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Abstract

The linear operator c + (−Δ)α/2, where c > 0 and (−Δ)α/2 is
the fractional Laplacian on the periodic domain, arises in the exis-
tence of periodic travelling waves in the fractional Korteweg–de Vries
equation. We establish a relation of the Green function of this lin-
ear operator with the Mittag–Leffler function, which was previously
used in the context of the Riemann–Liouville and Caputo fractional
derivatives. By using this relation, we prove that the Green function is
strictly positive and single-lobe (monotonically decreasing away from
the maximum point) for every c > 0 and every α ∈ (0, 2]. On the
other hand, we argue from numerical approximations that in the case
of α ∈ (2, 4], the Green function is positive and single-lobe for small c
and non-positive and non-single lobe for large c.
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1. Introduction

This work deals with Green’s function for the linear operator

Lc,α := c + (−Δ)α/2, (1.1)
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where c > 0 is arbitrary parameter and (−Δ)α/2, α > 0 is the frac-
tional Laplacian on the normalized periodic domain T = [−π, π]. The
fractional Laplacian is defined via Fourier series by

f(x) =
∑
n∈Z

fne
inx, (−Δ)α/2f(x) =

∑
n∈Z

|n|αfneinx. (1.2)

Properties of the fractional Laplacian on the d-dimensional torus Td

were studied in [33]. A recent review of boundary-value problems for
the fractional Laplacian and related applications can be found in [23].

Green’s function for Lc,α on T denoted by GT satisfies the periodic
boundary value problem[

c + (−Δ)α/2
]
GT(x) = δ(x), x ∈ T, (1.3)

where δ is the Dirac delta distribution. The solution is represented
via Fourier series by

GT(x) =
1

2π

∑
n∈Z

cos(nx)

c+ |n|α =
1

2π

(
1

c
+ 2

∞∑
n=1

cos(nx)

c+ nα

)
. (1.4)

Green’s function GT defined by (1.3) and (1.4) arises in the study
of the stationary equation[

c+ (−Δ)α/2
]
ψ(x) = ψ(x)1+p, x ∈ T, (1.5)

where p ∈ N. The stationary equation (1.5) defines the travelling peri-
odic waves of the fractional Korteweg–de Vries (fKdV) equation with
the speed c [6, 7, 18, 19, 26, 27] and the standing periodic waves of the
fractional nonlinear Schrödinger (fNLS) equation with the frequency
c [9, 17]. Periodic solutions in other nonlinear elliptic equations as-
sociated with the fractional Laplacian were also considered, e.g., in
[2, 12].

Green’s function GT defined by (1.3) and (1.4) was used in the
proof of strict positivity of the periodic solutions of the stationary
equation (1.5) for c > 0, α ∈ (0, 2], and p = 1 by using Krasnoselskii’s
fixed point theorem (see Theorem 2.2 in [22]). The important ingredi-
ent of the proof is the property of strict positivity of Green’s function
GT for every c > 0.

The property of strict positivity of Green’s function was proven
for different boundary-value problems associated with the fractional
operators in [28] for α ∈ (0, 1) and in [3] for α ∈ (1, 2); however, the
fractional derivatives were considered in the Riemann–Liouville sense
(see [20, 30] for review of fractional derivatives).
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Here we prove strict positivity of Green’s function GT satisfying
the boundary-value problem (1.3) on T for every c > 0 and every
α ∈ (0, 2]. Moreover, we show that GT has the single-lobe profile
in the sense that GT is monotonically decreasing on T away from its
maximum point located at x = 0. The following theorem presents this
result.

Theorem 1.1. For every c > 0 and every α ∈ (0, 2], Green’s
function GT defined by (1.3) and (1.4) is even, strictly positive on T,
and monotonically decreasing on (0, π).

The result of Theorem 1.1 is known in the context of Green’s func-
tion GR for the linear operator Lc,α on the real line R (see Lemma A.4
in [13]). This was shown from similar properties of the heat kernel
related to the fractional Laplacian (−Δ)α/2 (see Lemma A.1 in [13]).
The constant c > 0 in Lc,α can be normalized to unity when Lc,α is
considered on the real line R.

The same properties hold for Green’s function GT on the periodic
domain T because it can be written as the following periodic super-
position of Green’s function GR on the real line R:

GT(x) =
∑
n∈Z

GR(x− 2πn), x ∈ T. (1.6)

Hence, if GR(x) > 0 for x ∈ R, then GT(x) > 0 for x ∈ T and if
G′

R
(x) ≤ 0 and G′′

R
(x) ≤ 0 for x ≥ 0, then G′

T
(x) ≤ 0 for x ∈ [0, π].

Here the parameter c in GT cannot be normalized to unity.

The main novelty of our work is the relation between Green’s func-
tion GT and the Mittag–Leffler function [25]. The Mittag–Leffler func-
tion naturally arises in the other (Riemann–Liouville and Caputo) for-
mulations of fractional derivatives [20, 30] but it has not been used in
the context of the fractional Laplacian to the best of our knowledge.
In particular, we prove Theorem 1.1 for α ∈ (0, 2) by using the inte-
gral representations and properties of the Mittag–Leffler function and
some trigonometric series from [32]. For α = 2, the result of Theo-
rem 1.1 can be readily shown by writing GT in the exact analytical
form (see Appendix A).

Figure 1.1 illustrates the statement of Theorem 1.1. It shows the
single-lobe positive profile of GT for two values of c in the case α = 0.5
(left) and α = 1.5 (right). The only difference between these two cases
is that GT(0) is bounded for α > 1 and is unbounded for α ≤ 1.
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Figure 1.1. Profiles of GT for α = 0.5 (left) and α =
1.5 (right) for specific values of c.

