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a b s t r a c t

We consider a diatomic infinite Fermi–Pasta–Ulam (FPU) system with light
and heavy particles. For a small mass ratio, we prove error estimates for the
approximation of the dynamics of this system by the dynamics of the monoatomic
FPU system. The light particles are squeezed by the heavy particles at the average
value of their displacements. The error estimates are derived by means of the
energy method and hold for sufficiently long times, for which the dynamics of the
monoatomic FPU system is observed. The approximation result is restricted to
sufficiently small displacements of the heavy particles relatively to each other.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a diatomic infinite Fermi–Pasta–Ulam (FPU) system depicted schematically in Fig. 1.
Displacements of heavy particles are denoted by Qj with j ∈ 2Z, whereas displacements of light particles are
denoted by qj , with j ∈ 2Z + 1. For convenience, we normalize the mass of the heavy particles to unity and
denote the mass ratio between masses of light and heavy particles by the parameter ε2. The total energy of
the diatomic system is

H =
∑
j∈2Z

1
2 Q̇2

j + 1
2ε2q̇2

j+1 + W (qj+1 − Qj) + W (Qj − qj−1), (1)

where the dot denotes the derivative in time t and W : R ↦→ R is a smooth potential for the pairwise
interaction force between the adjacent light and heavy particles. Equations of motion are generated from
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Fig. 1. A diatomic FPU system with heavy and light particles.

the total energy (1) by using the standard symplectic structure for the dynamics of particles. They are
written in the form:

Q̈j = W ′(qj+1 − Qj) − W ′(Qj − qj−1), (2)
ε2q̈j+1 = W ′(Qj+2 − qj+1) − W ′(qj+1 − Qj), (3)

where j ∈ 2Z.
The dynamics of diatomic lattices, e.g. propagation of traveling solitary waves, has always been important

in physical applications and has been studied in numerous works, e.g. [1–3]. More recently, such diatomic
systems were considered in the context of granular chains [4–6]. In particular, the authors of [4] proposed to
consider the following reduction of the diatomic system in the limit of vanishing mass ratio ε → 0:

0 = W ′(Qj+2 − qj+1) − W ′(qj+1 − Qj) ⇒ Qj+2 − qj+1 = qj+1 − Qj ,

which yields
qj+1 = Qj+2 + Qj

2 . (4)

If qj+1 is expressed by (4), the dynamics of the heavy particles is governed by the monoatomic FPU system:

Q̈j = W ′
(

Qj+2 − Qj

2

)
− W ′

(
Qj − Qj−2

2

)
, (5)

where j ∈ 2Z. It follows from (4) and (5) that the light particles are squeezed by the heavy particles and move
according to the average value of the displacements of their heavy neighbors, whereas the heavy particles
move according to their pairwise interactions.

Numerical results on existence and non-existence of traveling solitary waves in the diatomic system (2)–
(3) which are close to the traveling solitary waves of the monoatomic system (5) were reported in [4]. These
numerical results inspired a number of analytical works where the authors developed the existence theory for
traveling solitary waves with oscillatory tails [7,8], beyond-all-order theory [9,10], and the linearized analysis
of perturbations [11]. It is the purpose of this paper to give rigorous error estimates for this approximation
in the context of the initial-value problem.

Note that the small mass ratio limit for diatomic FPU system has been considered before in the context
of the existence of breathers [12–15] and traveling periodic waves [16–19]. However, these works rely on the
ideas of the so-called anti-continuum limit, for which the heavy particles do not move after rescaling of the
time variable, whereas the light particles perform uncoupled oscillations in between the heavy particles. The
limit (4) and (5) is clearly different from the anti-continuum limit.

Other relevant results on traveling solitary waves in diatomic lattices include persistence results near the
equal mass ratio limit [20], asymptotic approximations near the long-wave limit [21,22], and numerically
assisted study of radiation generated from long-wave solitons in the time evolution [23].

