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Abstract. We study non-linear ground states of the Gross–Pitaevskii equation in the space of one, two and three dimensions
with a radially symmetric harmonic potential. The Thomas–Fermi approximation of ground states on various spatial scales was
recently justified using variational methods. We justify here the Thomas–Fermi approximation on an uniform spatial scale using
the Painlevé-II equation. In the space of one dimension, these results allow us to characterize the distribution of eigenvalues in
the point spectrum of the Schrödinger operator associated with the non-linear ground state.
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1. Introduction

Recent experiments with Bose–Einstein condensates [15] have stimulated new interest in the Gross–
Pitaevskii equation with a harmonic potential. We take this equation in the form

iεut + ε2Δu +
(
1 − |x|2)u − |u|2u = 0, x ∈ R

d, t ∈ R+, (1.1)

where the space dimension d is one, two or three, u(x, t) ∈ C is the wave function of the repulsive Bose
gas in the mean-field approximation and ε is a small parameter that corresponds to the Thomas–Fermi
approximation of a nearly compact atomic cloud [7,18].

A ground state of the Bose–Einstein condensate is a positive, time-independent solution u(x, t) =
ηε(x) of the Gross–Pitaevskii equation (1.1). More precisely, ηε : R

d �→ R satisfies the stationary Gross–
Pitaevskii equation

ε2Δηε(x) +
(
1 − |x|2)ηε(x) − η3

ε(x) = 0, x ∈ R
d, (1.2)

ηε(x) > 0 for all x ∈ R
d, and ηε has a finite energy Eε(ηε), where Eε is given by

Eε(u) =
∫

Rd

(
ε2 | ∇u|2 +

(
|x|2 − 1

)
u2 +

1
2
u4
)

dx.
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For d = 2, existence and uniqueness of a radially symmetric ground state ηε for a fixed, sufficiently
small ε > 0 is proven in [13], Theorem 2.1, similarly to earlier works of Brezis and Oswald [4] and
Aftalion, Alama and Bronsard [1] in bounded domains. It is also shown in [13] that ηε(x) converges to
η0(x) as ε → 0 for all x ∈ R

2, where η0 is the Thomas–Fermi’s compactly supported function

η0(x) =

{(
1 − |x|2)1/2

for |x| < 1,
0 for |x| > 1.

(1.3)

To be precise, [13], Proposition 2.1, states that for d = 2, ε > 0 sufficiently small,

0 � ηε(x) � Cε1/3 exp
(

1 − |x|2

4ε2/3

)
for |x| � 1, (1.4)

0 �
(
1 − |x|2)1/2 − ηε(x) � Cε1/3(1 − |x|2)1/2

for |x| � 1 − ε1/3 (1.5)

and

‖ηε − η0 ‖C1(K) � CKε2, (1.6)

where K is any compact subset of {x ∈ R
2: |x| < 1} and C and CK are ε-independent positive

constants. The method used by Ignat and Millot in the case d = 2 to prove the existence of a radially
symmetric ground state ηε can be extended to the cases d = 1, 3. The uniqueness of the positive, radially
symmetric ground state does not follow from [13] for d = 3, but we can establish it by a different
method, according to the following proposition. This proposition is proved in Section 5.

Proposition 1.1. The stationary Gross–Pitaevskii equation (1.2) has at most one positive radial solution
in L2(Rd), for any d � 1.

Our main goal in this paper is to prove a uniform asymptotic approximation of the ground state ηε on
R

d, in the limit ε → 0, for d = 1, 2, 3. At least two attempts have been made in physics literature [3,14]
to establish connection between the non-linear ground state ηε for d = 1 and solutions of the Painlevé-II
equation

4ν ′ ′(y) + yν(y) − ν3(y) = 0, y ∈ R. (1.7)

This equation arises as the formal limit as ε → 0 of the differential equation satisfied by νε:

4
(
1 − ε2/3y

)
ν ′ ′

ε (y) − 2ε2/3dν ′
ε(y) + yνε(y) − ν3

ε(y) = 0, y ∈
(

− ∞, ε−2/3),
where νε is defined by

ηε(x) = ε1/3νε(y), y =
1 − |x|2

ε2/3
. (1.8)

The convergence of ηε to η0 as ε → 0 suggests that we should consider the Hasting–McLeod solution
ν0 of the Painlevé-II equation [12], which is the unique solution of (1.7) such that

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → − ∞.
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In both papers [3,14], the asymptotic solution ηε is constructed at three spatial scales

I: |x| � 1 − ε2/3, II: |x| ∈
(
1 − ε2/3, 1 + ε2/3) and III: |x| � 1 + ε2/3.

Solutions of the Painlevé-II equation (1.7) are used at the intermediate scale II for matching conditions
and connection formulas between the WKB solutions at the inner scale I and the Airy function solutions
at the outer scale III. The same formal approach is also developed in [19] for approximations of excited
states of the stationary Gross–Pitaevskii equation in the case d = 1.

We address the problem of uniform asymptotic approximations of the ground state ηε of the stationary
Gross–Pitaevskii equation (1.2) using the Hasting–McLeod solution of the Painlevé-II equation (1.7).
Our main result (Theorem 1) in Section 2 establishes this approximation on a rigorous level. In the case
when d = 1, we also study eigenvalues of the Schrödinger operator

Lε
+ = −ε2 ∂2

x + Vε(x), Vε(x) = 3η2
ε(x) − 1 + x2,

that arises in the linearization of the stationary Gross–Pitaevskii equation (1.2) at the ground state ηε.
We prove in Section 3 that the spectrum of Lε

+ in L2(R) consists of an infinite sequence of positive
eigenvalues {λε

n}n�1 such that for any fixed integer k � 1,

λε
2k−1, λε

2k ∼ μkε
2/3 as ε → 0, (1.9)

where μk is the kth eigenvalue of the Schrödinger operator

M0 = −4∂2
y + W0(y), W0(y) = 3ν2

0 (y) − y.

We note that M0 arises in the linearization of the Painlevé-II equation (1.7) at the Hasting–McLeod
solution ν0. Therefore, the scaling transformation (1.8) leading to the Painlevé-II equation (1.7) becomes
useful for analysis of eigenvalues of the Schrödinger operator Lε

+.
It is clear from the shape of ηε that the operator Lε

+ has a double-well potential Vε(x) with two
symmetric minima converging to ±1 as ε → 0, while the operator M0 has a single-well potential W0(y).
These facts explain both the asymptotic correspondence between eigenvalues of Lε

+ and M0 and the
double degeneracy of each pair of eigenvalues in the asymptotic limit (1.9). Formal results of the semi-
classical theory for the operator Lε

+ are collected in Section 4.
While a different technique is exploited in our previous work [9], the result (1.9) provides the same

kind of asymptotic behavior for the smallest eigenvalue of Lε
+ as the one we obtained for the lowest

eigenvalue of the simplified operator

L̃ε
+ = −ε2 ∂2

x + V0(x), V0(x) = 3η2
0(x) − 1 + x2.

The spectral stability of the ground state in the Gross–Pitaevskii equation (1.1) is deducted from the
analysis of the symplectically coupled eigenvalue problem for Schrödinger operators Lε

+ and Lε
−, where

Lε
− = −ε2 ∂2

x + Ṽε(x), Ṽε(x) = η2
ε(x) − 1 + x2 =

ε2η′ ′
ε (x)

ηε(x)
.
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Unfortunately, the asymptotic scaling (1.8) leading to the Painlevé-II equation (1.7) does not give a
correct scaling of the eigenvalues of Lε

− nor the eigenvalues of the spectral stability problem because
the potential Ṽε(x) is a single well with a nearly flat bottom on the interval [−1, 1], which is mapped
to [0, ε−2/3] by the change of variable y = (1 − x2)/ε2/3. Analysis of the eigenvalues of the spectral
stability problem and construction of excited states of the stationary Gross–Pitaevskii equation are two
open problems beyond the scope of this article.

Notations. If A and B are two quantities depending on a parameter ε belonging to a neighborhood E
of 0,

• A(ε) � B(ε) indicates that there exists a positive constant C such that

A(ε) � CB(ε) for every ε ∈ E .

• A(ε) ∼ε→0 B(ε) if A(ε)/B(ε) → 1 as ε → 0.
• A(ε) = O(B(ε)) as ε → 0 if A(ε)/B(ε) remains bounded as ε → 0.

Let F (x) be a function defined in a neighborhood of ∞. Given α ∈ R, {fm}m∈N ∈ R, and γ > 0, the
notation

F (x) ≈
x→∞

xα
∞∑

m=0

fmx−γm

means that for every M ∈ N,

F (x) − xα
M∑

m=0

fmx−γm = O
(
xα−γ(M+1)) as x → ∞

and, moreover, that the asymptotic series can be differentiated term by term.
We use the following spaces:

• H∞(R) =
⋂

s�0 Hs(R), where Hs(R) is the standard Sobolev space.
• L2

r(Rd) is the subspace of radially symmetric functions in L2(Rd). Note that if f (| · |) ∈ L2
r(Rd),

then

∥∥f(| · |
)∥∥

L2(Rd) =
∣∣Sd−1∣∣ ∫ ∞

0
rd−1∣∣f (r)

∣∣2 dr,

where |Sd−1 | is the surface of the unit sphere in R
d. Similarly, |Bd| is the volume of the unit ball

in R
d.

2. Uniform asymptotic expansion of ηε

In what follows, d = 1, 2 or 3 and ε > 0 is sufficiently small such that, as it is proved in [13],
Theorem 2.1, there exists a positive classical solution ηε of

ε2Δηε(x) +
(
1 − |x|2)ηε(x) − η3

ε(x) = 0, x ∈ R
d. (2.1)
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Moreover, this ground state ηε is radially symmetric, so that we can define a function νε on Jε :=
(− ∞, ε−2/3] by

ηε(x) = ε1/3νε

(
1 − |x|2

ε2/3

)
, x ∈ R

d. (2.2)

Let y = (1 − |x|2)/ε2/3 be a new variable. Notice that y covers once Jε as |x| covers R+. It is equivalent
for ηε to solve (2.1) and for νε to solve the differential equation

4
(
1 − ε2/3y

)
ν ′ ′

ε (y) − 2ε2/3dν ′
ε(y) + yνε(y) − ν3

ε(y) = 0, y ∈ Jε. (2.3)

Let N � 0 be an integer. We look for νε using the form

νε(y) =
N∑

n=0

ε2n/3νn(y) + ε2(N+1)/3RN ,ε(y), y ∈ Jε. (2.4)

Expansion (2.4) provides a solution of Eq. (2.3) if {νn}0�n�N and RN ,ε satisfy Eqs (2.5)–(2.7).

• ν0 solves the Painlevé-II equation

4ν ′ ′
0 (y) + yν0(y) − ν3

0 (y) = 0, y ∈ R, (2.5)

• for 1 � n � N , νn solves

−4ν ′ ′
n(y) + W0(y)νn(y) = Fn(y), y ∈ R, (2.6)

where

W0(y) = 3ν2
0 (y) − y

and

Fn(y) = −
∑

n1,n2,n3<n
n1+n2+n3=n

νn1 (y)νn2(y)νn3(y) − 2dν ′
n−1(y) − 4yν ′ ′

n−1(y),

• RN ,ε solves

−4
(
1 − ε2/3y

)
R′ ′

N ,ε + 2ε2/3dR′
N ,ε + W0RN ,ε = FN ,ε(y, RN ,ε), y ∈ Jε, (2.7)

where

FN ,ε(y, R) = −
(
4yν ′ ′

N + 2dν ′
N

)
−

2N −1∑
n=0

ε2n/3
∑

n1+n2+n3=n+N+1
0�n1,n2,n3�N

νn1νn2νn3

−
(

3
2N∑
n=1

ε2n/3
∑

n1+n2=n
0�n1,n2�N

νn1νn2

)
R −

(
3

2N+1∑
n=N+1

ε2n/3νn−(N+1)

)
R2

− ε4(N+1)/3R3.
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Notice that for 0 � n � N , νn(y) is defined for all y ∈ R and does not depend on ε, whereas RN ,ε(y) is
a priori only defined for y ∈ Jε.

Appropriate solutions of system (2.5)–(2.7) enable us to prove the following theorem.

Theorem 1. Let ν0 be the unique solution of the Painlevé-II equation (2.5) such that

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → − ∞.

For n � 1, there exists a unique solution νn of Eq. (2.6) in H∞(R). For every N � 0, there exists
εN > 0 and CN > 0 such that for every 0 < ε < εN , there is a solution RN ,ε ∈ C ∞(Jε) of Eq. (2.7)
with

‖RN ,ε‖L∞ (Jε) � CNε−(d−1)/3 and x �→ RN ,ε

(
1 − |x|2

ε2/3

)
∈ H2(

R
d),

such that the unique radially symmetric ground state of Eq. (2.1) in L2(Rd) is given by

ηε(x) = ε1/3
N∑

n=0

ε2n/3νn

(
1 − |x|2

ε2/3

)
+ ε2N/3+1RN ,ε

(
1 − |x|2

ε2/3

)
, x ∈ R

d. (2.8)

Remark 2.1. For d = 3, the remainder term in (2.8) may have the same order as the last term in the
sum, because of the growth of the upper bound on ‖RN ,ε‖L∞ (Jε) as ε ↓ 0.