Green’s function GR on the real line R is also used to understand
interactions of strongly localized waves, e.g. attractive versus repelling
interactions [16, 24] (see also [8, 29]). These interactions were recently
studied in [10, 11] in the context of the beam equation, which cor-
responds to the case α = 4. The fractional cases for α ∈ (0, 2) and
α ∈ (2, 4) are also important from applications in quantum computing,
fluid dynamics, and elasticity theory.

Theorem 1.1 shows that the properties of GT for α ∈ (0, 2) are
similar to those for α = 2 (the same holds for GR). However, it is an
open question if the properties of GT for α ∈ (2, 4) are similar to those
for α = 4, for which GR has infinitely many oscillations, whereas the
number of oscillations of GT depends on c > 0 and becomes infinite in
the limit of c→ ∞ (see Appendix B). In the second part of this paper,
we present numerical results which support the following conjecture.

Conjecture 1.1. For each α ∈ (2, 4], there exists c0 > 0 such
that for c ∈ (0, c0), Green’s function GT defined by (1.3) and (1.4) is
even, strictly positive on T, and monotonically decreasing on (0, π).
For c ∈ [c0,∞), GT has a finite number of zeros on T. The number of
zeros is bounded in the limit of c → ∞ if α ∈ (2, 4) and unbounded
as c→ ∞ if α = 4.

Since the limit c→ ∞ for Green’s function GT can be rescaled as
Green’s funciton GR with c normalized to unity, Conjecture 1.1 implies
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the following conjecture (relevant for interactions of strongly localized
waves in [10, 11]).

Conjecture 1.2. For every c > 0 and every α ∈ (2, 4], Green’s
function GR is not strictly positive on R and is not monotonically
decreasing on (0,∞). It has a finite number of zeros on R if α ∈ (2, 4)
and an infinite number of zeros if α = 4.
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Figure 1.2. Profiles of G on T for α = 2.5 (top) and
α = 3.5 (bottom) at specific values of c.

Figure 1.2 illustrates the statement of Conjecture 1.1. For α = 2.5
(top), Green’s function GT has the single-lobe positive profile for c = 2
(red curve) but it is not positive for c = 10 (blue curve). For α = 3.5
(bottom), it is positive for c = 1 (red curve), has one pair of zeros
for c = 10 (blue curve), and has two pairs of zeros for c = 60 (black
curve). Zeros of GT are visible from the right panels which zoom in
the behavior the tails of GT.
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The remainder of the article is structured as follow. Section 2
presents an overview of the Mittag-Leffler function and its proper-
ties. The integral representation of Green’s function GT is derived in
Section 3. The proof of Theorem 1.1 is presented in Section 4. The
validity of Conjecture 1.1 is discussed in Section 5. Conclusion is given
in Section 6. Appendices A and B give explicit formulas for Green’s
function GT for local cases of α = 2 and α = 4, respectively. Appen-
dix C contains formal asymptotic results to support Conjecture 1.1
for α > 2 with small |α− 2|.

2. Properties of the Mittag–Leffler function

Here we discuss some properties of the Mittag–Leffler function de-
fined by

Eα(x) =
∞∑
k=0

xk

Γ(kα + 1)
, α > 0, (2.1)

and its two-parametric generalization

Eα,β(x) =

∞∑
k=0

xk

Γ(kα + β)
, α, β > 0. (2.2)

The Mittag–Leffler functions were introduced in the theory of ana-
lytic functions [25]. In recent years, they became popular due to their
applications in fractional differential equations, see e.g. [20]. Indepth
studies of the Mittag–Leffler functions can be found in [4] and [15].

The Mittag–Leffler functions are typically used to represent so-
lutions of initial-value problems for the fractional differential equa-
tions defined by the Riemann-Liouville or Caputo fractional deriva-
tives ([20]). As our study involves the boundary-value problem for the
fractional Laplacian (−Δ)α/2, the Mittag–Leffler function Eα(−xα)
is used in the integral representation of Green’s function GT. This
integral representation is derived in Section 3.

Here we review some important properties of the Mittag–Leffler
functions.

Lemma 2.1. For every α > 0 and every x ∈ R, it is true that

Eα,α(x) = α
d

dx
Eα(x). (2.3)

P r o o f. The result is obtained by differentiating (2.1) and using
(2.2):
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d

dx
Eα(x) =

∞∑
k=1

xk−1

αΓ(αk)
=

1

α

∞∑
k=0

xk

Γ(αk + α)
=

1

α
Eα,α(x).

The series converges absolutely for every x ∈ R since Eα and Eα,α are
entire functions. �

Lemma 2.2. ([31]) For every α ∈ (0, 1], the function x �→ Eα(−x)
is positive and completely monotonic for x ≥ 0, that is

(−1)m
dm

dxm
Eα(−x) ≥ 0, m ∈ N, x ≥ 0. (2.4)

Consequently, Eα,α(−x) ≥ 0 for every x ≥ 0.

Remark 2.1. A necessary and sufficent condition for the function
x �→ Eα(−x) to be completely monotonic for x ≥ 0 is that Eα(−x)
can be expressed in the form

Eα(−x) =
∫ ∞

0

e−xtdFα(t), x ≥ 0,

where Fα is nondecreasing and bounded on (0,∞). The proof of [31]
is based on the representation of Eα(−x) given by

Eα(−x) = 1

2iπα

∫
C

et
1/α

t+ x
dt,

with a specially selected contour C in C.

