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We consider a class of fully nonlinear Fermi–
Pasta–Ulam (FPU) lattices, consisting of a chain of
particles coupled by fractional power nonlinearities
of order α > 1. This class of systems incorporates a
classical Hertzian model describing acoustic wave
propagation in chains of touching beads in the absence
of precompression. We analyse the propagation of
localized waves when α is close to unity. Solutions
varying slowly in space and time are searched with
an appropriate scaling, and two asymptotic models
of the chain of particles are derived consistently.
The first one is a logarithmic Korteweg–de Vries
(KdV) equation and possesses linearly orbitally stable
Gaussian solitary wave solutions. The second model
consists of a generalized KdV equation with Hölder-
continuous fractional power nonlinearity and admits
compacton solutions, i.e. solitary waves with compact
support. When α → 1+, we numerically establish the
asymptotically Gaussian shape of exact FPU solitary
waves with near-sonic speed and analytically check
the pointwise convergence of compactons towards the
limiting Gaussian profile.

1. Introduction
The problem of analysing the response of a nonlinear
lattice to a localized disturbance arises in many
applications, such as the study of stress waves in
granular media after an impact [1,2], the excitation of
nonlinear oscillations in crystals by atom bombardment
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[3,4] or the response of nonlinear transmission lines to a voltage pulse [5]. Several important
dynamical phenomena can be captured by the Fermi–Pasta–Ulam (FPU) model [6] consisting of
a chain of particles coupled by a pairwise interaction potential V. The dynamical equations for a
spatially homogeneous FPU chain read as follows:

d2xn

dt2 = V′(xn+1 − xn) − V′(xn − xn−1), n ∈ Z, (1.1)

where xn(t) ∈ R is the displacement of the nth particle from a reference position. System (1.1) can
be rewritten in terms of the relative displacements un = xn − xn−1 and particle velocities pn = ẋn

as follows:
dun

dt
= pn − pn−1 and

dpn

dt
= V′(un+1) − V′(un), n ∈ Z. (1.2)

The dynamical evolution of localized solutions of (1.2) is strongly influenced by the properties of
the interaction potential V. In its most general form, the interaction potential satisfies

V ∈ C2(R) with V′(x) = κx + O(|x|α), (1.3)

where α > 1 and κ ≥ 0.
In the work of Mielke & Patz [7], the dispersive stability of the zero equilibrium state is proved

for κ > 0 and α > 4, i.e. for sufficiently weak nonlinearities near the origin. More precisely, the
amplitude (i.e. supremum norm) of the solution of the FPU lattice (1.2) goes to 0 when t → +∞
for all initial conditions sufficiently small in �1, where �1 denotes the classical Banach space of
bi-infinite summable sequences.

By contrast, in many situations nonlinear effects are strong enough to compensate dispersion,
yielding the existence of coherent localized solutions of the FPU lattice (1.2), such as solitary
waves propagating at constant speed, or time-periodic breathers (see e.g. [6] for a review).
The first existence result for solitary waves in a general class of FPU lattices was obtained by
Friesecke & Wattis [8], when V has the local minimum (not necessarily strict) at the origin and
is superquadratic at one side (see also [9] and references therein). In addition, the existence of
solitary waves near the so-called long wave limit was established in [10–14] for smooth (C3)
potentials V. More precisely, for κ > 0 and V′′′(0) �= 0 (i.e. α = 2 in (1.3)), there exist a family of
small amplitude solitary waves parametrized by their velocity c � cs := √

κ , where cs defines the
‘sound velocity’ of linear waves. These solutions take the form

un(t) = κ(4V′′′(0))−1ε2z(ε(n − ct)) + higher order terms,

where ε =√
24(c − cs)/cs and z(η) = sech2(η/2). In particular, these solitary waves decay

exponentially in space and broaden in the limit of vanishing amplitude. Equivalently, one has

un(t) = κ(4V′′′(0))−1ε2y(ξ , τ ) + higher order terms, (1.4)

where ξ := ε(n − cst), τ := ε3cst/24 and y(ξ , τ ) := z(ξ − τ ) is a solitary wave solution of the
Korteweg–de Vries (KdV) equation

∂τ y + 3y∂ξ y + ∂3
ξ y = 0. (1.5)

More generally, the solutions y : R × [0, T] → R of KdV equation (1.5) yield solutions of the FPU
system of form (1.4), valid on a time scale of order ε−3 [15–17]. In addition, the nonlinear
stability of small amplitude FPU solitary waves was proved in [10–13,18,19], as well as the
existence and stability of asymptotic N-soliton solutions [20,21]. These results allow to describe in
particular the propagation of compression solitary waves in homogeneous granular chains under
precompression [1].

Another interesting case corresponds to fully nonlinear interaction potentials, where κ = 0
(which corresponds to a vanishing sound velocity, that is, cs = 0) and V has the local minimum at
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the origin. A classic example is given by the Hertzian potential

V(x) = 1
1 + α

|x|1+αH(−x) (1.6)

with α > 1, where we denote by H the Heaviside step function. This potential describes the contact
force between two initially tangent elastic bodies (in the absence of precompression) after a small
relative displacement x [22]. The most classical case is obtained for α = 3/2 and corresponds to
contact between spheres, or more generally two smooth non-conforming surfaces. More recently,
granular chains involving different orders of nonlinearity have attracted much attention, see
[23,24] and references therein. In particular, experimental and numerical studies on solitary wave
propagation have been performed with chains of hollow spherical particles of different width [25]
and chains of cylinders [26], leading to different values α in the range of 1.15 ≤ α ≤ 1.5 (see also
[27] for other systems with α close to unity).

The propagation of stationary compression pulses in the FPU lattice (1.1) with potential (1.6)
for α = 3/2 was first analysed by Nesterenko [1]. These results rely on a formal continuum limit
and provide approximate solitary wave solutions with compact support. An alternate continuum
limit problem has been introduced in [28] for arbitrary values of α > 1, leading to different
(compactly supported) approximations of solitary waves. The existence of exact solitary wave
solutions of FPU lattice (1.1) with potential (1.6) follows from the general result of Friesecke
& Wattis [8] mentioned previously (see also [29,30]). The width of these solitary waves is
independent of their amplitude owing to the homogeneous nonlinearity of the Hertzian potential.
In addition, the fully nonlinear character of the Hertzian potential induces a doubly exponential
spatial decay of solitary waves [30,31].

While the above analytical results provide useful informations on strongly localized solitary
waves, they are not entirely satisfactory for several reasons. First of all, the existence result of
Friesecke & Wattis [8] does not provide an approximation of the solitary wave profile, and the
approximations available in the literature [1,28] rely on a ‘long wave’ assumption that is not
justified (for example, the solitary waves considered in [1] are approximately localized on five
particles). In addition, the dynamical properties of solitary waves in fully nonlinear FPU lattices
are not yet understood. Indeed, no mathematical results are available concerning their stability,
the way they are affected by lattice inhomogeneities or the existence of N-soliton solutions.
Another interesting problem is to characterize the excitation of one or several solitary waves
from a localized initial perturbation [32,33]. For cs �= 0 and small amplitude long waves, this
problem can be partially analysed in the framework of KdV approximation by using the inverse
scattering transform methods [34], but such reduction is presently unavailable for fully nonlinear
FPU lattices. These questions are important for the analysis of impact propagation in granular
media, and more generally for the design of multiple impact laws in multi-body mechanical
systems [2,32].