We shall now present the main approximation theorem. We use the standard notation ℓ2 to denote square
summable sequences equipped with the norm

∥u∥ℓ2 :=
(∑

k∈Z
|uk|2

)1/2

,



D.E. Pelinovsky and G. Schneider / Applied Mathematics Letters 107 (2020) 106387 3

from which it is obvious that supk∈Z |uk| ≤ ∥u∥ℓ2 . Another useful property of the ℓ2 space is being a Banach
algebra with respect to pointwise multiplication.

Theorem 1. Assume that Q∗ ∈ C1([0, T0], ℓ2) is a solution of the scalar FPU lattice (5) with W ∈ C3(R)
and W ′′(0) > 0 for a fixed T0 > 0. There exist ε0 > 0, C0 > 0, and C > 0 such that for all ε ∈ (0, ε0), the
following is true. If (Q(0), q(0)) ∈ ℓ2 × ℓ2 satisfy the bound

sup
j∈2Z

(
|Qj(0) − Q∗

j (0)| +
⏐⏐⏐⏐qj+1(0) −

Q∗
j+2(0) + Q∗

j (0)
2

⏐⏐⏐⏐) ≤ ε, (6)

and Q∗ ∈ C1([0, T0], ℓ2) satisfy the bound

sup
t∈[0,T0]

sup
j∈2Z

|Q∗
j+2(t) − Q∗

j (t)| ≤ C0, (7)

then there exists the unique solution (Q, q) ∈ C1([0, T0], ℓ2 × ℓ2) to the diatomic FPU system (2)–(3), which
satisfies the bound

sup
t∈[0,T0]

sup
j∈2Z

(
|Qj(t) − Q∗

j (t)| +
⏐⏐⏐⏐qj+1(t) −

Q∗
j+2(t) + Q∗

j (t)
2

⏐⏐⏐⏐) ≤ Cε. (8)

Remark 2. The approximation result of Theorem 1 is nontrivial since the right hand side of the associated
first order system to (2), and (3) multiplied with ε−2, is of order O(ε−1). Standard Gronwall’s inequality
only gives estimates on an O(ε)-time scale and not on the natural O(1)-time scale.

Remark 3. Approximation results for systems with a small perturbation parameter in front of the time
derivatives, similar to system (2)–(3) have been considered in [24]. However, the abstract theorem from [24]
does not apply since the nonlinear interaction appearing here is different from the one considered in Eq. (14)
of [24]. The approach in [24] is based on a normal form transformation, whereas the proof presented here is
based on a suitable choice of coordinates and energy estimates.

Remark 4. The monoatomic FPU system (5) is also Hamiltonian with the total energy

HFPU =
∑
j∈2Z

1
2 Q̇2

j + 2W

(
Qj+2 − Qj

2

)
. (9)

Since W ∈ C3(R) and W ′′(0) > 0, the conserved energy (9) is coercive for small displacements. As a result,
the constraint (7) is verified for all times if the initial condition for Q∗ ∈ C1([0, T0], ℓ2) yields a sufficiently
small value for HFPU due to small displacements and small velocities.

The remainder of the paper is organized as follows. In Section 2, we rewrite the diatomic FPU system in
new coordinates which are more suitable to express perturbations to the motion given by the limit system
(4) and (5). The bounds in Theorem 1 are obtained with the energy estimates in Section 3 for the simple
case with W ′(u) = u + u2. Generalizations to other nonlinear interaction potentials W (u) are discussed in
Section 4.

2. Change of coordinates

By using suitable chosen coordinates, we will separate the fast and slow dynamics of the diatomic FPU
system (2)–(3) and will introduce perturbations to the motion given by the limit system (4)–(5). Note that
the same choice of coordinates was used in [7] in the study of traveling waves. Let us set

Uj := 1
2(Qj+2 − Qj) and wj+1 := qj+1 − 1

2(Qj+2 + Qj),
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so that
qj+1 − Qj = Uj + wj+1 and Qj+2 − qj+1 = Uj − wj+1.

