

Our calculations ofRg, Rrag ands ag are based on the observation that; gees to infinity, the transient part of
the solutioru1 (&, ¢) for Eq. (3.5)dies out, and:1 (&, ) approaches a steady state(£), where

ec1(0) = (3.7)

RradSin (k;& + drad), & — oo,
uis(§) — (3.9)
Ro, & — —o0.
This steady-state solution satisfies the sapeation (3.5except that the time derivative {8.5)is dropped, i.e.,
[Luide = Ugs(®). (3.10)
Integration of this equation with respectgdaives
Luys = Ues+ 1, (3.11)

wheren is a constant. To determing we substitute the boundary conditi{®9) of solutionu15(¢) até > 1 into
Eq. (3.11)and find thaty = 0. Then substitution of the boundary conditi@9)até « —1 intoEq. (3.11)readily
shows thatRg = 0. Thus, the flat shelf is not excited in the present situation.

SinceRp = n = 0, the inhomogeneotexjuation (3.11jor u15(¢§) becomes the same &sg|. (2.12) The general
bounded solution fosi15(§) is

iU
uis(€) = E(S; Ces, 80) + Iy1(§) + Doy (8), (3.12)

wheredy is any fixed phase anfdh > are constants. The homogeneous solutigf® ) is excluded by a simple position
normalization of the embedded soliton. The boundary condition of sol(®idr2)at infinity can be obtained from
Egs. (2.8), (2.14) and (2.18ps

R(b0) sin(ky§ + 8o) + I'Lsin(ky§ + 8s) + I2sin(k,é +38a), & — oo,
uis(§) — _ , , (3.13)
—R(80) sin(k,& — do) — I'tsin(k,§ — 8s) + I2sin(k§ —8a), § — —o0.
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This boundary condition should match conditig$19) with Rp = 0. For convenience, we fi&% = §a. Then the
matching condition gives the radiation amplituBlgq and phasé;aq as

Rrad = 2R (8a), drad = a, (3.14)
and
In=0, I = R(%a)- (3.15)

Formulag3.14)are important results of this section. They show that the radiation ghaseequal to the phasky
of the anti-symmetric homogeneous solutigf(¢) (seeEq. (2.15), while the radiation amplitud®,,q = 2R (83).
Since the minimal tail amplitude of symmetric nonlocal waves occurs at ghase= (8s + 7/2) mod(r) (see
Eq. (2.21), andsa # (8s+ 7/2) mod(rr) in general (seSection 4for an example), we conclude that the radiation
amplitudeR 54 generally is not minimal, i.eRyag £ 2R (8min)- In the numerical work for the KdV equation plus the
fifth-order derivativg25, Section 16.4]it was mentioned without proof that radiation tail amplitude was minimal.
That statement does not agree with our general analysis. But if the fifth-order KdV equation is integrable, then
the relationsy = §s + 7/2 holds[13], i.e. the radiation amplitude is indeed minimal to the leading order of the
perturbation theory for nearly integrable fifth-order KdV equations.

When the first-order solutior(8.12) and (3.15re substituted into the perturbation expangi), the solution
can be re-written as

u(, 1) = (U(&; ¢, 8a) + (c — ces) RGa)Y2(€) + Ol(c — ces) I} H (cqrt —£), 1> 1, (3.16)

wherec(T) is given byEq. (3.4) This solution describes the slow evolution of the perturbed embedded soliton in
the fifth-order KdVequation (2.1)while the fast radiation part produced by a general initial conditiom {ér O)
is neglected in the asymptotic limit> 1. Solution(3.16)up to order Qc — cgs) consists of a symmetric nonlocal
wave U (§; ¢, 8§5) and an anti-symmetric ternf2(£). This anti-symmetric term is generated in the initial-value
evolution problem due to the (radiation) boundary condi{i@®) with Ry = 0, Rrag = 2R(83), andérag = Sa.
Since functiomy2(¢) is anti-symmetric, the radiation amplitude is canceled behind the embedded soliton and is
doubled ahead of the soliton. It is also noted tfiat0) = 0, thus the amplitude of solutio{8.16) at soliton
center¢ = 0 is then the same as that of the symmetric nonlocal Wagg c, 85). This fact will be used in
Section 4in our comparison between the analytical and numerical results on the amplitudes of perturbed embedded
solitons.
When the radiation amplitudR,,q and phasé;ag are found, we are ready to derive the dynamical equation for
the velocityc(T) of a perturbed embedded soliton. This equation can be derived in several different wd¥8]jsee
The simplest way is to use the local or global momentum conservation law when the $2stgim Hamiltonian.
The derivation using the global momentum conservationav)is presented below. The derivation using the local
momentum conservation is containeddppendix B
To derive the velocity equation, we substitute the perturbation expaf&®yinto the momentum integré®.4).
When terms up to order are retained, we get
o0
% / OO{U,ESJF 2¢Ugs(c1u1 + €up) + €%c2u?} dg = 0. (3.17)
Keep in mind that solutiong1 (&, r) andux (&, t) at the center regiof ~ O(1) become stationary as> 1. As
a result, the term involving» in Eq. (3.17)can be dropped because the integral of the prodige(&)us(&, 1)
becomes constant at large times. The stationary solutig) is given byEgs. (3.12) and (3.15Yhus,