Lemma 2.3. ([15]) For every α ∈ (0, 2), Eα(−xα) admits the
asymptotic expansion

Eα(−xα) = −
N∑
k=1

(−1)k

Γ(1− αk)xαk
+O

(
1

|x|αN+α

)
as x→ ∞,

(2.5)
where N ∈ N is arbitrarily fixed. For every α ≥ 2, Eα(−xα) admits
the asymptotic expansion

Eα(−xα) = 1

α

N∑
n=−N+1

eanx +O
(

1

|x|α
)

as x→ ∞, (2.6)

where an = e
iπ(2n−1)

α and N is the largest integer satisfying the bound
2N − 1 ≤ α

2
.
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Remark 2.2. Asymptotic expansions (2.5) and (2.6) can be dif-
ferentiated term by term.

Remark 2.3. We list the explicit cases of the Mittag–Leffler
function Eα(−xα) for the first integers:

α = 1, E1(−x) = e−x,

α = 2, E2(−x2) = cos(x),

α = 3, E3(−x3) = 1

3
e−x +

2

3
e

x
2 cos

(√
3x

2

)
,

α = 4, E4(−x4) = cos

(
x√
2

)
cosh

(
x√
2

)
.

For α = 1, the asymptotic representation (2.5) admits zero leading-
order terms for every N ∈ N. The asymptotic representation (2.6)
is also obvious from the exact expressions for α = 2, 3, 4, moreover,
the remainder term is zero for α = 2 and can be included to the
summation by increasing N by one for α = 3 and α = 4.

Lemma 2.4. ([15]) For every α ∈ (0, 2) and every x ∈ R, Eα(−x)
satisfies the following integral representation

Eα(−xα) = 2

π
sin
(πα

2

)∫ ∞

0

tα−1 cos(xt)

1 + 2tα cos
(
πα
2

)
+ t2α

dt. (2.7)

Remark 2.4. It is claimed in [15] that the integral representation
(2.7) is true for all α > 0, however, the integral is singular for α = 2
and a discrepancy exists at x = 0 for α > 2. For example, when α = 3,
it follows from (2.1) that E3(0) = 1 whereas computing the integral
given in (2.7) via the change of variable u = t3 gives

E3(0) = − 2

3π

∫ ∞

0

du

1 + u2
= −1

3

= 1.

Hence, the integral representation (2.7) can only be used for α ∈ (0, 2),
for which Eα(−xα) is bounded and decaying as x→ +∞.
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3. Integral representation of Green’s function GT

Here we take Green’s function GT defined by the Fourier series in
(1.4) and rewrite it in the integral form involving the Mittag–Leffler
function Eα,α. The following proposition gives the result for α ∈ (0, 2].

Proposition 3.1. For every c > 0 and every α ∈ (0, 2], it is true
that

GT(x) =
1

2πc
+

1

π

∫ ∞

0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1Eα,α(−ctα)dt,

(3.1)
where x ∈ T.

P r o o f. Assume first that x 
= 0 and c ∈ (0, 1). Expanding
each term of the trigonometric sum in (1.4) into absolutely convergent
geometric series and interchanging the two series, we obtain

∞∑
n=1

cos(nx)

c+ nα
=

∞∑
n=1

cos(nx)

nα

∞∑
k=0

(−c
nα

)k

=

∞∑
k=0

(−c)k
∞∑
n=1

cos(nx)

nα(k+1)
.

(3.2)
It is known from the integral representation (1) in [32, Section 5.4.2]
that for every x 
= 0 and α > 0 that

∞∑
n=1

cos(nx)

nα(k+1)
=

1

Γ(αk + α)

∫ ∞

0

tα(k+1)−1 (et cos(x)− 1)

1− 2et cos(x) + e2t
dt, (3.3)

where k ≥ 0. Substituting (3.3) into (3.2) and interchanging formally
the summation and the integration yields the following representation:

∞∑
n=1

cos(nx)

c+ nα
=

∞∑
k=0

(−c)k
Γ(αk + α)

∫ ∞

0

tα(k+1)−1 (et cos(x)− 1)

1− 2et cos(x) + e2t
dt,

=

∫ ∞

0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1

∞∑
k=0

(−ctα)k
Γ(αk + α)

dt,

=

∫ ∞

0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1Eα,α(−ctα)dt.

This yields formally the integral formula (3.1). It remains to justify
the interchange of summation and integration. Using the chain rule
and Lemma 2.1, we get
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tα−1Eα,α(−ctα) = −1

c

d

dt
Eα(−ctα). (3.4)

It follows from (3.4) that for every α ∈ (0, 2], the asymptotic expansion
(2.5) in Lemma 2.3 for α ∈ (0, 2) and Remark 2.3 for α = 2 imply
that

sup
t∈[0,∞)

tα−1|Eα,α(−tα)| <∞. (3.5)

Hence, the integral in (3.1) converges absolutely for every x 
= 0 and
α ∈ (0, 2]. Similarly, the integral in (3.3) converges absolutely for every
x 
= 0 and α ∈ (0, 2], whereas the numerical series (3.2) converges
absolutely for every c ∈ (0, 1). Thus, the interchange of summation
and integration is justified by Fubini’s theorem.

For x = 0, we note that GT(0) < ∞ if α > 1 and GT(0) = ∞ if
α ∈ (0, 1]. Since Eα,α(−xα) = 1 + O(xα) as x → 0, the integral in
(3.1) converges absolutely for x = 0 and α ∈ (1, 2] and diverges for
x = 0 and α ∈ (0, 1]. Hence, the integral representation (3.1) holds
again for x = 0, c ∈ (0, 1), and α ∈ (0, 2].