Remark 2.2. The uniqueness of the ground state is proved in [13] for d = 2 (without assuming the
radial symmetry of the ground state). The method of Ignat and Millot can be extended to the case d = 1,
but apparently not to d = 3. Proposition 1.1 states the uniqueness of a positive, radially symmetric
ground state in L2(Rd) for d = 1, 2, 3. This proposition is proved in Section 5.

The proof of Theorem 1 is described in the following three subsections. Notice first that it is sufficient
to prove the theorem for an arbitrarily large value of N . Indeed, for every integer N0 > 0, the result of
the theorem for N < N0 is a direct consequence of the result for N = N0. Also, for convenience, we
shall assume in the sequel that N � 2.

2.1. Construction of νn for 0 � n � N

We are looking for a solution νε(y) of Eq. (2.3) that satisfies the following limit as ε → 0:

ε1/3νε
(
ε−2/3(1 − x2))−→

ε→0

{(
1 − x2)1/2

for x ∈ [−1, 1],
0 for |x| � 1.

Therefore, we choose ν0(y) to be the unique solution of the Painlevé-II equation (2.5) that satisfies the
asymptotic behavior ν0(y) ∼ y1/2 as y → +∞ and converges to zero as y → − ∞. Existence and
uniqueness of this solution are proved by Hastings and McLeod [12]. Asymptotic behavior of ν0(y) as
y → ± ∞ is described in more details in Theorem 11.7 of [8]. These results are combined together in
the following proposition.
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Proposition 2.1 ([8,12]). The Painlevé-II equation

4ν ′ ′(y) + yν(y) − ν3(y) = 0, y ∈ R,

admits a unique solution ν0 ∈ C ∞(R) such that

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → − ∞.

Moreover, ν0 is strictly increasing on R, ν ′ ′
0 has exactly one zero on R, which is an inflection point of ν0.

The behavior of ν0 as y → − ∞ is described by

ν0(y) =
1

2
√

π
(−2y)−1/4e−2/3(−2y)3/2(

1 + O
(

|y| −3/4)) ≈
y→−∞

0, (2.9)

whereas as y → +∞, it is described by

ν0(y) ≈
y→+∞

y1/2
∞∑

n=0

bn

(2y)3n/2
, (2.10)

where b0 = 1, b1 = 0 and for n � 0,

bn+2 = 4
(
9n2 − 1

)
bn − 1

2

n+1∑
m=1

bmbn+2−m − 1
2

n+1∑
l=1

n+2−l∑
m=1

blbmbn+2−l−m.

Next, we construct νn ∈ H∞(R) for n � 1 by induction on n. For n � 0, we consider the following
property:

∀k ∈ {1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

• νk ∈ H∞(R) solves (2.6) (with n replaced by k),

• νk(y) ≈
y→+∞

yβ−2k
∞∑

m=0

gk,my−3m/2 for some {gk,m}m∈N,

• νk(y) ≈
y→−∞

0,

(Hn)

where

β =
{−5/2 if d = 1,

1/2 if d = 2, 3.

(H0) is empty and, therefore, true by convention. Fix n � 1 and assume that (Hn−1) is true. We are going
to construct νn such that (Hn) is satisfied. We will make use of the following two lemmas, which are
proved in Sections 6 and 7.

Lemma 2.1. Let W ∈ C 1(R) such that W ′ ∈ L∞(R+) and such that there exists C0, C+, A+ > 0 with

W (x) � C+x for x � A+, W (x) � C0 for x ∈ R and W ′(x) � 0 for x � A+.
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Let f ∈ L2(R) such that xαf ∈ L∞(A+, +∞) for some α > 0. Let

ϕ =
(

−∂2
x + W

)−1
f ∈ H1(R).

Then, as x → +∞,

ϕ(x) = O
(
x−(α+1)). (2.11)

Moreover, if f and W admit asymptotic series

f (x) ≈
x→+∞

x−α
+∞∑
m=0

cmx−γm, W (x) ≈
x→+∞

x
+∞∑
m=0

vmx−γm (2.12)

for some coefficients {cm}m∈N, {vm}m∈N and γ > 0 such that 3/γ is an integer, then ϕ admits an
asymptotic series

ϕ(x) ≈
x→+∞

x−(α+1)
+∞∑
m=0

dmx−γm (2.13)

for some coefficients {dm}m∈N. In particular, as x → +∞,

ϕ′(x) = O
(
x−(α+2)), ϕ′ ′(x) = O

(
x−(α+3)). (2.14)

Lemma 2.2. Let W0(y) := 3ν2
0 (y) − y, where ν0(y) is the solution of the Painlevé-II equation (2.5) given

in Proposition 2.1. Then,

Wmin := inf
y∈R

W0(y) > 0.

From the asymptotic behaviors of ν0(y) as y → ± ∞, we infer that

W0(y) ∼ 2y as y → +∞ and W0(y) ∼ −y as y → − ∞. (2.15)

Let us consider the operator

M0 := −4∂2
y + W0(y)

on L2(R) with the domain,

Dom(M0) =
{
u ∈ L2(R): −4u′ ′ + W0u ∈ L2(R)

}
.

The Schrödinger operator M0 arises in the linearization of the Painlevé-II equation at ν = ν0. The
spectrum of M0 is purely discrete and, thanks to Lemma 2.2, it consists of a sequence of strictly positive
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eigenvalues which goes to infinity. If n = 1, it follows from the choice of ν0 and from properties (2.9)–
(2.10) that

F1(y) ≈
y→+∞

(1 − d)y−1/2 + y−7/2
+∞∑
m=0

3(m + 2)bm+22−3(m+2)/2(1 − 3(m + 2)
)
y−3m/2 (2.16)

and

F1(y) ≈
y→−∞

0. (2.17)

Thanks to Lemma 2.2, we can look for ν1 solution of (2.6) with n = 1 in the form

ν1(y) =
(1 − d)Φ(y)
W0(y)y1/2

+ ν̃1(y), y ∈ R,

where Φ ∈ C ∞(R) is such that Φ(y) ≡ 0 if y � 1/2, Φ(y) ≡ 1 if y � 1. Then, ν̃1 has to solve

−4ν̃ ′ ′
1 (y) + W0(y)ν̃1(y) = F̃1(y) := F1(y) − (1 − d)y−1/2Φ(y)

+ 4
d2

dy2

(
(1 − d)Φ(y)
W0(y)y1/2

)
, y ∈ R. (2.18)

From the asymptotic expansions (2.9)–(2.10) of ν0, we infer that W0 also admits asymptotic expansions
as y → ± ∞. Since ν0 ∈ C ∞(R), it follows from (2.15)–(2.18) that F̃1 ∈ H∞(R). Then, property (H1)
follows from Lemma 2.1 applied on the one side to ν̃1 := M −1

0 F̃1 with α = 7/2, so that ν̃1(y) =
O(y−9/2) as y → +∞, and on the other side to y �→ ν̃1(−y) with α arbitrarily large. Furthermore, if
n � 2, we have

Fn(y) = −
∑

0<n1,n2,n3<n
n1+n2+n3=n

νn1 (y)νn2(y)νn3(y)

− 3
∑

0<n1,n2<n
n1+n2=n

ν0(y)νn1 (y)νn2(y) − 2dν ′
n−1(y) − 4yν ′ ′

n−1(y).

Thanks to (Hn−1), all the terms in the right-hand side admit an asymptotic expansion at ± ∞. More
precisely,

Fn(y) ≈
y→+∞

yβ+1−2n
+∞∑
m=0

fn,my−3m/2

for some coefficients {fn,m}m∈N, whereas

Fn(y) ≈
y→−∞

0.
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Since Fn ∈ C ∞(R) and n � 2, we deduce that Fn ∈ H∞(R), and we can define νn = M −1
0 Fn ∈

H∞(R). By Lemma 2.1 with γ = 3/2 and α = 2n − β − 1, we then have

νn(y) ≈
y→+∞

yβ−2n
+∞∑
m=0

gn,my−3m/2

for some coefficients {gn,m}m∈N, and

νn(y) ≈
y→−∞

0

where we have applied Lemma 2.1 with γ = 3/2 to the function νn(−y). Therefore, (Hn) is true, which
completes the construction by induction of the sequence of solutions {νn(y)}n�1 of the inhomogeneous
equations (2.6).

2.2. Construction of RN ,ε

In this subsection, we construct a solution RN ,ε to Eq. (2.7), such that given the νn’s constructed in
Section 2.1, expansion (2.4) provides a solution of Eq. (2.3). The solution RN ,ε of Eq. (2.7) is obtained
by a fixed point argument. In order to explain the functional framework in which the fixed point theorem
will be applied, let us first introduce the functional spaces

L2
ε =

{
u ∈ L1

loc(Jε):
(
1 − ε2/3y

)d/4−1/2
u ∈ L2(Jε)

}
and

H1
ε =

{
u ∈ L2

ε:
(
1 − ε2/3y

)d/4
u′ ∈ L2(Jε) and

(
1 − ε2/3y

)d/4−1/2
W

1/2
0 u ∈ L2(Jε)

}
,

endowed with their respective squared norms

‖u‖2
ε := ‖u‖2

L2
ε

=
∫ ε−2/3

− ∞

(
1 − ε2/3y

)d/2−1
u2 dy

and

‖u‖2
H1

ε
:=
∫ ε−2/3

− ∞

[
4
(
1 − ε2/3y

)d/2∣∣u′∣∣2 +
(
1 − ε2/3y

)d/2−1
W0u

2] dy.

We are looking for a solution RN ,ε(y) of Eq. (2.7) on Jε such that the function RN ,ε(ε−2/3(1 − |x|2)) is
regular on R

d. As a result, it is convenient for the sequel to introduce the map T ε : L2
ε �→ L2

r(Rd) defined
for u ∈ L2

ε by

(
T εu

)
(z) := u

(
ε−2/3 − ε2/3 |z|2),
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which makes the link between functions defined on Jε and radial functions defined on R
d, in terms of

the variable z = ε−2/3x ∈ R
d. An easy calculation shows that T ε is a bijection from L2

ε into L2
r(Rd),

and that for every u ∈ L2
ε,

∥∥T εu
∥∥2

L2(Rd) =
|Sd−1 |

2ε2(d−1)/3
‖u‖2

ε. (2.19)

Moreover, T ε induces a bijection from H1
ε into

Qε :=
{

u ∈ L2(
R

d): ∫
Rd

[
| ∇u|2 + W0

(
ε−2/3 − ε2/3 |z|2)|u|2] dz < ∞

}

and for every u ∈ H1
ε ,

∥∥T εu
∥∥2

Qε
=
∫

Rd

[∣∣∇T εu
∣∣2 + W0

(
ε−2/3 − ε2/3 |z|2)∣∣T εu

∣∣2] dz =
|Sd−1 |

2ε2(d−1)/3
‖u‖2

H1
ε
. (2.20)

Let us rewrite Eq. (2.7) for the remainder term RN ,ε(y) in the operator form

M εRN ,ε(y) = FN ,ε(y, RN ,ε), y ∈ Jε, (2.21)

where M ε is the self-adjoint operator on L2
ε defined by

{
M ε := −4

(
1 − ε2/3y

)−d/2+1
∂y
(
1 − ε2/3y

)d/2
∂y + W0(y) =

(
T ε)−1

KεT ε,

Dom
(
M ε) =

{
u ∈ L2

ε: KεTεu ∈ L2(
R

d)} (2.22)

and Kε denotes the Schrödinger operator on L2(Rd),

Kε := −Δ + W0
(
ε−2/3 − ε2/3 |z|2).

The solution RN ,ε of the non-linear equation (2.21) will be obtained from the fixed point theorem applied
to the map

ΦN ,ε : R �→
(
M ε)−1

FN ,ε(·, R),

which will be shown to be continuous from H1
ε into itself. First, we shall prove the following lemma.

Lemma 2.3. The operator M ε is invertible, and for every f ∈ L2
ε,

∥∥(M ε)−1
f
∥∥

H1
ε

� W
−1/2
min ‖f ‖ε.

Proof. Let us consider the continuous, bilinear, coercive form on Qε defined by

a(u, v) =
∫

Rd

[
∇u∇v + W0

(
ε−2/3 − ε2/3 |z|2)uv

]
dz.
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By the Cauchy–Schwarz inequality and Lemma 2.2, for every f ∈ L2
ε,

v �→
∫

Rd
T εfv dz

defines a continuous linear form on Qε. Thus, by the Lax–Milgram theorem [10], there exists a unique
ψ ∈ Qε such that for every v ∈ Qε,

a(ψ, v) =
∫

Rd
T εfv dz.