In this paper, we attack the problem by considering a suitable long wave limit of fully nonlinear
FPU lattices. We consider FPU lattice (1.1) with the homogeneous fully nonlinear interaction
potential

V(x) = 1
1 + α

|x|1+α , (1.7)

with α > 1. Obviously, all solutions un ≤ 0 of FPU lattice (1.1) with the potential (1.7) are also
solutions of Hertzian FPU lattice (1.1) and (1.6). The problem can be rewritten in terms of the
relative displacements in the following way

d2u
dt2 = 
(u|u|α−1), (1.8)

where we denote u = (un)n∈Z and (
u)n = un+1 − 2un + un−1 is the discrete Laplacian. For
approximating the temporal dynamics of (1.8) in a continuum limit, fully nonlinear versions of the
Boussinesq equation considered in [1,28] possess serious drawbacks, as they may lead to blow-
up phenomena in analogy with the classical ‘bad’ Boussinesq equation [35]. In §2, we numerically
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show that these models introduce artificial dynamical instabilities with arbitrarily large growth
rates, which suggests ill-posedness of these equations [36]. In §3, instead of using a Boussinesq-
type model, we then formally derive a logarithmic KdV (log-KdV) equation as a modulation
equation for long waves in fully nonlinear FPU lattices, obtained in the limit α → 1+ (§3a). The
log-KdV equation takes the form

∂τ v + ∂3
ξ v + ∂ξ (v ln |v|) = 0 (1.9)

and provides approximate solutions un(t) ≈ v(ξ , τ ) of the original FPU lattice (1.8) for ξ :=
2
√

3ε(n − t), τ := √
3ε3t and ε := √

α − 1 ≈ 0.
Log-KdV equation (1.9) admits Gaussian solitary wave solutions (§3b), which have been

previously identified as solutions of the stationary logarithmic nonlinear Schrödinger equation
(log-NLS) in the context of nonlinear wave mechanics [37]. Closer to our case, Gaussian
homoclinic solutions have been also found to approximate the envelope of stationary breather
solutions in Newton’s cradle (i.e. system (1.1) and (1.6) with an additional on-site potential) in the
limit α → 1+ [38]. In §3b, we numerically check that solitary wave solutions of the Hertzian FPU
lattice with velocity vs = 1 + c(α − 1) converge towards Gaussian approximations when c ∈ R is
fixed and α → 1+. These solitary waves have velocities close to unity, which corresponds to the
value of sound velocity in the linear chain with α = 1. In addition, we check that the FPU solitary
waves are well approximated by the compacton solutions derived in [28] when α ∈ (1, 3/2].
To go beyond the stationary regime, we check numerically that the Gaussian approximation
captures the asymptotic shape of a stable pulse forming after a localized velocity perturbation
in the Hertzian FPU lattice (1.1)–(1.6) with α ≈ 1 (§3c). Consistently with the above dynamical
simulations, we prove in §3d the linear orbital stability of Gaussian solitary waves for the log-
KdV equation. Our analysis makes use of a suitable convex conserved Lyapunov function, but
negative index techniques developed in recent works [39,40] for KdV-type equations would
also apply.

The link between Gaussian solitary waves and compactons is made explicit in §4, where we
check the pointwise convergence of the compacton solutions of [28] towards Gaussian profiles
when α → 1+. In addition, following the methodology developed in §3a, we derive from the
fully nonlinear FPU lattice a generalized KdV equation with Hölder-continuous nonlinearity
(H-KdV):

∂τ v + ∂3
ξ v + α

α − 1
∂ξ (v − v|v|1/α−1) = 0. (1.10)

When α → 1+, the H-KdV equation (1.10) is consistent with the FPU lattice in the sense that
each solution to this equation ‘almost’ satisfies (1.8) up to a small residual error. Equation
(1.10) admits explicit compacton solutions whose form is close to the compactons obtained in
[28] with the use of a Boussinesq-type model. When α → 1+, these solutions converge towards
the Gaussian solitary waves studied in §3b, and thus they provide an (asymptotically exact)
approximation of FPU solitary waves with near-sonic speed. This result sheds a new light on
the compacton approximations for FPU solitary waves heuristically derived in the literature
[1,28]. Another interest of the H-KdV equation lies in the (non-differentiable) Hölder-continuous
nonlinearity v|v|1/α−1, which allows for the existence of compactons. This type of degeneracy is
quite different from the classical feature of compacton equations which incorporate degenerate
nonlinear dispersion [36,41].

We finish this paper with a summary of our results and a discussion of several open questions
concerning the qualitative dynamics of the log-KdV and H-KdV equations and their connections
with fully nonlinear FPU chains (§5).

2. Fully nonlinear Boussinesq equation and compactons
Fully nonlinear Boussinesq equations have been introduced in [1,28] as formal continuum limits
of FPU chains with Hertzian-type potentials. In the study of Nesterenko [1], the continuum limit
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is performed on system (1.1) with potential (1.7) describing particle displacements, whereas [28]
considers system (1.8) for relative displacements. In what follows, we discuss the continuum limit
introduced in [28], which takes a slightly simpler form than the system derived in [1].

The fully nonlinear Boussinesq equation introduced in [28] takes the form

utt = (u|u|α−1)xx + 1
12 (u|u|α−1)xxxx, (2.1)

where u|x=n denotes an approximation of a solution un of (1.8). The right-hand side of (2.1) is
obtained by keeping the first two terms of the formal Taylor expansion of the discrete Laplacian
in (1.8)


 = 2(cosh ∂x − 1) =
+∞∑
k=1

2
(2k)!

∂2k
x . (2.2)

This truncation is purely formal, but a numerical justification is presented in [28] in the particular
case of solitary wave solutions. More precisely, the solitary waves un(t) = w(z), z = n − t of (1.8)
are numerically compared with solitary wave solutions u(x, t) = w(z), z = x − t of (2.1). For this
class of solutions, equation (2.1) reduces to a fourth-order ordinary differential equation, which
can be integrated twice and leads to

w = w|w|α−1 + 1
12

d2

dz2 w|w|α−1, z ∈ R, (2.3)

whereas equation (1.8) reduces to the differential advance-delay equation

d2w
dz2 = 
(w|w|α−1), z ∈ R, (2.4)

with (
w)(z) = w(z + 1) − 2w(z) + w(z − 1). The wave velocity can be normalized to unity
owing to a scaling invariance of the FPU system (1.1) with homogeneous potential (1.7) (or
Hertzian potential (1.6)), namely each solution un generates a one-parameter family of solutions
|vs|2/(α−1)un(vst) with vs ∈ R (the same scaling invariance exists in system (2.1)).

According to the numerical computations presented in [28], the solitary wave of the differential
advance-delay equation (2.4) is well approximated by the compactly supported solitary wave
of differential equation (2.3) for α = 3/2, and the discrepancy increases with α. The compacton
solution of (2.3) found in [28] takes the form

wc(z) =

⎧⎪⎨
⎪⎩

A cos2/(α−1)(Bz), |z| ≤ π

2B
,

0, |z| ≥ π

2B
,

(2.5)

where

A =
(

1 + α

2α

)1/(1−α)
and B =

√
3(α − 1)

α
.

In what follows, we re-examine the consistency of (1.8) and (2.1), from a dynamical
point of view, by analysing the spectral stability of compactons. Linearizing (2.1) at the
compacton wc in the reference frame travelling with unit velocity, we use the ansatz
u(x, t) = wc(x − t) + U(x − t) eλt, where λ is the spectral parameter and U is the perturbation term.
We arrive at the spectral problem

(
λ − d

dz

)2
U =

(
d2

dz2 + 1
12

d4

dz4

)
(kαU), (2.6)
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Figure 1. Eigenvalues of the spectral problem (2.6) and (2.7) (black dots) for α = 1.05 (a), α = 1.2 (b), and α = 1.5 (c). The
grey dotted curves show continuous spectrum (2.8) obtained in the limit caseα → 1+.

where kα(z) := αwα−1
c (z) = αAα−1 cos2(Bz) 1[−π/2B,π/2B](z) and 1 denotes the characteristic

function. One can note that kα and k
′
α vanish at the endpoints z = ±π/2B of the compact support

of wc. We look for eigenvectors in the Hilbert space

D = {U ∈ H2(R), kαU ∈ H4(R)},
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where Hm denotes a classical Sobolev space [42]. As k
′′
α and k′′′

α are discontinuous at z = ±π/2B,
this yields the condition

U
(
± π

2B

)
= 0 and U′

(
± π

2B

)
= 0. (2.7)

This allows us to reduce eigenvalue problem (2.6) to the compact interval [−π/2B, π/2B] with
boundary conditions (2.7) and approximate the spectrum with the standard finite difference
method (we have used second-order difference approximations for derivatives and 2000 grid
points). If there exist eigenvalues with Re(λ) > 0, then the solitary wave is spectrally unstable. If all
the eigenvalues are located at the imaginary axis, then the solitary wave is called spectrally stable.