E= / Uesursdé — / Ues(®) 5 (&: ces, 5a) G (3.18)

Lastly, the solution for1 (€, t) develops an oscillatory tail ahead of the embedded soliton. This tail has amplitude
Rrad given byEq. (3.14) and it moves at its group velocity,. The average energyﬂi) of the sinusoidal tail is
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(1/2)R2,, i.e., 2R?(84). Thus,

rad’

o0
r= % / W2 de = 2R2(S)cq = M2(2k2 — 1)R2(S). (3.19)
—00

When relation$3.18) and (3.19are substituted into the momentweguation (3.17andecs replaced by — cgs
(seeEq. (3.4), we finally obtain the dynamical equation for the perturbed embedded-soliton’s vela@sty
dc
dr
where the coefficient = I'/2E. The solution ofEq. (3.20)is

= —B(c — ce9)?, (3.20)

€0 — CES
1+ B(co — ceo)t’
wherecg is the initial condition for velocity:(¢). The formula forcg can be obtained frorggs. (3.4) and (3.73s
S5 Ues(®)[u(&, 0) — Ugs(6)] dé
[7 UEs(E)(0U /0c) (€; cEs, 8a) dE

Once the initial perturbed embedded solitgg, 0) is specified, thewng is fixed as above.

The asymptotie@quation (3.20)s the key result of this paper. Whegh> 0, this equation shows that its fixed
point ¢ = cgsis semi-stable: any perturbation with > cgs is stable, and any perturbation with < cgsis
unstable. When translated into the original partial differemtplation (2.1)it means that the embedded soliton is
semi-stable. Depending on the type of initial perturbations, the embedded soliton can persist, or be destroyed.

Finally, whenE vanishes, the zero embedded eigenvalue has multiplicity higher than 2, which results in linearized
(algebraic) instability of the embedded soliton (see, §1@)]). We have excluded such linearized instability in our
assumptions above.

c(t) = ces+ (3.21)

€0 = CES (3.22)

4. Comparison with direct numerical simulations

In this section, we directly simulate the original partial differengéiquation (2.1)and compare the results with
our analytical theory above. The system parameters we choose are

ag =5, o1 =5, ap = 2.5, a3 =0 (4.2)

in Eq. (2.2) Note thatthese parameter values are equivalentte «; = 1, @ = 0.5andxz = 0 after variable: and
timer are rescaled. At these parameter vall&s,(2.1)is Hamiltonian. The fifth-order long-wave model equation
studied by Champneys and Gro\&} corresponds to ougquation (2.1with g = 1 andwz = 0. We have also
tested other parameter values with= 2a»> and found similar results. For instance, in the third-order Hamiltonian
long-wave approximation to the water-wave problem as derived by Craig and GB®jethe parameter values
(after variable rescaling) awe = 1, a1 = —5/3, a2 = —5/6 andasz = 0. Comparison between our theory and
numerics for this set of parameters is qualitatively the same as that for the paraf@hédters

With the parametergl.1), the fifth-order KdVequation (2.1as an embedded soliton

Ugs(x, t) = 0.9 seck[v0.3(x — cest)] (4.2)

at the exact wave speeds = 2.64 (seq11]). The approximate phase valuksands, in the linear modegrs » of
the linearization operataf are found numerically (by the shooting method) as
ds =2.1815 3a = 0.5737. (4.3)

Note that the difference between these two phases here is not equé?,tthus the radiation tail amplitude in
perturbed embedded solitons is not minimal. However, this phase difference differs f@only by 0.037. Thus
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Fig. 1. Tail amplituder(c, §5) of symmetric nonlocal waves as a function of velocityThe nonlocal waves satisfyq. (2.6)with system
parameter¢4.1). The radiation phas&= &, is the phase of the anti-symmetric linear magegiven byEg. (2.15) §5 ~ 0.5737.