Moreover, ψ ∈ Qε is radial and satisfies

Kεψ = T εf in D ′(
R

d).
Thus, ϕ := (T ε)−1ψ ∈ H1

ε ∩ Dom(M ε) satisfies

M εϕ = f.

From (2.20) and a calculation similar to (2.19), we also check that

‖ϕ‖2
H1

ε
=

2ε2(d−1)/3

|Sd−1 | a(ψ, ψ) =
2ε2(d−1)/3

|Sd−1 |

∫
Rd

T εfψ dz =
∫ ε−2/3

− ∞

(
1 − ε2/3y

)d/2−1
fϕ dy

� ‖f ‖ε‖ϕ‖ε � W
−1/2
min ‖f ‖ε‖ϕ‖H1

ε

from which the upper bound on ϕ = (M ε)−1f in H1
ε follows. �

Next, we prove that R �→ FN ,ε(·, R) continuously maps H1
ε into L2

ε. We write

FN ,ε(y, R) = FN ,0(y) + GN ,ε(y, R),

where

FN ,0 = −
(
4yν ′ ′

N + 2dν ′
N

)
−

∑
n1+n2+n3=N+1

0�n1,n2,n3�N

νn1νn2νn3 (2.23)

and

GN ,ε = −
2N −1∑
n=1

ε2n/3
∑

n1+n2+n3=n+N+1
0�n1,n2,n3�N

νn1νn2νn3 −
(

3
2N∑
n=1

ε2n/3
∑

n1+n2=n
0�n1,n2�N

νn1νn2

)
R

−
(

3
2N+1∑

n=N+1

ε2n/3νn−(N+1)

)
R2 − ε4(N+1)/3R3. (2.24)
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We first show that FN ,0 ∈ L2
ε. Indeed, from the properties of the νn’s, we infer that

FN ,0(y) ≈
y→−∞

0

and FN ,0 also admits an asymptotic expansion as y → +∞, with

4yν ′ ′
N (y) + 2dν ′

N (y) = O
(
yβ−1−2N)

and if n1 + n2 + n3 = N + 1,

νn1νn2νn3(y) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
y−19/2−2N ) if d = 1 and n1, n2, n3 > 0,

O
(
y−13/2−2N ) if d = 1 and n1 or n2 or n3 = 0,

O
(
y−1/2−2N ) if d � 2

(notice that n1 + n2 + n3 = N + 1 with 0 � n1, n2, n3 � N implies that at most one of the numbers
n1, n2, n3 is equal to 0). Since N � 2, we deduce that in any case,

FN ,0(y) = O
(
y−9/2) as y → +∞, while FN ,0(y) ≈

y→−∞
0.

Therefore, for α > 0 sufficiently large and ε < 1,

∫ ε−2/3

− ∞

(
1 − ε2/3y

)d/2−1
F 2

N ,0 dy �
∫ 1

− ∞

(
1 + |y|

)−2α
dy +

∫ ε−2/3

1
y−9(1 − ε2/3y

)d/2−1
dy.

In the case d = 1, the second integral in the right-hand side is estimated by

∫ ε−2/3

1
y−9(1 − ε2/3y

)−1/2
dy � ε16/3

∫ 1

ε2/3

z−9

(1 − z)1/2
dz

� ε16/3
√

2
∫ 1/2

ε2/3
z−9 dz +

ε16/3

29

∫ 1

1/2

1
(1 − z)1/2

dz � 1,

whereas for d � 2,

∫ ε−2/3

1
y−9(1 − ε2/3y

)d/2−1
dy �

∫ ε−2/3

1
y−9 dy � 1.

Therefore in both cases FN ,0 ∈ L2
ε and

‖FN ,0 ‖ε � 1. (2.25)

Similarly, the term which does not depend on R in the right-hand side of (2.24) is OL2
ε
(ε2/3). Let R ∈

H1
ε . To estimate the linear term in R in the definition of GN ,ε, notice that if n1 + n2 = n � 1, then n1

or n2 is not equal to 0, thus νn1νn2(y) = O(y−1) as y → +∞. In particular, νn1νn2 ∈ L∞(R) and

‖νn1νn2R‖ε � ‖νn1νn2 ‖L∞ (R) ‖R‖ε � ‖νn1νn2 ‖L∞ (R)W
−1/2
min ‖R‖H1

ε
� ‖R‖H1

ε
. (2.26)
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In order to estimate the quadratic and cubic terms in the right-hand side of (2.24), the following lemma
will be useful.

Lemma 2.4. Let p = 1, 2 or 3. There exists a ε-independent constant C > 0 such that for every ε > 0,
if u ∈ H1

ε then up ∈ L2
ε and

∥∥up
∥∥

ε � Cε−(p−1)(d−1)/3 ‖u‖p
H1

ε
.

Proof. Let u ∈ H1
ε . We have checked in (2.20) that T εu ∈ Qε ⊂ H1(Rd) and

∥∥T εu
∥∥

H1(Rd) �
∥∥T εu

∥∥
Qε

� ε−(d−1)/3 ‖u‖H1
ε
. (2.27)

By Sobolev embeddings, it follows that T εu ∈ L2p(Rd), and

∥∥up
∥∥

ε � ε(d−1)/3∥∥T ε(up)∥∥
L2(Rd) = ε(d−1)/3∥∥T εu

∥∥p
L2p(Rd)

� ε(d−1)/3∥∥T εu
∥∥p

H1(Rd) � ε−(p−1)(d−1)/3 ‖u‖p
H1

ε
, (2.28)

where we have also made use of (2.19) with u replaced by up. �

Remark 2.3. The statement of Lemma 2.4 can be extended for all values of p for which H1(Rd) is
continuously embedded into L2p(Rd), that is 1 � p � ∞ for d = 1, 1 � p < ∞ for d = 2 and
1 � p � 3 for d = 3.

Thanks to Lemma 2.4, for any integer k � 1,

∥∥νkR
2∥∥

ε � ‖νk ‖L∞ (R)ε
−(d−1)/3 ‖R‖2

H1
ε

� ε−(d−1)/3 ‖R‖2
H1

ε
, (2.29)

whereas for k = 0,

∥∥ν0R
2∥∥

ε � ‖ν0 ‖L∞ (Jε)ε
−(d−1)/3 ‖R‖2

H1
ε

� ε−d/3 ‖R‖2
H1

ε
. (2.30)

On the other side,

∥∥R3∥∥
ε � ε−2(d−1)/3 ‖R‖3

H1
ε
, (2.31)

thanks to Lemma 2.4 again. By Lemma 2.3 as well as bounds (2.25), (2.26), (2.29)–(2.31),

∥∥ΦN ,ε(R) − R0
N ,ε

∥∥
H1

ε
� ε2/3 + ε2/3 ‖R‖H1

ε
+ ε(2N+2−d)/3 ‖R‖2

H1
ε
+ ε(4N+6−2d)/3 ‖R‖3

H1
ε
,

where

R0
N ,ε :=

(
M ε)−1

FN ,0.
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In particular, for ε > 0 sufficiently small and for some ε-independent constant C > 0, ΦN ,ε maps the
ball

Bε := BH1
ε

(
R0

N ,ε, Cε2/3)
into itself, where we have used the assumption N � 2. Similarly, there exists an ε-independent constant
C̃ > 0 such that for every R1, R2 in Bε,

∥∥ΦN ,ε(R1) − ΦN ,ε(R2)
∥∥

H1
ε

� C̃ε2/3 ‖R1 − R2 ‖H1
ε
.

As a result, provided ε is sufficiently small, ΦN ,ε is a contraction on Bε. The Fixed Point Theorem
ensures that ΦN ,ε has a unique fixed point RN ,ε ∈ Bε. In particular,

∥∥RN ,ε − R0
N ,ε

∥∥
H1

ε
� ε2/3. (2.32)

We next prove that RN ,ε satisfies the regularity properties stated in Theorem 1. The fixed point RN ,ε ∈
H1

ε of ΦN ,ε has been constructed in such a way that T εRN ,ε ∈ H1(Rd) solves the equation

KεT εRN ,ε = T ε(FN ,ε(·, RN ,ε)
)

∈ L2(
R

d). (2.33)

Thanks to Lemma 2.3 and (2.25), we obtain

∥∥R0
N ,ε

∥∥
H1

ε
� ‖FN ,0 ‖ε � 1. (2.34)

Thus, (2.32) yields

‖RN ,ε‖ε � ‖RN ,ε‖H1
ε

� 1. (2.35)

As a result, from (2.25), (2.26), (2.29)–(2.31), we infer

∥∥FN ,ε(·, RN ,ε)
∥∥

ε � 1. (2.36)

From (2.33), (2.36) and (2.19) we deduce

∥∥KεT εRN ,ε
∥∥

L2(Rd) =
∥∥T ε(FN ,ε(·, RN ,ε)

)∥∥
L2(Rd) � ε−(d−1)/3. (2.37)

Next, we use the following lemma, which is proved in Section 8.

Lemma 2.5. (Kε)−1 ∈ L(L2(Rd), H2(Rd)) is uniformly bounded in ε.

As a result, we infer from the Sobolev embedding of H2(Rd) into L∞(Rd) that T εRN ,ε ∈ H2(Rd)
and

‖RN ,ε‖L∞ (Jε) =
∥∥T εRN ,ε

∥∥
L∞ (Rd) � ε−(d−1)/3. (2.38)

Moreover, a bootstrapping argument shows that T εRN ,ε ∈ C ∞(Rd). As a result, RN ,ε ∈ C ∞(Jε).
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2.3. νε(y) > 0 for all y ∈ Jε

We have constructed above {νn}n�0 and RN ,ε in such a way that

η̃ε(x) := ε1/3
N∑

n=0

ε2n/3νn

(
1 − |x|2

ε2/3

)
+ ε2N/3+1(T εRN ,ε

)(
ε−2/3x

)

= ε1/3νε

(
1 − |x|2

ε2/3

)
, x ∈ R

d, (2.39)

is a classical, radially symmetric solution of Eq. (2.1). In order to claim that η̃ε is a ground state, it is
sufficient to check that η̃ε(x) > 0, for every x ∈ R

d, which is equivalent to νε(y) > 0, for every y ∈ Jε.
For every n � 1, ‖νn‖L∞ (R) � 1. Therefore, from (2.38), (2.39), since N � 2, we deduce the

existence of a constant C > 0 such that for every y ∈ Jε,

νε(y) − ν0(y) � −Cε2/3.

Since ν0(y) increases from 0 to +∞ as y goes from − ∞ to +∞, we deduce that for ε � 1,

νε(y) � ν0(−1) − Cε2/3 > 0, y ∈
[

−1, ε−2/3].
Coming back to the variable x, it follows that

η̃ε(x) > 0, |x| �
(
1 + ε2/3)1/2

. (2.40)

It remains to prove that η̃ε(x) > 0 for all |x| > (1 + ε2/3)1/2. Assume by contradiction that η̃ε is not
strictly positive on R

d. Then, let

rε = inf
{
r > 0, η̃ε(r) = 0

}
∈
((

1 + ε2/3)1/2
, ∞

)
,

where for convenience, since η̃ε is radial, we denote η̃ε(|x|) = η̃ε(x). By construction, η̃ε(rε) = 0 and
η̃′

ε(rε) � 0. If η̃′
ε(rε) = 0, then η̃ε ≡ 0, because η̃ε(r) satisfies the differential equation

− 1
rd−1

d
dr

(
rd−1 d

dr
η̃ε

)
(r) +

1
ε2

(
r2 − 1 + η̃ε(r)2)η̃ε(r) = 0.

This is a contradiction with (2.40). Thus, η̃′
ε(rε) < 0. Let

r̃ε := sup
{
r > rε, η̃ε

(
r′) < 0 for r′ ∈ (rε, r)

}
∈ (rε, +∞].

Then, for every r ∈ (rε, r̃ε),

d
dr

(
rd−1 d

dr
η̃ε

)
(r) =

rd−1

ε2

(
r2 − 1 + η̃ε(r)2)η̃ε(r) � 0
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and we deduce by integration that for every r ∈ (rε, r̃ε),

rd−1η̃′
ε(r) � rd−1

ε η̃′
ε(rε) < 0

and

η̃ε(r) � rd−1
ε η̃′

ε(rε)
∫ r

rε

s1−d ds. (2.41)

The right-hand side in (2.41) is a negative, decreasing function of r, which implies r̃ε = +∞, as well as
a contradiction with the fact that η̃ε(r) → 0 as r → +∞. Therefore η̃ε(r) > 0 for all r ∈ R+.