The diatomic FPU system (2)–(3) is now written as

2Üj = W ′(Uj+2 + wj+3) − W ′(Uj − wj+1) − W ′(Uj + wj+1) + W ′(Uj−2 − wj−1)

and

ε2ẅj+1 = W ′(Uj − wj+1) − W ′(Uj + wj+1) − 1
2ε2W ′(Uj+2 + wj+3)

+ 1
2ε2W ′(Uj − wj+1) − 1

2ε2W ′(Uj + wj+1) + 1
2ε2W ′(Uj−2 − wj−1).

For the particular choice W ′(u) = u + u2, we obtain

W ′(Uj − wj+1) + W ′(Uj + wj+1) = 2Uj + 2U2
j + 2w2

j+1,

W ′(Uj − wj+1) − W ′(Uj + wj+1) = −2wj+1 − 4Ujwj+1,

which yields the following system of equations:

Üj + Uj + U2
j + w2

j+1 = g(Uj+2, Uj−2, wj+3, wj−1), (10)
ε2ẅj+1 + (2 + ε2)wj+1(1 + 2Uj) = ε2h(Uj+2, Uj−2, wj+3, wj−1), (11)

where

g(Uj+2, Uj−2, wj+3, wj−1) = 1
2W ′(Uj+2 + wj+3) + 1

2W ′(Uj−2 − wj−1), (12)

h(Uj+2, Uj−2, wj+3, wj−1) = −1
2W ′(Uj+2 + wj+3) + 1

2W ′(Uj−2 − wj−1). (13)

The dynamics of U and w occurs now at two different scales: U changes on the time scale of O(1), whereas
w changes on the faster time scale of O(ε). The approximation result of Theorem 1 justifies the dynamics
of U on the time scale of O(1). The dynamics of w is slaved to the dynamics of U on this time scale.

3. The error estimates

The leading-order approximation in the new coordinates is denoted by (U, w) = (Ψ , 0), where Ψ satisfies

Ψ̈j + Ψj + Ψ2
j = g(Ψj+2,Ψj−2, 0, 0). (14)

After inserting this approximation into the equations of motion (10) and (11), the remaining terms are
collected in the residual, which is given by

ResU,j = 0,

Resw,j = ε2h(Ψj+2,Ψj−2, 0, 0).

The residual terms obey the following estimate.

Lemma 5. Assume that Ψ ∈ C([0, T0], ℓ2) is a solution of the scalar equation (14) for some T0 > 0. Then
there exists a constant C > 0 that depends on Ψ such that for all ε ∈ (0, 1) we have

sup
t∈[0,T0]

∥Resw∥ℓ2 ≤ Cε2. (15)



D.E. Pelinovsky and G. Schneider / Applied Mathematics Letters 107 (2020) 106387 5

Proof. We recall that ℓ2 is a Banach algebra with respect to pointwise multiplication. Due to this property,
it follows from (13) with W ′(u) = u + u2 that

∥Resw∥ℓ2 ≤ ε2 (∥Ψ∥ℓ2 + ∥Ψ∥2
ℓ2
)

,

which gives (15) under the condition Ψ ∈ C([0, T0], ℓ2). □

For estimating the difference between the approximation and the true solution we introduce the error
functions R and v by using the decomposition

Uj = Ψj + εRj and wj+1 = εvj+1. (16)

These functions satisfy the following system

R̈j + Rj + 2ΨjRj + εR2
j + εv2

j+1 = LU,j(Ψ)(R, v) + εNU,j(Ψ , R, v), (17)
ε2v̈j+1 + 2vj+1(1 + 2Ψj + 2εRj) = ε2Lw,j(Ψ)(R, v) + ε3Nw,j(Ψ , R, v) + ε−1Resw,j , (18)

where the linear terms in (R, v) are given by

LU,j(Ψ)(R, v) = 1
2(Rj+2 + Rj−2) + 1

2(vj+3 − vj−1) (19)