Figure 1 shows the complex eigenvalues λ of the spectral problem (2.6) and (2.7) for α =
1.05, 1.2, 1.5. Spectrum is invariant under λ → −λ and λ → λ̄ (note the presence of a small number
non-symmetric eigenvalues, which originate from numerical errors). We find the existence of
unstable eigenvalues for all values of α > 1 considered, and the eigenvalues approach the real
line far from the origin (this part of the spectrum is not visible in figure 1a,b). Consequently, these
results imply the spectral instability of compacton (2.5) in system (2.1). Note that the usual notion
of instability may not be well defined, because the evolution problem (2.1) may not be well posed.
Indeed, our numerical results indicate that the spectrum of (2.6) and (2.7) is unbounded in the
positive half-plane (in fact at both sides of the imaginary axis), and thus the linearized evolution
problem may be ill-posed. We conjecture that ill-posedness occurs also in system (2.1), in analogy
with ill-posedness results recently obtained in [36] for certain nonlinear degenerate dispersive
equations.

Along these lines, it is interesting to consider the limit case of the spectral problem (2.6) and
(2.7) when α → 1+. As kα(z) → 1 for all z ∈ R and B → 0, the limiting spectral problem possesses
constant coefficients and is defined on the entire real line. Using the Fourier transform, one can
compute the (purely continuous) spectrum explicitly, which yields

λ = λ±(k) := ik ± k
√

1
12 k2 − 1, k ∈ R. (2.8)

This limit case is represented in figure 1 (grey curves). The spectrum being unbounded in the
positive half-plane, the corresponding linear evolution problem is then ill-posed.

The above instability phenomena are not physically meaningful because the solitary waves
are known to be stable from simulations of impacts in Hertzian chains [1]. In equation (2.8)
obtained in the limit α → 1+, these instabilities occur for short wavelengths (with k2 > 12), whose
dynamical evolution cannot be correctly captured by continuum limit (2.1). In the next section,
we derive a different asymptotic model free of such artificial instabilities.

Remark 2.1. A classical model introduced to correct artificial short wavelength instabilities of
(2.1) corresponds to the regularized Boussinesq equation

utt = (u|u|α−1)xx + 1
12 uxxtt (2.9)

(e.g. [43]). This model has the inconvenience of altering the spatial decay of solitary waves in
the case of fully nonlinear interaction potentials. Indeed, looking for travelling wave solutions
u(x, t) = w(z), z = x − t and integrating equation (2.9) twice, one obtains

1
12

d2w
dz2 = w − w|w|α−1 (2.10)

after setting two integration constants to 0. Equation (2.10) admits non-trivial symmetric
homoclinic solutions ±wα(z) satisfying limz→±∞ wα(z) = 0, corresponding to solitary wave
solutions of (2.9). These solutions decay exponentially in space, which is too slow compared with
the superexponential decay of the solitary wave solutions of (2.4).
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3. The log-KdV equation and Gaussian solitary waves

(a) Formal derivation of the log-KdV equation
In order to pass to the limit α → 1+ for long waves, it is convenient to rewrite (1.8) in the form(

d2

dt2 − 


)
u = 
fα(u), (3.1)

where
fα(u) := u(|u|α−1 − 1) = (α − 1)u ln |u| + O((α − 1)2) (3.2)

(uniformly in u on bounded intervals) when α → 1+. For α = 1, we have f1(u) = 0 for all u ∈ R and
system (3.1) reduces to a semi-discrete linear wave equation. In that case, the scaling in (1.4) (with
cs = 1) yields a linearized KdV equation for the envelope function y. To analyse the limit α → 1+,
we assume the same type of scaling for the solution u, i.e. we search for solutions depending
on slow variables ξ := 2

√
3ε(n − t) and τ := √

3ε3t, where ε > 0 is a small parameter. We look for
solutions of the form

u(t) = v(ξ , τ ) + O(ε). (3.3)

In contrast with (1.4), the leading term v(ξ , τ ) is assumed of order unity and the remainder term in
(3.3) is O(ε). Of course, owing to the scaling invariance of the FPU lattice (1.8) for α > 1, solutions
with arbitrarily small or large amplitudes can be deduced from any solution of form (3.3).

From scaling (3.3) and using a Taylor expansion and the chain rule, we obtain


 = 12ε2∂2
ξ (1 + ε2∂2

ξ + O(ε4)) (3.4)

and
d2

dt2 − 
 = −12ε4∂ξ (∂τ + ∂3
ξ ) + O(ε6). (3.5)

To evaluate the right-hand side of (3.1), we use the expansion

fα(u) = fα(v + O(ε)) = (α − 1)v ln |v| + O((α − 1)2 + |α − 1|ε| ln ε|),
where the logarithmic remainder term accounts for the possible vanishing of v. Setting now
ε := √

α − 1 and using (3.4), we obtain


fα(u) = 12ε4∂2
ξ (v ln |v|) + O(ε5| ln ε|). (3.6)

With this choice of ε, the left- and right-hand sides of equation (3.1) have the same order ε4

according to expansions (3.5) and (3.6). Substituting these expansions in (3.1) yields

ε4∂ξ (∂τ v + ∂3
ξ v + ∂ξ (v ln |v|)) + O(ε5| ln ε|) = 0. (3.7)

Then neglecting the higher order terms and integrating with respect to ξ leads to

∂τ v + ∂3
ξ v + ∂ξ (v ln |v|) = 0, ξ ∈ R, (3.8)

where the integration constant has been fixed to 0 in order to cover the case when
limξ→+∞ v(ξ , τ ) = 0. We shall call equation (3.8) the logarithmic KdV (log-KdV) equation. It can
be rewritten

∂τ v + ∂3
ξ v + ∂ξ (W′(v)) = 0, ξ ∈ R, (3.9)

where the potential W reads

W(v) = v2

2

(
ln |v| − 1

2

)
.

Equation (3.7) shows that the log-KdV equation is consistent with the nonlinear lattice (1.8),
i.e. each solution of (3.8) is almost a solution of (1.8) up to a small residual error.
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Note that if v is a solution of (3.8), so is −v. In addition, equation (3.8) admits a non-
standard Galilean symmetry involving a rescaling of amplitude, i.e. each solution v generates
a one-parameter family of solutions

[φ(c) · v](ξ , τ ) := ecv(ξ − cτ , τ ), c ∈ R. (3.10)

In particular, all travelling wave solutions of the log-KdV equation (3.8) can be deduced from its
stationary solutions. This property is inherited from the scaling invariance of FPU system (1.8)
(this point will be detailed in §3b).

Equation (3.8) falls within the class of generalized KdV equations. Systems in this class possess
three (formally) conserved quantities [44], namely the mass

M(v) =
∫
R

v dξ , (3.11)

the momentum

P(v) = 1
2

∫
R

v2 dξ (3.12)

and the energy

E(v) = 1
2

∫
R

(∂ξ v)2 dξ −
∫
R

W(v) dξ . (3.13)

Well-posedness results for the Cauchy problem associated with (3.9) are known when W′′ is a C2

function [44], but the existing theory does not apply to our case, where W′′(v) = 1 + ln |v| diverges
logarithmically at the origin.

(b) Stationary solutions
Looking for solutions of log-KdV equation (3.8) depending only on ξ , one obtains the stationary
log-KdV equation

d3v

dξ3 + d
dξ

W′(v) = 0. (3.14)

Integrating once under the assumption limξ→+∞ v(ξ ) = 0, one obtains

d2v

dξ2 + W′(v) = 0, ⇒ d2v

dξ2 + v ln |v| = 0. (3.15)

This equation can be seen as a (one-dimensional) stationary log-NLS equation [37].
The potential W in (3.15) has a double-well structure with the local maximum at v = 0 (figure 2),

hence there exists a pair of (symmetric) homoclinic orbits to 0 and a continuum of periodic orbits.
The homoclinic solutions have the explicit form v(ξ ) = ±v0(ξ ) with

v0(ξ ) = √
e e−ξ 2/4. (3.16)

Note that these (Gaussian) homoclinic solutions decay super-exponentially, but do not decay
doubly exponentially unlike the solitary wave solutions of the differential advance-delay
equation (2.4) [30,31].