3. Spectrum of the Schrödinger operator Lε
+ in the case d = 1

Consider the Schrödinger operator

Lε
+ = −ε2 ∂2

x + Vε(x), Vε(x) = 3η2
ε(x) − 1 + x2

associated with the stationary Gross–Pitaevskii equation (1.2) linearized at the ground state ηε. It is a
self-adjoint operator on L2(R). Since the potential Vε(x) is confining in the sense of Vε(x) → +∞ as
|x| → ∞, Lε

+ has compact resolvent and a purely discrete spectrum. By Sturm–Liouville theory, the
eigenvalues of Lε

+, denoted {λε
n}n�1 (sorted in increasing order) are simple. Moreover, thanks to the

even symmetry of Vε on R, the eigenfunctions of Lε
+ corresponding to λε

n are even (resp. odd) in x if
n is odd (resp. even). If λ is an eigenvalue of Lε

+ and ϕ ∈ L2(R) is a corresponding eigenfunction, we
define a function v ∈ L2

ε by

ϕ(x) = v

(
1 − x2

ε2/3

)
, x ∈ R+.

Let us denote Wε(y) = 3ν2
ε(y) − y. Then, ϕ ∈ L2(R) is an even eigenfunction of Lε

+ corresponding to
the eigenvalue λ if and only if v ∈ L2

ε satisfies the differential equation

(
−4
(
1 − ε2/3y

)1/2
∂y
(
1 − ε2/3y

)1/2
∂y + Wε(y)

)
v(y) = ε−2/3λv(y), y ∈ Jε, (3.1)

and the Neumann boundary condition

ϕ′(0) = −2ε−2/3((1 − ε2/3y
)1/2

v′(y)
)∣∣

y=ε−2/3 = 0. (NC)

Similarly, ϕ ∈ L2(R) is an odd eigenfunction of Lε
+ corresponding to the eigenvalue λ if and only if

v ∈ L2
ε satisfies (3.1) and the Dirichlet boundary condition

ϕ(0) = v
(
ε−2/3) = 0. (DC)
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As a result, the eigenvalues of Lε
+ are directly related to the eigenvalues of the two self-adjoint operators

on L2
ε, M̌ ε and M̃ ε, where

{
M̌ ε := −4

(
1 − ε2/3y

)1/2
∂y

(
1 − ε2/3y

)1/2
∂y + Wε(y),

Dom
(
M̌ ε) =

{
v ∈ L2

ε: M̌ εv ∈ L2
ε and v satisfies (NC)

}
and M̃ ε is defined similarly by replacing (NC) by (DC) in the definition of the domain. Namely, if we
denote {μ̌ε

n}n�1 (resp. {μ̃ε
n}n�1) the eigenvalues of M̌ ε (resp. M̃ ε) sorted in increasing order, then for

every n � 1,

μ̌ε
n = ε−2/3λε

2n−1 and μ̃ε
n = ε−2/3λε

2n.

As ε → 0, the eigenvalue problems (3.1) for the operators M̌ ε and M̃ ε formally converge to the eigen-
value problem for the Schrödinger operator M0 defined after Lemma 2.2,

(
−4∂2

y + W0(y)
)
v(y) = μv(y), y ∈ R, where μ = ε−2/3λ.

By the discussion below Lemma 2.2, the purely discrete spectrum of M0 in L2(R) consists of an increas-
ing sequence of positive eigenvalues {μn}n�1. We shall prove that the eigenvalues of Lε

+ converge to
the eigenvalues of M0 as ε → 0, according to the following result.

Theorem 2. The spectrum of Lε
+ consists of an increasing sequence of positive eigenvalues {λε

n}n�1

such that for each n � 1,

lim
ε↓0

λε
2n−1

ε2/3
= lim

ε↓0

λε
2n

ε2/3
= μn. (3.2)

Proof. We prove only the convergence of μ̃ε
n = λε

2n/ε2/3 to μn, for every n � 1. The proof of the
convergence of μ̌ε

n = λε
2n−1/ε

2/3 to μn is identical.
Denote by 〈 ·, · 〉 and ‖ · ‖ the scalar product and the norm in L2(R), and by 〈 ·, · 〉ε and ‖ · ‖ε the scalar

product and the norm in L2
ε. If u, v ∈ L2(R), u ⊥ v means that 〈u, v〉 = 0, whereas if u, v ∈ L2

ε, u ⊥ε v
means that 〈u, v〉ε = 0. We denote by

Rε(v) =
Qε(v, v)

‖v‖2
ε

the Rayleigh quotient for the operator M̃ ε, where Qε denotes the corresponding bilinear form

Qε(u, v) =
∫

Jε

(
4
(
1 − ε2/3y

)1/2
∂yu ∂yv +

Wε(y)
(1 − ε2/3y)1/2

u(y)v(y)
)

dy,

defined for u, v ∈ H1
ε . Similarly,

R(v) =
Q(v, v)

‖v‖2
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denotes the Rayleigh quotient for M0, where Q is the corresponding bilinear form

Q(u, v) =
∫

R

(
4∂yu ∂yv + W0(y)u(y)v(y)

)
dy

defined for u, v ∈ {u ∈ H1(R): W
1/2
0 u ∈ L2(R)}.

Let ũε
n (resp. un) denote an eigenfunction of M̃ ε (resp. M0) corresponding to the eigenvalue μ̃ε

n (resp.
μn), normalized by ‖ũε

n‖ε = 1 (resp. ‖un‖ = 1). The eigenvalues of M0 are given by the Max–Min
principle:

μn = inf
v∈Dom(M0)

v⊥u1,...,un−1

R(v), (3.3)

whereas the eigenvalues of M̃ ε are similarly given by

μ̃ε
n = inf

v∈Dom(M̃ε)
v⊥εũε

1 ,...,ũε
n−1

Rε(v). (3.4)

Let us fix δ ∈ (0, 2/3). Let Φ ∈ C ∞(R) be an non-decreasing function such that Φ ≡ 0 on R− and Φ ≡ 1
on [1, +∞). For ε > 0 sufficiently small, we also define χε ∈ C ∞

c (R) by

χε(x) = Φ

(
2x + ε−2/3

ε−2/3 − 2ε−δ

)
Φ

(
ε−2/3 − 2x

ε−2/3 − 2ε−δ

)
,

such that χε is even, χε ≡ 1 on [−ε−δ, ε−δ] and Supp(χε) ⊂ [− ε−2/3

2 , ε−2/3

2 ]. We shall prove recursively
the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)n μ̃ε
n = μn + O

(
ε2/3−δ),

(ii)n for every k � n + 1,
〈
χεuk, ũε

n

〉
ε = O

(
ε1/3−δ/2),

(iii)n for every k � n,
〈
χεũ

ε
k, un−1

〉
= O

(
ε1/3−δ/2),

(iv)n inf
c∈R

∥∥χεũ
ε
n − cun

∥∥ = O
(
ε1/3−δ/2),

(v)n inf
c∈R

∥∥χεun−1 − cũε
n−1

∥∥
ε = O

(
ε1/3−δ/2),

(Gn)

where for n = 1, (iii)1 and (v)1 have to be understood as empty properties. Let us fix n � 1 and assume
that (Gk) is true for every k ∈ {1, . . . , n − 1} (for n = 1, this condition is empty, therefore true by
convention). The proof of (Gn) is then divided in five steps.

Step 1 (Upper bound on μ̃ε
n). First, we shall prove that

Rε(vε
n

)
= μn + O

(
ε2/3−δ), where vε

n = χεun −
n−1∑
k=1

〈
χεun, ũε

k

〉
εũ

ε
k. (3.5)

Then, thanks to (3.4), since vε
n ∈ Span(ũε

1, . . . , ũε
n−1)⊥ε ⊂ L2

ε by construction, (3.5) yields

μ̃ε
n � μn + O

(
ε2/3−δ). (3.6)
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From (i)k and (ii)k, which are satisfied for k � n − 1 thanks to the recursion assumption, we have

Rε(vε
n

)
=

Qε(χεun, χεun) − ∑n−1
k=1 μ̃ε

k 〈χεun, ũε
k 〉2

ε

‖χεun‖2
ε − ∑n−1

k=1 〈χεun, ũε
k 〉2

ε

=
Qε(χεun, χεun) + O(ε2/3−δ)

‖χεun‖2
ε + O(ε2/3−δ)

. (3.7)

Next,

‖χεun‖2
ε =

∫ ε−2/3/2

−ε−2/3/2

χ2
εu

2
n

(1 − ε2/3y)1/2
dy

=
(
1 + O

(
ε2/3−δ)) ∫ ε−δ

−ε−δ
u2

n dy +
∫

ε−δ�|y|�ε−2/3/2

χ2
εu

2
n

(1 − ε2/3y)1/2
dy. (3.8)

The last term in the right-hand side of (3.8) is estimated as follows

∫
ε−δ�|y|�ε−2/3/2

χ2
εu

2
n

(1 − ε2/3y)1/2
dy �

√
2
∫

|y|�ε−δ
u2

n dy � exp
(

−2ε−δ) � ε2/3, (3.9)

where we have used the following lemma.

Lemma 3.1. For every m � 1, there exists a constant Cm > 0 such that for every y ∈ R,

∣∣um(y)
∣∣ � Cm exp

(
− |y|

)
(3.10)

and

∣∣u′
m(y)

∣∣ � Cm
(

|y| + 1
)

exp
(

− |y|
)
. (3.11)

Proof. Since W0(y) → +∞ as y → ∞, we can fix bn > 0 such that inf{W0(y): |y| � bn} > 4 + μn.
Then,

(
−4∂2

y + W0(y) − μn
)
e− |y| =

(
W0(y) − μn − 4

)
e− |y| � 0, |y| > bn.

Since un solves the eigenvalue problem

(
−4∂2

y + W0(y) − μn
)
un = 0, y ∈ R,

thanks to [2], Corollary 2.8, there exists C > 0 such that

∣∣un(y)
∣∣ � Ce− |y|, |y| � bn + 1.

Bound (3.10) follows, since un ∈ Dom(M0) ⊂ H1(R) ⊂ L∞(R). Then, from the differential equation
M0un = μnun and thanks to the asymptotic behavior of W0, we infer

∣∣u′ ′
n(y)

∣∣ = 1
4

∣∣μnun(y) − W0(y)un(y)
∣∣ � (

|y| + 1
)
e− |y|, y ∈ R. (3.12)
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By integration of (3.12) between − ∞ and y, we deduce, for y < 0,

∣∣u′
n(y)

∣∣ = ∣∣∣∣
∫ y

− ∞
u′ ′

n(s) ds

∣∣∣∣ � (
|y| + 1

)
e− |y|.

The same kind of estimate is obtained for y > 0 by integration of (3.12) between y and +∞, which
provides (3.11) and completes the proof of Lemma 3.1. �

Using Lemma 3.1 again, as well as the normalization of un, we infer that

∫ ε−δ

−ε−δ
u2

n dy = 1 + O
(
ε2/3). (3.13)

From (3.8), (3.9) and (3.13), we deduce that

‖χεun‖2
ε = 1 + O

(
ε2/3−δ). (3.14)

On the other side,

Qε(χεun, χεun) =
∫

Jε

[
4
(
1 − ε2/3y

)1/2∣∣∂y(χεun)
∣∣2 +

Wε|χεun|2

(1 − ε2/3y)1/2

]
dy

= 4
∫

Jε

(
1 − ε2/3y

)1/2
χ′2

ε u2
n dy + 8

∫
Jε

(
1 − ε2/3y

)1/2
χ′

εχεu
′
nun dy

+ 4
∫ ε−δ

−ε−δ

(
1 − ε2/3y

)1/2
u′2

n dy + 4
∫

ε−δ�|y|�ε−2/3/2

(
1 − ε2/3y

)1/2
χ2

εu
′2
n dy

+
∫ ε−δ/2

−ε−δ/2

Wεu
2
n

(1 − ε2/3y)1/2
dy +

∫
ε−δ/2�|y|�ε−2/3/2

Wε|χεun|2

(1 − ε2/3y)1/2
dy. (3.15)

The first two integrals in the right-hand side of (3.15) are O(ε2/3), because un ∈ H1(R),

‖χ′
ε‖L∞ (Jε) � ε2/3

and

max
{(

1 − ε2/3y
)1/2

: y ∈ Supp χε
}

�
√

3/2.

The fourth and last integrals in the right-hand side of (3.15) are also O(ε2/3), thanks to Lemma 3.1. From
Lemma 3.1, we also infer that

∫ ε−δ

−ε−δ

(
1 − ε2/3y

)1/2
u′2

n dy =
(
1 + O

(
ε2/3−δ)) ∫ ε−δ

−ε−δ
u′2

n dy =
∫ +∞

− ∞
u′2

n dy + O
(
ε2/3−δ). (3.16)
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From Theorem 1 and from the decay properties of the function νn for n � 1 provided in (Hn), we
deduce that νε = ν0 + ε2/3rε, where rε = OL∞ (R)(1) and ν0rε = OL∞ (R)(1) as ε → 0. As a result,
Wε − W0 = 3(ν2

ε − ν2
0 ) ∈ L∞(R), and

‖Wε − W0 ‖L∞ (R) � ε2/3. (3.17)

Then, since W0(y) = O(y) as y → ± ∞,

∥∥∥∥ Wε

(1 − ε2/3y)1/2
− W0

∥∥∥∥
L∞ (−ε−δ/2,ε−δ/2)

� ε2/3−δ. (3.18)

As a result, using once more Lemma 3.1,

∫ ε−δ/2

−ε−δ/2

Wεu
2
n

(1 − ε2/3y)1/2
dy =

∫ +∞

− ∞
W0u

2
n dy + O

(
ε2/3−δ). (3.19)

Finally, we get from (3.7), (3.14)–(3.16), (3.19) and the estimates on the other term in the right-hand
side of (3.15):

Rε(vε
n

)
= R(un) + O

(
ε2/3−δ) = μn + O

(
ε2/3−δ), (3.20)

which completes the proof of (3.5) and of its corollary (3.6).