+Ψj+2(Rj+2 + vj+3) + Ψj−2(Rj−2 − vj−1),

Lw,j(Ψ)(R, v) = −(1 + 2Ψj)vj+1 − 1
2(Rj+2 − Rj−2) − 1

2(vj+3 + vj−1) (20)

−Ψj+2(Rj+2 + vj+3) + Ψj−2(Rj−2 − vj−1),

and quadratic terms in (R, v) are given by

NU,j(Ψ , R, v) = 1
2(Rj+2 + vj+3)2 + 1

2(Rj−2 − vj−1)2, (21)

Nw,j(Ψ , R, v) = −2Rjvj+1 − 1
2(Rj+2 + vj+3)2 + 1

2(Rj−2 − vj−1)2. (22)

The linear and quadratic terms obey the following estimate.

Lemma 6. Assume that Ψ ∈ C([0, T0], ℓ2) is a solution of the scalar equation (14) for some T0 > 0. Then
there exists a constant C > 0 that depends on Ψ such that for all ε ∈ (0, 1) we have

∥LU (Ψ)(R, v)∥ℓ2 + ∥Lw(Ψ)(R, v)∥ℓ2 ≤ C(∥R∥ℓ2 + ∥v∥ℓ2), (23)
∥NU (Ψ , R, v)∥ℓ2 + ∥Nw(Ψ , R, v)∥ℓ2 ≤ C(∥R∥2

ℓ2 + ∥v∥2
ℓ2). (24)

Proof. The proof follows from (19), (20), (21), and (22) due to the same property of ℓ2 being a Banach
algebra with respect to pointwise multiplication. □

The dynamics of the error functions is estimated with the help of a suitable chosen energy. We define the
energy function by

E(t) = 1
2
∑
j∈2Z

Ṙ2
j + R2

j + ε2v̇2
j+1 + 2v2

j+1 + 2Ψj(R2
j + 2v2

j+1) + 4εRjv2
j+1. (25)

Computing the time derivative of E(t) yields

d

dt
E(t) = ⟨Ṙ, R̈ + R + 2ΨR + 2εv2⟩ℓ2 (26)

+ ⟨v̇, ε2v̈ + 2v + 4Ψv + 4εRv⟩ℓ2 + ⟨Ψ̇ , R2 + 2v2⟩ℓ2 ,
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where (ΨR)j = ΨjRj and (Ψv)j = Ψjvj+1. By substituting the dynamical equations for (R, v) into (26),
we obtain

d

dt
E(t) = ⟨Ṙ, −εR2 + εv2 + LU (Ψ)(R, v) + εNU (Ψ , R, v)⟩ℓ2 (27)

+⟨εv̇, εLw(Ψ)(R, v) + ε2Nw(Ψ , R, v) + ε−2Resw⟩ℓ2

+ ⟨Ψ̇ , R2 + 2v2⟩ℓ2 .

The energy function controls the perturbations and their time derivative if displacements of heavy
particles relatively to each other are sufficiently small, as in the condition (7) of Theorem 1. The following
lemma gives the corresponding result.

Lemma 7. Assume that Ψ ∈ C([0, T0], ℓ2) is a solution of the scalar equation (14) for some T0 > 0. There
exists C > 0 such that if

C0 := sup
t∈[0,T0]

sup
j∈2Z

|Ψj(t)| <
1
4 , (28)

and ε∥R(t)∥ℓ2 ≤ 1
4 then

∥Ṙ(t)∥2
ℓ2 + ∥R(t)∥2

ℓ2 + ∥εv̇(t)∥2
ℓ2 + ∥v(t)∥2

ℓ2 ≤ CE(t). (29)

Proof. We obtain from (25) by using the bound (28) that

2E(t) ≥ ∥Ṙ(t)∥2
ℓ2 + (1 − 2C0)∥R(t)∥2

ℓ2 + ∥εv̇(t)∥2
ℓ2 + 2(1 − 2C0)∥v(t)∥2

ℓ2 − 4ε∥R(t)∥ℓ2∥v(t)∥2
ℓ2 ,

which yields (29) for some constant C > 0 provided that C0 < 1
4 and ε∥R(t)∥ℓ2 ≤ 1

4 . □

The essential point in the proof of the approximation result of Theorem 1 is that the fast dynamics of v

can be controlled by the ∥εv̇(t)∥2
ℓ2 term in the energy bound (29) and in the energy balance equation (27).