Homoclinic solution (3.16) yields an approximate Gaussian solitary wave solution of FPU
lattice (1.8) with velocity equal to unity

un(t) ≈ wG(n − t), (3.17)

with
wG(z) := v0(2

√
3εz) = e1/2−3(α−1)z2

. (3.18)

Figure 3 compares the solitary wave solution of the differential advance-delay equation
(2.4) computed numerically with the analytical approximations corresponding to compactly
supported solitary wave (2.5) and Gaussian solitary wave (3.18). The numerical approximations
of solitary wave solutions of (2.4) were obtained using the algorithm described in
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Figure 2. Graph of the double-well logarithmic potentialW.
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Figure 3. Solitarywave solution (dotted line) of thedifferential advance-delay equation (2.4) in comparisonwith the compactly
supported solitary wave (solid line) given by (2.5) and the Gaussian solitary wave (dashed line) given by (3.18) forα = 1.5 (a)
andα = 1.1 (b). (Online version in colour.)

Ahnert & Pikovsky [28], based on a reformulation of (2.4) as a nonlinear integral equation and the
method of successive approximations (see also [9,31] for variants of this method). Figure 4 shows
the relative error (in L∞ norms) between solitary wave solutions of the differential advance-
delay equation (2.4) and the two approximations (2.5) and (3.18) as a function of α. The Gaussian
solitary wave provides a worse approximation compared with the compactly supported solitary
wave, but both approximation errors converge to zero, when α → 1+. We have in addition
limα→1+ ‖w‖∞ = ‖wG‖∞ = √

e; hence the absolute errors between the exact solitary wave w and
the two approximations converge to zero similar to the relative errors plotted in figure 4.

So far, we have computed a solitary wave solution of the FPU lattice (1.8) with unit velocity and
have checked its convergence towards the Gaussian approximation (3.17) when α → 1+. We shall
now examine the convergence of solitary waves with velocities different from unity. Using the
Galilean invariance of (3.8), homoclinic solution (3.16) yields two (symmetric) families of solitary
wave solutions of log-KdV equation (3.8)

v(ξ , τ ) = ± e1/2+c̃ e−(ξ−c̃τ )2/4 (3.19)
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Figure 4. Relative error (in supremum norm) between the solitary wave solutionw of the differential advance-delay equation
(2.4) and either the compactly supported solitary wave wapprox = wc given by (2.5) (black dots) or the Gaussian solitary wave
wapprox = wG defined by (3.18) (grey dots). Both approximation errors converge to zero, when α → 1+ (absolute errors
converge to zero similarly).

parametrized by the wave velocity c̃. These profiles yield the approximate solitary wave solutions
of the original FPU lattice (1.8)

un(t) ≈ ± e2c+1/2−3(α−1)(n−vst−ξ0)2
, (3.20)

where we have set c̃ = 2c,
vs = 1 + c(α − 1), (3.21)

introduced an additional phase shift ξ0 ∈ R and used the fact that ε = √
α − 1. One can observe that

the width of the approximate solitary wave (3.20) diverges as (α − 1)−1/2 when α → 1+. Moreover,
similar to solitary wave solutions of the FPU lattice (1.8), the wave width remains constant if α is
fixed and the wave amplitude a = exp (1/2 + 2c) (or equivalently the wave velocity vs) is varied.
In addition, approximation (3.20) can be rewritten as

un(t) ≈ ± e2cwG(n − vst − ξ0), (3.22)

where the renormalized Gaussian profile wG is defined in (3.18). One can note that |vs|2/(α−1) =
e2c + O(|α − 1|) if c ∈ R is fixed α → 1+. Consequently, approximation (3.22) is close to a rescaling
of (3.17) through the invariance un 
→ |vs|2/(α−1)un(vst) of (1.8). This observation illustrates why
the (non-standard) Galilean invariance (3.10) of the log-KdV equation is inherited from the scaling
invariance of the FPU lattice (1.8).

Similarly, the solitary wave solution w of the differential advance-delay equation (2.4) yields
the family of solitary wave solutions of (1.8)

un(t) = ±|vs|2/(α−1)w(n − vst − ξ0). (3.23)

One can distinguish two contributions to the error between the Gaussian approximation (3.22)
and exact solution (3.23), one originating from the profile function wG and the other from the wave
amplitude. From the numerical results of figure 4, we know that ‖w − wG‖∞ → 0 when α → 1+. In
addition, fixing c ∈ R and considering wave velocities (3.21) close to unity when α → 1+, we have
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seen that limα→1+ |vs|2/(α−1) = e2c. Consequently, exact solitary wave (3.23) with velocity (3.21)
converges uniformly towards Gaussian approximation (3.22) when α → 1+.

Remark 3.1. Note that the convergence result above concerns solitary waves with velocities
converging towards unity, i.e. the value of sound velocity in the linear chain with α = 1. This
restriction is owing to specific scaling (3.3) assumed for solutions described by the log-KdV
equation. On the contrary, exact FPU solitary wave (3.23) with fixed velocity vs �= ±1 becomes
degenerate when α → 1+, as the wave amplitude goes to 0 if |vs| < 1 and diverges if |vs| > 1.

Remark 3.2. Compactly supported solitary wave (2.5) yields approximate solutions uc of
FPU system (1.8) taking the form uc

n(t) = ±|vs|2/(α−1)wc(n − vst − ξ0). This approximation can
be compared to the exact FPU solitary wave u defined by (3.23). The results of figure 4
show that ‖w − wc‖∞ → 0 as α → 1+. Consequently, one can infer that the relative error
‖uc − u‖L∞(Z×R)/‖u‖L∞(Z×R) converges to zero when vs is fixed and α → 1+.

(c) Formation of Gaussian solitary waves
In §3b, we have computed solitary wave solutions of the FPU lattice (1.8) and have checked their
convergence towards Gaussian approximation (3.20) when α → 1+. These results are valid in a
stationary regime and for prescribed wave velocities converging towards unity. To complete this
analysis, we shall study the formation of solitary waves from a localized perturbation of given
magnitude and compare their profiles to Gaussian approximations when α is close to one.

In what follows, we numerically integrate FPU system (1.1) with Hertzian potential (1.6) for
different values of α > 1. We consider Hertzian potential (1.6) rather than symmetrized potential
(1.7) because of its relevance to impact mechanics. In addition, differential equations (1.1) are
easier to integrate numerically owing to the absence of dispersive wavetrains for the above
initial condition.

We consider a lattice of N = 2000 particle with free-end boundary conditions. Computations
are performed with the standard ODE solver of the software SCILAB. We consider a velocity
perturbation of the first particle (at n = 0), corresponding to the initial condition

xn(0) = 0 for all n ≥ 0, ẋ0(0) = 0.1, ẋn(0) = 0 for all n ≥ 1. (3.24)

Owing to the scale invariance of system (1.1) and (1.6), all positive initial velocities for ẋ0(0) yield
a rescaled solution of the form x̃n(t) = v2/(α+1)xn(v(α−1)/(α+1)t).

The front edge of the solution evolves into a solitary wave whose profile becomes stationary
for large enough times, at least on the timescales of the simulations. When α is sufficiently close to
unity, one observes that the asymptotic velocity of the solitary wave is close to unity (this property
is also true for any initial velocity ẋ0(0) > 0). The solitary wave is of compression type (i.e. with
un < 0), hence it also defines a solution of the FPU lattice (1.8) with symmetrized potential (1.7)
and can be compared with approximation (3.20).

The results are shown in figure 5 for α = 1.01. The parameter c ≈ −2.07 in the Gaussian
approximation (3.20) is determined from the relation a = exp (1/2 + 2c), where a is the exact
solitary wave amplitude obtained by integrating (1.1) with initial data (3.24). The approximation
of the solitary wave profile is very accurate in the stationary regime, as shown by figure 5c. In
addition, the measured velocity of the numerical solitary wave solution vnum ≈ 0.9789 can be
compared with the velocity vapp = 1 + c(α − 1) ≈ 0.9793 of the approximate solitary wave (3.20),
which yields a relative error E = |vapp − vnum|/vnum around 0.04%.