Step 2 (Asymptotic behavior of the eigenfunction ũε
n). Property (i)n will be obtained as a consequence

of (3.6) and of the converse inequality

μn � μ̃ε
n + O

(
ε2/3−δ).

The proof of the latter inequality is delivered in Step 3. The proof uses the following properties of the
eigenfunction ũε

n corresponding to the nth eigenvalue μ̃ε
n of M̃ε.

Lemma 3.2. There exists a constant C̃n > 0 such that for every y ∈ Jε and ε > 0 sufficiently small,

∣∣ũε
n(y)

∣∣ � C̃ne− |y|, (3.21)

whereas

∣∣(ũε
n

)′
(y)
∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C̃n
(

|y| + 1
)
e− |y| if y � 0,

C̃n
(

|y| + 1
)
e− |y| + exp

(
− ε−2/3

4

)
if 0 < y � ε−2/3

2
,

C̃n exp(−ε−2/3/4)
(1 − ε2/3y)1/2

if
ε−2/3

2
< y � ε−2/3.

(3.22)
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Proof. In order to prove (3.21), we come back to the eigenfunction

ϕε
2n(x) = ũε

n

(
1 − x2

ε2/3

)

of Lε
+ corresponding to the eigenvalue λε

2n = μ̃ε
nε2/3. Since

∥∥ũε
n

∥∥2
H1

ε
= Qε(ũε

n, ũε
n

)
= μ̃ε

n

∥∥ũε
n

∥∥2
ε = μ̃ε

n,

it follows from (3.6) and Lemma 2.4 that for ε sufficiently small,

∥∥ϕε
2n

∥∥
L∞ (R) =

∥∥ũε
n

∥∥
L∞ (Jε) � C

√
μ̃ε

n � C
√

μn + O
(
ε2/3−δ

)
� cn, (3.23)

where cn > 0 is an ε-independent constant. Since W0(y) � |y| as y → ± ∞, we can fix an large enough
such that inf{W0(y) : |y| � an} > 4 + μn. Then, using (3.17) and (3.6), we obtain, for x2 < 1 − anε2/3

and for ε small enough,

(
−ε2 ∂2

x + x2 − 1 + 3η2
ε − ε2/3μ̃ε

n

)
exp

(
− 1 − x2

ε2/3

)

= ε2/3
(

−2ε2/3 − 4x2 + Wε

(
1 − x2

ε2/3

)
− μ̃ε

n

)
exp

(
− 1 − x2

ε2/3

)

� ε2/3(−4 + inf
{
W0(y): y � an

}
− μn + O

(
ε2/3−δ)) exp

(
− 1 − x2

ε2/3

)
� 0. (3.24)

On the other side, ϕε
2n solves the differential equation

(
−ε2 ∂2

x + x2 − 1 + 3η2
ε − ε2/3μ̃ε

n

)
ϕε

2n = 0. (3.25)

Thus,

(
−ε2 ∂2

x + x2 − 1 + 3η2
ε − ε2/3μ̃ε

n

)
ψε

n± � 0, |x| <
(
1 − anε2/3)1/2

, (3.26)

where

ψε
n±(x) = cn exp

(
an − 1 − x2

ε2/3

)
± ϕε

2n(x).

Moreover, from (3.23), we get

ψε
n±
(

±
(
1 − anε2/3)1/2) � 0.

As a result, since for ε small enough, we also have like in (3.24)

x2 − 1 + 3η2
ε − ε2/3μ̃ε

n = ε2/3
(

Wε

(
1 − x2

ε2/3

)
− μ̃ε

n

)

� ε2/3(inf
{
W0(y): y � an

}
− μn + O

(
ε2/3−δ)) > 0, (3.27)
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the maximum principle ensures that

ψε
n±(x) � 0, |x| <

(
1 − anε2/3)1/2

,

which is equivalent to

∣∣ϕε
2n(x)

∣∣ � cn exp
(

an − 1 − x2

ε2/3

)
, |x| <

(
1 − anε2/3)1/2

.

In terms of ũε
n, it means that

∣∣ũε
n(y)

∣∣ � cneane−y, an � y � ε−2/3. (3.28)

On the other side, for |x| � (1 + anε2/3)1/2 and for ε sufficiently small, we obtain like in (3.24)

(
−ε2 ∂2

x + x2 − 1 + 3η2
ε − ε2/3μ̃ε

n

)
exp

(
− x2 − 1

ε2/3

)

= ε2/3
(

2ε2/3 − 4x2 + Wε

(
1 − x2

ε2/3

)
− μ̃ε

n

)
exp

(
− x2 − 1

ε2/3

)

� ε2/3
(

−4 + W0

(
1 − x2

ε2/3

)(
4ε2/3 (1 − x2)/ε2/3

W0((1 − x2)/ε2/3)
+

Wε((1 − x2)/ε2/3)
W0((1 − x2)/ε2/3)

)

− μn + O
(
ε2/3)) exp

(
− x2 − 1

ε2/3

)

� 0. (3.29)

Thus, exp(− x2 −1
ε2/3 ) is a positive, continuous supersolution of

(
−ε2 ∂2

x + x2 − 1 + 3η2
ε − ε2/3μ̃ε

n

)
ϕ = 0

in {x: |x| > (1 + anε2/3)1/2}. From a slightly modified version of [2], Corollary 2.8, we deduce that

∣∣ϕε
2n(x)

∣∣ � 2cn exp
(

1 + an − x2 − 1
ε2/3

)
, |x| �

(
1 + (an + 1)ε2/3)1/2

.

More precisely, the constant 2cne(an+1) above has been chosen in such a way that the inequality holds
for |x| = (1 + (an + 1)ε2/3)1/2, and the result in [2] ensures that then the inequality holds for any x such
that |x| � (1 + (an + 1)ε2/3)1/2. In terms of ũε

n, it means that∣∣ũε
n(y)

∣∣ � 2cnean+1ey, y � −(an + 1). (3.30)

Then, (3.21) follows from (3.23), (3.28) and (3.30). We next prove (3.22). From (3.21) and the differen-
tial equation M̃ εũε

n = μ̃ε
nũε

n, we infer that for every y ∈ Jε,

∣∣(∂y
(
1 − ε2/3y

)1/2
∂yũ

ε
n

)
(y)
∣∣ � C̃ne− |y|

4(1 − ε2/3y)1/2

(
μn +

(
sup
y∈R

W0(y)
|y|

)
|y| + O

(
ε2/3−δ)), (3.31)



C. Gallo and D. Pelinovsky / On the Thomas–Fermi ground state in a harmonic potential 77

where we have also used (3.6) and (3.17). The estimate (3.22) in the case y < 0 directly follows by
integration of (3.31) between − ∞ and y:

∣∣(ũε
n

)′
(y)
∣∣ � ∣∣(1 − ε2/3y

)1/2(
ũε

n

)′
(y)
∣∣= ∣∣∣∣

∫ y

− ∞

(
∂y
(
1 − ε2/3y

)1/2
∂yũ

ε
n

)
(s) ds

∣∣∣∣
�
(

|y| + 1
)
e− |y|. (3.32)

As for the case 0 < y < ε−2/3

2 , integration of (3.31) between y and ε−2/3

2 gives

∣∣∣∣(1 − ε2/3y
)1/2(

ũε
n

)′
(y) − 1√

2

(
ũε

n

)′
(

ε−2/3

2

)∣∣∣∣ � (
|y| + 1

)
e− |y|, (3.33)

which provides thanks to the triangular inequality

∣∣(ũε
n

)′
(y)
∣∣ � (

|y| + 1
)
e− |y| +

∣∣∣∣(ũε
n

)′
(

ε−2/3

2

)∣∣∣∣. (3.34)

Using basic integration, we also have

ũε
n

(
ε−2/3

2

)
− ũε

n

(
ε−2/3

4

)

=
∫ ε−2/3/2

ε−2/3/4

((
ũε

n

)′
(s) − (ũε

n)′(ε−2/3/2)√
2(1 − ε2/3s)1/2

)
ds +

(ũε
n)′(ε−2/3/2)√

2

∫ ε−2/3/2

ε−2/3/4

1
(1 − ε2/3s)1/2

ds.

(3.35)

Since the last integral in the right-hand side of (3.35) is bounded from below by ε−2/3
√

2
4 , we deduce

from (3.35), (3.33) and (3.21) that

∣∣∣∣(ũε
n

)′
(

ε−2/3

2

)∣∣∣∣ � exp
(

− ε−2/3

4

)
. (3.36)

Combining (3.36) and (3.34), we get (3.22) in the case when 0 < y < ε−2/3

2 . Finally, we consider the

case when ε−2/3

2 < y < ε−2/3. Integration of (3.31) between ε−2/3

2 and y yields

∣∣(ũε
n

)′
(y)
∣∣� 1

(1 − ε2/3y)1/2

(√
1
2

∣∣∣∣(ũε
n

)′
(

ε−2/3

2

)∣∣∣∣+
∫ y

ε−2/3/2

(|s| + 1)e− |s|

(1 − ε2/3s)1/2
ds

)

� 1
(1 − ε2/3y)1/2

(
exp

(
− ε−2/3

4

)
+ ε−2/3 exp

(
− ε−2/3

2

)∫ ε−2/3

ε−2/3/2

1
(1 − ε2/3s)1/2

ds

)

� exp(−ε−2/3/4)
(1 − ε2/3y)1/2

, (3.37)
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where we have also used (3.36). This completes the proof of (3.22) and the proof of Lemma 3.2. �

Step 3 (Lower bound on μ̃ε
n and proof of (i)n). In order to show that (i)n holds, we next prove the

converse inequality

μn � μ̃ε
n + O

(
ε2/3−δ), (3.38)

which will be deduced from (3.3) and

R
(
ṽε

n

)
= μ̃ε

n + O
(
ε2/3−δ), where ṽε

n = χεũ
ε
n −

n−1∑
k=1

〈
χεũ

ε
n, uk

〉
uk. (3.39)

In order to prove (3.39), we proceed similarly as for the proof of (3.5). First, since (iii)k is assumed to
be satisfied for k � n − 1,

R
(
ṽε

n

)
=

Q(χεũ
ε
n, χεũ

ε
n) − ∑n−1

k=1 μk 〈χεũ
ε
n, uk 〉2

‖χεũε
n‖2 − ∑n−1

k=1 〈χεũε
n, uk 〉2

=
Q(χεũ

ε
n, χεũ

ε
n) − μn−1 〈χεũ

ε
n, un−1 〉2 + O(ε2/3−δ)

‖χεũε
n‖2 − 〈χεũε

n, un−1 〉2 + O(ε2/3−δ)
. (3.40)

Then, thanks to Lemma 3.2 and the normalization of ũε
n,

∥∥χεũ
ε
n

∥∥2 =
∫ ε−2/3/2

−ε−2/3/2
χ2

ε

∣∣ũε
n

∣∣2 dy

=
(
1 + O

(
ε2/3−δ)) ∫ ε−δ

−ε−δ

|ũε
n|2

(1 − ε2/3y)1/2
dy +

∫
ε−δ�|y|�ε−2/3/2

χ2
ε

∣∣ũε
n

∣∣2 dy

=
(
1 + O

(
ε2/3−δ)) ∫

Jε

|ũε
n|2

(1 − ε2/3y)1/2
dy + O

(
ε2/3)

= 1 + O
(
ε2/3−δ). (3.41)

Similarly, using Lemma 3.2 and (3.18) and proceeding as in (3.15), we get

Q
(
χεũ

ε
n, χεũ

ε
n

)
=
∫ +∞

− ∞

(
4
∣∣∂y
(
χεũ

ε
n

)∣∣2 + W0
∣∣χεũ

ε
n

∣∣2) dy

= 4
∫ +∞

− ∞
χ′2

ε

∣∣ũε
n

∣∣2 dy + 8
∫ +∞

− ∞
χ′

εχε
(
ũε

n

)′
ũε

n dy

+ 4
(
1 + O

(
ε2/3−δ)) ∫ ε−δ

−ε−δ

(
1 − ε2/3y

)1/2∣∣(ũε
n

)′∣∣2 dy

+ 4
∫

ε−δ�|y|�ε−2/3/2
χ2

ε

∣∣(ũε
n

)′∣∣2 dy
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+
∫ ε−δ/2

−ε−δ/2
W0
∣∣ũε

n

∣∣2 dy +
∫

ε−δ/2�|y|�ε−2/3/2
W0
∣∣χεũ

ε
n

∣∣2 dy

= 4
(
1 + O

(
ε2/3−δ)) ∫

Jε

(
1 − ε2/3y

)1/2∣∣(ũε
n

)′∣∣2 dy

+
∫ ε−δ/2

−ε−δ/2

Wε|ũε
n|2

(1 − ε2/3y)1/2
dy + O

(
ε2/3−δ)