In order to extend the integral representation (3.1) from c ∈ (0, 1)
to every c > 0, we use real analyticity of Green’s function GT and the
integral in (3.1) in c for c > 0. Due to uniqueness of the analytical
continuation of both GT and the integral in (3.1) in c, the equality in
(3.1) is uniquely continued from c ∈ (0, 1) to c > 0. �

The integral representation (3.1) of Green’s function GT can be
justified for α > 2 provided that c is sufficiently small. This result is
described by the following proposition.

Proposition 3.2. For every α > 2, there exists cα > 0 given by

cα :=
[
cos
(π
α

)]−α

, (3.6)

such that for every c ∈ (0, cα), the integral representation (3.1) is true
for every x ∈ T.

P r o o f. The asymptotic expansion (2.6) in Lemma 2.3 implies
for every c > 0 and α > 2 that

sup
t∈[0,∞)

e−t cos( π
α)tα−1|Eα,α(−tα)| <∞, (3.7)
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where we have used again the connection formula (3.4). In addition,

Eα,α(−xα) = 1 +O(xα) as x → 0.

Due to the above properties, the integral in (3.1) converges absolutely
for every x ∈ T if c ∈ (0, cα), where cα is given by (3.6). This justifies
the formal computations in the proof of Proposition 3.1. �

Remark 3.1. For α > 2 and c ≥ cα, the Fourier series repre-
sentation (1.4) suggests that |GT(x)| < ∞ for every x ∈ T. However,
the integral in (3.1) does not converge absolutely, hence it is not clear
if the integral representation (3.1) can be used in this case. Our nu-
merical results in Section 5 show that the integral representation (3.1)
cannot be used for α > 2 and c ≥ cα.

4. Green’s function GT for α ∈ (0, 2)

Here we prove Theorem 1.1 by using the integral representation
(3.1). It follows from (1.4) that GT is even for every c > 0 and α > 0.
Furthermore, if α ∈ (0, 1], then lim

x→0
GT(x) = +∞, and if α > 1, then

GT(0) =
1

2π

(
1

c
+ 2

∞∑
n=1

1

c+ nα

)
> 0.

We shall prove that G′
T
(x) ≤ 0 for x ∈ (0, π) and GT(π) > 0 for every

c > 0 and α ∈ (0, 2]. For α = 2, this result follows from the exact
analytical representation of GT in Appendix A. Therefore, we focus on
the case α ∈ (0, 2) here. The following proposition gives an integral
representation for GT(π) which implies its strict positivity for every
c > 0 and α ∈ (0, 2)

Proposition 4.1. For every c > 0 and every α ∈ (0, 2), it is true
that

GT(π) =
sin(απ

2
)

πc1−
1
α

∫ ∞

0

sα csch(πc
1
α s)

1 + 2sα cos(απ
2
) + s2α

ds, (4.1)

which implies GT(π) > 0.

P r o o f. Evaluating the integral representation (3.1) at x = π
yields

GT(π) =
1

2πc
− 1

π

∫ ∞

0

1

1 + et
tα−1Eα,α(−ctα)dt. (4.2)
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Substituting (3.4) into (4.2), integrating by parts, and using the as-
ymptotic representation (2.5) to get zero contribution in the limit of
t→ ∞, we obtain

GT(π) =
1

πc

∫ ∞

0

et

(1 + et)2
Eα(−ctα)dt, (4.3)

where the integral converges absolutely for every c > 0 and α ∈
(0, 2). Substituting the integral representation (2.7) for Eα(−ctα) from
Lemma 2.4 into (4.3), we obtain

GT(π) =
2

π2c
sin
(απ

2

)∫ ∞

0

et

(1 + et)2

∫ ∞

0

sα−1 cos(c
1
α ts)

1 + 2sα cos(πα
2
) + s2α

dsdt.

Since both integrands belong to L1(0,∞), the order of integration can
be interchanged by Fubini’s theorem to get

GT(π) =
2

π2c
sin
(απ

2

) ∫ ∞

0

sα−1

1 + 2sα cos(πα
2
) + s2α

∫ ∞

0

et cos(c
1
α st)

(1 + et)2
dtds.

The inner integral is evaluated exactly with the help of integral (7) in
[32, Section 2.5.46]:∫ ∞

0

et cos(c
1
α st)

(1 + et)2
dt =

π

2
c

1
α s csch(πc

1
α s).

When it is substituted into the outer integral, it yields the integral
representation (4.1). The integrand is positive and absolutely inte-
grable for every c > 0 and α ∈ (0, 2), which implies that GT(π) > 0.

�

Remark 4.1. Positivity of GT(π) for c > 0 and α ∈ (0, 1] also
follows from the representation (4.3) due to positivity of Eα(−ctα) for
every t > 0 in Lemma 2.2. However, Eα(−ctα) is not positive for all
t > 0 when α > 1, hence, the representation (4.3) is not sufficient for
the proof of positivity of GT(π) if α ∈ (1, 2).

It remains to prove that G′
T
(x) ≤ 0 for every x ∈ (0, π). The proof

is carried differently for α ∈ (0, 1] and for α ∈ (1, 2). In the former
case, we obtain the integral representation for G′

T
(x), which is strictly

negative for x ∈ (0, π). In the latter case, we employ the variational
method to verify that the unique solution GT of the boundary-value
problem (1.3) admits the single lobe profile, with the only maximum
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located at the point of symmetry at x = 0. The following two propo-
sitions give these two results.

Proposition 4.2. For every c > 0 and every α ∈ (0, 1], G′
T
(x) <

0 for every x ∈ (0, π).

