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Summary. We study the instability of algebraic solitons for integrable nonlinear equa-
tions in one spatial dimension that include modified KdV, focusing NLS, derivative
NLS, and massive Thirring equations. We develop the analysis of the Evans function
that defines eigenvalues in the corresponding Lax operators with algebraically decay-
ing potentials. The standard Evans function generically has singularities in the essential
spectrum, which may include embedded eigenvalues with algebraically decaying eigen-
functions. We construct a renormalized Evans function and study bifurcations of em-
bedded eigenvalues, when an algebraically decaying potential is perturbed by a generic
potential with a faster decay at infinity. We show that the bifurcation problem for embed-
ded eigenvalues can be reduced to cubic or quadratic equations, depending on whether
the algebraic potential decays to zero or approaches a nonzero constant. Roots of the
bifurcation equations define eigenvalues which correspond to nonlinear waves that are
formed from unstable algebraic solitons.

Our results provide precise information on the transformation of unstable algebraic
solitons in the time-evolution problem associated with the integrable nonlinear equa-
tion. Algebraic solitons of the modified KdV equation are shown to transform to either
travelling solitons or time-periodic breathers, depending on the sign of the perturbation.
Algebraic solitons of the derivative NLS and massive Thirring equations are shown to
transform to travelling and rotating solitons for either sign of the perturbation. Finally, al-
gebraic homoclinic orbits of the focusing NLS equation are destroyed by the perturbation
and evolve into time-periodic space-decaying solutions.

1. Introduction

Nonlinear evolution equations in one and two spatial dimensions, which are integrable
by means of the inverse scattering transform method [AC91], typically have algebraic
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solitons as special solutions. Algebraic solitons decay to zero at infinity or approach
nonzero boundary values at an algebraic rate. Depending on properties of the nonlinear
equation, the solution evolves in time as a travelling wave, a travelling and rotating wave,
or a time-homoclinic orbit. Algebraic solitons are stable under the time evolution of the
nonlinear system if they are separated from the linear wave spectrum, as happens for
the KPI equation [PS00a]. Algebraic solitons are unstable if they are embedded into the
wave spectrum, as happens for the DSII equation [PS00b]. Stability of algebraic solitons
in the initial-value problem can be studied using the spectral analysis of Lax operators
associated with the integrable evolution equation.

In this paper, we consider integrable nonlinear evolution equations in one spatial
dimension [AC91] that have algebraic solitons. The list includes the modified Korteweg–
de Vries (KdV) equation:

ut + 6u2ux + uxxx = 0, u ∈ R; (1.1)

the focusing nonlinear Schrödinger (NLS) equation:

iut = uxx + 2|u|2u, u ∈ C; (1.2)

the derivative NLS equation:

iut = uxx + i
(|u|2u

)
x
, u ∈ C; (1.3)

and the massive Thirring model (MTM) system in characteristic coordinates:

ivt + w − 2|w|2v = 0, −iwx + v − 2|v|2w = 0, v, w ∈ C. (1.4)

Algebraic solitons occur in all the above nonlinear equations. Factoring out arbitrary
parameters related to translations in x and t and gauge invariance, the list of algebraic
solitons includes the travelling wave of the modified KdV equation (1.1) [O76], [PG97]:

u(x, t) = 4(x − 6t)2 − 3

4(x − 6t)2 + 1
; (1.5)

the homoclinic orbit of the focusing NLS equation (1.2) [KI78a], [EKK86]:

u(x, t) = e−2i t 4x2 + 16t2 + 16i t − 3

4x2 + 16t2 + 1
; (1.6)

the travelling and rotating wave of the derivative NLS equation (1.3) [KN78], [M78]:

u(x, t) = 4δe2iδ2(x+2δ2t) 4δ2(x + 4δ2t)+ i

(4δ2(x + 4δ2t)− i)2
; (1.7)

and the travelling and rotating wave of the MTM system (1.4) [KN77], [BPZ98]:

v(x, t) = 2δ

4δ2(x + τ t)− i
e2iδ2(x−τ t),

w(x, t) = − δ−1

4δ2(x + τ t)+ i
e2iδ2(x−τ t), τ = 1

4δ4
, (1.8)
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where δ is a parameter. All the above algebraic solutions are nonsingular for x ∈ R and
t ∈ R and are relevant for applications of solitary waves in various physical sciences. The
two solutions (1.5)–(1.6) satisfy the nonzero boundary conditions lim|x |→∞ |u|(x, t) = 1,
while the other two solutions (1.7)–(1.8) satisfy lim|x |→∞ |u|(x, t) = 0.

Nonlinear stability of algebraic solitons with respect to the time evolution of the
nonlinear equation is a difficult analytical problem (see [PG97]). It is typical for integrable
equations that algebraic solitons are weakly spectrally stable and squared eigenfunctions
of the Lax operator define a complete set of neutrally stable eigenfunctions for the
linearized evolution problem [AKNS74]. Nevertheless, algebraic solitons in nonlinear
equations cannot be stable from the energetic point of view (see [PAK96], [PG97] and
references therein). For instance, numerical simulations display a decay of algebraic
solitons in the NLS-type equations [PAK96] or transformation of algebraic solitons to
time-dependent breathers in the mKdV equation [PG97].

While a nonlinear analysis of instability of algebraic solitons has not yet been devel-
oped, we offer a simple analytical solution of this problem for the class of integrable
nonlinear evolution equations. Using the Lax operators for the integrable equations, we
develop the spectral analysis of algebraically decaying potentials that correspond to al-
gebraic solitons. We show that these potentials typically have embedded eigenvalues so
that the spectral data are singular across the continuous spectrum. When algebraically
decaying potentials are perturbed by variations in the initial data, embedded eigenval-
ues bifurcate from the continuous spectrum of the Lax operator as isolated eigenvalues.
Isolated eigenvalues correspond to proper (exponentially decaying) nonlinear waves of
the integrable equations. Therefore, by studying bifurcation equations for shifts of em-
bedded eigenvalues, we predict how algebraic solitons transform in the time evolution
of the integrable equations, such as the modified KdV, focusing NLS, derivative NLS,
and MTM system (1.1)–(1.4).

In particular, we show that algebraic solitons of the modified KdV equation (1.1)
transform to either travelling solitons or time-periodic breathers, depending on the sign
of perturbations (see also [PG97]). On the other hand, algebraic homoclinic orbits of
the focusing NLS equation (1.2) are destroyed by the perturbation. They transform
into time-periodic space-decaying solutions, similar to the transformation of homoclinic
space-periodic solutions into both time- and space-periodic solutions [AHS96]. Finally,
algebraic solitons of the derivative NLS equation (1.3) transform smoothly to travelling
and rotating solitons for either sign of the perturbation. The latter scenario holds also for
the MTM equation (1.4) and is explained by the integrability of the MTM equation. In
comparison, algebraic solitons are spectrally unstable in nonintegrable generalizations
of the MTM equation (see [BPZ98], [KS02]).

We also note that the perturbation theory for exponentially decaying solitons of the
nonlinear equations (1.1)–(1.4) is well studied (see [AH90], [CY03], [S02], [WM84]).
However, projection formulas of the perturbation theory diverge in the limit when an
exponentially decaying potential of the Lax operator transforms to an algebraically
decaying potential. Results of our analysis can be used for an improved perturbation
theory for algebraically decaying solitons.

The paper is organized as follows. We review the Lax operators for nonlinear evolution
equations (1.1)–(1.4) in Section 2. The Evans function for the AKNS spectral problem
with nonzero boundary values [AKNS74] is introduced in Section 3. The behavior of the
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Evans function for algebraically decaying potentials is studied in Section 4. Section 5
considers bifurcations of embedded eigenvalues for the algebraic solitons (1.5) and (1.6).
The Evans function for the KN spectral problem with zero boundary values [KN78] is
introduced in Section 6. The behavior of the Evans function and bifurcations of embedded
eigenvalues for the algebraic solitons (1.7)–(1.8) are studied in Section 7. Section 8 gives
a summary of our main results. Appendix A contains the proofs of three lemmas stated
in Section 4. Appendix B presents results from perturbation theory used in Section 5.

2. Lax Operators for Integrable Nonlinear Equations

We consider the standard Lax formulation of the inverse scattering transform [AC91],

ψx = L(λ; u)ψ, ψt = A(λ; u)ψ, x ∈ R, t ∈ R, (2.1)

where ψ ∈ C2 is an eigenfunction (eigenvector), λ ∈ C is a spectral parameter (eigen-
value), and L(λ; u) andA(λ; u) are 2-by-2 matrix operators that depend analytically on
λ and u = u(x, t). The spectral parameter λ is independent of t if and only if u(x, t)
solves the Lax equation that follows from the compatibility of (2.1):

∂L
∂t
− ∂A
∂x
+ LA−AL = 0. (2.2)

The modified KdV and NLS equations are related to the Ablowitz-Kaup-Newell-Segur
(AKNS) spectral problem [AKNS74], given by the operator L(λ; u) in the form

L(λ; u) = Q(u)+ λJ, (2.3)

where

Q(u) =
[

0 −u

ū 0

]
, J =

[
1 0
0 −1

]
. (2.4)

The other operator A(λ; u) in the Lax formalism (2.1) is given for the modified KdV
equation (1.1) by

A(λ; u) = −4λ3 J − 2λu2 J − 4λ2 Q(u)− 2λJ Q(ux )− 2Q(u3)− Q(uxx ), (2.5)

and for the focusing NLS equation (1.2) by

A(λ; u) = −2iλ2 J − i |u|2 J − 2iλQ(u)− i J Q(ux ). (2.6)

The derivative NLS and MTM system are related to the Kaup-Newell (KN) spectral
problem [KN78]:

L(λ; u) = λQ(u)− iλ2 J, (2.7)

where Q(u) and J are given by (2.4). The operator A(λ; u) in the Lax formalism (2.1)
is given for the derivative NLS equation (1.3) by

A(λ; u) = 2iλ4 J − iλ2|u|2 J − 2λ3 Q(u)− iλJ Q(ux )+ λ|u|2 Q(u), (2.8)
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and for the MTM system (1.4) by

A(λ; u) = i

4λ2
J − 2i |w|2 J + 1

2λ
Q

(
i
∫ ∞

x
u dx

)
, (2.9)

where

v = 1

2
u(x, t) exp

(
− i

2

∫ ∞
x
|u|2(x ′, t) dx ′

)
,

w = i

2

(∫ ∞
x

u(x ′, t) dx ′
)

exp

(
− i

2

∫ ∞
x
|u|2(x ′, t) dx ′

)
. (2.10)

The spectral analysis of Lax operators (2.3) and (2.7) depends on the localization of
the potential u(x). When the potential u(x) decays exponentially at infinity, the spectral
data include the continuous and discrete spectra [AKNS74]. The continuous spectrum
�con defines a continuous curve of the spectral parameter λ. The discrete spectrum �dis

consists of a finite number of isolated eigenvalues of finite multiplicity.
Isolated eigenvalues of the discrete spectrum correspond to zeros of the inverse trans-

mission coefficient a(λ) associated with the Jost eigenfunctions of the Lax operator.
The inverse transmission coefficient a(λ) is defined for λ ∈ �con. When it is extended
analytically into an appropriate domain of λ ∈ C [AKNS74], one can trace multiple
eigenvalues λ and their bifurcations as zeros of a(λ), taking account of their multiplicity.
It is typical for exponentially decaying potentials that no isolated eigenvalues may come
from λ = ∞ upon a small perturbation of u(x) [AKNS74].

A branch point or edge bifurcation occurs when new eigenvalues detach from the
branch points of λ ∈ �con. Since the inverse transmission coefficient a(λ) typically
diverges at the branch points [PKA98], a better characterization of the branch point
bifurcation is given by the Evans function E(λ) [KS98]. The Evans function E(λ) is
defined for λ ∈ C\�con as an intersection of unstable and stable manifolds. Zeros of
E(λ) define the number and location of isolated eigenvalues λ ∈ �dis, taking account
of their multiplicity. By the Gap Lemma [GZ98], [KS98], the Evans function E(λ) can
be continued across λ ∈ �con, such that zeros of E(λ) at the branch points characterize
branch point bifurcations [KS02].

If an exponentially decaying perturbation εU (x) is added to the exponentially de-
caying potential u(x), the Evans function E(λ; ε) remains analytic in both λ and ε.
The convergent Taylor series of E(λ; ε) in λ and ε describes perturbations of isolated
eigenvalues and branch point bifurcations as functions of ε [KS02]. If the potential u(x)
decays algebraically at infinity, the Gap Lemma fails and the Evans function E(λ; ε)
may have some singularities on λ ∈ �con [SS04]. In such cases, the spectral analysis crit-
ically depends on the class of algebraically decaying potentials u(x) and the perturbation
functions εU (x) [N86], [K88a], [K88b].

Algebraic solitons (1.5)–(1.8) are explicit examples of the algebraically decaying
potential u(x) in the spectral problems (2.3) and (2.7). Although the standard Evans
function E(λ) ≡ E(λ; u) is bounded for the exact algebraic soliton potential u(x)
on λ ∈ �con, a perturbation εU (x) typically gives rise to singularities of E(λ; ε) ≡
E(λ; u + εU ) at some points of λ ∈ �con as ε = 0.