= Qε(ũε
n, ũε

n

)
+ O

(
ε2/3−δ) = μ̃ε

n + O
(
ε2/3−δ). (3.42)

In order to deduce (3.39) from (3.40), it remains to estimate the scalar product 〈χεũ
ε
n, un−1 〉. Notice that

in the case when n = 1, this term does not exists, and there is then nothing to do. From (iv)n−1, there
exists cn−1 ∈ R such that

∥∥χεũ
ε
n−1 − cn−1un−1

∥∥ � ε1/3−δ/2. (3.43)

Then, by triangular inequality, and thanks to (3.41) for n replaced by n − 1,

∣∣|cn−1 | − 1
∣∣ � ∥∥cn−1un−1 − χεũ

ε
n−1

∥∥+
∣∣∥∥χεũ

ε
n−1

∥∥ − 1
∣∣ � ε1/3−δ/2, (3.44)

whereas

|cn−1 |
∣∣〈χεũ

ε
n, un−1

〉∣∣
�
∣∣〈χεũ

ε
n, cn−1un−1 − χεũ

ε
n−1

〉∣∣+ ∣∣∣∣
〈(

χ2
ε − 1

(1 − ε2/3y)1/2

)
ũε

n, ũε
n−1

〉∣∣∣∣+ ∣∣〈ũε
n, ũε

n−1

〉
ε

∣∣
� ε1/3−δ/2, (3.45)

where the first term in the right-hand side of (3.45) has been estimated thanks to the Cauchy–Schwarz
inequality, (3.43) and (3.41). The second term has been estimated thanks to Lemma 3.2 for ũε

n and for
ũε

n−1, and the last one is equal to 0. We deduce from (3.44) and (3.45) that

〈
χεũ

ε
n, un−1

〉
= O

(
ε1/3−δ/2). (3.46)

Then, (3.39) and (3.38) follow from (3.40)–(3.42) and (3.46). Property (i)n is a direct consequence of
(3.38) and (3.6).

Step 4 (Proof of (ii)n and (iv)n). From the definition of ṽε
n in (3.39), it is clear that

ṽε
n ∈ Span(u1, . . . , un−1)⊥.

Thus, ṽε
n can be decomposed as

ṽε
n = cε

nun + wε
n, where cε

n ∈ R and wε
n ∈ Span(u1, . . . , un)⊥. (3.47)
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From (3.39) and (i)n, we have

μn + O
(
ε2/3−δ) = μ̃ε

n + O
(
ε2/3−δ) = R

(
ṽε

n

)
=

(cε
n)2μn + Q(wε

n, wε
n)

(cε
n)2 + ‖wε

n‖2
� (cε

n)2μn + ‖wε
n‖2μn+1

(cε
n)2 + ‖wε

n‖2
.

It follows that

(μn+1 − μn)
∥∥wε

n

∥∥2 � ε2/3−δ
∥∥ṽε

n

∥∥2
. (3.48)

Thanks to the definition of ṽε
n in (3.39), property (iii)k for k � n − 1 as well as (3.46),

∥∥ṽε
n − χεũ

ε
n

∥∥ � ε1/3−δ/2. (3.49)

On the other side, (3.41) ensures that ‖χεũ
ε
n‖ → 1 as ε → 0. As a result, ‖ṽε

n‖ → 1 as ε → 0, and (3.48)
implies

∥∥wε
n

∥∥ � ε1/3−δ/2. (3.50)

Moreover, from Lemmas 3.1 and 3.2, we infer that for any k � 1,

〈χεũ
ε
n, uk 〉 =

∫ ε−δ

−ε−δ
χεũ

ε
nuk dy +

∫
ε−δ�|y|�ε−2/3/2

χεũ
ε
nuk dy

=
(
1 + O

(
ε2/3−δ)) ∫

Jε

χεukũ
ε
n

(1 − ε2/3y)1/2
dy + O

(
ε2/3). (3.51)

From (3.50) and (3.51) we deduce in particular that for every k � n + 1,

O
(
ε2/3)+

〈
χεuk, ũε

n

〉
ε

(
1 + O

(
ε2/3−δ))=

〈
χεũ

ε
n, uk

〉
=
〈
ṽε

n, uk

〉
=
〈
wε

n, uk

〉
= O

(
ε1/3−δ/2), (3.52)

which proves (ii)n. Then, (iv)n is a consequence of the triangular inequality, (3.49) and (3.50):

∥∥χεũ
ε
n − cε

nun

∥∥ �
∥∥χεũ

ε
n − ṽε

n

∥∥+
∥∥wε

n

∥∥ � ε1/3−δ/2.

Step 5 (Proof of (iii)n and (v)n). Like in (3.47), we decompose vε
n−1 as

vε
n−1 = c̃ε

n−1ũ
ε
n−1 + w̃ε

n−1, where c̃ε
n−1 ∈ R and w̃ε

n−1 ∈ Span
(
ũε

1, . . . , ũε
n−1

)⊥ε .

From (3.5) for n replaced by n − 1 and (i)n−1, we have

μ̃ε
n−1 + O

(
ε2/3−δ)= μn−1 + O

(
ε2/3−δ) = Rε(vε

n−1

)
=

(c̃ε
n−1)2μ̃ε

n−1 + Qε(w̃ε
n−1, w̃ε

n−1)
(c̃ε

n−1)2 + ‖w̃ε
n−1 ‖2

ε

� (c̃ε
n−1)2μ̃ε

n−1 + ‖w̃ε
n−1 ‖2

εμ̃
ε
n

(c̃ε
n−1)2 + ‖w̃ε

n−1 ‖2
ε

.
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Using (i)n and (i)n−1, it follows that

(
μn − μn−1 + O

(
ε2/3−δ))∥∥w̃ε

n−1

∥∥2
ε =

(
μ̃ε

n − μ̃ε
n−1

)∥∥w̃ε
n−1

∥∥2
ε � ε2/3−δ

∥∥vε
n−1

∥∥2
ε. (3.53)

Thanks to the definition of vε
n−1 given by (3.5) and property (ii)k for k � n − 2,

∥∥vε
n−1 − χεun−1

∥∥
ε � ε1/3−δ/2. (3.54)

Thanks to (3.14) for n replaced by n − 1, ‖χεun−1 ‖ε → 1 as ε → 0, thus ‖vε
n−1 ‖ε → 1 as ε → 0. As a

result, we deduce from (3.53) that

∥∥w̃ε
n−1

∥∥
ε � ε1/3−δ/2. (3.55)

Then, for every k � n, we get

〈
χεũ

ε
k, un−1

〉(
1 + O

(
ε2/3−δ))=

〈
χεun−1, ũε

k

〉
ε =

〈
vε

n−1, ũε
k

〉
ε =

〈
w̃ε

n−1, ũε
k

〉
ε

= O
(
ε1/3−δ/2), (3.56)

using similar arguments as in the derivation of (3.52). Moreover,

〈
χεun−1, ũε

k

〉
ε =

(
1 + O

(
ε2/3−δ))(〈χεũ

ε
k, un−1

〉
−
∫

ε−δ�|y|�ε−2/3/2
χεun−1ũ

ε
k dy

)

+
∫

ε−δ�|y|�ε−2/3/2

χεun−1ũ
ε
k

(1 − ε2/3y)1/2
dy

=
(
1 + O

(
ε2/3−δ))〈χεũ

ε
k, un−1

〉
+ O

(
ε2/3), (3.57)

where the two integrals in the right-hand side of (3.57) have been estimated thanks to the Cauchy–
Schwarz inequality, Lemma 3.1 and the normalization condition ‖ũε

k ‖ε = 1. The combination of
(3.56) and (3.57) completes the proof of (iii)n. Then, (v)n follows from the triangular inequality, (3.54)
and (3.55):

∥∥χεun−1 − c̃ε
n−1ũ

ε
n−1

∥∥
ε �

∥∥χεun−1 − vε
n−1

∥∥
ε +

∥∥w̃ε
n−1

∥∥
ε � ε1/3−δ/2.

It completes the proof of (Gn), and therefore the proof of Theorem 2. �

4. Semi-classical limit for eigenvalues of Lε
+

We list here formal results of the semi-classical theory that describe the distribution of eigenvalues
of Lε

+. We will show that the standard Bohr–Sommerfeld quantization rule does not give the correct
asymptotic behavior of the eigenvalues of Lε

+ as ε → 0 because the potential Vε(x) depends on ε.
Nevertheless, the Bohr–Sommerfeld quantization rule gives the correct scaling O(ε2/3) in agreement
with the asymptotic limit (3.2) in Theorem 2.
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Eigenvalue problem for operator Lε
+ can be rewritten in the form

(
−∂2

x + ε−2Vε(x)
)
u(x) = ε−2λu(x), x ∈ R. (4.1)

By properties of ηε following from Theorem 1, the potential Vε(x) has the properties:

• Vε(x) ∈ C ∞(R) for any small ε > 0,
• limε→0 Vε(x) = V0(x), where V0 ∈ C(R) is given by

V0(x) =

{
2
(
1 − x2), |x| � 1,

x2 − 1, |x| � 1,

• Vε(x) takes its absolute minimum at ±aε for any small ε � 0 and aε → 1 as ε → 0,
• Vε(x) → +∞ as |x| → ∞ for any small ε � 0.

If Vε(x) is replaced by V0(x), the eigenvalue problem (4.1) takes a simplified form

(
−∂2

x + ε−2V0(x)
)
u(x) = ε−2λu(x), x ∈ R, (4.2)

which describes the eigenvalues of the operator L̃ε
+ mentioned in the Introduction. As it is well known

(see a recent review in [5]), the eigenvalues of the Schrödinger operator −∂2
x + ε−2V (x), with a smooth,

ε-independent double well potential V (x), are twice degenerate in the semi-classical limit ε → 0.
Namely, the eigenvalues are grouped by pairs. In each pair, the two eigenvalues are exponentially close
one from another as ε → 0. The asymptotic distribution of these pairs of eigenvalues is determined by
the Bohr–Sommerfeld quantization rule.

Let us try to apply the Bohr–Sommerfeld quantization rule to the eigenvalue problems (4.1) and (4.2)
for the operators Lε

+ and L̃ε
+, in spite of the fact that this rule was proved rigorously by Fedoryuk [6] only

for a class of ε-independent, analytic potentials. Since neither (4.1) nor (4.2) satisfies assumptions of the
main theorem in [6], this application is purely formal. According to the standard Bohr–Sommerfeld
rule, the consequent eigenvalues λε

2n−1 and λε
2n of the Schrödinger equation (4.1) with the double-well

potential Vε(x) would be given asymptotically by

∫ xε
+(λ)

xε
− (λ)

√
λ − Vε(x) dx ∼ επ

(
n − 1

2

)
, as ε → 0, for fixed n � 1, (4.3)

where xε
±(λ) are the roots of Vε(x) = λ on R+, such that 0 < xε

−(λ) < 1 < xε
+(λ) < ∞. Let us use the

scaling

y =
1 − x2

ε2/3
, Vε(x) = ε2/3Wε(y), λ = ε2/3μ, (4.4)

where Wε(y) = 3ν2
ε(y) − y and μ is a new eigenvalue. The Bohr–Sommerfeld rule is rewritten in an

equivalent form by

∫ yε
+(μ)

yε
− (μ)

√
μ − Wε(y)√
1 − ε2/3y

dy ∼ π(2n − 1), as ε → 0, for fixed n � 1,
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where yε
±(μ) are the roots of Wε(y) = μ on R, such that − ∞ < yε

−(μ) < 0 < yε
+(μ) < ∞. Taking the

limit ε → 0 for a fixed n � 1, we obtain

∫ y+(μ)

y− (μ)

√
μ − W0(y) dy ∼ π(2n − 1) for fixed n � 1, (4.5)

where W0(y) = 3ν2
0 (y) − y and y±(μ) are the roots of W0(y) = μ on R. The new expression is the

Bohr–Sommerfeld quantization rule for the Schrödinger operator M0 = −4∂2
y + W0 and it is only valid

for large n � 1. Therefore, the Bohr–Sommerfeld quantization rule (4.3) does not recover the statement
of Theorem 2 correctly. Meantime, it still implies that the eigenvalues λε

2n−1 and λε
2n for a fixed n � 1

are scaled as O(ε2/3) as ε → 0. The discrepancy of the Bohr–Sommerfeld rule is explained by the fact
that the smooth potential Vε(x) in the eigenvalue problem (4.1) depends on ε.