Discrepancies appear between the profiles of the numerical solution and the Gaussian
approximation for larger values of α, as already noted in figures 3 and 4. In addition, we find
a relative error E between numerical and approximate wave velocities around 7% for α = 1.222
and 36% for α = 1.5. As a conclusion, while some quantitative agreement is still obtained for
α ≈ 1.2 between the numerical solution and the Gaussian approximation, the latter becomes
unsatisfactory for α = 1.5.
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Figure 5. Formation of a localized wave resulting from initial condition (3.24) in the Hertzian FPU lattice (1.1) and (1.6) with
α = 1.01. (a) Solution profile un at t ≈ 30.5 (note the absence of dispersive wavetrains behind the localized pulse). (b) The
pulse profile at t ≈ 585.6 (thick curve) is compared with the Gaussian approximation (3.20) (thin curve). A small mismatch
between the two curves is visible at this stage (note the slightly asymmetric shape of the numerical solution). The value of c has
been fixed so that the exact and approximate solitarywaves have the same amplitude for large values of t. (c) Same comparison
at t ≈ 1318.3, where the approximate and numerical solutions almost perfectly coincide. (Online version in colour.)

(d) Linear stability of Gaussian solitary waves
The numerical results of §3c indicate the long time stability of the solitary wave solutions of
system (1.1) with Hertzian potential (1.6) that form after a localized perturbation. Therefore,
the stability of Gaussian solitary waves (3.19) appears as a necessary (of course not sufficient)
condition to establish the validity of log-KdV equation (3.8) as a modulation equation for the FPU
system with Hertzian potential. In this section, we prove the linear orbital stability of solitary
waves of the log-KdV equation. We perform the analysis for the stationary Gaussian solution v0

defined by (3.16). By scaling transformation (3.10), the stability result extends to the entire family
of solitary waves ecv0(ξ − cτ ) with c ∈ R.

Log-KdV equation (3.9) can be written in the Hamiltonian form

∂τ v = ∂ξ E′(v), (3.25)

associated with the energy (3.13). The stationary Gaussian solution v0 is a critical point of the
energy E(v), i.e. E′(v0) = 0. The Hessian operator evaluated at this solution reads

L := E′′(v0) = −∂2
ξ − 1 − log |v0| = −∂2

ξ − 3
2

+ ξ2

4
(3.26)
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and corresponds to a Schrödinger operator with a harmonic potential. Equation (3.25) linearized
at v0 reads

∂τ v = ∂ξ Lv. (3.27)

In what follows, we formulate (3.27) as a differential equation in suitable function spaces and
derive a linear stability result based on the energy method for KdV-type evolution equations [45].
Hereafter, we assume that the reader is familiar with this method and basic spectral theory.

The spectral properties of L are well known [46]. The operator L is self-adjoint in L2(R) with
dense domain

D(L) = {u ∈ H2(R), ξ2u ∈ L2(R)}.

Its spectrum consists of simple eigenvalues at integers n − 1, where n ∈ N0 (the set of natural
numbers including zero). The corresponding eigenspaces are spanned by rescaled Hermite
functions eξ 2/4∂n

ξ (e−ξ 2/2). In particular, L has a simple eigenvalue −1 with eigenspace spanned
by φ0 = v0/‖v0‖2, a simple zero eigenvalue with eigenspace spanned by φ′

0 = ∂ξφ0, and the rest of
its spectrum is bounded away from zero by a positive number. The discreteness of the spectrum
comes from the fact that the harmonic potential of the Schrödinger operator L is unbounded at
infinity, which implies that the embedding D(L) ↪→ L2(R) is compact (e.g. [46, p. 43–44]) and L has
a compact resolvent in L2(R).

Hereafter, we denote by (·, ·) the usual L2-scalar product. The operator ∂ξ L : D(L) → H−1(R)
inherits a double non-semi-simple zero eigenvalue, with generalized kernel E0 spanned by the
eigenvector φ′

0 and the generalized eigenvector φ0. The algebraic multiplicity of this eigenvalue
is 2 because the equation ∂ξ Lu = φ0 has no solution in D(L) (because 〈∂ξ Lu, φ0〉 = −(u, Lφ′

0) = 0 �=
‖φ0‖2

2). The double zero eigenvalue is linked with the existence of a two-parameter family of
solitary waves of log-KdV equation (3.8) parametrized by the location and velocity of the waves.
It induces in general a secular growth of the solutions of (3.27) along the eigenvector φ′

0, linked
with a velocity change of perturbed solitary waves. In order to prove a linear stability result, we
thus have to project (3.27) onto the invariant subspace under ∂ξ L associated with the non-zero
part of the spectrum. Following a classical computation scheme [47, eqns (2.10), (2.11), (2.19)], the
spectral projection onto E0 takes the form P0v = aφ′

0 + bφ0 with

a = −
(

v,
∫ ξ

0
φ0 dx

)
and b = (v, φ0)

(one can readily check that P0 commutes with ∂ξ L using integration by parts). Note in passing
that a is well defined because D(L) ⊂ L1(R). Now, splitting the solutions v(·, τ ) ∈ D(L) of (3.27) into

v(ξ , τ ) = a(τ )φ′
0(ξ ) + b(τ )φ0(ξ ) + y(ξ , τ )

with y(·, τ ) = (I − P0)v(·, τ ), one obtains the following equivalent system:

da
dτ

= −b,
db
dτ

= 0 (3.28)

and

∂τ y = ∂ξ Ly. (3.29)

In order to prove the linear (orbital) stability of the Gaussian solitary wave, we have to show
the Lyapunov stability of the equilibrium y = 0 of linear evolution equation (3.29) for a suitable
topology. Let us recall that P0y(·, τ ) = 0, hence y(·, τ ) belongs to the codimension-2 subspace of
D(L) defined as

D1 =
{

y ∈ D(L) : (y, φ0) =
(

y,
∫ ξ

0
φ0 dx

)
= 0

}
.

As L is positive on φ0
⊥ and D1 ⊂ φ0

⊥, we can define ‖y‖L = (Ly, y)1/2. Owing to the fact that L
is positive-definite on φ0

⊥ ∩ φ′
0
⊥ and φ′

0 /∈ D1, ‖ · ‖L defines a norm on D1 (roughly a weighted
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H1-norm). Denote by H1 the completion of D1 with respect to the norm ‖ · ‖L. This norm defines
a convex conserved Lyapunov function for system (3.29) because

d
dτ

1
2
‖y‖2

L = (Ly, ∂τ y) = (Ly, ∂ξ Ly) = 0. (3.30)

For simplicity, let us choose an initial data in the Schwartz space S(R) of rapidly decreasing C∞
functions

y|τ=0 = y0 ∈ D1 ∩ S(R). (3.31)

Owing to property (3.30), we get from the energy method [42] (using the Hilbert basis of Hermite
functions for the Galerkin approximation, see e.g. [42, ch. 11.1.2]) and standard bootstrapping
arguments (e.g. [42, ch. 11.1.4]) a unique global solution of (3.29)–(3.31) which is infinitely smooth
in time and space. We have y ∈ L∞(R, H1) and ‖y(·, τ )‖L = ‖y0‖L for all τ ∈ R, which shows the
Lyapunov stability of the equilibrium y = 0 of (3.29) in H1. Therefore, we have proved the linear
orbital stability of the Gaussian solitary wave.

The Lyapunov stability of the equilibrium y = 0 implies the absence of eigenvalue of ∂ξ L with
positive real part, since such an eigenvalue would lead to exponential growth of the solution
along a corresponding eigenvector. In addition, the spectrum of ∂ξ L is invariant by λ → −λ as
∂ξ L possesses a reversibility symmetry, i.e. anticommutes with the symmetry v(ξ ) 
→ v(−ξ ). This
implies that all the eigenvalues of ∂ξ L lie on the imaginary axis. This result contrasts with the
instability of the compacton solutions of the fully nonlinear Boussinesq equation numerically
analysed in §2. Moreover, it is consistent with the absence of solitary wave instabilities observed
in §3c.