In this paper we study algebraic potentials u(x) that exhibit embedded eigenvalues
for ε = 0 and address the following main question: How can we modify the Evans
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function E(λ; ε) so that it becomes a useful tool for the analysis of bifurcations of such
embedded eigenvalues when ε = 0? Technically, the paper develops rigorous methods
of the perturbation theory for Lax operators with algebraically decaying potentials,
treated in [PG97] only formally. There, an asymptotic multiscale expansion method
was used to study instability of algebraic solitons in the modified KdV equation (1.1),
without studies of convergence of asymptotic series and bounds on the error terms. Here,
we exploit the Implicit Function Theorem applied to the renormalized Evans function
Ê(λ; ε) and justify the formal asymptotic results of [PG97]. Our analysis relies on similar
results for the Schrödinger spectral problem with algebraically decaying potentials [N86],
[K88a], [K88b].

3. Evans Function for the AKNS Spectral Problem

We consider the AKNS spectral problem (2.3), when the potential u(x) satisfies nonzero
(normalized) boundary conditions:

lim
x→±∞ u(x) = 1. (3.1)

Using the transformation u(x) = 1 + w(x), we explicitly rewrite the AKNS spectral
problem in the form:

ψ ′1 = −(1+ w(x))ψ2 + λψ1,

ψ ′2 = (1+ w(x))ψ1 − λψ2. (3.2)

In the case w(x) ≡ 0, two fundamental solutions of the problem (3.2) exist for λ ∈
C\{±1} as follows:

ψ(x) = e±(λ)e±κ(λ)x , e±(λ) =
[
λ± κ(λ)

1

]
, κ(λ) =

√
λ2 − 1. (3.3)

The complex plane is decomposed as C = D+ ∪�con ∪D−, where

�con = {λ ∈ C: Re(κ(λ)) = 0} = �+ ∪ {λ ∈ iR} ∪ �−, (3.4)

�+ = {λ ∈ R: 0 < λ ≤ 1}, �− = {λ ∈ R: −1 ≤ λ < 0}, (3.5)

and

D± = {λ ∈ C: Re(κ(λ)) ≷ 0} = {λ: Re(λ) ≷ 0} \ �±. (3.6)

The decomposition of C into domains D+ and D− is shown schematically in Figure 1.
There are two branch points at λ = ±λb, λb = 1, where κ ′(±λb) = ∞, and one crossing
point at λ = λc = 0, where κ ′(λc) = 0. The stars show isolated eigenvalues of the
discrete spectrum λ = ±λp ∈ �dis. Due to the symmetry,

ψ1(x, λ) �→ ψ̄2(x,−λ̄), ψ2(x, λ) �→ −ψ̄1(x,−λ̄), (3.7)
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Fig. 1. Decomposition ofC into domainsD± for the AKNS spectral prob-
lem (3.2).

isolated eigenvalues λ ∈ �dis are symmetric with respect to the line Re(λ) = 0. We shall
hence consider eigenvalues in the domain λ ∈ D+ only, where Re (κ(λ)) > 0.

We define the weighted L1-space as

u ∈ L1
s (R):

∫ ∞
−∞
(1+ |x |)s |u(x)| dx <∞, (3.8)

such that L1
0 ≡ L1. By Proposition 8.1 from Coddington and Levinson [CL55, p. 92] (see

also Problem 29 on p. 104), the following result will be used throughout our analysis:

Lemma 3.1. Let a(x) be a solution of the system

a′(x) = (A + R(x)) a(x), a ∈ C2, (3.9)

where A is a constant matrix with distinct eigenvalues and R(x) ∈ L1(R). Then, there
exist two sets (a+1 , a+2 ) and (a−1 , a−2 ) of fundamental solutions of the system (3.9), such
that

lim
x→±∞ a±j (x) e−µj x = αj , j = 1, 2, (3.10)

where (µ1, µ2) and (α1,α2) are eigenvalues and eigenvectors of A, respectively.

Since the matrix A in the system (3.2) has two eigenvalues µ1,2 = ±κ(λ) = ±
√
λ2 − 1,

which are distinct for λ ∈ C\{±1}, the existence of fundamental solutions of the system
(3.2) follows by Lemma 3.1.
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Proposition 3.2. Letw ∈ L1(R) and λ ∈ C\{±1}. There exist two sets of fundamental
solutions φ±(x; λ) and ψ±(x; λ) of the AKNS problem (3.2), such that

lim
x→−∞φ

±(x; λ)e∓κ(λ)x = e±(λ), lim
x→+∞ψ

±(x; λ)e∓κ(λ)x = e±(λ). (3.11)

By linear independence of fundamental solutions, the two sets of solutions in Propo-
sition 3.2 are related for all λ ∈ C \ {±1} as follows:

φ+(x; λ) = a(λ)ψ+(x; λ)+ b(λ)ψ−(x; λ),
φ−(x; λ) = c(λ)ψ+(x; λ)+ d(λ)ψ−(x; λ), (3.12)

where (a, b, c, d) are suitable coefficients. If λ ∈ �con, the coefficients a(λ), b(λ),
c(λ), and d(λ) are referred to as scattering coefficients, while a(λ) is called the inverse
transmission coefficient. For λ ∈ C \ {±1}, these coefficients satisfy the constraint

a(λ)d(λ)− b(λ)c(λ) = 1, (3.13)

such that

ψ+(x; λ) = d(λ)φ+(x; λ)− b(λ)φ−(x; λ),
ψ−(x; λ) = −c(λ)φ+(x; λ)+ a(λ)φ−(x; λ). (3.14)

Indeed, the Wronskian of two solutions of the problem (3.2) is independent of x , so that
the Wronskian of φ+(x; λ) and φ−(x; λ) is evaluated by using the boundary conditions
(3.11) and the relations (3.12):

det(φ+(x; λ),φ−(x; λ)) = E0(λ) = E0(λ) (a(λ)d(λ)− b(λ)c(λ)) , (3.15)

where E0(λ) = det(e+(λ), e−(λ)) = 2κ(λ). The discrete spectrum λ ∈ �dis of the
AKNS problem (3.2) in the domain λ ∈ D+ is defined by the zeros of E(λ), where

E(λ) = det(φ+(x; λ),ψ−(x; λ)) = 2κ(λ)a(λ), Re (κ(λ)) > 0, (3.16)

which follows from the Wronskians. The function E(λ) is referred to as the Evans
function. When E(λ) = 0 at λ ∈ �dis ∈ D+, the eigenvector ψ(x) = c0φ

+(x; λ) =
d0ψ

−(x; λ), where c0, d0 = 0, decays exponentially as |x | → ∞.
A standard analysis shows that the functions a(λ) and E(λ) are analytic in λ ∈ D+ off

the continuous spectrum (see Proposition 2.7 in [KS98]). On the continuous spectrum
�con, there is a branch cut on λ ∈ �+ ∪�− between the two branch points λ = ±1. Due
to the symmetry, we shall consider only the branch cut �+ and the branch point λ = 1.
We shall define a two-sheet Riemann surface near λ = 1 as follows:

Re(κ(λ)) > 0: −π < arg(λ− 1) < π, (3.17)

Re(κ(λ)) < 0: π < arg(λ− 1) < 3π. (3.18)

The two sheets (3.17) and (3.18) are connected at λ ∈ �+, where arg(λ − 1) = π . Let
k, 0 ≤ k < 1 be the parameter, such that λ = √1− k2 and κ(λ) = ik on λ ∈ �+. By
Proposition 3.2, the eigenvectors φ±(x; k) and ψ±(x; k) of the AKNS problem (3.2)
exist for w ∈ L1(R) and λ ∈ �+ \ {1}, when 0 < k < 1. By standard Green’s function
methods [AC91, p. 106], Volterra integral equations hold for these eigenvectors.
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Proposition 3.3. Let w ∈ L1(R) and 0 < k < 1. There exist two sets of solutions
φ±(x; k) and ψ±(x; k) of the AKNS problem (3.2) with λ = √1− k2, such that

φ±(x; k) = e±(k)e±ikx −
∫ x

−∞
K (x, s; k)φ±(s; k) ds,

ψ±(x; k) = e±(k)e±ikx +
∫ ∞

x
K (x, s; k)ψ±(s; k) ds, (3.19)

where e±(k) = (
√

1− k2 ± ik, 1)T and

K (x, s; k) =
(

w̄(s) w(s)
√

1− k2

w̄(s)
√

1− k2 w(s)

)
sin k(x − s)

k

+
(

0 w(s)

−w̄(s) 0

)
cos k(x − s). (3.20)

Furthermore, the integral equations also hold for φ+(x; k) and ψ−(x; k) provided that
Im(k) < 0, i.e. λ ∈ D+.

The Evans function E(λ) is defined on the first sheet (3.17) of the Riemann surface,
where Re (κ(λ)) > 0. Across λ ∈ �+, we fix arg(λ − 1) = π and define the function
G(k) from the matching condition:

G(k) = E(λ) = det
(
φ+(x; k),ψ−(x; k)) , λ =

√
1− k2, 0 < k < 1. (3.21)

By Proposition 3.3, we have 0 ≤ |G(k)| <∞ for 0 < k < 1. When G(k) vanishes for
some k = k0, 0 < k0 < 1, the point k = k0 is referred to as an embedded resonance.
Embedded resonances will not be studied here, since they are not generic for algebraic
potentials. When G(0) exists and G(0) = 0, the point k = 0 is referred to as a branch
point resonance. We study the point k = 0 in the next section.

4. Singularities of G(k) as k → 0

We focus here on the behavior of the function G(k) as k → 0, depending on the power
of the algebraic decay in the potential function w(x):

lim
x→±∞ |x |

pw(x) = b±∞, Re(b−∞) = Re(b+∞) ≡ b∞, (4.1)

where 0 < |b∞| <∞ and p > 1. By the statement k → 0, we mean that k approaches
the origin along any curve in the closed complex lower k half-plane. Note that this
corresponds to λ approaching the point λ = 1 along any curve in D+. Algebraically
decaying solitons were found in [O76], [KI78a] for p = 2 and b∞ = −1. We will be
working only on x > 0. A similar analysis holds for x < 0.

Definition 4.1. If there exists an L2-eigenvector ψ(x) of the AKNS problem (3.2) for
λ ∈ �+\{1}, the point λ is referred to as an embedded eigenvalue. If there exists an
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L2-eigenvector ψ(x) of the AKNS problem (3.2) for λ = 1, the point λ = 1 is referred
to as a branch point eigenvalue.

By Proposition 3.3, the nondecaying fundamental solutionsφ±(x; k) exist for 0 < k < 1,
such that no embedded eigenvalues may exist on �+\{1}. On the other hand, Proposition
3.3 does not rule out a branch point eigenvalue at λ = 1. We show that the branch point
eigenvalue may exist only if the algebraically decaying potentialw(x) has the decay rate
(4.1) with 1 < p ≤ 2 and b∞ < 0.

Lemma 4.2. Let w(x) satisfy (4.1). The point λ = 1 is not a branch point eigenvalue
of the AKNS problem (3.2) if p > 2 or if p = 2 and b∞ > − 3

8 . The point λ = 1 can be
a branch point eigenvalue if p = 2 and b∞ < − 3

8 .

Proof. Using variables ϕ1 = ψ1 + ψ2 and ϕ2 = ψ1 − ψ2, we transform the AKNS
problem (3.2) with λ = 1 to the form

ϕ′1 = 2ϕ2 − w−(x)ϕ1 + w+(x)ϕ2,

ϕ′2 = −w+(x)ϕ1 + w−(x)ϕ2, (4.2)

where

w±(x) = w(x)± w(x)
2

.

Let x ≥ x0 > 0, and define

w(x) = b(x)

x p
, ϕ1 = a1(x)

xq
, ϕ2 = a2(x)

xq+1
, (4.3)

where p > 1 and q > 0. The system (4.2) can be rewritten in the form

x
da
dx
= (A + R(x)) a, (4.4)

where a = (a1, a2)
T and

A =
(

q 2

0 q + 1

)
, R(x) = 1

2x p−2

(
(b̄(x)− b(x))/x (b̄(x)+ b(x))/x2

−(b(x)+ b̄(x)) (b(x)− b̄(x))/x

)
.

(4.5)
The system (4.4) can be mapped to the form (3.9) with the transformation x = ez . The
eigenvalues of A are distinct, while R̃(z) = R(ez) is in L1(z ≥ z0) for p > 2. By Lemma
3.1, there exist two solutions of the system (4.4), such that

lim
x→+∞ a1(x)x

−q =
(

1
0

)
, lim

x→+∞ a2(x)x
−q−1 =

(
2
1

)
.

These two solutions give nondecaying eigenvectors of the system (4.2) as x →+∞:

ϕ1(x)→
(

1
0

)
, ϕ2(x)→

(
2x
1

)
. (4.6)
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Therefore, no decaying bound state ψ(x) of the AKNS problem (3.2) exists for p > 2.
When p = 2, the matrices A and R(x) can be reshuffled as follows:

Â =
(

q 2
−b∞ q + 1

)
, (4.7)

R̂(x) = 1

2x

(
(b̄(x)− b(x)) (b̄(x)+ b(x))/x

x(2b∞ − b(x)− b̄(x)) (b(x)− b̄(x))

)
. (4.8)

It is clear that x(2b∞ − b(x)− b(x)) = o(x) as x →+∞. Then, conditions of Lemma
3.1 are satisfied again and there exist two solutions of the problem (4.4), such that

lim
x→+∞ a1(x)x

−(q+α+) =
(

2
α+

)
, lim

x→+∞ a2(x)x
−(q−α−) =

(
2
−α−

)
,

where

α± =
√

1− 8b∞ ± 1

2
.