P r o o f. Differentiating the integral representation (3.1) in x yields

G′
T(x) =

1

πc

∫ ∞

0

tα−1Eα,α(−ctα) d
dx

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
dt,

= −sin(x)

πc

∫ ∞

0

tα−1Eα,α(−ctα) et(e2t − 1)

(1− 2et cos(x) + e2t)2
dt, (4.4)

where the integrand is absolutely integrable. It follows by Lemma 2.2
that Eα,α(−ctα) ≥ 0 for t > 0. Since sin(x) > 0 for x ∈ (0, π), and the
integrand is positive, it follows from the integral representation (4.4)
that G′

T
(x) < 0 for x ∈ (0, π). �

Proposition 4.3. For every c > 0 and every α ∈ (1, 2), G′
T
(x) ≤

0 for every x ∈ (0, π).

P r o o f. The proof consists of the following two steps. First, we
obtain a variational solution to the boundary-value problem (1.3).
Second, we use the fractional Polya–Szegö inequality to show that the
solution GT has a single-lobe profile on T with the only maximum
located at the point of symmetry at x = 0.

Step 1: Let us consider the following minimization problem,

Bc := min
u∈H

α
2
per(T)

{Bc(u)− u(0)}, (4.5)

where the quadratic functional Bc(u) is given by

Bc(u) =
1

2

∫
T

[(
D

α
2 u
)2

+ cu2
]
dx. (4.6)

Since c > 0, we have

1

2
min(1, c)‖u‖

H
α
2
per(T)

≤ Bc(u) ≤ 1

2
max(1, c)‖u‖

H
α
2
per(T)

,

hence, Bc(u) is equivalent to the squared H
α
2
per(T) norm. Moreover,

for α ∈ (1, 2), we have δ ∈ H
−α

2
per (T), where H

−α
2

per (T) is the dual of

H
α
2
per(T), since
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‖δ‖
H

−α
2

per (T)
=
∑
ξ∈Z

1

(1 + |ξ|2)α
2

<∞.

Thus, by Lax–Milgram theorem (see Corollary 5.8 in [5]), there exists

a unique GT ∈ H
α
2
per(T) such that GT is the global minimizer of the

variational problem (4.5), for which the Euler–Lagrange equation is
equivalent to the boundary-value problem (1.3). By uniqueness of
solutions of the two problems, GT is equivalently written as the Fourier
series (1.4), from which it follows that GT(π) < GT(0). Hence, GT is
different from a constant function on T.

Remark 4.2. The variational method and in particular the Lax–
Milgram theorem cannot be applied to the case α ∈ (0, 1] since the

Dirac delta distibution δ does not belong to the dual space of H
α
2
per(T)

when α ∈ (0, 1].

Step 2: We utilize the fractional Polya–Szegö inequality, proved
in the appendix of [9], to show that a symmetric decreasing rearrange-
ment of the minimizer GT on T does not increase Bc(u). For complete-
ness, we state the following definition and lemma.

Definition 4.1. Let m be the Lebesgue measure on T and f(x) :
R → R be a 2π periodic function. The symmetric and decreasing
rearrangement f̃ of f on T is given by

f̃(x) = inf{t : m({z ∈ T : f(z) > t}) ≤ 2|x|}, x ∈ T. (4.7)

The rearrangement f̃ satisfies the following properties:

i) f̃(−x) = f̃(x) and f ′(x) ≤ 0 for x ∈ (0, π).

ii) f̃(0) = maxx∈T f(x).
iii) ‖f̃‖L2(T) = ‖f‖L2(T).

Lemma 4.1. ([9]) For every α > 1 and every f ∈ H
α
2
per(T), it is

true that ∫ π

−π

|D α
2 f̃ |2dx ≤

∫ π

−π

|D α
2 f |2dx. (4.8)
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The argument of the proof in the second step goes as follows.

Suppose G̃T is the symmetric and decreasing rearrangement of GT,
then by Lemma 4.1 and by property (iii) of Definition 4.1 we have

Bc(G̃T) ≤ Bc(GT). Since the global minimizer of the variational prob-

lem (4.5) is uniquely given by GT, G̃T coincides with GT up to a trans-
lation on T. However, it follows from (1.4) that GT(−x) = GT(x) and
GT(π) < GT(0), hence an internal maximum at x0 ∈ (0, π) would con-
tradicts to the single-lobe profile of GT and the only maximum of GT

is located at 0, so that GT(x) = G̃T(x) for every x ∈ T. It follows
from property (i) of Definition 4.1 that G′

T
(x) ≤ 0 for x ∈ (0, π). �

5. Green’s function GT for α > 2

Here we provide numerical approximations of the Green’s function
GT for α > 2, which support Conjecture 1.1. The profiles of GT are
depicted on Figure 1.2. We only give details on how zeros of GT(π)
depend on parameters (c, α).

It follows from the Fourier series (1.4) that GT(π) can be computed
by the numerical series

GT(π) =
1

2π

(
1

c
+ 2

∞∑
n=1

(−1)n

c+ nα

)
, (5.1)

where the series converges absolutely if α > 1. On the other hand,
GT(π) can also be computed from the integral representation (4.3),
that is,

GT(π) =
1

πc

∫ ∞

0

et

(1 + et)2
Eα(−ctα)dt, (5.2)

which converges absolutely for c ∈ (0, cα), see Proposition 3.2, where
cα is given by (3.6).