Remark 3.3. The absence of eigenvalues of ∂ξ L with positive real part could be also obtained
from the recent works [39,40]. This result follows from the main theorems in [39,40] if the number
of negative eigenvalues of L is equal to one and

(L−1∂−1
ξ φ′

0, ∂−1
ξ φ′

0) < 0, (3.32)

where ∂−1
ξ u := ∫ξ

−∞ u dx. Assumption (3.32) is satisfied as ∂−1
ξ φ′

0 = φ0 ∈ Range(L) (recall

Lφ0 = −φ0) and (L−1∂−1
ξ φ′

0, ∂−1
ξ φ′

0) = (L−1φ0, φ0) = −‖φ0‖2
2 < 0.

4. Compacton approximation revisited
The results of figures 3 and 4 indicate that compacton approximations converge towards solitary
wave solutions of the differential advance-delay equation (2.4) when α → 1+. It seems delicate
to establish this result directly from the methodology described in §2, where equation (2.3) is
heuristically obtained by the truncation of the series expansion (2.2) of the discrete Lapacian in
equation (2.4). However, it is instructive to compare analytically the compacton approximation
wc(z) defined in (2.5) and Gaussian approximation (3.18) when α is close to unity, because
our numerical results indicate that both profiles become very close (figure 3b). To check the
consistency of (2.5) and (3.18), we note that the compact support [−π/2B, π/2B] of approximation
(2.5) extends to the entire real line as α → 1+. Furthermore, let ε := √

α − 1, ξ := 2
√

3εz, and
perform the expansions

A =
(

2 + ε2

2(1 + ε2)

)−1/ε2

= e−(1/ε2) log(1−ε2/2(1+ε2)) = √
e(1 + O(ε2)) (4.1)

and

cos2/(α−1)(Bz) = e(2/ε2) log cos(εξ/2(1+ε2)) = e(2/ε2) log(1−ε2ξ 2/(8(1+ε2)2)+O(ε4ξ 4))

= e−ξ 2/4(1 + O(ε2)) (4.2)

for all fixed ξ ∈ R. From expansions (4.1) and (4.2), it follows that the renormalized compacton

wc

(
ξ/
√

12(α − 1)
)

converges towards Gaussian solution (3.16) for any fixed ξ ∈ R when α → 1+.
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One possible approach for the justification of compactons consists in deriving an asymptotic
model consistent with FPU lattice (1.8) and supporting compacton solutions, in analogy with
the derivation of the log-KdV equation. Such a model may be free of the artificial instabilities
introduced by the Boussinesq equation (2.1), and may lead to a well-posed evolution problem in
a suitable function space and for appropriate initial data.

In what follows, we show that a generalized KdV equation with Hölder-continuous fractional
power nonlinearity can be derived from (1.8) using the method of §3. As shown subsequently, the
limited smoothness of the nonlinear term in this equation allows for the existence of compactons.
When α → 1+, one can rewrite the expansion of the nonlinearity fα(u) defined by (3.2) in the
following form:

fα(u) = (α − 1)u ln |u| + O((α − 1)2) = α(u − u|u|1/α−1) + O((α − 1)2) (4.3)

uniformly in u on bounded intervals. The leading order term at the right-hand side of (4.3)
involves a Hölder-continuous nonlinearity u|u|1/α−1, whereas the function fα is more regular (C1)
in u. As it follows from expansion (4.3), the generalized KdV equation

∂τ v + ∂3
ξ v + α

α − 1
∂ξ (v − v|v|1/α−1) = 0 (4.4)

is consistent with system (1.8) at the same order as the log-KdV equation and converges towards
the log-KdV equation when α → 1+. We call equation (4.4) the Hölderian KdV (H-KdV) equation.
The above approximation of the logarithmic nonlinearity is reminiscent of results of [38] obtained
for a stationary Hölderian NLS equation close to a logarithmic limit.

Note that H-KdV equation (4.4) admits the same three conserved quantities (3.11)–(3.13) with
potential W replaced by

W̃(v) = α

α − 1

(
1
2
v2 − α

α + 1
|v|1+1/α

)
.

Moreover, equation (4.4) admits a non-standard Galilean invariance similarly to the log-KdV
equation. More precisely, any solution v of (4.4) generates a one-parameter family of solutions
φ(c) · v defined by

[φ(c) · v](ξ , τ ) := (1 − μ)α/(1−α)v((1 − μ)1/2(ξ − cτ ), (1 − μ)3/2τ ), μ = c
(

1 − 1
α

)
,

and parametrized by c ∈ (−∞, α/(α − 1)]. One can check that this symmetry reduces to the
Galilean invariance (3.10) when α → 1+.

Let us check that the H-KdV equation admits compacton solutions. Their existence is owing
to the non-differentiable Hölder-continuous nonlinearity, in contrast to classical compacton
equations where degenerate nonlinear dispersion plays a central role [41]. The stationary H-KdV
equation integrated once reads

d2v

dξ2 + α

α − 1
(v − v|v|1/α−1) = 0, (4.5)

(the integration constant has been set to 0), or equivalently d2v/dξ2 + W̃′(v) = 0. This equation
is integrable and the potential W̃ has a double-well structure with the local maximum at v = 0.
This property implies the existence of a pair of symmetric homoclinic orbits to 0 corresponding
to compactons. Using the change of variable

w(z) = (v|v|1/α−1)(ξ ), z =
√

αξ√
12(α − 1)

,
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equation (4.5) is mapped to form (2.3) which possesses compacton solutions given by (2.5).
Consequently, equation (4.5) admits stationary compacton solutions

vα(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

Ã cos2α/(α−1)(B̃ξ ), |ξ | ≤ π

2B̃
,

0, |ξ | ≥ π

2B̃
,

(4.6)

where

Ã =
(

1 + α

2α

)α/(1−α)
, B̃ =

√
α − 1
2
√

α
.

In addition, we have as above limα→1+ vα(ξ ) = √
e e−ξ 2/4 for any fixed ξ ∈ R, i.e. the compacton

approximation (4.6) converges towards the Gaussian solitary wave approximation (3.16) when
α → 1+.

Remark 4.1. The compacton approximation wc

(
ξ/
√

12(α − 1)
)

defined in (2.5) and obtained
using Boussinesq equation (2.1) differs from compacton (4.6) deduced from the H-KdV equation.
However, both approximations are equivalent when α → 1+ as they converge towards Gaussian
profile (3.16). In fact, an infinity of compacton approximations could be constructed, depending
on the approximation of the logarithmic nonlinearity introduced in (4.3).

Using the Galilean invariance of (4.4), the compacton (4.6) yields two (symmetric) families of
compactly supported solitary waves of H-KdV equation (4.4)

v(ξ , τ ) = ±(1 − μ)α/(1−α)vα

[√
1 − μ(ξ − c̃τ )

]
, μ = c̃

(
1 − 1

α

)
, (4.7)

parametrized by the wave velocity c̃ ∈ (−∞, α/(α − 1)]. From expression (3.3), these profiles yield
the approximate compacton solutions of FPU lattice (1.8)

un(t) ≈ ±ṽα

[√
(α − 1)(n − vst − ξ0)

]
, (4.8)

where we have set ṽα(ξ ) = (1 − μ)α/(1−α)vα

(√
12(1 − μ)ξ

)
, vs = 1 + c(α − 1), c = c̃/2, introduced

an additional phase shift ξ0 ∈ R and used the fact that ε = √
α − 1. For any fixed value of c and

ξ ∈ R, we have limα→1+ ṽα(ξ ) = e2c+1/2−3ξ 2
. In this limit, the compacton (4.8) converges towards

Gaussian approximation (3.20), therefore it is also close to exact FPU solitary wave (3.23).