These two solutions correspond to eigenvectors of the system (4.2) as x →+∞:

ϕ1(x)→
(

2xα+

α+xα−

)
, ϕ2(x)→

(
2x−α−
−α−x−α+

)
. (4.9)

The decaying bound state ψ(x) of the AKNS problem (3.2) may exist only for b∞ < 0,
when sign(α+) = sign(α−). When it exists, the decaying bound state ψ(0)(x) has the
asymptotic form as x →+∞:

ψ(0)(x)→ 1

xq

(
1
1

)
(1+ o(1))− q

2xq+1

(
1
−1

)
(1+ o(1)) , (4.10)

where q = α− and q+1 = α+. The bound stateψ(0)(x) belongs to L2(R), when q > 1
2 ,

which is equivalent to b∞ < − 3
8 .

Lemma 4.3. Let w(x) satisfy (4.1) and w(k)(x) = O(|x |−p−k) as x → ±∞ for k =
1, 2, 3, 4. The point λ = 1 can be a branch point eigenvalue of the AKNS problem (3.2)
if 1 < p < 2 and b∞ < 0.

Proof. When p < 2, the method of Lemma 4.2 is not applicable, since the matrix R(x)
in (4.5) diverges as x →+∞. We use an equivalent transformation of the system (4.2):

√
w+ϕ1 = −φ′(x)−

w′+φ(x)
2w+

+ w−φ(x), ϕ2 = √w+φ(x). (4.11)

Then the system (4.2) reduces to a scalar problem for φ(x):

φ′′ + Q(x)φ = 0, (4.12)
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where

Q(x) = w+(2+ w+)+
w′′+
2w+
− 3

4

(
w′+
w+

)2

− w′− − w2
− +

w′+w−
w+

. (4.13)

When 1 < p < 2 and under assumptions on w(x), the dominant term in the potential
Q(x) as x → +∞ is Q(x) → 2b∞/x p. Therefore, the potential Q(x) satisfies the
conditions

Q1/2(x) /∈ L1(R), Q−1/4(x)
[
Q−1/4(x)

]′′ ∈ L1(R). (4.14)

By Theorem 2.5.1 in [E89], there exist two solutions of the problem (4.12) with the
limits as x →+∞:

φ(x)→ Q−1/4(x) exp

(
±
∫ x

x0

√
−Q(x ′) dx ′

)
. (4.15)

When b∞ < 0, −Q(x) is positive for large x ≥ x0 > 0 and the exponential factor in
(4.15) diverges. In this case, the decaying bound state ψ(x) of the AKNS problem (3.2)
may exist. When it exists, the decaying bound state ψ(0)(x) has the exponential factor
in the asymptotic form as x →+∞,

ψ(0)(x)→ x p/4e−axr

[(
1
1

)
(1+ o(1))− ar

2x p/2

(
1
−1

)
(1+ o(1))

]
, (4.16)

where

r = 1− p

2
, a =

√
2|b∞|
r

.

When b∞ > 0, the exponential factor in (4.15) oscillates and no decaying bound states
exist.

Lemma 4.4. Let w(x) satisfy (4.1) with p = 2 and b∞ < − 3
8 . Let λ = 1 be a branch

point eigenvalue of the AKNS problem (3.2). The geometric multiplicity of λ = 1 is one
and the algebraic multiplicity of λ = 1 is finite.

Proof. Only one decaying bound state ψ(0)(x) may exist for λ = 1, since the other,
linearly independent solution of the problem (3.2) grows in x , such that the Wronskian
of the two fundamental solutions is a nonzero constant. If λ = 1 is a multiple eigenvalue,
there exist bound states ψ(n)(x) with n > 0 of the generalized problem,

ψ
(n)′
1 = −(1+ w(x))ψ(n)

2 + ψ(n)
1 + ψ(n−1)

1 (x),

ψ
(n)′
2 = (1+ w̄(x))ψ(n)

1 − ψ(n)
2 − ψ(n−1)

2 (x), (4.17)

where n = 1, . . . , N . We show that N <∞. The decaying bound state ψ(0)(x) has the
limiting behavior (4.10). It follows from the balance of algebraically decaying terms in
the problem (4.17) that the nonhomogeneous solutions for ψ(n)(x) with n > 0 has the
asymptotic form, as x →+∞,

ψ(n)(x)→ cn

xq−2n

(
1
1

)
(1+ o(1))+ (2n − q)cn

2xq−2n+1

(
1
−1

)
(1+ o(1)) , (4.18)
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where cn satisfies the recurrence relation:

cn = − cn−1

n(2q − 2n + 1)
, c0 = 1, n ≥ 1, (4.19)

and we have used that q(q + 1) + 2b∞ = 0. The generalized eigenfunctions ψ(n)(x)
decay algebraically when q > 2n. Under this condition, the recurrence relations (4.19)
are nonsingular for any n. Therefore, given any q <∞, there exists N <∞, such that
solutions of (4.17) with n = N + 1 become nondecaying as x →+∞.

We now consider the behavior of G(k) as k → 0 (Im(k) ≤ 0), depending on the
power p > 1 of the algebraically decaying potential w(x) in (4.1). When p > 3, we
prove that G(k) is continuously differentiable as k → 0 in C−. When 2 < p < 3, we
prove that G(k) is continuous as k → 0, but G ′(k) has a power singularity as k → 0 in
C−. When p = 2, the point λ = 1 can be an embedded eigenvalue and G(0) does not
generally exist. We prove however that G(k) can be replaced by a function Ĝ(k), which
is continuous at k = 0. We remark that it suffices to prove these results for real positive
k as k → 0+. This follows from the fact that for k → 0− the proofs are essentially the
same so that we can appeal to a Phragmén-Lindelöf theorem (see p. 237 in [E66]) and
conclude that the results hold when k → 0 from the lower half-plane.

Lemma 4.5. The function G(k) is continuous at k = 0 if w(x) ∈ L1
1(R) and is contin-

uously differentiable at k = 0 if w(x) ∈ L1
2(R).

Proof. Neumann series expansions for the nonhomogeneous Volterra equations (3.19)
with the kernel (3.20) converge to a unique solution if w(x) ∈ L1

1(R) [N86]. The
solutionsφ±(x; k) andψ±(x; k) are continuous functions of the parameter k. Therefore,
the function G(k), defined in (3.21), is a continuous function of k, including the limit
k → 0+. Similarly, the Neumann series expansions for the k-derivative of the solutions
in (3.19) converge if w(x) ∈ L1

2(R), such that G ′(k) is continuous at k = 0.

Lemma 4.6. Letw(x) satisfy (4.1) with 2 < p < 3. The function G(k) has the leading-
order behavior

G(k) = G(0)
(
1+ αb∞k p−2

)+ o(k p−2), (4.20)

where α = 2p �(1− p) e
π i(p−2)

2 .

Lemma 4.7. Let w(x) satisfy (4.1) with p > 2. Let λ = 1 be a branch point resonance
such that G(0) = 0 and ψ−(x; 0) = γφ+(x; 0), γ = 0. The function G(k) has the
leading-order behavior

G(k) = ik
1+ γ 2

γ
+ o(k). (4.21)

The following Schrödinger equation plays a role in the next lemma:

− χ ′′ +U (x)χ = k2χ, (4.22)
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where U (x) = −2w(x) − w2(x) + iw′(x) and w(x) is assumed to be real-valued. We
shall prove that for k = 0, this equation has two solutions, F+(x) and F−(x), defined
by

F±(x) = ψ̂±1 (x)+ iψ̂±2 (x)
(1+ i)

, (4.23)

where

ψ̂+1,2 = lim
k→0

kqψ−1,2(x; k), ψ̂−1,2 = lim
k→0

kqφ+1,2(x; k),

q is a positive root of q(q + 1) = 2|b∞| and the solutions φ+(x; k) and ψ−(x; k) are
defined in Proposition 3.3. It follows that the vector (ψ̂±1 , ψ̂

±
2 )

T solves the AKNS system
(3.2) with λ = 1.

Lemma 4.8. Let w(x) be real, satisfy (4.1) with p = 2 and b∞ < − 3
8 , and w′(x) ∈

L1
1(R). Let q be the positive root of q(q + 1) = 2|b∞|, so that q > 1

2 . Then, the

renormalized function Ĝ(k) = k2q G(k) is continuous at k = 0 and has the leading-
order behavior

Ĝ(k) = α0 + o(1), α0 = W [F+, F−], (4.24)

where W [F+, F−] is the Wronskian of F+(x) and F−(x), defined in (4.22)–(4.23).
Moreover, λ = 1 is a branch point eigenvalue if and only if α0 = 0, in which case there
exists γ = 0 such that F−(x) = γ F+(x), while Ĝ(k) has the leading-order behavior

Ĝ(k) = α2k2 + o(k2), α2 = −
∫ ∞
−∞

F+(x)F−(x) dx . (4.25)

Proofs of Lemmas 4.6–4.8 are given in Appendix A. When p = 2 and b∞ < − 3
8 ,

the branch point bifurcations are studied in Section 5 with the renormalized function
Ĝ(k). We note that the coefficient α2 in (4.25) can be zero, because F+(x) need not be
real-valued. We also note that the statement of Lemma 4.8 can be extended to the case
of complex-valued potentials w(x), but the proof becomes fairly long.

5. Examples of Branch Point Bifurcations

We consider two families of exponentially decaying potentials:

w = wp(x) = 2σ p2√
1+ p2 cosh(2px)+ σ

, (5.1)

where σ = ±1 and p > 0. The two families correspond to the solitons of the modified
KdV equation (1.1) [PG97] and to the time-periodic orbits of the focusing NLS equation
(1.2) [AH90]. (Homoclinic orbits in [AH90] become the time-periodic orbits (5.1) after
parameters of solutions are extended to complex values.) The fundamental solutions of
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the AKNS problem (3.2) with the potentials (5.1) take the explicit form (see [PG97])

φ+(x; λ) = eκ(λ)x

κ(λ)+ p

[(
κ(λ)− σ

√
1+ p2

2p
sinh(2px)wp(x)

)
e+(λ)

− 1

2
wp(x)ξ+(λ)

]
, (5.2)

ψ−(x; λ) = e−κ(λ)x

κ(λ)+ p

[(
κ(λ)+ σ

√
1+ p2

2p
sinh(2px)wp(x)

)
e−(λ)

+ 1

2
wp(x)ξ−(λ)

]
, (5.3)

where

e±(λ) =
[
λ± κ(λ)

1

]
, ξ±(λ) =

[
1

−λ∓ κ(λ)
]
, (5.4)

and κ(λ) = √λ2 − 1. The inverse transmission coefficient a(λ) and the Evans function
E(λ) can be found from (3.12), (3.16) and (5.2)–(5.3) as follows:

a(λ) = κ(λ)− p

κ(λ)+ p
, E(λ) = 2κ(λ)

κ(λ)− p

κ(λ)+ p
. (5.5)

The Evans function E(λ) has a simple zero inD+ at λ = λp =
√

1+ p2, where a simple
eigenvalue resides. It has also a zero at the branch point λ = λb = 1, where the branch
point resonance resides, according to Lemma 4.7 (γ = −1 in (4.21)).

We consider deformations of the exponentially decaying potential wp(x) of the form
wε(x) = wp(x)+εW (x), where ε is a small real parameter and W (x) = Wr (x)+iWi (x)
is a smooth, exponentially decaying function on x ∈ R. The structure of the perturbed
Evans function E(λ; ε) = E(λ;wε) and the changes in the discrete spectrum of the
AKNS problem (3.2) are described in the following two propositions.

Proposition 5.1. Let E(λ) ≡ E(λ; 0) be given by (5.5) such that E(λp) = 0. There
exist ε0 > 0 and C > 0 such that the function E(λ; ε) has a simple zero at λ = λp(ε) in
D+, where 0 ≤ |λp(ε) − λp| ≤ Cε0 and 0 ≤ |ε| ≤ ε0. The leading-order behavior for
λp(ε) is given explicitly as

λp(ε) = λp

(
1+ ε

2p

∫ ∞
−∞

wp(x)Wr(x) dx

)
+ iε

4p

∫ ∞
−∞

wp(x)W
′
i (x) dx + o(ε). (5.6)

Proof. By Lemmas B.1 and B.3 of Appendix B, the function E(λ; ε) is continuously
differentiable near λ = λp and ε = 0 whenever wε ∈ L1(R), such that

E(λ; ε) = ∂E

∂λ
(λp; 0)(λ− λp)+ ∂E

∂ε
(λp; 0)ε + ER(λ; ε), (5.7)
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where ER(λ; ε) is the remainder term. The root λ = λp(ε) of the equation E(λ; ε) = 0
has the leading-order behavior

λp(ε)− λp = −
∂E
∂ε
(λp; 0)

∂E
∂λ
(λp; 0)

ε + o(ε). (5.8)

Using (B.9) and (B.10) of Appendix B, we compute explicitly that

∂E

∂λ
(λp; 0) =

√
1+ p2

p
, (5.9)

and

∂E

∂ε
(λp; 0) = −1+ p2

2p2

∫ ∞
−∞

wp(x)Wr(x) dx

− i
√

1+ p2

4p2

∫ ∞
−∞

wp(x)W
′
i (x) dx . (5.10)

The leading-order behavior (5.6) for λp(ε) follows from (5.8)–(5.10).