the radiation tail amplitude is rather close to its minimal value. At pldaseS, (which is the radiation phase), we
have numerically obtained the tail amplitude curye, §;) of symmetric nonlocal waves frofqg. (2.6)at various
velocity, ¢, values, again by the shooting method. The results are shotig.il. As expected, the tail amplitude
r is nonzero forc > 0 except whenr = cgs. The slopeR(8;5) at embedded-soliton velocityes is found to be
R(83) = —0.0652. Thek, value can be quickly obtained froly. (2.7) and the integral ilEq. (3.18)can be readily
determined numerically. From all these values, we finally foundghat0.0868. With thisg value, our analytical
formula for the velocity of perturbed embedded solitons is then giveady(3.21)

In order to verify our analytical theory, we have numerically simulated the original weguation (2.1)ith
system paramete(d.1) and initial condition

u(x,0) = hUgs(x, 0), (4.4)

whereh is a constant coefficient. Note thiat= 1 gives the exact embedded soliton, @&ng: 1 gives a perturbed
embedded soliton. Our numerical scheme is the integrating factor method as desdé@gdinex interval is taken
as 400 units long, and 1024 grid points are used. The time stepsize®isTtprevent radiation from re-entering the
simulation region through periodic boundary conditions, we have used a damping condition near the boundaries. In
our simulation, we have also adopted a frame moving at the embedded-soliton’s veledibyt the results will
still be presented in the original frame). Our numerical scheme has been tested with the exact embedded soliton
(4.2) as the initial condition. It has also been tested on a related system—the integrable fifth-order KdV hierarchy
equation. Furthermore, we have tried different grid points and time stepsizes. These tests show that the numerical
error in our scheme is on the order of 0

We have run our numerical scheme on two typical initial conditi@hg) with 2 = 1.05 and 0.95. The results
are presented ifrigs. 2 and 3respectively. In the former case, the perturbed state has momenthigher
than the embedded soliton's (s&g. (2.4). Because of this, the perturbed state initially moves a little faster
than the unperturbed embedded soliton (8&g 2(b)). But its speed as well as amplitude slowly decrease due
to continuous-wave radiation which moves ahead of the main pulsd={ge&(b) and (c)). This tail radiation at
t = 20 is shown inFig. 2a). (Note that the tail decay near the right end of thiaterval is due to our damping
boundary condition. The actual tail length is much longer.) But the tail amplitude decreases also in the process
(seeFig. 2(d)). Thus energy radiation is decreasing. Eventually, the perturbed state asymptotically approaches the
unperturbed embedded soliton, which is clearly sedfign2(b) and (c).

Whenh = 0.95, the perturbed state has momenténiower than the embedded soliton’s. In this case, due
to continuous-wave radiation which intensifies over time (Sige 3(@) and (d)), the speed and amplitude of the
perturbed embedded soliton both decrease well below their corresponding values of the unperturbed embedded
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Fig. 2. Evolution of the embedded soliton under the momentum-enhancing perturgatpwith 2~ = 1.05: (a) numerical solution profile

atr = 20; (b) velocityc of the perturbed embedded-soliton versus timthe dashed line is the embedded-soliton velocity = 2.64; (c)
amplitude of the perturbed embedded-soliton versus tirttee dashed line is the embedded-soliton amplitude 0.9; (d) radiation tail amplitude
versus time. The solid lines in (b)—(d) are theoretical predictions, and circles are numerical values.

soliton (seeFig. 3b) and (c)). When the amplitude of the main pulse has dropped significantly, it can no longer
sustain high radiation tails. Thus tail amplitudes start to decreas€&ige&d)). Eventually, the embedded soliton
is destroyed by perturbations.

The above numerical simulation results agree both qualitatively and quantitatively with our analytical theory.
Qualitatively, wherkh = 1.05, as the initial velocity is abougs, formula(3.21)predicts that the pulse velocity will
asymptotically approactes; whenh = 0.95, the velocity will decay far belowgs. This semi-stability behavior is
accurately reflected in the numerical results. Quantitatively, we have also compared the pulse velocity, amplitude
and tail amplitude of analytical predictions to those of numerical results. The analytical prediction for pulse velocity
is given by formulg3.21) The initial conditioncg is calculated from formulé&3.22) We found that wheh = 1.05,
co ~ 2.775,andwheh = 0.95,c¢ &~ 2.515. The analytical prediction for the pulse amplitude is the center amplitude
of symmetric nonlocal waves at analytically predicted velocifgeeEq. (3.16). The analytical prediction for tail
amplitude is(c — ces) Rrad, WhereRyaq is given byEq. (3.14) These analytical predictions have been plotted in
Figs. 2(b)—(d) and 3(b)—(d)s well for comparison. In the case= 1.05, the quantitative agreement between theory
and numerics is excellent at all times. In the other ¢ase0.95, the quantitative agreement is good at the beginning,
and gets worse at larger times. The good agreement in the former case is because the main pulse remains close
the embedded soliton at all times, thus the perturbation theory works well. In the latter case, the main pulse deviates
significantly from the embedded soliton at large times. When that happens, the perturbation theory breaks down.
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Fig. 3. Evolution of the embedded soliton under the momentum-reducing perturp&ddmith 2 = 0.95: (a) numerical solution profile at
t = 50; (b) velocityc of the perturbed embedded-soliton versus timé) amplitude of the perturbed embedded-soliton versus tin(e)
radiation tail amplitude versus timeThe solid lines in (b)—(d) are theoretical predictions, and circles are numerical values.