The following lemma gives the useful estimate from the energy balance equation (27).

Lemma 8. Assume that Ψ ∈ C1([0, T0], ℓ2) is a solution of the scalar equation (14) for some T0 > 0
satisfying (28). There exist constants C1, C2, C3 > 0 that depend on Ψ such that for all ε ∈ (0, 1) we have

d

dt
E(t) ≤ C1E(t)1/2 + C2E(t) + C3εE(t)3/2, t ∈ [0, T0], (30)

as long as ε∥R(t)∥ℓ2 ≤ 1
4 .

Proof. We use the Cauchy–Schwarz inequality in (27) together with the estimates (15), (23), (24), and
(29). This yields (30). □

We can now conclude the proof of Theorem 1. Let S(t) := E(t)1/2. The initial bound (6) yields S(0) ≤ C0
for some C0 > 0 independently of ε ∈ (0, ε0). The energy balance estimate (30) can be rewritten in the form

d

dt
S(t) ≤ C1 + C2S(t) + C3εS(t)2, t ∈ [0, T0], (31)

where the constants C1, C2, C3 > 0 have been redefined. Let T∗ be defined by

T∗ := sup{T > 0 : εS(t) ≤ C2

C3
, ε∥R(t)∥ℓ2 ≤ 1

4 , t ∈ [0, T ]},

for the given constants ε, C2, and C3. Then, by Gronwall’s inequality, we obtain

S(t) ≤
[
S(0) + (2C2)−1C1

]
e2C2t ≤

[
C0 + (2C2)−1C1

]
e2C2T0 , t ∈ [0, T0].

Since T0 < T∗ if ε > 0 is appropriately small, we obtain S(t) ≤ C for some C > 0 independently of ε ∈ (0, ε0),
and the final bound (8) holds. It also follows from the energy bound (29) that ∥R(t)∥ℓ2 ≤ C for some C > 0.
The approximation result of Theorem 1 is proven.



D.E. Pelinovsky and G. Schneider / Applied Mathematics Letters 107 (2020) 106387 7

4. Generalization

We have proven the approximation result of Theorem 1 for the simplest nonlinear interaction potential
W ′(u) = u + u2. For a more general interaction potential W ∈ C3(R), Taylor expansions around U yield

W ′(Uj − wj+1) + W ′(Uj + wj+1) = 2W ′(Uj) + O(|wj+1|2)

and
W ′(Uj − wj+1) − W ′(Uj + wj+1) = −2W ′′(Uj)wj+1 + O(|wj+1|2),

so that the system of coupled equations (10) and (11) is rewritten in the more general form:

Üj + W ′(Uj) + O(|wj+1|2) = g(Uj+2, Uj−2, wj+3, wj−1), (32)
ε2ẅj+1 + (2 + ε2)W ′′(Uj)wj+1 + O(|wj+1|2) = ε2h(Uj+2, Uj−2, wj+3, wj−1), (33)

The energy function for the perturbation terms in the decomposition (16) becomes

E(t) = 1
2
∑
j∈2Z

Ṙ2
j + W ′′(Ψj)R2

j + ε2v̇2
j+1 + 2W ′′(Ψj + εRj)v2

j+1. (34)

It follows by repeating the previous analysis that the same approximation result stated in Theorem 1 applies
to the more general interaction potential satisfying the conditions W ∈ C3(R) and W ′′(0) > 0.
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