Proposition 5.2. Let E(λ) ≡ E(λ; 0) be given by (5.5) such that E(λb) = 0. There
exist ε0 > 0 and C > 0 such that the function E(λ; ε) has a simple zero at λ = λb(ε) in
D+, where 0 < |λb(ε)− λb| ≤ Cε2

0 for 0 < |ε| ≤ ε0, if

− π
2
< arg

(
ε

∫ ∞
−∞

[(
p2 − wp(x)

)
Wr(x)− i

2
wp(x)W

′
i (x)

]
dx

)
<
π

2
. (5.11)

The leading-order behavior for λb(ε) =
√

1+ κ2
b (ε) is given explicitly by

κb(ε) = ε

p2

∫ ∞
−∞

(
p2 − wp(x)

)
Wr(x) dx − iε

2p2

∫ ∞
−∞

wp(x)W
′
i (x) dx + o(ε). (5.12)

Proof. The Evans function E(λ; ε) is continued across the line segment λ ∈ �+ by the
function G(k, ε) in (3.21). Eigenvalues inD+ correspond to zeros of G(κ; ε) on the first
sheet of the Riemann surface (3.17):

G(κ; ε) = E(
√

1+ κ2; ε), −π
2
< arg(κ) <

π

2
. (5.13)

Using (5.5), we have an explicit expression for G(κ; 0),

G(κ; 0) = 2κ
κ − p

κ + p
, (5.14)

which shows a simple zero at κ = 0. By Lemma 4.5, the function G(κ; ε) is continuously
differentiable in κ near κ = 0 whenever wε ∈ L1

2(R). By Corollary B.4 of Appendix B,
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the function G(κ; ε) is entire in ε near ε = 0 whenever wε ∈ L1
1(R). By the Implicit

Function Theorem, the zero λb(ε) =
√

1+ κ2
b (ε) has the leading-order behavior:

κb(ε) = −
∂G
∂ε
(0; 0)

∂G
∂κ
(0; 0)ε + o(ε), −π

2
< arg(κb(ε)) <

π

2
. (5.15)

We compute explicitly from (5.14) and (B.10) of Appendix B that

∂G

∂κ
(0, 0) = −2, (5.16)

and

∂G

∂ε
(0, 0) = 2

p2

∫ ∞
−∞

(
p2 − wp(x)

)
Wr(x) dx − i

p2

∫ ∞
−∞

wp(x)W
′
i (x) dx . (5.17)

Under the constraint (5.11), the zero of G(κ, 0) shifts to the first sheet of the Riemann
surface, such that the branch point resonance becomes a simple isolated eigenvalueλb(ε),
with the leading-order behavior given by (5.12).

The family of exponentially decaying potentials (5.1) with σ = −1 converges as
p→ 0 to the algebraically decaying potential,

w0(x) = − 4

1+ 4x2
. (5.18)

The special solution (5.18) corresponds to the algebraic soliton in the modified KdV
equation (1.1) [PG97] and to the algebraic time-homoclinic orbit in the focusing NLS
equation (1.2) [EKK86]. The two fundamental solutions of the AKNS problem follow
from (5.2)–(5.3) in the limit p→ 0 for σ = −1:

φ+(x; λ) = 1

κ(λ)
eκ(λ)x

[
(κ(λ)+ xw0(x)) e+(λ)− 1

2
w0(x)ξ+(λ)

]
, (5.19)

ψ−(x; λ) = 1

κ(λ)
e−κ(λ)x

[
(κ(λ)− xw0(x)) e−(λ)+ 1

2
w0(x)ξ−(λ)

]
. (5.20)

The fundamental solutions φ+(x; λ) and ψ−(x; λ) diverge at the branch point λ = 1.
These singularities indicate that λ = 1 is a branch point eigenvalue with bound state
ψ(0)(x) given by

ψ(0)(x) =
(

2x − 1
2x + 1

)
w0(x). (5.21)

The bound state ψ(0)(x) decays algebraically and has q = 1 in (4.10). These results are
in agreement with Lemmas 4.2 and 4.4, since the potentialw0(x) has the algebraic decay
(4.1) with p = 2 and b∞ = −1. The inverse transmission coefficient a(λ) and the Evans
function E(λ) for the algebraically decaying potential w0(x) take the explicit form

a(λ) = 1, E(λ) = 2κ(λ). (5.22)
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We regularize the Evans function E(λ; ε) according to Lemma 4.8:

Ê(λ; ε) = κ2(λ)E(λ; ε). (5.23)

By using the correspondence (4.23), we find that

F±(x) = ±2

1+ 2i x
,

such that γ = −1 and α2 = 0 in the integral (4.25). The renormalized Evans function
Ê(λ; ε) has a triple zero in the variable

√
λ− 1 atλ = 1 and ε = 0. The triple zero defines

the algebraic structure of the branch point resonance and eigenvalue. The structure of
the perturbed function Ê(λ; ε) = E(λ;wε) and the changes in the discrete spectrum of
the AKNS problem (3.2) are described in the following proposition.

Proposition 5.3. Let Ê(λ) = Ê(λ; 0) be given by (5.22) and (5.23), such that Ê(λb) =
0. Let W (x) be real and W (x),W ′(x) ∈ L1

2(R). If

ε

∫ ∞
−∞

w0(x)W (x) dx > 0, (5.24)

there exist ε0 > 0 and C > 0 such that the function Ê(λ; ε) has a simple zero at
λ = λb(ε) in D+, where 0 < |λb(ε)− λb| ≤ Cε2/3

0 and 0 < |ε| ≤ ε0. If

ε

∫ ∞
−∞

w0(x)W (x) dx < 0, (5.25)

there exist ε0 > 0 and C > 0 such that the function Ê(λ; ε) has a pair of simple zeros at
λ = λc1(ε) and λ = λc2(ε) inD+, where 0 < |λc1,2(ε)− λb| ≤ Cε2/3

0 and 0 < |ε| ≤ ε0.

Proof. We need to study the equation

Ĝ(κ; ε) = 0,

which we write as

Ĝ(κ; ε) = Ĝ(κ; 0)+ ∂Ĝ

∂ε
(0; 0)ε +

(
∂Ĝ

∂ε
(κ; 0)− ∂Ĝ

∂ε
(0; 0)

)
ε + ε2 R̂(κ; ε), (5.26)

thereby defining the remainder term R̂(κ; ε). Note that Ĝ(κ; ε) is an entire function of
ε (see the proof of Lemma B.3 for a justification) so that ε2 R̂(κ; ε) comprises all the
terms whose orders are quadratic or higher in ε. Here

Ĝ(κ; 0) = 2κ3, (5.27)

and

∂Ĝ

∂ε
(0; 0) = −2

∫ ∞
−∞

w0(x)W (x) dx . (5.28)
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We seek solutions of the form

κ(ε) = κb(ε) = α1/3ε1/3(1+ η)1/3, α =
∫ ∞
−∞

w0(x)W (x) dx, (5.29)

and we show below that η = η(ε) → 0 as ε → 0. There are three complex values of
α1/3. The following reasoning applies to each choice of value separately. Inserting the
ansatz (5.29) in (5.26) gives

2αη = −
(
∂Ĝ

∂ε
(α1/3ε1/3(1+ η)1/3; 0)− ∂Ĝ

∂ε
(0; 0)

)
−ε R̂(α1/3ε1/3(1+η)1/3; ε). (5.30)

By Lemma B.6, the derivative with respect to η of the right-hand side goes to zero as
ε → 0; note that ∂ R̂(κ; ε)/∂κ = o(1/κ) in view of Lemma B.6 and (5.26). Therefore by
the Implicit Function Theorem (or a direct contraction mapping argument) the equation
(5.30) has a unique solution η(ε) such that η(ε) → 0 as ε → 0. When the solutions
κ(ε) exist in−π

2 < arg(κ(ε)) < π
2 , they correspond to eigenvalues of the problem (3.2).

Under the constraint (5.24), only one zero corresponds to a simple isolated eigenvalue
λb(ε) inD+. Under the constraint (5.25), two zeros correspond to a pair of simple isolated
eigenvalues λc1(ε) and λc2(ε) in D+.

In applications to the modified KdV equation (1.1), the leading-order behavior (5.6)
with Wr(x) ≡ W (x) and Wi(x) = 0 was obtained in [PG97] by means of a formal
perturbation series expansion. The real-valued eigenvalue λp(ε) increases under the
perturbation εW (x) if δP = ε ∫∞−∞wp(x)W (x) dx > 0 and decreases if δP < 0. The
correction term δP is related to the first variation of the momentum P = ∫∞−∞(u−1)2 dx
of the modified KdV equation (1.1), evaluated at u = 1+ wp(x)+ εW (x).

The branch point bifurcation, given in Proposition 5.2, was not studied previously.
Numerical results clearly display (see Fig. 1 in [PG97]) the second real-valued eigenvalue
λb(ε) bifurcating under the perturbation εW (x). Since p2 − wp(x) > 0 for either sign
σ = ±1, it follows from (5.11) that branch point bifurcation always takes place for
εW (x) > 0, when arg(κb(ε)) = 0. The new eigenvalue λb(ε) moves to larger positive
values ofλ in the domainD+. Whenσ = −1 and δP < 0, the first eigenvalueλp(ε) shifts
to smaller positive values of λ in the domain D+. As ε increases, the two eigenvalues
λp(ε) and λb(ε) coalesce and then split into a complex pair of eigenvalues in D+ (see
Fig. 1 in [PG97]). The branch point bifurcation does not take place for εW (x) < 0,
when arg(κb(ε)) = π .

The branch point bifurcation, given in Proposition 5.3, was analyzed in [PG97],
where the cubic equation (5.29) was found with a heuristic asymptotic method. We
note that the number of eigenvalues of the discrete spectrum �dis changes as a result of
the branch point bifurcation. In the case of (5.24), when arg(κb(ε)) = 0, the discrete
spectrum has only one real-valued eigenvalue λb(ε) in D+, while in the case of (5.25),
when arg(κb(ε)) = ±π /3, it has two complex-valued eigenvalues, λc1 = λc(ε) and
λc2 = λ̄c(ε) in D+. In the marginal case

∫∞
−∞w0(x)W (x) dx = 0, the branch point

bifurcation may occur at higher orders of ε.
We illustrate the transformation of algebraic solitons of the modified KdV equation

in Figure 2, which shows two numerical computations of the initial-value problem:

wt + 12wwx + 6w2wx + wxxx = 0, w(x, 0) = −4(1+ ε)
1+ 4x2

. (5.31)
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Fig. 2. Transformation of the perturbed algebraic soliton in the modified KdV
equation (5.31) with (a) ε = 0.1 and (b) ε = −0.1.
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When ε = 0, the algebraic soliton (5.18) is an exact solution of (5.31). When ε > 0, the
perturbed algebraic soliton transforms to a travelling soliton that corresponds to a single
real-valued eigenvalue λb(ε); see Fig. 2(a). When ε < 0, the perturbed algebraic soliton
transforms to a time-periodic breather that corresponds to a pair of complex-valued
eigenvalues λc1,2(ε); see Fig. 2(b).

In applications to the focusing NLS equation (1.2), the potential u(x) is complex-
valued, and therefore Wi(x) = 0. As a result, the eigenvalues λp(ε) and λb(ε) for the
exponentially decaying potential (5.1) move according to the balance between Wr(x)
and Wi(x). In general, the two eigenvalues become complex and do not coalesce for
larger values of ε. While the recent works [AH90], [AHS96] addressed perturbations
of time-homoclinic orbits, which are periodic functions of x , we have considered here
the time-periodic orbits, which are exponentially decaying functions of x . Propositions
5.1 and 5.2 describe the transformation of the discrete spectrum of the AKNS spec-
tral problem associated with the time-periodic, space-decaying solutions of the NLS
equation.

For the algebraically decaying potential (5.18), the branch point bifurcation and the
new eigenvalue λb(ε) depend again on the balance between Wr(x) and Wi(x). Either one
eigenvalue λb(ε) or two eigenvalues λc1(ε), λc2(ε) generally bifurcate from the branch
point λ = 1 under a complex-valued perturbation εW (x). These perturbation results
describe the transformation of the algebraic time-homoclinic orbit (1.6) to the time-
periodic space-decaying solutions of the focusing NLS equation (1.2). The two different
scenarios for this transformation generalize those for the time-homoclinic space-periodic
orbits (see Fig. 2 in [AHS96]). According to [AHS96], the time-homoclinic orbits trans-
form to time-periodic solutions of the focusing NLS equation, such that perturbations of
opposite signs result in time-periodic solutions of different periods and different spatial
symmetry.

The analysis of branch point bifurcations for exponentially and algebraically decay-
ing potentials can be extended to the KN spectral problem (2.7). Two branch points of
the continuous spectrum �con exist at λ = ±i . The discrete spectrum �dis is located
in the intervals Re(λ) = 0 and 0 < |Im(λ)| < 1. The shift and bifurcations of eigen-
values of the discrete spectrum were studied in [HKM92a], [HKM92b], in the context
of the derivative NLS equation (1.3). It was shown that two simple eigenvalues can
collide to form a double eigenvalue that in turn splits into a pair of complex eigenval-
ues. Algebraic solitons of the KN spectral problem (2.7) were explicitly constructed
in [KI78b], [M89]. The branch point bifurcations for algebraic solitons are expected
to result in a similar cubic equation (5.29), since there exists an asymptotic correspon-
dence between solutions of the modified KdV equation (1.1) and the derivative NLS
equation (1.3) [HKM92b].