5. Conclusion

In this paper, we have studied the evolution of perturbed embedded solitons in a general Hamiltonian fifth-order
KdV equation (2.1)We have shown that when an embedded soliton is perturbed, it sheds continuous-wave radiation
in front of the embedded soliton. The amplitude of this continuous-wave is not minimal in general. Behind the
embedded soliton, no flat shelf is created. We have further derived the velocity equation of a perturbed embedded
soliton. As a result, the semi-stability property of embedded solitons is analytically proved. In addition, we have
obtained the conditions under which a perturbed embedded soliton will decay or persist. We have also simulated
the fifth-order KdV equation numerically. The numerical results agree well with the analysis both qualitatively and
quantitatively.

The analysis and the final dynamicaduation (3.20are similar to those found ifiL4] for generalized SHG
models. Thus, in spite of differences in the spectral properties of linearization operators in these two models, the
nonlinear resonance between the embedded soliton and the continuous-wave radiation has common features unde
assumptions listed iSection 3 Obviously, the same method can be applied to any other embedded-soliton-bearing
Hamiltonian system. In fact, the system does not even have to be Hamiltonian. A nontrivial conservation law such
as power or momentum would be sufficient to guarantee the semi-stability property of embedded soli{d4$)(see
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The open problems going beyond the present study include generation and collisions of several embedded solitons
as well as further engineering applications of embedded solitons in applied science.
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Appendix A

In this appendix, we present a more rigorous approach for solving the inhomogermai®n (3.5for the
first-order solutions (&, t) by using a spectral decomposition method for the linearized problem,

(Lo k)e =12 k), (A1)

where (k) = k(k* — k? — ces), and¢ (&; k) are continuous-wave eigenfunctions normalized according to the
boundary condition

P k) — ¥ asE <« -1 (A.2)

The potential terms witlUgs(€) decay exponentially at largg| in the operatorl given by Eq. (2.13) The
eigenfunctiong (¢, k) may have up to three Fourier oscillatory terms in the limit> +o0, which match with the
roots of the equation2 (k) = £2. We will compute asymptotically the Fourier-type integrals (8ge(A.10) at the
resonant valuek = +k,, wherek, = k(cgs) andk(c) is given byEg. (2.7) At the resonant values, the eigenvalue
parameter? is zero, i.e£2(xk,) = 0. It could be found fronkEgs. (2.14) and (2.18pat the boundary condition
for ¢ (¢, £k,) inthe limité — +oois

¢ k) — ar €95 b0 4oy asE > 1, a3
where
et (3s+8a—7/2) +icos(ds — 8a)
= b:l: = C+ = 0.
Sin(8s — 82) Sin(8s — 8a)

Under the assumptions describediection 3 the solution fom1 (€, ) can be decomposed through eigenfunctions
of the linearized problerfA.1)

o]

aUu
ua(§, 1) = (& ces, 9) +/ wk, N, k) dk + aUgg(§), (A.4)

whereq is constant. The first term ifA\.4) solves the inhomogeneous partdyf. (3.5) Since the double eigenvalue
2 = 0 is embedded into the integral at the resonant pdints+k,, the inhomogeneous term is not independent
and can be decomposed through the same eigenfunctions

U © F(k ,k
P Y CE @9

o K2—K2

whereF (+k,) # 0. The singular (pole) part i(A.5) describes the nonlocalized oscillatory f@l18)as|&| > 1.
With Eq. (A.5)substituted intdeq. (A.4) attimer = 0, Eq. (A.4)becomes

ui(£, 0) = / Dk, 00 (. k) dk + aULs(®), (A6)

—00
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—_ +wk,0). (A7)

When the initial conditiont1 (&, 0) is localized, then the spectral componertk, 0) is free of pole singularities.
The complex amplitude (k, ¢) in Eq. (A.4)satisfies the trivial evolution equation:

aa—'f +i2k)w = 0. (A.8)

Solving the initial-value inhomogeneous probl€dns) with the spectral decompositiojs.4) and (A.5) we find
the following integral representation fog (&, ¢):

o o
ur(€,1) = / %(1 — e 10N gk + / Wk, 0) e 20 g (& k) dk + aULg(£). (A.9)
—00 r —00

The second term ikq. (A.9)represents the nonsingular part produced by the initial conditigf, 0). The first
term in Eq. (A.9) represents the singular (pole) part produced by slow evolution of the embedded soliton. The
singular integral term describes the nonlinear resonance between the embedded soliton and the continuous-wave
radiation.