Figure 5.3 shows the difference of GT(π) computed from (5.1) and
(5.2) for α = 2.5 (left) and α = 3.5 (right) in logarithmic scale ver-
sus parameter c. The Fourier series (5.1) is truncated such that the
remainder is of the size O(10−10). For the integral representation
of GT(π) in (5.2), we numerically compute the Mittag–Leffler func-
tion Eα(−ctα) on the half line; this task is accomplished by using
the Matlab code provided in [14], where the Mittag-Leffler functions
are approximated with relative errors of the size O(10−15). As fol-
lows from Fig. 5.3, the difference between the two computations is
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Figure 5.3. Difference between computations of
GT(π) in (5.1) and (5.2) for α = 2.5 (left) and α = 3.5
(right) versus parameter c.

small if c < cα, when the integral representation (5.2) converges abso-
lutely, where cα=2.5 ≈ 18.8 and cα=3.5 ≈ 5.2. However, the accuracy of
numerical computations based on the integral representation (5.2) de-
teriorates for c approaching cα and as a result, the difference between
two computations quickly grows for c > cα.

Roots of GT(π) in c for each fixed α > 2 are computed from the
Fourier series representation (5.1) using the bisection method. Fig-
ure 5.4 (top) shows the first five zeros of GT(π) on the (c, α) plane,
where the dots show the roots of GT(π) computed from the exact so-
lutions in Appendix B for α = 4. The first root exists for every α > 2
and is located inside (0, cα), where cα is shown on the bottom left
panel by the solid line. The other roots are located outside (0, cα) and
disappear via pairwise coalescence as α is reduced towards α = 2, see
the bottom right panels. The 2nd and 3rd roots coalesce at α ≈ 3.325
and the 4th and 5th roots coalesce at α ≈ 3.89. The number of terms
in the Fourier series of GT(π) is increased to compute the 4th and 5th
roots such that the remainder is of the size of O(10−14) because GT(π)
becomes very small near the location of these roots.

Table 5.1 compares the error between the numerically detected
roots at α = 4 and the roots of GT(π) obtained from solving the
transcendental equation (B.7) in Appendix B.

Green’s functionGT was computed versus x using the Fourier series
representation (1.4) for fixed values of (c, α). The plots of GT are
shown in Figures 1.1 and 1.2. Since the first root of GT(π) occurs at
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Figure 5.4. Top: Location of the first five roots of
GT(π) on the (c, α) plane. Bottom: The first root of
GT(π) relative to the boundary cα (left). Coalescence
of the 2nd and 3rd roots (upper right) and the 4th and
5th roots (lower right).

c ≈ 2.507 for α = 2.5 and at c ≈ 1.446 for α = 3.5, the threshold c0 in
Conjecture 1.1 reduces with the larger value of α. Appendix C gives
a formal asymptotic approximation of the threshold c0 to show that
c0 → ∞ as α→ 2.

6. Conclusion

The main contribution of this work is the novel relation between
Green’s function for the linear operator c + (−Δ)α/2 on the periodic
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Root Error
1st 1.9915 e-11
2nd 7.1495 e-08
3rd 3.3182 e-06
4th 0.0031
5th 0.0156

Table 5.1. Difference between locations of the first five
roots of GT(π) for α = 4 computed from (5.1) and (B.7).

domain T and the Mittag–Leffler function. With the help of this
relation, we have proved that Green’s funciton is strictly positive on
T and single-lobe (monotonically decreasing away from the maximum
point) for every c > 0 and α ∈ (0, 2].

We have showed numerically and asymptotically that the same
property is also true for sufficiently small c and α ∈ (2, 4]. On the
other hand, we have also showed that Green’s function has a finite
number of zeros on T for sufficiently large c, the number of zeros is
bounded in the limit c→ ∞ for α ∈ (2, 4) but is unbounded for α = 4.
Rigorous proof of these properties of Green’s function for α ∈ (2, 4) is
an open problem left for further studies.

Appendix A. Green’s function GT for α = 2

Here we derive the exact analytic form of Green’s function GT for
α = 2. The following proposition reproduces Theorem 1.1 for α = 2.

Proposition A.1. For every c > 0, Green’s function GT at α = 2
is even, strictly positive on T, and strictly monotonically decreasing
on (0, π).

P r o o f. For α = 2, Green’s function GT satisfies the second-order
differential equation

−G′′
T(x) + cGT(x) = δ(x), x ∈ T, (A.1)

where c > 0. It follows from the theory of Dirac delta distributions
that GT is continuous, even, periodic on T, and have a jump disconti-
nuity of the first derivative at x = 0.

To see the jump condition of G′
T
(x) across x = 0, we integrate

(A.1) on (−ε, ε) and then take the limit as ε→ 0,
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lim
ε→0

∫ ε

−ε

(−G′′
T
(x) + cGT(x)) dx = lim

ε→0

∫ ε

−ε

δ(x)dx = 1, (A.2)

where the last equality follows from properties of δ. Since GT ∈ C0(R),
the second term on the left hand side vanishes as ε → 0, which yields
−G′

T
(0+) + G′

T
(0−) = 1. Since GT is even on R, we obtain

G′
T
(0+) = −1

2
. (A.3)

Additionally, it follows from the Fourier series representation (1.4)
with α = 2 that

GT(0) =
1

2π

∑
n∈Z

1

c+ n2
=

coth(
√
cπ)

2
√
c

, (A.4)

where we have used numerical series (4) in [32, Section 5.1.25].

The differential equation (A.1) is solved for even GT as follows:

GT(x) = GT(0) cosh(
√
cx) +G′

T
(0+)

sinh(
√
c|x|)√
c

, x ∈ T.

Due to (A.3) and (A.4), this can be rewritten in the closed form as

GT(x) =
cosh(

√
c(π − |x|))

2
√
c sinh(

√
cπ)

, x ∈ T. (A.5)

It follows from (A.5) that

G′
T(x) = −sinh(

√
c(π − x))

2 sinh(
√
cπ)

< 0, x ∈ (0, π), (A.6)

and hence GT is strictly monotonically decreasing on (0, π). On the
other hand,

GT(π) =
1

2 sinh(
√
cπ)

> 0, c > 0, (A.7)

and hence GT is strictly positive on T. The exact expression for GT(π)
in (A.7) also follows from numerical series (6) in [32, Section 5.1.25].