6. Evans Function for the KN Spectral Problem

We consider the KN spectral problem (2.7), when the potential u(x) satisfies zero bound-
ary conditions:

lim
x→±∞ u(x) = 0. (6.1)
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The KN spectral problem is rewritten explicitly as

ψ ′1 = −λu(x)ψ2 − iλ2ψ1,

ψ ′2 = λu(x)ψ1 + iλ2ψ2. (6.2)

In the case u(x) ≡ 0, two fundamental solutions of the problem (6.2) exist for λ ∈ C as
follows:

ψ(x) = e±e±κ(λ)x , e+ =
(

1
0

)
, e− =

(
0
1

)
, κ(λ) = −iλ2. (6.3)

The complex plane is decomposed as C = D+ ∪�con ∪D−, where

�con = {λ ∈ C: Re (κ(λ)) = 0} = {λ ∈ R} ∪ {λ ∈ iR} , (6.4)

D+ = {λ ∈ C: Re (κ(λ)) > 0} = DI ∪DI I I , (6.5)

and

D− = {λ ∈ C: Re (κ(λ)) < 0} = DI I ∪DI V . (6.6)

The decomposition ofC into domainsDI –DI V is shown schematically in Figure 3. There
exists only one crossing point λ = λc = 0, where κ ′(λc) = 0. The stars show isolated
eigenvalues of the discrete spectrum λ = ±�,±�̄ ∈ �dis. Due to the symmetry (3.7),
isolated eigenvalues λ ∈ �dis are symmetric with respect to the line Re(λ) = 0. Due to
another symmetry,

ψ1(x, λ) �→ ψ1(x,−λ), ψ2(x, λ) �→ −ψ2(x,−λ), (6.7)

the eigenvalues are also symmetric with respect to the origin λ = 0. We shall hence
consider eigenvalues in the first quadrant λ ∈ DI only.

We shall focus on the class of algebraically decaying potentials u(x), such that

lim
x→±∞ |x |

pu(x)e−2iδ2x = b±∞, |b+∞| = |b−∞| = b∞, (6.8)

where 0 < b∞ < ∞, p ≥ 1, and δ > 0. Algebraically decaying solitons were found
in [KN78], [M78] for p = 1 and b∞ = 1/δ. We shall define fundamental solutions
and embedded eigenvalues of the KN spectral problem (6.2). Then, we shall prove that
embedded eigenvalues may exist only if the potential u(x) has the decay rate (6.8) with
p = 1.

Proposition 6.1. Let u(x) satisfy (6.8) with p ≥ 1. For p > 1, there exist two sets of
fundamental solutionsφ±(x; λ) andψ±(x; λ) of the KN problem (6.2) with λ ∈ C, such
that

lim
x→−∞φ

±(x; λ)e∓κ(λ)x = e±, lim
x→+∞ψ

±(x; λ)e∓κ(λ)x = e±. (6.9)

For p = 1, the two sets of fundamental solutions exist for any λ ∈ C\{±iδ}.
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Fig. 3. Decomposition of C into domains DI–DIV for the KN spectral
problem (6.2).

Proof. By Lemma 3.1, fundamental solutions φ±(x; λ) and ψ±(x; λ) of the KN prob-
lem (6.2) exist for p > 1, since eigenvalues of A are distinct for λ = 0 and R(x) ∈ L1(R)

for p > 1. When λ = 0, the problem (6.2) has two linearly independent constant solu-
tions e±. When p = 1, we substitute the following for x ≥ x0 > 0:

u(x) = w(x)e2iδ2x , ψ1 = ϕ1(x)e
iδ2x , ψ2 = ϕ2(x)e

−iδ2x , (6.10)

such that the system (6.2) takes the form

dϕ

dx
= (A + V (x)+ R(x))ϕ, (6.11)

where

A = −i(λ2 + δ2)

(
1 0
0 −1

)
, V (x) = λ

x

(
0 −b+∞

b̄+∞ 0

)
,

and

R(x) = λ

x2

(
0 −x(xw(x)− b+∞)

−x(b̄+∞ − xw̄(x)) 0

)
,

such that x
(
xw(x)− b+∞

) = o(x) as x → +∞. When λ = ±iδ, the matrix A
has distinct eigenvalues, V (x) → 0, V ′(x) ∈ L1(x ≥ x0), and R(x) ∈ L1(x ≥
x0). The existence of fundamental solutions (6.9) follows by Proposition 8.1 from
[CL55, p. 92].
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Definition 6.2. If there exists an L2-eigenvector ψ(x) of the KN problem (6.2) for
λ = λ0 ∈ �con, λ0 = 0, the point λ = λ0 is referred to as an embedded eigenvalue of
the KN problem (6.2).

By Proposition 6.1, the nondecaying fundamental solutions exist for p > 1 and for
p = 1 and λ = ±iδ, such that no embedded eigenvalues may exist for p > 1 and
for p = 1 and λ ∈ �con\{±iδ}. On the other hand, Proposition 6.1 does not rule out
embedded eigenvalues for p = 1 and λ = ±iδ. Due to the symmetries, we shall consider
λ = iδ only.

Lemma 6.3. Let u(x) satisfy (6.8) with p = 1. The point λ = iδ can be an embedded
eigenvalue of the KN problem (6.2) if b∞ > 1

2δ .

Proof. When p = 1 and λ = iδ, we let x ≥ x0 > 0 and define

u(x) = b(x)

x
e2iδ2x , ψ1 = a1(x)

xq
eiδ2x , ψ2 = a2(x)

xq
e−iδ2x , (6.12)

where q > 0. The system (6.2) takes the form

x
da
dx
= (A + R(x)) a, (6.13)

where

A =
(

q −iδb+∞
iδb̄+∞ q

)
,

R(x) = iδ

x

(
0 −x(b(x)− b+∞)

−x(b̄+∞ − b̄(x)) 0

)
, (6.14)

such that x
(
b(x)− b+∞

) = o(x) as x → +∞. The eigenvalues of A are distinct for
b∞ = 0, while R̃(z) = R(ez) is in L1(z ≥ z0). By Lemma 3.1, there exist two solutions
of the system (6.13), such that

lim
x→∞ a1x−(q+δb∞) =

(
eiθ∞

i

)
, lim

x→∞ a2x−(q−δb∞) =
(

eiθ∞

−i

)
, (6.15)

where θ∞ = arg(b+∞). These two solutions correspond to eigenvectors of the system
(6.2) as x →+∞:

ψ1(x)→
(

eiδ2x+iθ∞

ie−iδ2x

)
xδb∞ , ψ2(x)→

(
eiδ2x+iθ∞

−ie−iδ2x

)
1

xδb∞
. (6.16)

The second eigenvector,ψ2(x), decays as x →+∞. When it exists, the decaying bound
state ψ(x) belongs to L2(R), when δb∞ > 1

2 .

Lemma 6.4. Let u(x) satisfy (6.8) with p = 1 and b∞ > 1
2δ . Letλ = iδ be an embedded

eigenvalue of the KN problem (6.2). The geometric multiplicity of λ = iδ is one, and the
algebraic multiplicity of λ = iδ is finite.
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Proof. We set λ = iδ and use the transformation (6.10). Only one decaying bound state
ϕ(0)(x) may exist, since the other, linearly independent solution grows in x . If λ = iδ
is a multiple eigenvalue, there exist bound states ϕ(n)(x) with n > 0 of the generalized
problem

ϕ
(n)′
1 = −iδw(x)ϕ(n)2 + 2δϕ(n−1)

1 (x)− w(x)ϕ(n−1)
2 (x)− iϕ(n−2)

1 (x),

ϕ
(n)′
2 = iδw̄(x)ϕ(n)1 − 2δϕ(n−1)

2 (x)+ w̄(x)ϕ(n−1)
1 (x)+ iϕ(n−2)

2 (x), (6.17)

where ϕ(−1) = 0 and n = 1, . . . , N . We show that N < ∞, similar to the proof of
Lemma 4.4. It follows from the balance of algebraically decaying terms in the problem
(6.17) that the nonhomogeneous solutions for ϕ(n)(x) with n > 0 have the asymptotic
form as x →+∞:

ϕ(n)(x)→ 1

xq−n

(
cn

dn

)
, q = δb∞, (6.18)

where cn and dn satisfy the recurrence relation

cn = 2δ

n(n − 2q)
((n − q)cn−1 + iδb∞dn−1) ,

dn = 2δ

n(2q − n)

(
(n − q)dn−1 − iδb̄∞cn−1

)
, n ≥ 1, (6.19)

and c0 = 1, d0 = 1. The generalized eigenfunctions ϕ(n)(x) decay algebraically when
q > n. Under this condition, the recurrence relations (6.19) are nonsingular for any
n. Therefore, given q < ∞, there exists N < ∞, such that solutions of (6.17) with
n = N + 1 become nondecaying as x →+∞.

The discrete spectrum �dis of the KN problem (6.2) in the domain λ ∈ DI is defined
by the zeros of E(λ), the Evans function of the KN problem (6.2), given by

E(λ) = det(φ+(x; λ),ψ−(x; λ)), Re (κ(λ)) > 0. (6.20)

By Proposition 6.1, E(λ) is well-defined on λ ∈ DI for the potential (6.8) with p ≥ 1. By
Lemma 6.3, the potentials u(x) satisfying (6.8) with p = 1 may support an embedded
eigenvalue at λ = iδ. In order to study such an embedded eigenvalue, we define the
semi-axis �+ = {λ ∈ iR+}, which belongs to the continuous spectrum �con (see Fig.
2). We use the parameter k for the the semi-axis �+, such that λ = i

√
k, κ(λ) = ik,

and k ∈ R+ on λ ∈ �+. The function G(k) is defined on λ ∈ �+ from the matching
condition,

G(k) = E(λ) = det
(
φ+(x; k),ψ−(x; k)) , λ = i

√
k, k > 0. (6.21)

The analysis of the singular behavior of G(k) as k → δ2 can be developed similarly to
the proof of Lemma 4.8. We omit the details and only illustrate the regularization of the
function G(k) at k → δ2 for an example of the algebraic soliton u(x).
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7. Examples of an Embedded Eigenvalue Bifurcation

We consider a family of exponentially decaying potentials,

uγ (x) = 4δ sin γ e2θ−2iϕ e4θ + eiγ

(e4θ + e−iγ )2
, (7.1)

where 0 < γ < π , δ > 0, θ(x) = xδ2 sin γ , and ϕ(x) = xδ2 cos γ . The family (7.1)
corresponds to the solitons of the derivative NLS equation (1.3) [KN78] and of the
MTM system (1.4) (where transformation (2.10) must be used) [KN77]. The fundamen-
tal solutions of the KN problem (6.2) with the potentials (7.1) take the explicit form
(see [CY03])

φ+(x; λ) = eκ(λ)x




E(λ)e4θ + e−iγ

e4θ + e−iγ

− 2iδλ sin γ e2θ+2iϕ−2iγ

(λ2 −�2)(e4θ + eiγ )


 , (7.2)

and

ψ−(x; λ) = e−κ(λ)x



− 2iδλ sin γ e2θ−2iϕ

(λ2 −�2)(e4θ + e−iγ )

e4θ + E(λ)eiγ

e4θ + eiγ


 , (7.3)

where � = δeiγ /2, κ(λ) = −iλ2, and E(λ) is the Evans function in the explicit form:

E(λ) = λ2 −�2

λ2 −�2
e−2iγ . (7.4)

The Evans function E(λ) has a simple zero in DI at λ = �, where a simple isolated
eigenvalue of�dis resides. The perturbation theory for the isolated eigenvalue was studied
for the derivative NLS equation (1.3) in [WM84], [CY03] and for the MTM system (1.4)
in [S02].

The family of exponentially decaying potentials (7.1) converges as γ → π to the
algebraically decaying potential,

uπ (x) = 4δe2iδ2x 4δ2x + i

(4δ2x − i)2
. (7.5)

The special solution (7.5) corresponds to the algebraic solitons in the derivative NLS
equation [KN78], [M78] and in the MTM system [KN77], [BPZ98]. The Evans function
E(λ) converges as γ → π to E(λ) = 1. The fundamental solutions of the KN problem
follow from (7.2)–(7.3) in the limit γ → π :

φ+(x; λ) = eκ(λ)x
[

e+ + 2iλ

λ2 + δ2

(
λ

4δ2x−i

− δe−2iδ2 x

4δ2x+i

)]
, (7.6)
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ψ−(x; λ) = e−κ(λ)x
[

e− − 2iλ

λ2 + δ2

(
δe2iδ2 x

4δ2x−i
λ

4δ2x+i

)]
. (7.7)

The fundamental solutions φ+(x; λ) and ψ−(x; λ) have simple poles at λ = iδ, which
correspond to the embedded eigenvalue λ = iδ, with the bound stateψ(0)(x) in the form

ψ(0)(x) =
(

ieiδ2 x

4δ2x−i

− e−iδ2 x

4δ2x+i

)
. (7.8)

In agreement with Lemma 6.3, we have q = δb∞ = 1. We regularize the Evans function
E(λ; ε) by cancelling the pole singularities in the renormalized function:

Ê(λ; ε) = (λ2 + δ2)2 E(λ; ε). (7.9)

The renormalized function Ê(λ; ε) has a double zero at the point λ = iδ when ε = 0.
The double zero defines the algebraic structure of the embedded eigenvalue λ = iδ. The
changes in the discrete spectrum of the KN problem (6.2) as ε = 0 are described in the
following proposition.