The singular (pole) term ikEqg. (A.9) occurs fork = =k, i.e. when$2(+k,) = 0. This term represents the
oscillatory tail radiation that diverges from the embedded soliton with the group velgeity 2 (k) = 2k,2(2k,2 —
1). Sincecgs > 0 andk,2 > 1, thencygr > 0, i.e. the oscillatory tail radiation occurs ahead but not behind of
the embedded soliton. We prove this conjecture by using the pole decomposition tedidijuehe singular
contribution from the integralA.9) can be evaluated in the asymptotic regior —1, ¢ > 1 such that&|/¢ is
constant

“m o0 F(k) dk elké_.(l _ e_ik(k4_k2_CES)[)
t—+00 k2 — kr2

= %(F(kr) dkré _ F(k,) efikré) [sign(é) — sign(% — cgrﬂ =0. (A.10)

Here, we have used the boundary conditiar2) and the symmetry relatiofi(k,) = F(—k,). Similar but lengthy
computations of the integréh.9) with the boundary conditiofA.3) in the regiont >> 1 prove that the boundary
conditions for the solution (¢, t) of Eq. (3.5)in the limitz > +o00 and& /¢ held constant is

RragSin (k& + Srad) H (cgrt — &), &> 1,
ui(§,1) - {O, £ < -1, (A.11)
whereR,aq is the radiation amplitude,
21| F (k)|
Riagg= —M8M——— A.12
a0 e sin(da — 89) (A12)
drad IS the radiation phase,
T
Srad = arg(F (ky)) + ds + a — -, (A.13)

2

andH (x) is the step function, i.e/ = 1 whenx > 0, andH = 0 otherwise.
We show that these results are consistent ®&is. (3.8) and (3.14)ndeed, computing the singular contribution
from the integralA.5) in the regioré « —1, we find by similar technique that

/ /fz(k_) :]2( ¢ = — 2L (F (k) € - Fik,) &), (A14)
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Matching this boundary condition withg. (2.18)in the regiont « —1, we find
|F (k)| = &R(é), arg(F (ky)) =m — 8. (A.15)
/3

Let us specify the inhomogeneous solutidli (¢; cgs, §)/dc at the minimal tail phasé = §s + 7 /2, then the
homogeneous eigenfunctign (¢) is excluded fron(2.16) and (A.5)sincey; = 0, see beloviEq. (2.19) Setting
the values = 8s + /2 in Eq. (A.15) we finally find fromEqgs. (A.12) and (A.13}hat

R(6s+1/2)

- = 2R(83), Srad = Oa,
SiN (82 — 89) (62) rad a

Rrad =

where we have used the relati(h19)

Appendix B

In this appendix, we use a local momentum conservation law to derive the dynamical equation for velduity
local momentum conservation law has the form

[%uz], + [UUyx — %uf + Ulyoox — Uy Uxxx + %u)z(x + %aou3 + oquPusy + %a3u4]x =0. (B.1)
IntegratingEq. (B.1)over|¢| ~ O(1) and substituting the perturbation expang(@r8)up to order Qe?), we derive
the following equation:

e d
(f UEsu1d5> %

2 1 2 15, 15 S
1| —SCESHY FutUgs — SULs + ULMIgEsE — UAsUAsEs T ULk =0. (B.2)
2 2 2 £——o00
The stationary solutionis(§) is given byEgs. (3.12) and (3.15and the oscillatory tail in front of the embedded
soliton is given byEgs. (3.8) and (3.14When those formulas are utilized, we get

/ Ugsu1dé = E, (B.3)

—00
and

[—3eesuf + uauise — Jug; + utuszees — uasusses + 3uieeli oo = P2 — DR?(a) = 31, (BA)
whereE andI” are defined irEgs. (3.18) and (3.19When relation$B.3) and (B.4)are substituted int&q. (B.2)
andec1(T) is replaced by:(¢) — ces (3.4), the dynamicaéquation (3.20)s reproduced.
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