�

Remark A.1. It follows from (A.5) that G′
T
(π) = 0, due to

smoothness and periodicity of even GT(x) across x = ±π. Therefore,
the exact expression in (A.5) and the relation for GT(0) in (A.4) can be
alternatively found by solving the differential equation (A.1) for even
GT subject to the boundary conditions G′

T
(0±) = ∓1

2
andG′

T
(±π) = 0.
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Appendix B. Green’s function GT for α = 4

Here we derive the exact analytic form of Green’s function GT for
α = 4. The following proposition proves Conjecture 1.1 for α = 4.

Proposition B.1. There exists c0 > 0 such that for c ∈ (0, c0),
Green’s function GT at α = 4 is even, strictly positive on T, and
strictly monotonically decreasing on (0, π). For c ∈ [c0,∞), GT has a
finite number of zeros on T, which becomes unbounded as c→ ∞.

P r o o f. For α = 4, Green’s function GT satisfies the fourth-order
differential equation

G′′′′
T
(x) + cGT(x) = δ(x), x ∈ T, (B.1)

where c > 0. It follows from the theory of Dirac delta distributions
that GT is continuous, even, periodic on T, and have a jump discon-
tinuity of the third derivative at x = 0. Similarly to the computation
in (A.2), it follows that Green’s function solves the boundary-value
problem with the boundary conditions

G′
T(0) = G′

T(±π) = G′′′
T (±π) = 0, G′′′

T (0
±) = ±1

2
. (B.2)

Due to the boundary conditions (B.2), it is easier to solve the dif-
ferential equation G′′′′

T
+ cGT = 0 for G′

T
on (0, π). By using the

parametrization c = 4a4, we obtain

G′
T
(x) = c1 cosh(ax) cos(ax) + c2 cosh(ax) sin(ax)

+c3 sinh(ax) cos(ax) + c4 sinh(ax) sin(ax), x ∈ [0, π],

where c1, c2, c3, and c4 are some coefficients. We can find c1 = 0 and
c4 = 1

4a2
from the two boundary conditions (B.2) at x = 0+. The

other two boundary conditions (B.2) at x = π gives the linear system
for c2 and c3:[
cosh(πa) sin(πa) sinh(πa) cos(πa)
sinh(πa) cos(πa) − cosh(πa) sin(πa)

] [
c2
c3

]
= −c4

[
sinh(πa) sin(πa)
cosh(πa) cos(πa)

]
.

By Cramer’s rule, we find the unique solution

c2 = −c4 sinh(2πa)

cosh(2πa)− cos(2πa)
, c3 = c4

sin(2πa)

cosh(2πa)− cos(2πa)
,
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which results in the exact analytical expression for x ∈ [0, π]:

G′
T(x) =

1

4a2
sinh(ax) sin a(2π − x)− sin(ax) sinh a(2π − x)

cosh(2πa)− cos(2πa)
. (B.3)

Integrating (B.3) in x yields the exact analytical expression for GT:

GT(x) =
1

8a3
g(x)

cosh(2πa)− cos(2πa)
, x ∈ [0, π], (B.4)

where

g(x) := sinh(ax) cos a(2π − x) + cosh(ax) sin a(2π − x)

+ sin(ax) cosh a(2π − x) + cos(ax) sinh a(2π − x)

and the constant of integration is set to zero due to the differential
equation G′′′′

T
+ cGT = 0 on (0, π).

We verify the validity of the exact solution (B.4) by comparing
GT(0) and GT(π) with the Fourier series representation (1.4) for α = 4
and c = 4a2:

GT(0) =
1

2π

∑
n∈Z

1

4a4 + n2
=

1

8a3
sinh(2πa) + sin(2πa)

cosh(2πa)− cos(2πa)
(B.5)

and

GT(π)=
1

2π

∑
n∈Z

(−1)n

4a4+n2
=

1

4a3
sinh(πa) cos(πa)+sin(πa) cosh(πa)

cosh(2πa)−cos(2πa)
.(B.6)

Indeed, the exact expressions coincide with those found from the nu-
merical series (1) and (2) in [32, Section 5.1.27].

It follows from (B.6) that GT(π) vanishes for c = 4a4 > 0 if and
only if a > 0 is a solution of the transcendental equation

tanh(πa) + tan(πa) = 0. (B.7)

Elementary graphical analysis on Figure B.5 shows that there exist a
countable sequence of zeros {an}n∈N such that an ∈ (n− 1

4
, n
)
, n ∈ N.

Hence, GT is not positive for a ∈ (a1,∞).
Let us now show that the profile of GT is strictly, monotonically

decreasing on (0, π) for small a. It follows from (B.3) that G′
T
(x) < 0

for x ∈ (0, π) if and only if

sin(ax)

sinh(ax)
>

sin a(2π − x)

sinh a(2π − x)
, x ∈ (0, π). (B.8)

The function
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Figure B.5. Countable sequence of zeros {an}n∈N of
the transcendental equation B.7 found from the inter-
sections of tanh(πa) shown by blue line and − tan(πa)
shown by orange line.

x �→ sin(ax)

sinh(ax)

is monotonically decreasing on [0, 2π] as long as

cos(ax) sinh(ax)− sin(ax) cosh(ax) ≤ 0, x ∈ [0, 2π], (B.9)

which is true at least for a ∈ (0, 1
2
). Hence, GT is strictly motonically

decreasing on (0, π) with GT(π) > 0 for a ∈ (0, a0), where a0 ∈ (1
2
, 1).