Proposition 7.1. Let Ê(λ; 0) = Ê(λ) be given by (7.9), such that Ê(iδ) = 0. Let U (x)
satisfy (6.8) with p > 1. There exist ε0 > 0 and C > 0 such that the function Ê(λ; ε)
has a simple zero at λ = λδ(ε) in DI , where 0 < |λδ(ε)− iδ| ≤ Cε1/2

0 for 0 < |ε| ≤ ε0,
if ∫ ∞

−∞

(
U (x)e−2iδ2x

(4δ2x + i)2
− U (x)e2iδ2x

(4δ2x − i)2

)
dx = 0. (7.10)

Proof. Eigenvalues λ ∈ DI corresponds to zeros of the Evans function Ê(λ; ε) in DI ,
such that we can redefine the renormalized Evans function Ê(λ; ε) in new variables κ
and ε as follows:

Ĝ(κ; ε) = Ê(i
√
δ2 − κ; ε), 0 < arg(κ) < π. (7.11)

At ε = 0, there is a double zero at κ = 0, since

Ĝ(κ, 0) = κ2. (7.12)

It follows from the KN problem (6.2) that

∂E

∂ε
(λ; 0) = −λ

∫ ∞
−∞

[
U (x)φ+2 (x; λ)ψ−2 (x; λ)+U (x)φ+1 (x; λ)ψ−1 (x; λ)

]
dx,

(7.13)
such that

∂Ĝ

∂ε
(0, 0) = 4δ5

∫ ∞
−∞

(
U (x)e−2iδ2x

(4δ2x + i)2
− U (x)e2iδ2x

(4δ2x − i)2

)
dx . (7.14)



28 M. Klaus, D. E. Pelinovsky, and V. M. Rothos

By the Implicit Function Theorem, the double zero of Ĝ(κ; 0) splits according to the
roots of the quadratic equation:

κ2
δ (ε)+

∂Ĝ

∂ε
(0; 0)ε = o(ε). (7.15)

The leading-order behavior of κδ(ε) is given by

κ2
δ (ε) = −4εδ5

∫ ∞
−∞

(
U (x)e−2iδ2x

(4δ2x + i)2
− U (x)e2iδ2x

(4δ2x − i)2

)
dx + o(ε), (7.16)

0 < arg(κδ(ε)) < π . The corresponding eigenvalues λδ(ε) are found from λδ(ε) =
i
√
δ2 − κδ(ε). Under the constraint (7.10), we have κ2

δ (ε) ∈ iR, such that there exists
exactly one zero κδ(ε) in the domain (7.11). This zero corresponds to a simple complex
eigenvalue λδ(ε) ∈ �dis in the domain DI .

In applications to the derivative NLS equation (1.3), Proposition 7.1 describes the
transformation of the algebraic soliton (1.7) under a deformation of the initial data
εU (x). For a generic function εU (x) that satisfies the constraint (7.10), the deformation
shifts the embedded eigenvalue λ = iδ to the complex isolated eigenvalue λ = �(ε) in
DI . Since (λδ(ε)− iδ) ∼ e±

iπ
4 , the change in the parameters δ(ε) and γ (ε) of the shifted

eigenvalue λδ(ε) = �(ε) = δ(ε)eiγ (ε)/2 is of order O(ε). Since an isolated eigenvalue
λδ(ε) corresponds to the travelling and rotating soliton of the derivative NLS equation
(1.3), we conclude that a generic deformation of the initial data smoothly transforms an
algebraic soliton to an exponentially decaying soliton (7.1).

In applications to the MTM system (1.4), the same conclusion holds for the alge-
braic soliton (1.8) after the transformation (2.10). It was reported in [BPZ98], [KS02]
that nonintegrable deformations of the MTM system result in spectral instability of the
algebraic soliton (1.8). However, it follows from Proposition 7.1 that deformation of the
initial data for the integrable MTM system (1.4) results not in spectral instabilities but
rather in a smooth transformation of the algebraic soliton (1.8) into an exponentially
decaying soliton (7.1). This property is related to the integrability of the MTM system
(1.4) and to the existence of the linear (Lax) operator (2.1).

8. Summary

We have shown that the standard Evans function E(λ; ε) may have power and pole
singularities at the continuous spectrum, if the AKNS and KN spectral problems have
algebraically decaying potentials. Algebraic solitons of integrable nonlinear evolution
equations appear to be typical examples of such potentials. The algebraic structure of
pole singularities and related embedded eigenvalues is characterized by the renormalized
Evans function Ê(λ; ε). Branch point and embedded eigenvalue bifurcations occur when
nongeneric algebraically decaying potentials (such as algebraic solitons) are perturbed
by smooth generic perturbation functions. These bifurcations can be studied using the
Implicit Function Theorem applied to the renormalized Evans function Ê(λ; ε).
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We have found two different types of transformations of algebraically decaying po-
tentials. In the context of the AKNS spectral problem with nonzero boundary conditions,
we showed that the branch point bifurcation results in either one or two new eigenval-
ues of the discrete spectrum which pop out from the branch point, depending on the
sign of the perturbation function. The underlying algebraic structure of the branch point
bifurcation is defined by solutions of a cubic equation along the corresponding sheet
of the Riemann surface. In the context of the KN spectral problem with zero boundary
conditions, we showed that the embedded eigenvalue bifurcation always results in one
eigenvalue in the first quadrant of the complex plane. The underlying algebraic structure
of the embedded eigenvalue bifurcation is defined by solutions of a quadratic equation.
These results of the spectral theory of Lax operators are related to precise implications on
the transformation of algebraic solitons in the modified KdV, focusing NLS, derivative
NLS, and massive Thirring equations.

Appendix A Proofs of Lemmas 4.6–4.8

Here we shall prove Lemmas 4.6–4.8 of Section 4 by using the AKNS system (3.2).

Proof of Lemma 4.6. We introduce two linearly independent functions ψ1,2(x; k) that
solve the AKNS system (3.2) with λ = √1− k2, subject to the initial values

ψ1(0; k) =
[

1
0

]
, ψ2(0; k) =

[
0
1

]
. (A.1)

By Green’s function methods, the functions ψ1,2(x; k) solve the Volterra integral equa-
tions

ψ1,2(x; k) = ϕ1,2(x; k)−
∫ x

0
K (x, s; k)ψ1,2(s; k) ds, (A.2)

where

ϕ1(x; k) =
[√

1− k2

1

]
sin kx

k
+
[

1
0

]
cos kx,

and

ϕ2(x; k) = −
[

1√
1− k2

]
sin kx

k
+
[

0
1

]
cos kx .

The function G(k), given by (3.21), can be computed by setting x = 0. The leading-
order singular behavior (4.20) in G(k)–G(0) follows from the singular behavior of
φ±(0; k)−φ±(0; 0) andψ±(0; k)−ψ±(0; 0). Since the Wronskian determinant of two
solutions of (3.2) is independent of x , then

ψ−1 (0; k) = det(ψ−(x; k),ψ2(x; k))
= lim

x→+∞

(
(
√

1− k2 − ik)ψ22(x; k)− ψ21(x; k)
)

e−ikx (A.3)
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=
√

1− k2 − ik

+
∫ +∞

0

(
w̄(s)ψ21(s; k)(

√
1− k2 − ik)+ w(s)ψ22(s; k)

)
e−iks ds

and

ψ−2 (0; k) = det(ψ1(x; k),ψ−(x; k))
= lim

x→+∞

(
ψ11(x; k)− (

√
1− k2 − ik)ψ12(x; k)

)
e−ikx (A.4)

= 1−
∫ +∞

0

(
w̄(s)ψ11(s; k)(

√
1− k2 − ik)+ w(s)ψ12(s; k)

)
e−iks ds.

As a result, we have

ψ−1 (0; k)− ψ−1 (0; 0) =
√

1− k2 − 1− ik

+
∫ +∞

0
(w̄(s)ψ21(s; 0)+ w(s)ψ22(s; 0)) (e−iks − 1) ds

+
∫ +∞

0

(
w̄(s)

[
ψ21(s; k)(

√
1− k2 − ik)− ψ21(s; 0)

]
+ w(s) [ψ22(s; k)− ψ22(s; 0)]) e−iks ds (A.5)

and

ψ−2 (0; k)− ψ−2 (0; 0) = −
∫ +∞

0
(w̄(s)ψ11(s; 0)+ w(s)ψ12(s; 0)) (e−iks − 1) ds

−
∫ +∞

0

(
w̄(s)

[
ψ11(s; k)(

√
1− k2 − ik)− ψ11(s; 0)

]
+ w(s) [ψ12(s; k)− ψ12(s; 0)]) e−iks ds. (A.6)

The integrals in (A.5) and (A.6) are of order O(k p−2) as k → 0. In order to compute the
leading-order behavior of (A.5) and (A.6) as k → 0, we use the asymptotic representation
as x →+∞:

w(x) = b+∞
x p
+ o

(
1

x p

)
, ψ1,2(x; 0) = d1,2

[
1
1

]
x + o(x), (A.7)

where

d1 = 1−
∫ ∞

0
(w̄(s)ψ11(s; 0)+ w(s)ψ12(s; 0)) ds,

d2 = −1−
∫ ∞

0
(w̄(s)ψ21(s; 0)+ w(s)ψ22(s; 0)) ds.

It follows from (A.3) and (A.4) that ψ−1 (0, 0) = −d2 and ψ−2 (0, 0) = d1. Following the
proof of Theorem 3.1 in [K88a], we compute the singular terms in the first and second
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integrals in (A.5):∫ +∞
0

(w̄(s)ψ21(s; 0)+ w(s)ψ22(s; 0)) (e−iks − 1) ds

= 2d2b∞k p−2
∫ ∞

0

e−i x − 1

x p−1
dx + o(k p−2), (A.8)

and ∫ +∞
0

(
w̄(s)

[
ψ21(s; k)(

√
1− k2 − ik)− ψ21(s; 0)

]
+ w(s) [ψ22(s; k)− ψ22(s; 0)]) e−iks ds

= 2d2b∞k p−2
∫ ∞

0

e−i x

x p−1

(
sin x

x
− 1

)
dx + o(k p−2), (A.9)

where b∞ = Re(b+∞) is used. The first and second integrals in (A.6) give exactly the
same leading-order terms, with the replacement−d2 �→ d1. As a result, the leading-order
behavior of ψ−(0; k)−ψ−(0; 0) is

ψ−(0; k) = ψ−(0; 0) (1+ b∞2p−1Ipk p−2
)+ o(k p−2), (A.10)

where

Ip = −i
∫ +∞

0

e−i x − 1+ i x

x p
dx = �(1− p)e

π i(p−2)
2 . (A.11)

Similar computations for φ+(0; k) give

φ+(0; k) = φ+(0; 0) (1+ b∞2p−1Ipk p−2
)+ o(k p−2). (A.12)

Expanding G(k) for small k, we obtain the leading-order behavior (4.20).

Proof of Lemma 4.7. We consider the resonance case, when G(0) = 0 andψ−(x; 0) =
γφ+(x; 0), γ = 0. A useful relation follows from the Volterra integral equations (3.19),

ψ−(x; 0) =
[

1
1

](
1+
∫ ∞

x
(w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0))(x − s) ds

)

+
∫ ∞

x

[
w(s)ψ−2 (s; 0)
−w̄(s)ψ−1 (s; 0)

]
ds, (A.13)

such that

ψ−1 (0; 0)− ψ−2 (0, 0) =
∫ ∞

0

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds. (A.14)

Since ψ−(x; 0) is bounded as x →−∞, we have additional relations,∫ ∞
−∞

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds = 0, (A.15)
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and

γ = 1−
∫ ∞
−∞

s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds +

∫ ∞
−∞

w(s)ψ−2 (s) ds. (A.16)

We introduce the function χ(x; k) that solves the AKNS system (3.2) with λ =√
1− k2, subject to the initial value: χ(0; k) = ψ−(0; 0). Uniqueness implies that

χ(x; 0) = ψ−(x; 0). The function χ(x; k) is useful in rewriting the Evans function
G(k) as

G(k) = ψ−1 (0; k)G1(k)+ φ+1 (0; k)G2(k)

ψ−1 (0; 0)
, (A.17)

where

G1(k) = det(φ+(0; k),ψ−(0; 0)) = det(φ+(0; k),χ(0; k)),
G2(k) = det(ψ−(0; 0),ψ−(0; k)) = det(χ(0; k),ψ−(0; k)),

and we have assumed without loss of generality that ψ−1 (0; 0) = 0. It is clear that
χ(x; k) = ψ−1 (0; 0)ψ1(x; k)+ψ−2 (0; 0)ψ2(x; k), where ψ1,2(x; k) solves the Volterra
equations (A.2). Therefore, χ(x; k) solves the Volterra equations:

χ(x; k) =
(
ψ−1 (0; 0)

[√
1− k2

1

]
− ψ−2 (0; 0)

[
1√

1− k2

])
sin kx

k

+ ψ−(0; 0) cos kx −
∫ x

0
K (x, s; k)χ(s; k) ds. (A.18)

Since the Wronskian determinant of two solutions of (3.2) is constant in x , then

G1(k) = lim
x→−∞ det(φ+(x; k),χ(x; k))

= lim
x→−∞

(
(
√

1− k2 + ik)χ2(x; k)− χ1(x; k)
)

eikx

= (
√

1− k2 + ik)ψ−2 (0; 0)− ψ−1 (0; 0)

−
∫ 0

−∞

(
w̄(s)χ1(s; k)(

√
1− k2 + ik)+ w(s)χ2(s; k)

)
eiks ds (A.19)

and

G2(k) = lim
x→+∞ det(χ(x; k),ψ−(x; k))

= lim
x→+∞

(
χ1(x; k)− (

√
1− k2 − ik)χ2(x; k)

)
e−ikx

= ψ−1 (0; 0)− (
√

1− k2 − ik)ψ−2 (0; 0)

−
∫ +∞

0

(
w̄(s)χ1(s; k)(

√
1− k2−ik)+w(s)χ2(s; k)

)
e−iks ds. (A.20)



Evans Function for Lax Operators 33

We rewrite the integrals in G1(k) and G2(k) so that

G1(k) = (
√

1− k2 + ik)ψ−2 (0; 0)− ψ−1 (0; 0)

−
∫ 0

−∞

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
eiks ds

−
∫ 0

−∞

(
w̄(s)

[
χ1(s; k)(

√
1− k2 + ik)− ψ−1 (s; 0)

]
+ w(s) [χ2(s; k)− ψ−2 (s; 0)

])
eiks ds (A.21)

and

G2(k) = ψ−1 (0; 0)− (
√

1− k2 − ik)ψ−2 (0; 0)

−
∫ +∞

0

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
e−iks ds

−
∫ +∞

0

(
w̄(s)

[
χ1(s; k)(

√
1− k2 − ik)− ψ−1 (s; 0)

]
+ w(s) [χ2(s; k)− ψ−2 (s; 0)

])
e−iks ds. (A.22)

Sinceψ−(x; 0) is bounded in x ∈ R and w(x) ∈ L1
1(R), the first integrals in (A.21) and

(A.22) have the leading-order behavior

−
∫ 0

−∞

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds

− ik
∫ 0

−∞
s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds + o(k),

and

−
∫ +∞

0

(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds

+ ik
∫ +∞

0
s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds + o(k).