5. Discussion
We have obtained two generalized KdV equations (log-KdV equation (3.8) and H-KdV equation
(4.4)) as formal asymptotic limits of FPU lattices with Hertzian-type potentials, when the
nonlinearity exponent α > 1 goes to unity and slowly varying profiles are considered. Using
numerical computations, we have checked that FPU solitary waves converge towards Gaussian
solitary waves and compacton solutions to these KdV equations when α → 1+ and for near-
sonic wave speeds. In addition, we have illustrated numerically the formation of stable solitary
waves after a localized velocity perturbation in Hertzian FPU system (1.1) and (1.6) when
α ≈ 1, a limit in which the propagating pulse becomes nearly Gaussian. The linearized log-
KdV equation preserves the spectral stability of solitary waves, which is lost when using other
formal (Boussinesq-type) continuum models. While our study does not yield a complete proof
of the asymptotic behaviour of exact FPU solitary waves when α → 1+, it provides nevertheless
an asymptotic framework to explain classical formal compacton approximations [1,28], whose
justification remained unclear up to now.

It would be interesting to examine the dynamical properties of the log-KdV and H-KdV
equations for different classes of initial conditions. Relevant questions include local well-
posedness (or ill-posedness), derivation of a priori bounds, global well-posedness (or blow-up),
scattering of some initial data and nonlinear stability of solitary waves. In our context, the study
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of the nonlinear orbital stability [45] or asymptotic stability [47] of solitary waves rises new
difficulties, linked with the lack of smoothness of the energy functional (3.13).

In addition, if the well-posedness of the Cauchy problem for the log-KdV or H-KdV equation
could be established for appropriate initial data, one could then study analytically or numerically
their connection with FPU system (1.1) with homogeneous potentials (1.7). An open question
is to check that well-prepared initial data evolve (up to higher order terms and on long finite
times) according to the log-KdV or H-KdV equation (in the same spirit as the justification of
the classical KdV equation for FPU chains [15–17]). This problem may be extended to Hertzian
FPU system (1.1) and (1.6), at least close to a solitary wave solution and for a suitable topology
(i.e. using a weighted norm flattening perturbations behind the propagating wave [10–13,47]).
The construction of appropriate numerical methods for the time-integration of the log-KdV or
H-KdV equations is of course also fundamental in this context. Another open problem concerns
the dynamical stability of the solitary wave solutions of the FPU lattice (1.8). Our proof of the
linear orbital stability of solitary waves for the log-KdV equation could be useful in this context,
following the lines of [10–13] (using the linearized log-KdV equation instead of the linearized
KdV equation). These open questions will be explored in forthcoming works.

Acknowledgements. G.J. is grateful to V. Acary, B. Brogliato, W. Craig and Y. Starosvetsky for stimulating
discussions on this topic. Part of this work was carried out during a visit of G.J. to the Department of
Mathematics at McMaster University, to which G.J. is grateful for hospitality. G.J. introduced the time-
dependent logarithmic and Hölderian KdV equations and their derivations from the Hertzian chain model.
Numerical computations were performed by D.P. (figures 1, 3 and 4) and G.J. (figure 5). All authors
contributed to the linear stability analysis of Gaussian solitary waves. D.P. showed the convergence of
the Ahnert-Pikovsky compacton towards a Gaussian for Hertz force exponents close to unity. All authors
contributed to the writing and editing of the manuscript.
Funding statement. G.J. acknowledges financial support from the French Embassy in Canada and the
Rhône-Alpes Complex Systems Institute (IXXI). D.P. acknowledges financial support from the NSERC.

References
1. Nesterenko VF. 2001 Dynamics of heterogeneous materials. Berlin, Germany: Springer.
2. Nguyen N-S, Brogliato B. 2014 Multiple impacts in dissipative granular chains. Lecture Notes in

Applied and Computational Mechanics no. 72. Berlin, Germany: Springer.
3. Dou Q, Cuevas J, Eilbeck JC, Russell FM. 2011 Breathers and kinks in a simulated breather

experiment. Discrete Contin. Dyn. Syst. Ser. S 4, 1107–1118. (doi:10.3934/dcdss.2011.4.1107)
4. Dubovsky OA, Orlov AV. 2010 Emission of supersonic soliton wave beams—generators

of restructuring of nanocrystals under atom bombardment, and the self-organization of a
dynamic superlattice of complexes of soliton atomic vibrations. Phys. solid state 52, 899–903.
(doi:10.1134/S1063783410050033)

5. Afshari E, Hajimiri A. 2005 Nonlinear transmission lines for pulse shaping in silicon. IEEE J.
Solid-State Circuits 40, 744–752. (doi:10.1109/JSSC.2005.843639)

6. Campbell DK, Rosenau P, Zaslavsky G. (eds) 2005 The Fermi–Pasta–Ulam problem: the first
50 years. Chaos 15, 015101. (doi:10.1063/1.1889345)

7. Mielke A, Patz C. 2010 Dispersive stability of infinite-dimensional Hamiltonian systems on
lattices. Appl. Anal. 89, 1493–1512. (doi:10.1080/00036810903517605)

8. Friesecke G, Wattis JA. 1994 Existence theorem for solitary waves on lattices. Commun. Math.
Phys. 161, 391–418. (doi:10.1007/BF02099784)

9. Herrmann M. 2010 Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains.
Proc. R. Soc. Edinb. Sect. A-Math. 140, 753–785.

10. Friesecke G, Pego RL. 1999 Solitary waves on FPU lattices: I. Qualitative properties,
renormalization and continuum limit. Nonlinearity 12, 1601–1627. (doi:10.1088/0951-7715/
12/6/311)

11. Friesecke G, Pego RL. 2002 Solitary waves on FPU lattices: II. Linear implies nonlinear
stability. Nonlinearity 15, 1343–1359. (doi:10.1088/0951-7715/15/4/317)

12. Friesecke G, Pego RL. 2004 Solitary waves on FPU lattices: III. Howland-type Floquet theory.
Nonlinearity 17, 207–227. (doi:10.1088/0951-7715/17/1/013)

 on March 28, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.3934/dcdss.2011.4.1107
http://dx.doi.org/doi:10.1134/S1063783410050033
http://dx.doi.org/doi:10.1109/JSSC.2005.843639
http://dx.doi.org/doi:10.1063/1.1889345
http://dx.doi.org/doi:10.1080/00036810903517605
http://dx.doi.org/doi:10.1007/BF02099784
http://dx.doi.org/doi:10.1088/0951-7715/12/6/311
http://dx.doi.org/doi:10.1088/0951-7715/12/6/311
http://dx.doi.org/doi:10.1088/0951-7715/15/4/317
http://dx.doi.org/doi:10.1088/0951-7715/17/1/013
http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


19

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130462

...................................................

13. Friesecke G, Pego RL. 2004 Solitary waves on FPU lattices: IV. Proof of stability at low energy.
Nonlinearity 17, 229–251. (doi:10.1088/0951-7715/17/1/014)

14. Iooss G. 2000 Travelling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866.
(doi:10.1088/0951-7715/13/3/319)

15. Bambusi D, Ponno A. 2006 On metastability in FPU. Comm. Math. Phys. 264, 539–561.
(doi:10.1007/s00220-005-1488-1)

16. Kalyakin LA. 1989 Long wave asymptotics. Integrable equations as asymptotic limits of non-
linear systems. Russ. Math. Surveys 44, 3–42. (doi:10.1070/RM1989v044n01ABEH002013)

17. Schneider G, Wayne CE. 2000 Counter-propagating waves on fluid surfaces and the
continuum limit of the Fermi–Pasta–Ulam model. In International Conference on Differential
Equations, Berlin, Germany, 1–7 August 1999, vol. 1 (eds B Fiedler, K Gröger, J Sprekels),
pp. 69–82. River Edge, NJ: World Sci. Publishing.