On the other hand, it is obvious that there exists a∗ ∈ (1, 3
2
) such

that the inequality (B.9) [and hence the inequality (B.8)] is violated
at x = π for a ∈ (a∗, 2), for which G′

T
(x) > 0 at least near x = π.

The first part of the proposition is proven due to the relation c =
4a4. It remains to prove that GT has a finite number of zeros on T for
fixed a ∈ [a0,∞) which becomes unbounded as a → ∞. To do so, we
simplify the expression (B.4) for GT in the asymptotic limit of large a
for every fixed x ∈ (0, π):

GT(x) =
1

8a3
[
e−ax cos(ax) + e−ax sin(ax) +O(e−a(2π−x))

]
. (B.10)

Thus, as a gets large, there are finitely many zeros of GT on (0, π) but
the number of zeros of GT grows unbounded as a→ ∞. �
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Remark B.1. The leading-order term in the asymptotic expan-
sion (B.10) represents Green’s function GR. The proof of Conjecture
1.2 for α = 4 follows from this explicit expression.

Figure B.6. Left: areas on (a, x) plane where GT is
positive (yellow) and negative (blue). Right: the same
but for G′

T
.

Remark B.2. Figure B.6 shows boundaries on the (a, x) plane
between positive (yellow) and negative (blue) values of GT (left) and
G′

T
(right). It follows from the figure that the zeros of GT and G′

T
are

monotonically decreasing with respect to parameter a and the number
of zeros only grows as a increases. In other words, zeros of GT cannot
coalesce and disappear. We were not able to prove this property for
every a > 0 inside (0, π).

Appendix C. Asymptotic approximation of
the first zero of GT(π)

Here, we obtain the formal asymptotic dependence of the first zero
of GT(π) as (c, α) → (∞, 2). We use the integral representation (5.2).
Replacing the Mittag–Leffler function Eα by its leading-order asymp-
totic expression (2.6) for 2 ≤ α < 6, we obtain formally

GT(π) =
1

2παc
[I(a, b) + error terms] , (C.1)

where

I(a, b) :=

∫ ∞

0

sech2

(
t

2

)
eat cos(bt)dt (C.2)

with
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a := c
1
α cos

(π
α

)
, b := c

1
α sin

(π
α

)
. (C.3)

The limit (c, α) → (∞, 2) such that c < cα corresponds to the limit
b→ ∞ with a < 1.

The integral I(a, b) is the rapidly oscillating integral in the limit
b→ ∞. We split it into two parts:

I(a, b) = I1(a, b) + I2(a, b)

=

∫ ∞

0

sech2

(
t

2

)
cosh(at) cos(bt)dt

+

∫ ∞

0

sech2

(
t

2

)
sinh(at) cos(bt)dt, (C.4)

where I1(a, b) is exponentially small in b and I2(a, b) is algebraically
small in b. Indeed, by Darboux principle [1], we evaluate the first
integral for a < 1 with the residue theorem:

I1(a, b) =
1

2
Re

∫ ∞

−∞
sech2

(
t

2

)
cosh(at)eibtdt

= Re4πiResz=πi

[
ez cosh(az)eibz

(1 + ez)2

]
+O(e−3πb)

= 4π [b cos(πa) + a sin(πa)] e−πb +O(e−3πb).

Integrating the second integral by parts several times for a < 1 (see
Section 5.2 in [21]), we obtain

I2(a, b) =
1

b
sin(bt) sinh(at)sech2

(
t

2

)∣∣∣∣t→∞

t=0

−1

b

∫ ∞

0

sin(bt)
d

dt

[
sech2

(
t

2

)
sinh(at)

]
dt,

=
cos(bt)

b2
d

dt

[
sech2

(
t

2

)
sinh(at)

]∣∣∣∣t→∞

t=0

− 1

b2

∫ ∞

0

cos(bt)
d2

dt2

[
sech2

(
t

2

)
sinh(at)

]
dt,

= − a

b2
+O

( a
b4

)
.
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Finding zero of I(a, b) in a as b→ ∞ yields the approximation

a = 4πb3e−πb

[
1 +O

(
1

b2

)]
. (C.5)

Substituting (C.3) into (C.5) then taking the logarithm of both sides

yields the following transcendental equation for c
1
α

2 ln
(
c

1
α

)
− π sin

(π
α

)
c

1
α +O(c−

2
α ) = ln

(
cos(π

α
)

4π sin3
(
π
α

)) . (C.6)

In order to determine the dependence of c in terms of α we first factor
c

1
α on the left hand side, then expand around α = 2 to obtain

−πc 1
α

⎡⎣1 +O ((α− 2)2
)
+O

⎛⎝ ln
(
c

1
α

)
c

1
α

⎞⎠⎤⎦=ln

[
α− 2

16
+O ((α− 2)2

)]
.

Since c
1
α is of order O(ln(α− 2)), the above equation becomes

−πc 1
α = ln

(
α− 2

16

)[
1 +O

(
ln | ln(α− 2)|
| ln(α− 2)|

)]
,

which, as α→ 2, implies

c =
1

π2
ln2

(
α− 2

16

)[
1 +O

(
ln | ln(α− 2)|
| ln(α− 2)|

)]
. (C.7)

The asymptotic approximation (C.7) suggests that the first zero of
GT(π) at c = c0(α) satisfies c0(α) → ∞ as α → 2. However, we note
that the asymptotic approximation of the root of I(a, b) given by (C.7)
is derived without analysis of the error terms in (C.1).
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