The solution χ(x; k) satisfies the following upper bound for any x ∈ R:

|χj (x; k)− χj (x; 0)| ≤ C

(
kx

1+ kx

)2

, j = 1, 2, (A.23)

where C > 0 is some constant. The bound (A.23) is proved similarly to Eq. (2.5) in
[K88b], where it was proved for the half-line x ∈ R+. The bound extends to the full line
x ∈ R, since χ(x; k) is computed for the resonance case. With the upper bound (A.23),
we estimate the second integrals in (A.21) and (A.22) as

−ik
∫ 0

−∞
w̄(s)ψ−1 (s; 0) ds + o(k),
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and

ik
∫ +∞

0
w̄(s)ψ−1 (s; 0) ds + o(k).

Using (A.14), we conclude that

G1(k) = ik

(
ψ−2 (0; 0)−

∫ 0

−∞
s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds

−
∫ +∞

0
w̄(s)ψ−1 (s; 0) ds

)
+ o(k),

and

G2(k) = ik

(
ψ−2 (0; 0)+

∫ +∞
0

s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds

+
∫ +∞

0
w̄(s)ψ−1 (s; 0) ds

)
+ o(k).

Since limx→−∞ χ(x; 0) = γ (1, 1)T and limx→+∞ χ(x; 0) = (1, 1)T , it follows from
the Volterra integral equations (A.18) that

ψ−2 (0; 0)−
∫ 0

−∞
s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds −

∫ +∞
0

w̄(s)ψ−1 (s; 0) ds = γ,

and

ψ−2 (0; 0)+
∫ +∞

0
s
(
w̄(s)ψ−1 (s; 0)+ w(s)ψ−2 (s; 0)

)
ds+

∫ +∞
0

w̄(s)ψ−1 (s; 0) ds = 1.

Thus, G1(k) = ikγ + o(k) and G2(k) = ik + o(k). Inserting these expressions into
(A.17), we obtain the leading-order behavior (4.21).

Proof of Lemma 4.8. Due to the Miura transformation [AC91], the AKNS system (3.2)
with λ = √1− k2 and real-valuedw(x) can be converted into the Schrödinger equation,

− χ ′′ +U (x)χ = k2χ, (A.24)

where χ = ψ1+ iψ2 and U (x) = −2w(x)−w2(x)+ iw′(x). We extract the long-range
potential as

U (x) = q(q + 1)

x2
+ V (x), |x | ≥ x0 > 0, (A.25)

and

U (x) = V0(x), |x | ≤ x0, (A.26)

where V (x) ∈ L1
1(|x | ≥ x0) and V0(x) ∈ L1(|x | ≤ x0). We follow the analysis of [N86],

[K88a] and introduce scalar Jost functions for the Schrödinger problem (A.24):

f ±(x; k)→ e∓ikx , x →±∞.
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It is obvious from the system (3.2) and the relation χ = ψ1 + iψ2 that the Wronskian
determinant of f ±(x; k) is related to the Evans function G(k), defined in (3.21):

W [ f −, f +] = f − f +′− f −′ f + = −2i
√

1− k2(φ−11φ
+
22 − φ−12φ

+
21)

(
√

1− k2 + i)2 + k2
= −G(k). (A.27)

The problem (A.24) with U (x) = q(q + 1)/x2 transforms to the Bessel equation with
two linearly independent solutions x1/2 Jσ (kx) and x1/2 Nσ (kx), where Jσ (z) and Nσ (z)
are Bessel and Neumann functions [AS74] and σ = q + 1

2 . We will use the linearly
independent Hankel functions H (±)

σ (z) = Jσ (z)±i Nσ (z). Due to the asymptotic behavior
of the Hankel functions at infinity [AS74], the Jost functions f ±(x; k) = f ±0 (x; k),
associated with the potential U (x) = q(q + 1)/x2, are given by

f ±0 (x; k) = ∓i

√
πkx

2
H (∓)

q+ 1
2
(kx)e∓

iπq
2 .

As follows from the Green’s function, the Jost functions f ±(x; k) satisfy the Volterra
integral equations:

f ±(x; k) = f ±0 (x; k)+
∫ ±∞

x
g(x, s; k)V (s) f ±(s; k) ds, (A.28)

where

g(x, s; k) = π

2

√
xs
(

Jq+ 1
2
(kx)Nq+ 1

2
(ks)− Jq+ 1

2
(ks)Nq+ 1

2
(kx)
)
.

It follows from the power series representation for Bessel functions [AS74] that there
exists the limit

lim
k→0

kq f ±(x; k) = F±(x), (A.29)

where F±(x) solve the Volterra’s integral equations:

F±(x) = F±0 (x)+
∫ ±∞

x
G(x, s)V (s)F±(s) ds, (A.30)

such that

F±0 (x) =
2q�
(
q + 1

2

)
e∓

iπq
2

√
πxq

,

and

G(x, s) = −
√

xs

2q + 1

(( x

s

)q+ 1
2 −
( s

x

)q+ 1
2

)
.

It follows from (A.27) and (A.29) that

k2q W [ f −, f +] = W [F−, F+]+ o(1),

which proves the leading-order behavior (4.24) in the general case, when F+(x) and
F−(x) are linearly independent. The functions F±(x) are solutions of (A.24) for k = 0,
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defined in (4.22)–(4.23). The correspondence between ψ̂±1,2(x) and the eigenfunctions
φ+(x; k) andψ−(x; k) of the system (3.2) can be established via the large-x asymptotics.

Assume now that F±(x) are linearly dependent, such that F−(x) = γ F+(x) and
hence W [F−, F+] = 0. Since F±(x) decay as |x | → ∞, a bound state ψ(0)(x) exists
such thatλ = 1 is a branch point eigenvalue. We introduce the functionχ(x; k) that solves
the scalar problem (A.24), subject to the initial values: χ(0; k) = F+(0), χ ′(0; k) =
F+′(0). Uniqueness implies that χ(x; 0) = F+(x). With the use of the function χ(x; k),
we rewrite W [ f −, f +] as

W [ f −, f +] = f −(0; k)W1(k)+ f +(0; k)W2(k)

F+(0)
, (A.31)

where

W1(k) = W [F+(0), f +(0; k)] = W [χ(x; k), f +(x; k)], (A.32)

W2(k) = W [ f −(0; k), F+(0)] = W [ f −(x; k), χ(x; k)], (A.33)

and F+(0) = 0 is assumed without loss of generality. Using the Volterra integral equa-
tions, we express χ(x; k) for x ≥ x0 > 0 in the form

χ(x; k) = χ0(x; k)−
∫ x

x0

g(x, s; k)V (s)χ(s, k) ds, x ≥ x0 > 0, (A.34)

where

χ0(x; k) = α(k)
√

x Jq+ 1
2
(kx)+ β(k)√x Nq+ 1

2
(kx).

The functions α(k) and β(k) are found from the matching conditions at x = x0 as

α(k) = π

2
W [χ(x0; k),√x0 Nq+ 1

2
(kx0)],

β(k) = π

2
W [
√

x0 Jq+ 1
2
(kx0), χ(x0; k)], (A.35)

where we have used the relation [AS74]

W [
√

x Jσ (kx),
√

x Nσ (kx)] = 2

π
, ∀x > 0, ∀σ.

It follows from the integral equations (A.34) that the limit k → 0+ results in a nonsingular
solution χ(x; 0) = F+(x), only if the following limits exist:

α0 = lim
k→0

kq+ 1
2α(k), β0 = lim

k→0
k−q− 1

2 β(k). (A.36)

Using the power series representations for Bessel functions [AS74], we find that the
Volterra’s equation (A.34) is equivalent to the Volterra’s equation (A.30) in the limit
k → 0, when

α0 = −2q− 1
2�

(
q + 1

2

)∫ ∞
x0

s−q V (s)F+(s) ds, (A.37)

β0 = −
√
π

2
e−

iπq
2 − π

2q+ 3
2�
(
q + 3

2

) ∫ ∞
x0

sq+1V (s)F+(s) ds. (A.38)
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We consider W1(k) in the limit k → 0. It is clear from (A.32) and (A.34) that W1(k) can
be computed in the limit x →+∞ as

W1(k) =
√

2k

π
e−

iπq
2

(
−α(k)+ iβ(k)+ iπ

2

∫ ∞
x0

√
s H (−)(ks)V (s)χ(s; k) ds

)
.

(A.39)
We use the following estimate for the solutions χ(x; k) (see (2.16) in [K88a]):

|χ(x; k)− χ(x; 0)| ≤ Ck2

(
x

1+ kx

)q+1

, x ≥ x0 > 0. (A.40)

Using (A.40), we introduce a formal expansion,

χ(x; k) = F+(x)+ k2χ2(x)+ o(k2),

where F+(x) and χ2(x) solve the problems

− F+′′ + q(q + 1)

x2
F+ + V (x)F+ = 0, x ≥ x0, (A.41)

− χ ′′2 +
q(q + 1)

x2
χ2 + V (x)χ2 = F+(x), x ≥ x0. (A.42)

We also expand the coefficients α(k) and β(k) according to the limits (A.36):

kq+ 1
2α(k) = α0 + α2k2 + o

(
k2
)
, β(k) = β0kq+ 1

2 + o
(

kq+ 1
2

)
, (A.43)

where

α2 = −2q− 5
2�

(
q − 1

2

)
W [F+(x0), x−q+2

0 ]− 2q− 1
2�

(
q + 1

2

)
W [χ2(x0), x−q

0 ].

Expanding the integral in (A.39) in the limit k → 0 and using the power series
expansions above, we compute the leading-order terms as

kq W1(k) =
√

2

π
e−

iπq
2
[
w0 + k2w2 + o(k2)

]
, (A.44)

where

w0 = −α0 − 2q− 1
2�

(
q + 1

2

)∫ ∞
x0

s−q V (s)F+(s) ds,

w2 = −α2 − 2q− 5
2�

(
q − 1

2

)∫ ∞
x0

s2−q V (s)F+(s) ds

− 2q− 1
2�

(
q + 1

2

)∫ ∞
x0

s−q V (s)χ2(s) ds.
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Due to (A.37), we have w0 = 0. Using (A.41)–(A.42) and integrating by parts, we have
the relations∫ ∞

x0

s2−q V (s)F+(s) ds = −W [x−q+2
0 , F+(x0)]+ 2(1− 2q)

∫ ∞
x0

s−q F+(s) ds,

∫ ∞
x0

s−q V (s)χ2(s) ds = lim
x→∞W [x−q , χ2(x)]−W [x−q

0 , χ2(x0)]

+
∫ ∞

x0

s−q F+(s) ds.

By using these formulas in the expansion (A.44), we have

W1(k) = k2−q lim
x→∞W [χ2(x), F+(x)]+ o(k2−q).

It follows from the problems (A.41)–(A.42), defined separately for 0 ≤ x ≤ x0 and
x ≥ x0, that ∫ ∞

0

(
F+(s)

)2
ds = lim

x→∞W [χ2(x), F+(x)],

where we have used the initial values χ2(0) = 0 and χ ′2(0) = 0. As a result,

W1(k) = k2−q
∫ ∞

0
(F+(s))2 ds + o(k2−q).

By similar arguments (replacing x by −x), we obtain

W2(k) = k2−q
∫ 0

−∞
(F−(s))2 ds + o(k2−q).

Expanding the relation (A.31) as k → 0+ and using F−(x) = γ F+(x), we obtain the
leading-order behavior (4.25).

Appendix B Regular Perturbation Theory for the AKNS Problem

Here we develop the regular perturbation theory for the AKNS system (3.2). These
results are used in the proofs of Propositions 5.1–5.3 of Section 5.

Lemma B.1. Let w ∈ L1(R). The Evans function E(λ) of the AKNS problem (3.2) is
continuously differentiable in λ ∈ D+, such that

E ′(λ) = λE(λ)

λ2 − 1
+
∫ ∞
−∞

(
φ+1 (x; λ)ψ−2 (x; λ)+ φ+2 (x; λ)ψ−1 (x; λ)−

λE(λ)√
λ2 − 1

)
dx .