18. Hoffman A, Wayne CE. 2013 A simple proof of the stability of solitary waves in the
Fermi–Pasta–Ulam model near the KdV limit. Fields Inst. Comm. 64, 185–192. (doi:10.1007/
978-1-4614-4523-4_7)

19. Mizumachi T. 2009 Asymptotic stability of lattice solitons in the energy space. Commun. Math.
Phys. 288, 125–144. (doi:10.1007/s00220-009-0768-6)

20. Hoffman A, Wayne CE. 2009 Asymptotic two-soliton solutions in the Fermi–Pasta–Ulam
model. J. Dyn. Diff. Equ. 21, 343–351. (doi:10.1007/s10884-009-9134-9)

21. Mizumachi T. 2013 Asymptotic stability of N-solitary waves of the FPU lattices. Arch. Rational
Mech. Anal. 207, 393–457. (doi:10.1007/s00205-012-0564-x)

22. Johnson KL. 1985 Contact mechanics. Cambridge, UK: Cambridge University Press.
23. Sekimoto K. 2010 Newton’s cradle versus nonbinary collisions. Phys. Rev. Lett. 104, 124302.

(doi:10.1103/PhysRevLett.104.124302)
24. Sun D, Sen S. 2013 Nonlinear grain–grain forces and the width of the solitary wave in granular

chains: a numerical study. Granular Matter 15, 157–161. (doi:10.1007/s10035-013-0400-5)
25. Ngo D, Griffiths S, Khatri D, Daraio C. 2013 Highly nonlinear solitary waves in chains of

hollow spherical particles. Granular Matter 15, 149–155. (doi:10.1007/s10035-012-0377-5)
26. Khatri D, Ngo D, Daraio C. 2012 Highly nonlinear solitary waves in chains of cylindrical

particles. Granular Matter 14, 63–69. (doi:10.1007/s10035-011-0297-9)
27. Sun D, Daraio C, Sen S. 2011 Nonlinear repulsive force between two solids with axial

symmetry. Phys. Rev. E 83, 066605. (doi:10.1103/PhysRevE.83.066605)
28. Ahnert K, Pikovsky A. 2009 Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E

79, 026209. (doi:10.1103/PhysRevE.79.026209)
29. MacKay RS. 1999 Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251,

191–192. (doi:10.1016/S0375-9601(98)00867-6)
30. Stefanov A, Kevrekidis PG. 2012 On the existence of solitary traveling waves for generalized

Hertzian chains. J. Nonlinear Sci. 22, 327–349. (doi:10.1007/s00332-011-9119-9)
31. English JM, Pego RL. 2005 On the solitary wave pulse in a chain of beads. Proc. Am. Math. Soc.

133, 1763–1768. (doi:10.1090/S0002-9939-05-07851-2)
32. Hinch EJ, Saint-Jean S. 1999 The fragmentation of a line of ball by an impact. Proc. R. Soc. Lond.

A 455, 3201–3220. (doi:10.1098/rspa.1999.0447)
33. Job S, Melo F, Sokolow A, Sen S. 2007 Solitary wave trains in granular chains: experiments,

theory and simulations. Granular Matter 10, 13–20. (doi:10.1007/s10035-007-0054-2)
34. Schuur PC. 1986 Asymptotic analysis of soliton problems. Lecture Notes in Mathematics,

vol. 1232. Berlin, Germany: Springer.
35. Yang Z, Wang X. 2003 Blowup of solutions for the ‘bad’ Boussinesq-type equation. J. Math.

Anal. Appl. 285, 282–298. (doi:10.1016/S0022-247X(03)00419-0)
36. Ambrose DM, Simpson G, Wright JD, Yang DG. 2012 Ill-posedness of degenerate dispersive

equations. Nonlinearity 25, 2655–2680. (doi:10.1088/0951-7715/25/9/2655)
37. Bialynicki-Birula I, Mycielski J. 1976 Nonlinear wave mechanics. Ann. Phys. 100, 62–93.

(doi:10.1016/0003-4916(76)90057-9)
38. James G, Starosvetsky Y. 2014 Breather solutions of the discrete p-Schrödinger equation.

In Localized excitations in nonlinear complex systems, vol. 7 (eds P Kevrekidis, R Carretero-
González, J Cuevas-Maraver, D Frantzeskakis, N Karachalios, F Palmero-Acebedo),
pp. 77–115. Nonlinear systems and complexity. Berlin, Germany: Springer.

39. Kapitula T, Stefanov A. In press. A Hamiltonian–Krein (instability) index theory for KdV-like
eigenvalue problems. Stud. Appl. Math. (doi:10.1111/sapm.12031)

 on March 28, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1088/0951-7715/17/1/014
http://dx.doi.org/doi:10.1088/0951-7715/13/3/319
http://dx.doi.org/doi:10.1007/s00220-005-1488-1
http://dx.doi.org/doi:10.1070/RM1989v044n01ABEH002013
http://dx.doi.org/doi:10.1007/978-1-4614-4523-4_7
http://dx.doi.org/doi:10.1007/978-1-4614-4523-4_7
http://dx.doi.org/doi:10.1007/s00220-009-0768-6
http://dx.doi.org/doi:10.1007/s10884-009-9134-9
http://dx.doi.org/doi:10.1007/s00205-012-0564-x
http://dx.doi.org/doi:10.1103/PhysRevLett.104.124302
http://dx.doi.org/doi:10.1007/s10035-013-0400-5
http://dx.doi.org/doi:10.1007/s10035-012-0377-5
http://dx.doi.org/doi:10.1007/s10035-011-0297-9
http://dx.doi.org/doi:10.1103/PhysRevE.83.066605
http://dx.doi.org/doi:10.1103/PhysRevE.79.026209
http://dx.doi.org/doi:10.1016/S0375-9601(98)00867-6
http://dx.doi.org/doi:10.1007/s00332-011-9119-9
http://dx.doi.org/doi:10.1090/S0002-9939-05-07851-2
http://dx.doi.org/doi:10.1098/rspa.1999.0447
http://dx.doi.org/doi:10.1007/s10035-007-0054-2
http://dx.doi.org/doi:10.1016/S0022-247X(03)00419-0
http://dx.doi.org/doi:10.1088/0951-7715/25/9/2655
http://dx.doi.org/doi:10.1016/0003-4916(76)90057-9
http://dx.doi.org/doi:10.1111/sapm.12031
http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


20

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130462

...................................................

40. Pelinovsky DE. 2013 Spectral stability of nonlinear waves in KdV-type evolution equations. In
Spectral analysis, stability, and bifurcation in modern nonlinear physical systems (eds ON Kirillov,
DE Pelinovsky), pp. 377–398. Mechanical Engineering and Solid Mechanics Series. London,
UK: Wiley-ISTE Ltd.

41. Rosenau P, Hyman J. 1993 Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70,
564–567. (doi:10.1103/PhysRevLett.70.564)

42. Renardy M, Rogers RC. 2004 An introduction to partial differential equations. New York, NY:
Springer.

43. Rosenau P. 1986 Dynamics of nonlinear mass-spring chains near the continuum limit. Phys.
Lett. A 118, 222–227. (doi:10.1016/0375-9601(86)90170-2)

44. Zhidkov P. 2001 Korteweg-de Vries and nonlinear Schrödinger equations, vol. 1756. Lecture Notes
in Mathematics. Berlin, Germany: Springer.

45. Bona JL, Souganidis PE, Strauss WA. 1987 Stability and instability of solitary waves of
Korteweg-de Vries type. Proc. R. Soc. Lond. A 411, 395–412. (doi:10.1098/rspa.1987.0073)

46. Shubin MA. 1994 Partial differential equations, vol. 7. Encyclopaedia of Mathematical Sciences.
Berlin, Germany: Springer.

47. Pego RL, Weinstein MI. 1994 Asymptotic stability of solitary waves. Commun. Math. Phys. 164,
305–349. (doi:10.1007/BF02101705)

 on March 28, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1103/PhysRevLett.70.564
http://dx.doi.org/doi:10.1016/0375-9601(86)90170-2
http://dx.doi.org/doi:10.1098/rspa.1987.0073
http://dx.doi.org/doi:10.1007/BF02101705
http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/

	Introduction
	Fully nonlinear Boussinesq equation and compactons
	The log-KdV equation and Gaussian solitary waves
	Formal derivation of the log-KdV equation
	Stationary solutions
	Formation of Gaussian solitary waves
	Linear stability of Gaussian solitary waves

	Compacton approximation revisited
	Discussion
	References