Note that the limit ε → 0 can be computed exactly for the simplified eigenvalue problem (4.2) thanks
to the scaling transformation (4.4). In this case, the limiting formula (4.5) holds with W0(y) replaced by
2y for y � 0 and −y for y � 0, so that y−(μ) = −μ and y+(μ) = μ/2. In other words,

∫ 0

−μ

√
μ + y dy +

∫ μ/2

0

√
μ − 2y dy ∼ π(2n − 1) for fixed n � 1

and the computations of integrals gives μn ∼ (π(2n − 1))2/3, in agreement with the behavior O(n2/3) of
eigenvalues of the Schrödinger operator with a linearly growing potential as |y| → ∞ [17]. Therefore,
the Bohr–Sommerfeld quantization rule suggests that the eigenvalues {λ̃ε

n}n�1 of the simplified operator
L̃ε

+ considered in our previous work [9] satisfy the asymptotic limit

lim
ε↓0

λ̃ε
2n−1

ε2/3
= lim

ε↓0

λ̃ε
2n

ε2/3
=
(
π(2n − 1)

)2/3
for fixed n � 1. (4.6)

However, the justification of the asymptotic limit (4.6) cannot rely on the work of Fedoryuk [6] because
the ε-independent potential V0(x) in the simplified eigenvalue problem (4.2) is continuous but not C 1

on R.

5. Proof of Proposition 1.1

For a radial function u(x) = u(|x|) solution to (1.2), (1.2) can be rewritten as

ε2

rd−1

d
dr

(
rd−1u′)+

(
1 − r2 − u2)u = 0, r � 0, u′(0) = 0. (5.1)

Let u, v ∈ L2(Rd) be two radial positive solutions of (5.1). Up to a change of u and v, we assume
u(0) � v(0). Let ρ = u/v. Then, a straightforward calculation shows that

ε2 d
dr

(
v2rd−1ρ′) = rd−1v4ρ

(
ρ2 − 1

)
.
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If u(0) = v(0), since u′(0) = v′(0) = 0, we have u ≡ v. Let us assume by contradiction u(0) < v(0),
that is, ρ(0) < 1. Then r �→ v(r)2rd−1ρ′(r) is strictly decreasing in a neighborhood of 0, and therefore,
since ρ′(0) = 0, we infer ρ′(r) < 0 for r > 0 sufficiently small. Let

r0 = inf
{
r > 0, ρ′(r) = 0

}
.

ρ is decreasing on (0, r0), and since for every r, 0 < ρ(r) < ρ(0) < 1, we infer that v4ρ(ρ2 − 1) < 0
on that interval. As a result, r �→ v(r)2rd−1ρ′(r) is decreasing on (0, r0). Moreover, if r0 was finite,
we would have v(r0)2rd−1

0 ρ′(r0) < 0, which would be a contradiction with the definition of r0. Thus
r0 = +∞, such that both ρ and v(r)2rd−1ρ′(r) are decreasing on R+. We deduce

−1 � ρ(∞) − ρ(1) =
∫ ∞

1
ρ′(r) dr � v(1)2ρ′(1)

∫ ∞

1

1
v(r)2rd−1

dr < 0.

In particular, the integral

∫ ∞

1

1
v(r)2rd−1

dr < +∞

converges. On the other side, since v ∈ L2(Rd),

∫ ∞

0
v(r)2rd−1 dr < +∞.

Thanks to the Cauchy–Schwarz inequality, it turns out that

∞ =
∫ ∞

1
dr �

(∫ ∞

1
v(r)2rd−1 dr

)1/2(∫ ∞

1

1
v(r)2rd−1

dr

)1/2

< ∞,

which gives contradiction. Thus, ρ(0) = 1 and u ≡ v.

6. Proof of Lemma 2.1

Let α > 1 be like in the assumption of the lemma, and A = ‖xαf ‖L∞ (R+) < ∞. We first prove (2.11)
by contradiction. We proceed as follows. We suppose that (2.11) is not true. Namely, we make the
assumption

ϕ(x) �= O
(
x−(α+1)), xαf ∈ L∞(A+, +∞). (Gα)

If α > 2, we prove that (Gα) implies (Gα−2), such that after a finite number of steps, (Gα) implies (Gα̃)
for some α̃ ∈ (0, 2]. On the other side, we show that for 0 < α � 2, (Gα) yields a contradiction.

If (2.11) is not true, then, up to a change of f and ϕ into −f and −ϕ, there exists a sequence (xn)n�n0

(where n0 > A), such that xn ↑ ∞, xn � A+ and

xα
nW (xn)ϕ(xn) > n.
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Then,

xα
nϕ′ ′(xn) = xα

nW (xn)ϕ(xn) − xα
nf (x) � xα

nW (xn)ϕ(xn) − A > n − A.

For n � n0 > A, we define

yn = sup
{
y > xn, ∀x ∈ (xn, y), xαW (x)ϕ(x) − A > (n − A)/2

}
.

By continuity of W and ϕ, for every n � n0, either yn = +∞ or

ϕ(yn) =
n + A

2yα
nW (yn)

. (6.1)

We distinguish the two following cases:

(A) There exists n1 � n0 such that yn1 = +∞.
(B) For every n � n0, yn < +∞.

In case (B), extracting a subsequence of (xn)n�n0 if necessary, one can assume that

xn0 < yn0 < xn0+1 < yn0+1 < xn0+2 < · · · .

For n � n0 + 1, we define

x̃n = inf
{
y < xn, ∀x ∈ (y, xn), xαW (x)ϕ(x) − A > 3(n − A)/4

}
.

Since yn−1 < xn and

yα
n−1W (yn−1)ϕ(yn−1) − A = (n − 1 − A)/2 < 3(n − A)/4

we deduce x̃n > yn−1 > − ∞. Moreover, by continuity, ϕ(x̃n) = (3n + A)/(4x̃α
nW (x̃n)), and ϕ(x) >

(3n + A)/(4xαW (x)) for x > x̃n, x close to x̃n. Therefore

ϕ′(x̃n) � 3n + A

4
d

dx

(
1

xαW (x)

)∣∣∣∣
x=x̃n

� − 3n + A

4

(
α +

‖W ′ ‖L∞

C+

)
1

x̃α+1
n W (x̃n)

� −C1n
1

x̃α+1
n W (x̃n)

for some C1 > 0. By definition of yn and x̃n, for every x ∈ (x̃n, yn),

xαϕ′ ′(x) � n − A

2
.

Thus,

ϕ′(x) � ϕ′(x̃n) +
n − A

2

∫ x

x̃n

1
yα

dy

� −C1n
1

x̃α+1
n W (x̃n)

+
n − A

2

∫ x

x̃n

1
yα

dy =: Gn(x). (6.2)
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Notice that Gn(x̃n) < 0, whereas

Gn(+∞) =
{

+∞ if α � 1,
gn if α > 1,

where for α > 1,

gn ∼ n − A

2(α − 1)x̃α−1
n

> 0 as n → +∞.

As a result, for n sufficiently large, since Gn is increasing on (x̃n, +∞), Gn vanishes exactly once on
that interval. Moreover, this unique zero zn of Gn is defined by

∫ zn

x̃n

1
yα

dy =
2C1n

n − A

1
x̃α+1

n W (x̃n)
,

thus

zn = x̃n + O
(

1
x̃2

n

)
.

By integration of (6.2), we infer that for x ∈ (x̃n, yn),

ϕ(x) � ϕ(x̃n) +
∫ x

x̃n

Gn(y) dy

� ϕ(x̃n) +
∫ zn

x̃n

Gn(y) dy

� ϕ(x̃n) − C1n

x̃α+1
n W (x̃n)

(zn − x̃n)

� 3n + A

4
1

x̃α
nW (x̃n)

− C2n

x̃α+3
n W (x̃n)

for some constant C2 > 0. Therefore, for n large enough, for every x ∈ (x̃n, yn), since W is increasing
on (A+, +∞),

ϕ(x) � 5n

8
1

x̃α
nW (x̃n)

� 5n

8
1

xαW (x)
.

For n sufficiently large, 5n/8 > (n + A)/2, and it provides a contradiction with (6.1), which means that
case (B) can not happen. In case (A), for every x � xn1 ,

xαϕ′ ′(x) � (n1 − A)/2 > 0. (6.3)

Therefore ϕ′(x) ↑ 0 as x ↑ ∞, otherwise ϕ would not be in L2(R). Thus, for every x � xn1 , ϕ′(x) � 0,
and therefore ϕ(x) ↓ 0 as x ↑ ∞. If 0 < α � 1, (6.3) provides a contradiction with the fact that
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ϕ′(x) → 0 as x → ∞. If α > 1, integration of (6.3) between x and +∞ yields

−ϕ′(x) � n1 − A

2(α − 1)
x1−α. (6.4)

This is a contradiction with ϕ(x) → 0, if 1 < α � 2. Finally, if α > 2, by integration of (6.4),

ϕ(x) � n1 − A

2(α − 1)

∫ +∞

x
y1−α dy =

n1 − A

2(α − 1)(α − 2)
x2−α.

Thus,

ϕ(x) �=
x→∞

O
(
x−(α−2)−1).

Since the assumption xαf ∈ L∞(A+, +∞) implies xα−2f ∈ L∞(A+, +∞), we have proved that (Gα)
implies (Gα̃) if α > 2. The proof of (2.11) is completed by induction. Then, since ϕ′ ′ = Wϕ − f , we
deduce

ϕ′ ′(x) = O
(
x−α). (6.5)

We next prove that

ϕ′(x) =
{

O
(
x−(α−1)) if α > 1,

o(1) if 0 < α � 1.
(6.6)

By integration of (6.5), if α > 1, ϕ′(x) has a limit as x → +∞. This limit can only be 0, because
ϕ ∈ L2. (6.6) is then obtained by integration of (6.5) between x an +∞. If α � 1, (6.6) is a consequence
of the fact that ϕ(x) → 0 and ϕ′ ′(x) → 0 as x → +∞.

Let χ ∈ C ∞(R) be such that

χ(x) =
{

0 if x � 1,
1 if x � 2.

For m ∈ N, let ϕm, fm ∈ C ∞(R) be the functions defined by

ϕm(x) = χ(x)x−(α+γm+1)

and

fm(x) = −ϕ′ ′
m(x) + W (x)ϕm(x).

From now on, we assume that f and W have asymptotic series (2.12) as x → +∞, so that

fm(x) ≈
x→+∞

x−(α+γm)
+∞∑
k=0

vkx
−γk + (α + γm + 1)(α + γm + 2)x−(α+γ(m+3/γ))

≈
x→+∞

x−(α+γm)
+∞∑
k=0

ṽkx
−γk,
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where ṽk = vk if k �= 3/γ and ṽ3/γ = v3/γ + (α+γm+1)(α+γm+2). Notice also that the assumption
W (x) � C+x implies v0 � C+ > 0. As a result, there exists coefficients (c̃m)m∈N such that for every
M � 0,

f (x) =
M∑

m=0

c̃mfm(x) + gM (x),

where gM (x) = O(x−α−γ(M+1)) as x → +∞. Then,

ϕ(x) =
(

−∂2
x + W

)−1
f (x) =

M∑
m=0

c̃mϕm(x) + ψM (x),

where ψM = (−∂2
x + W )−1gM . Thanks to (2.11), (6.6) and (6.5), for M large enough, ψM (x) =

O(x−α−γ(M+1)−1), ψ′
M (x) = O(x−α−γ(M+1)+1) and ψ′ ′

M (x) = O(x−α−γ(M+1)). Since this is true for
arbitrarily large values of M , then (2.13) and (2.14) follow.

7. Proof of Lemma 2.2

By Proposition 2.1, we know that ν0 is a strictly increasing function on R, with asymptotics at ± ∞
given by (2.9) and (2.10). Moreover, ν0 has a unique inflection point. From the behavior of ν0(y) as
y → ± ∞, we infer that W0(y) = 3ν0(y)2 − y → +∞ as y → ± ∞. We are going to prove that the
global minimum of W0 is actually strictly positive. We argue by contradiction. If it is not the case, we
can define

y1 = inf
{
y > 0, ν0(y) =

√
y/3

}
,

where we recall that W0(y) > 0 if y � 0. By continuity, ν0(y1) =
√

y1/3. We also denote the unique
inflection point of ν0 by y0. Since ν0 > 0 solves (2.5), y0 > 0 is the unique solution of the equation
ν0(y0) =

√
y0, and ν ′ ′

0 (y) > 0 if y < y0, whereas ν ′ ′
0 (y) < 0 if y > y0. Notice that since ν0(0) > 0 and

ν0(y1) =
√

y1/3 <
√

y1, we have necessarily 0 < y0 < y1. Moreover, since ν0 is strictly increasing, we
have

√
y0 = ν0(y0) < ν0(y1) =

√
y1/3, and therefore 0 < 3y0 < y1.