(B.1)

Proof. The fundamental solutions φ+(x; λ) and ψ−(x; λ) are uniquely defined by the
limits (3.11) for any λ ∈ D+ under the condition that w(x) ∈ L1(R). The fundamental
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solutions are also differentiable in λ ∈ D+. Using the AKNS problem (3.2), we obtain
for any pair of solutions θ(x; λ) and ϕ(x; λ),

d

dx

(
ϕ2
∂θ1

∂λ
− ϕ1

∂θ2

∂λ

)
= ϕ2θ1 + ϕ1θ2. (B.2)

We will apply this identity to compute E ′(λ), which we write as

E ′(λ) = det

(
∂φ+(x; λ)

∂λ
,ψ−(x; λ)

)
+ det

(
φ+(x; λ), ∂ψ

−(x; λ)
∂λ

)
. (B.3)

We will evaluate the right-hand side at x = 0. Using (3.12), (3.14), and (3.16), we derive

lim
x→±∞

(
φ+1 (x; λ)ψ−2 (x; λ)+ φ+2 (x; λ)ψ−1 (x; λ)

) = 2a(λ)λ = λE(λ)√
λ2 − 1

. (B.4)

Let x < 0. Integrating (B.2) with ϕ = ψ−(x; λ) and θ = φ+(x; λ) over [x, 0]) gives

∂φ+1 (0; λ)
∂λ

ψ−2 (0; λ)−
∂φ+2 (0; λ)

∂λ
ψ−1 (0; λ)

= ∂φ+1 (x; λ)
∂λ

ψ−2 (x; λ)−
∂φ+2 (x; λ)

∂λ
ψ−1 (x; λ) (B.5)

− λE(λ)x√
λ2 − 1

+
∫ 0

x

(
φ+1 (x; λ)ψ−2 (x; λ)+ φ+2 (x; λ)ψ−1 (x; λ)−

λE(λ)√
λ2 − 1

)
dx .

By (3.11) and (3.14), we obtain

lim
x→−∞

(
∂φ+1 (x; λ)

∂λ
ψ−2 (x; λ)−

∂φ+2 (x; λ)
∂λ

ψ−1 (x; λ)−
λE(λ)x√
λ2 − 1

)

= a(λ)

(
1− iλ√

λ2 − 1

)
, (B.6)

and thus

∂φ+1 (0; λ)
∂λ

ψ−2 (0; λ)−
∂φ+2 (0; λ)

∂λ
ψ−1 (0; λ) = a(λ)

(
1− iλ√

λ2 − 1

)

+
∫ 0

−∞

(
φ+1 (x; λ)ψ−2 (x; λ)+φ+2 (x; λ)ψ−1 (x; λ)−

λE(λ)√
λ2−1

)
dx . (B.7)

Similarly, choosing x > 0, integrating (B.2) over [0, x], and then taking x → +∞, we
obtain

φ+1 (0; λ)
∂ψ−2 (0; λ)

∂λ
− φ+2 (0; λ)

∂ψ−1 (0; λ)
∂λ

= −a(λ)

(
1+ iλ√

λ2 − 1

)

+
∫ ∞

0

(
φ+1 (x; λ)ψ−2 (x; λ)+ φ+2 (x; λ)ψ−1 (x; λ)

− λE(λ)√
λ2 − 1

)
dx . (B.8)

Combining (B.3)–(B.8), we obtain (B.1).



40 M. Klaus, D. E. Pelinovsky, and V. M. Rothos

Corollary B.2. If λ = λ0 is an isolated eigenvalue of the discrete spectrum λ ∈ �dis,
such that E(λ0) = 0 and φ+(x; λ0) = b0ψ

−(x; λ0), then

E ′(λ0) = 2b0

∫ ∞
−∞

ψ−1 (x; λ0)ψ
−
2 (x; λ0) dx . (B.9)

Lemma B.3. Let wε(x) = w(x) + εW (x) ∈ L1(R) and E(λ; ε) be defined by (3.16)
forwε(x). For any λ ∈ D+ ∪�+ \ {1}, the function E(λ; ε) is an entire function of ε and

∂E

∂ε
(λ; 0) = −

∫ ∞
−∞

(
W (x)φ+2 (x; λ)ψ−2 (x; λ)+W (x)φ+1 (x; λ)ψ−1 (x; λ)

)
dx .

(B.10)

Proof. The proof is similar to that of Lemma B.1. It is based on the following relation
between any two solutions ϕ(x; λ, ε) and θ(x; λ, ε) of the AKNS problem (3.2) with
wε(x) = w(x)+ εW (x):

d

dx

(
ϕ2
∂θ1

∂ε
− ϕ1

∂θ2

∂ε

)
= −W (x)ϕ2θ2 −W (x)ϕ1θ1. (B.11)

The analyticity of φ+(x; λ, ε) and ψ−(x; λ, ε) in ε at every ε follows from the integral
equations (3.19) by iteration and from the definition (3.16). Note that after we have
replaced w(s) by w(s)+ εW (s) and w̄(s) by w̄(s)+ εW̄ (s) in (3.20), we can view ε as
a complex parameter. Then, iteration of (3.19) yields an entire function of ε. Moreover,
it follows from the integral equations (3.19) that∣∣∣∣∣∂φ

+
1,2(x; λ, ε)
∂ε

∣∣∣∣∣ ≤ C+ε eIm(k)x
∫ x

−∞
(|w(s)| + |ε||W (s)|) ds, (B.12)

∣∣∣∣∣∂ψ
−
1,2(x; λ, ε)
∂ε

∣∣∣∣∣ ≤ C−ε e−Im(k)x
∫ ∞

x
(|w(s)| + |ε||W (s)|) ds, (B.13)

where λ = √1− k2, Im(k) ≤ 0 on λ ∈ D+ ∪ �+ \ {1}, and C±ε are suitable constants.

The bound (B.12) implies that
∂φ+1
∂ε
ψ−2 − ∂φ+2

∂ε
ψ−1 tends to zero as x → −∞, while the

bound (B.13) implies that φ+1
∂ψ−1
∂ε
−φ+2 ∂ψ−1

∂ε
tends to zero as x →+∞. Integrating (B.11)

under these conditions, as in the proof of Lemma B.1, we obtain (B.10).

Using the same methods, we obtain the following corollary.

Corollary B.4. Let wε ∈ L1
1(R) and G(k; ε) be defined by (3.21) for wε(x). Then

G(k; ε) is an entire function of ε for every k in the closed lower half-plane.

Lemma B.5. Let w(x) be real, satisfy (4.1) with p = 2 and b∞ < − 3
8 , and w′(x) ∈

L1
1(R). Let W (x) be real, satisfy (4.1) with p > 2, and W ′(x) ∈ L1

1(R). Let Ĝ(k; ε) be
defined similarly to Ĝ(k) for wε = w(x) + εW (x). Then Ĝ(k; ε) is an entire function
of ε for every k in the closed lower half-plane.
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Proof. The potential V (x) in the decomposition (A.25) becomes

Vε(x) = V (x)− 2εW (x)− 2εw(x)W (x)+ iεW ′(x)− ε2W 2(x).

From the assumptions of Lemma B.5, it follows that Vε(x) ∈ L1
1(R). Replacing V (s) by

Vε(s) in (A.28), we obtain integral equations for f ±ε (x; k), where the terms f ±0 (x; k) are
independent of ε. Considering the renormalization f̂ ±ε (x; k) = kq f ±ε (x; k), we prove
the existence of the limit as k → 0. It also follows by iteration (as in the proof of Lemma
B.3) that the functions f̂ ±ε (x; k) are continuously differentiable with respect to ε for
0 ≤ k < 1. Therefore, the Wronskian relation (A.27) is generalized for ε = 0 and the
assertion of the lemma follows.

Lemma B.6. Suppose that w0(x) is given by (5.18), W (x) is real, and W (x),W ′(x) ∈
L1

2(R). Let Ĝ(k; ε) be as in Lemma B.5. Then for κ ∈ D+, Ĝ(k; ε) is continuously

differentiable with respect to κ and ∂Ĝ
∂κ
(κ; ε) = o(1/κ) as κ → 0 uniformly in ε on any

interval [0, ε0], ε0 > 0. Furthermore, ∂2Ĝ
∂κ∂ε

(κ; ε) = o(1/κ) uniformly in |ε| < ε0.

Proof. Let us fix ε0 > 0. We use (A.24), but with potential

Uε(x) = U0(x)+ Ũε(x),

where

U0(x) = −2w0(x)− w2
0(x)+ iw′0(x),

Ũε(x) = −2εW (x)− 2εw0(x)W (x)+ iεW ′(x)− ε2W 2(x).

It suffices to choose an x0 > 0 and to consider (A.24) on [x0,∞).We think of Ũε(x) as a
perturbation of U0(x) and use a modified form of the integral equation (A.28). In contrast
to the proof of Lemma B.5, we do not includew′0(x) in the perturbation, since it falls off
like x−3and therefore misses being in L1

2(R). Includingw′0(x) in the perturbation would
lead to complications when we differentiate (A.28) with respect to k. We let

χ+(x; k) = φ+1 (x; k)+ iφ+2 (x; k), χ−(x; k) = ψ−1 (x; k)+ iψ−2 (x; k),
where φ+k and ψ−k (k = 1, 2) are the components of the solutions given in (5.19) and
(5.20), respectively. Then the function

f +0 (x; k) = [
√

1− k2 + i(1− k)]−1χ−(x; k)→ e−ikx , x →+∞,
is the Jost solution for the unperturbed problem with potential U0(x). The Jost solution
of the perturbed problem will be denoted by f +(x; k); the ε dependence is suppressed.
Writing the integral equation in terms of (note that q = 1)

h+(x; k) = keikx f +(x; k), h+0 (x; k) = keikx f +0 (x; k),
we obtain

h+(x; k) = h+0 (x; k)+
∫ ∞

x
e(x, s; k)Ũε(s)h

+(s; k) ds, (B.14)
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where

e(x, s; k) = (−4k
√

1− k2)−1eik(x−s)(χ−(x; k)χ+(s; k)−χ−(s; k)χ+(x; k)), (B.15)

h+0 (x; k) =
2i

i − 2x
+ k.

Let

ym(x, s; k) = e2ik(x−s) −
m∑

n=0

[2ik(x − s)]n

n!
, m = 0, 1, 2, 3,

be the remainders of successive Taylor polynomials approximating e2ik(x−s). The kernel
e(x, s; k) in (B.15) is given by

2(−i + 2x)(−i + 2s)e(x, s; k)

− 1

k
(i + s(−2− 4i x)− 2x)y0 + 4

k2
(s − x)y1 − 4i

k3
y2. (B.16)

Using the estimates

|ym(x, s; k)| ≤ C
[k(s − x)]m+1

1+ k(s − x)
≤ C

(ks)m+1

1+ ks
, s ≥ x ≥ x0, (B.17)

we obtain

|e(x, s; k)| ≤ Cs2

x
, s ≥ x ≥ x0. (B.18)

Using this bound in (B.14), together with Gronwall’s inequality, we conclude that
|h+(x; k)| ≤ Ck, where C is independent of x , k, and ε. In order to get a handle
on the k derivative of h+(x; k), we differentiate (B.14) with respect to k (denoting the
derivative by a dot), which yields

ḣ+(x; k) = 1+
∫ ∞

x
ė(x, s; k)Ũε(s)h

+(s; k) ds

+
∫ ∞

x
e(x, s; k)Ũε(s)ḣ

+(s; k) ds. (B.19)

The expression for ė(x, s; k) is lengthy and so will not be stated explicitly. Using (B.16)
and (B.17), we estimate

|ė(x, s; k)| ≤ C

k

(
ks

1+ ks

)
s2

x
, s ≥ x ≥ x0. (B.20)

We briefly describe the strategy used in deriving (B.20) by considering a typical term.
First note that ė(x, s; k) is continuous at k = 0 and so all the terms involving inverse
powers of k must cancel out. When we differentiate the right-hand side of (B.16) with
respect to k, the most singular term involves the fraction e2ik(x−s)/k4. We write it as

e2ik(x−s)

k4
= 1

k4
+ 2i(x − s)

k3
− 2(x − s)2

k2
− i

4(x − s)3

3k
+ y3(x, s; k)

k4
.

As already mentioned, the first four terms will cancel out exactly when combined with
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other similar terms from the k-derivative of (B.16). The fifth term is estimated as follows:

|y3(x, s; k)|
k4

≤ C

k

(
ks

1+ ks

)
s3. (B.21)

In view of the factors on the left-hand side of (B.16), the expression (B.21) gives a
contribution to |ė(x, s; k)| of the form of the right-hand side of (B.20). Using (B.20) and
applying the dominated convergence theorem, we see that∣∣∣∣

∫ ∞
x

ė(x, s; k)Ũε(s)h
+(s; k) ds

∣∣∣∣ ≤ C

kx

∫ ∞
x

(
ks

1+ ks

)
s2|Ũε(s)| ds = o(1/k).

Hence, by using Gronwall’s inequality in (B.19), it follows that |ḣ+(x; k)| = o(1/k)
and thus f +(x; k) = o(1/k) (uniformly for x ≥ x0 and 0 ≤ ε ≤ ε0). Similarly, by
differentiating (B.19) with respect to x , we find that f +′(x; k) = o(1/k). Moreover, by
completely analogous arguments we see that f −(x; k) = o(1/k) and f −′(x; k) = o(1/k),
on x ≤ −x0. Since on [−x0, x0] the potential Uε(x) is integrable, this estimate can be
transferred to the point x0. Evaluating the Wronskian in (A.27) at x0 and differentiating
it with respect to k, we obtain the first assertion of the lemma. The second assertion
follows from writing ∂2Ĝ(κ; ε)/∂κ∂ε as a Cauchy integral involving ∂Ĝ(κ; ε)/∂κ and
estimating the integral. For the contour of integration we choose a circle of radius 2ε0

about zero in the ε-plane and consider |ε| ≤ ε0. Then |∂2Ĝ(κ; ε)/∂κ∂ε| ≤ 2M(κ)/ε0,

where M(κ) = sup|ε|=2ε0
|∂Ĝ(κ; ε)/∂κ|. Since M(κ) = o(1/κ) and ε0 is arbitrary, the

result follows.
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