Step 1 (Upper bound on y1). For y > 0, we introduce the function z(y) = ν0(y)/
√

y and rewrite (2.5)
in terms of z(y) as

z′ ′(y) +
1
y
z′(y) =

yz(y)
4

(
z(y)2 − 1 +

1
y3

)
.

Since z(y) → +∞ as y → 0+ and z(y) → 1 as y → +∞ with z(y) < 1 for y large enough (because
for y > y0, ν ′ ′

0 (y) < 0 and therefore ν0(y) <
√

y), we deduce that z(y) admits a global minimum at
y = ym > 0, where

0 � z′ ′(ym) =
ymz(ym)

4

(
z(ym)2 − 1 +

1
y3

m

)
.
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The assumption of non-positivity of W0 implies that z(ym) � 1/
√

3. Thus,

1
y3

m

� 1 − z(ym)2 � 2
3
.

As a result, since ν0(ym) �
√

ym/3,

3y0 < y1 � ym �
(

3
2

)1/3

. (7.1)

Step 2 (Upper bound on ν ′
0(y0)). Since ν0 is increasing on R and ν0(y)2 − y > 0 if y < y0, we deduce,

for every y < y0,

ν ′
0(y0) − ν ′

0(y) =
∫ y0

y

ν0(t)
4

(
ν0(t)2 − t

)
dt

�
∫ y0

y

ν0(y0)
4

(
ν0(y0)2 − t

)
dt =

√
y0

8
(y0 − y)2. (7.2)

By integration, it follows that for y < y0,

ν0(y) =
√

y0 −
∫ y0

y
ν ′

0(t) dt

� √
y0 − ν ′

0(y0)(y0 − y) +
√

y0

24
(y0 − y)3. (7.3)

The right-hand side reaches its minimum (for y < y0) at y = yp, where yp < y0 is defined by (y0 −yp)2 =
8ν ′

0(y0)/
√

y0, and (7.3) at y = yp yields

ν0(yp) � √
y0 − 4

√
2

3
ν ′

0(y0)3/2

y
1/4
0

.

Since ν0 > 0, the right-hand side has to be strictly positive. Therefore

ν ′
0(y0) �

(
9
32

)1/3 √
y0. (7.4)

Step 3 (Upper bound on ν ′
0(y1)). On the one side, notice that for y > y0, ν ′ ′

0 (y) < 0, and therefore
ν ′

0(y1) � ν ′
0(y0). On the other side, if y < y1, ν0(y)2 > y/3, and ν0(y1)2 = y1/3, thus

ν ′
0(y1) � d

dy

√
y

3

∣∣∣∣
y=y1

=
1

2
√

3y1
.

As a result, thanks to (7.4) and (7.1)

ν ′
0(y1) � min

((
9

32

)1/3 √
y1√
3

,
1

2
√

3y1

)
. (7.5)
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Step 4 (Upper bound on ν ′
0(y) for y > y1). For δ ∈ (0, 2/3) to be fixed later, we define

y2(δ) = sup
{
y > y1, ∀t ∈ (y1, y), ν0(t)2 � (1 − δ)t

}
(notice that ν0(y1)2 = y1/3 < (1 − δ)y1). Then, for every y ∈ (y1, y2(δ)),

ν ′
0(y) = ν ′

0(y1) +
∫ y

y1

ν0(t)
4

(
ν0(t)2 − t

)
dt

� ν ′
0(y1) +

∫ y

y1

ν0(y1)
4

(−δt) dt

� ν ′
0(y1) − ν0(y1)

8
δ
(
y2 − y2

1

)
. (7.6)

Step 5 (Bound from below on y2(δ)). For δ ∈ (0, 2/3), we introduce the function hδ defined for y > y1

by

hδ(y) := ν ′
0(y1) − ν0(y1)

8
δ
(
y2 − y2

1

)
−

√
1 − δ

2
√

y
.

From (7.5) and since δ < 2/3, we infer hδ(y1) < 0. Thus, if we define

y3(δ) := sup
{
y > y1, ∀t ∈ (y1, y), hδ(t) < 0

}
,

we deduce from (7.6) that for y ∈ (y1, min(y2(δ), y3(δ))),

ν0(y) −
√

1 − δ
√

y = nu0(y1) −
√

1 − δ
√

y1 +
∫ y

y1

hδ(t) dt < 0, (7.7)

which implies that

y3(δ) � y2(δ). (7.8)

Step 6 (y3 = +∞). We shall see next that for an appropriate choice of δ, y3(δ) = +∞, which implies
that y2(δ) = +∞ thanks to (7.8). This provides a contradiction with the assumption of non-positivity of
W0, since ν0(y) ∼ √

y as y → +∞. An elementary calculation shows that hδ reaches its maximum (for
y > y1) at

y = yM :=
(√

3
√

1 − δ
√

y1δ

)2/5

> y1,

where the inequality comes from (7.1) and from the fact that δ < 2/3. From (7.5), we obtain

hδ(yM ) � min
((

9
32

)1/3 √
y1√
3

,
1

2
√

3y1

)
+

δy
5/2
1

8
√

3
− 5y

1/10
1 δ1/5(1 − δ)2/5

8 · 31/10
. (7.9)

For δ = 1/3, elementary calculations show that the right-hand side in (7.9) is strictly negative for any
y1 ∈ (0, (3/2)1/3), which implies that y3(1/3) = +∞ and completes the proof of the lemma.



C. Gallo and D. Pelinovsky / On the Thomas–Fermi ground state in a harmonic potential 91

8. Proof of Lemma 2.5

We denote

Uε(z) = W0
(
ε−2/3 − ε2/3 |z|2), z ∈ R

d.

We are going to show that there exists a constant C > 0 such that for ε > 0 sufficiently small, for every
ball B ⊂ R

d,

max
z∈B

Uε(z) � C

|B|

∫
B

Uε(z) dz. (8.1)

According to [16], Theorem 0.3, Lemma 2.5 follows. First, we notice that, thanks to Lemma 2.2
and (2.15), there exist C1, C2 > 0 such that for every y ∈ R,

C1
(
1 + |y|

)
� W0(y) � C2

(
1 + |y|

)
. (8.2)

Given z0 ∈ R
d and r > 0, as z describes B(z0, r), |z| describes the interval [|z0 | − r, |z0 | + r] if |z0 | � r

and the interval [0, |z0 | + r] if |z0 | � r. Since the function

f (s) =
∣∣ε−2/3 − ε2/3s2∣∣, s ∈ R+

is decreasing on [0, ε−2/3] and increasing on [ε−2/3, +∞), we infer that max{f (|z|), z ∈ B(z0, r)} can
only take the three different values depending on z0 and r: either

max
z∈B(z0,r)

f
(

|z|
)

= ε2/3(|z0 | + r
)2 − ε−2/3 and |z0 | + r � ε−2/3 (case 1),

or

max
z∈B(z0,r)

f
(

|z|
)

= ε−2/3 − ε2/3(|z0 | − r
)2

and 0 � |z0 | − r � ε−2/3 (case 2),

or

max
z∈B(z0,r)

f
(

|z|
)

= ε−2/3 and |z0 | − r � 0 (case 3).

We are next going to prove (8.1) in each of these 3 cases.

Case 1. We first show that for every z0, r like in case 1, we have

|z0 | +
r√
2

� ε−2/3. (8.3)

Under the extra assumption

ε2/3(|z0 | + r
)2 − ε−2/3 � ε−2/3, (8.4)
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(8.3) clearly holds. On the other side, if (8.4) is not true, then |z0 | − r > 0 since otherwise, 0 ∈
[|z0 | − r, |z0 | + r] and max{f (|z|), z ∈ B(z0, r)} � f (0) = ε−2/3, contradicting the assumption that we
are in case 1. Then, we also have

ε2/3(|z0 | + r
)2 − ε−2/3 = f

(
|z0 | + r

)
� f

(
|z0 | − r

)
� ε−2/3 − ε2/3(|z0 | − r

)2
,

which can be rewritten as

|z0 |2 + r2 � ε−4/3.

Since r < |z0 |, we deduce

ε−4/3 � |z0 |2 + r2 � |z0 |2 +
r2

2
+

√
2r|z0 | =

(
|z0 | +

r√
2

)2

,

which means that (8.3) also holds if (8.4) is not true. Let α =
√

3/2 � 1/2 +
√

2/4. Then,

(
ε2/3(|z0 | + αr

)2 − ε−2/3) − 1
2

(
ε2/3(|z0 | + r

)2 − ε−2/3) − 1
2

(
ε2/3

(
|z0 | +

r√
2

)2

− ε−2/3
)

= 2ε2/3 |z0 |r
(

α − 1
2

− 1

2
√

2

)
+ ε2/3r2(α2 − 1/2 − 1/4

)
. (8.5)

We deduce from (8.3) and (8.5) that for every z ∈ B(z0, r) such that |z| > |z0 | + αr,

f
(

|z|
)
= ε2/3 |z|2 − ε−2/3 � ε2/3(|z0 | + αr

)2 − ε−2/3

� 1
2

(
ε2/3(|z0 | + r

)2 − ε−2/3) =
1
2

max
z∈B(z0,r)

f
(

|z|
)
. (8.6)

Then, we conclude thanks to (8.2) and (8.6) that

1
|B(z0, r)|

∫
B(z0,r)

Uε(z) dz � C1

|Bd|rd

∫
B(z0,r)

(
1 + f

(
|z|
))

dz

� C1

|Bd|rd

∫
B(z0,r)\B

(
0,|z0 |+αr

)(1 + f
(

|z|
))

dz

� C1

|Bd|rd

∫
{z∈B(z0,r): z· z0

|z0 | �|z0 |+αr}

(
1 + f

(
|z|
))

dz

� C1vα

2|Bd| max
z∈B(z0,r)

(
1 + f

(
|z|
))

� C1vα

2|Bd|C2
max

z∈B(z0,r)
Uε(z), (8.7)

where vα denotes the volume of {z ∈ B(0, 1): z1 � α}.
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Case 2. The assumption that we are in case 2 implies

ε−2/3 − ε2/3(|z0 | − r
)2 = f

(
|z0 | − r

)
� f

(
|z0 | + r

)
� ε2/3(|z0 | + r

)2 − ε−2/3

and thus

|z0 |2 � |z0 |2 + r2 � ε−4/3.

It follows that

(
ε−2/3 − ε2/3(|z0 | − r/2

)2) − 1
2

(
ε−2/3 − ε2/3(|z0 | − r

)2)=
1
2

(
ε−2/3 − ε2/3 |z0 |2)+

ε2/3r2

4
� 0.

We deduce that for every z ∈ B(z0, r) such that |z| � |z0 | − r/2,

f
(

|z|
)

� 1
2
f
(

|z0 | − r
)
. (8.8)

Then, we show that this last estimates holds as soon as z ∈ B(z0, r) and z · z0/|z0 | � |z0 | − 7r/8. Indeed,
under this assumption, Pythagoras’ theorem ensures that

|z|2 =
(

z · z0

|z0 |

)2

+ |z − z0 |2 −
(

(z − z0) · z0

|z0 |

)2

�
(

|z0 | − 7r

8

)2

+ r2 −
(

7r

8

)2

=
(

|z0 | − r

2

)2

− 3r

4

(
|z0 | − r

)
�
(

|z0 | − r

2

)2

.

Then, we conclude similarly as in case 1, thanks to (8.2) and (8.8)

1
|B(z0, r)|

∫
B(z0,r)

Uε(z) dz � C1

|Bd|rd

∫
B(z0,r)

(
1 + f

(
|z|
))

dz

� C1

|Bd|rd

∫
{z∈B(z0,r): z· z0

|z0 | �|z0 | −7r/8}

(
1 + f

(
|z|
))

dz

�
C1v7/8

2|Bd| max
z∈B(z0,r)

(
1 + f

(
|z|
))

�
C1v7/8

2|Bd|C2
max

z∈B(z0,r)
Uε(z). (8.9)

Case 3. First, we notice that the assumption that we are in case 3 yields

ε−2/3 � f
(

|z0 | + r
)

� ε2/3(|z0 | + r
)2 − ε−2/3,
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which gives

|z0 | + r <
√

2ε−2/3. (8.10)

Thus, since |z0 | � r, we get

|z0 | � 1√
2
ε−2/3. (8.11)

If the extra assumption

r � 5|z0 |/4 (8.12)

holds, then (8.11) and the triangular inequality give B(0, r/5) ⊂ B(z0, r). Moreover, if z ∈ B(0, r/5),
then we get from (8.10)

ε−2/3 − ε2/3 |z|2 � 23ε−2/3/25. (8.13)

Then, we conclude similarly as in cases 1 and 2:

1
|B(z0, r)|

∫
B(z0,r)

Uε(z) dz � C1

|Bd|rd

∫
B(0,r/5)

(
1 + 23ε−2/3/25

)
dz

� 23C1

25 · 3dC2
max

z∈B(z0,r)
Uε(z). (8.14)

As for the last case when (8.12) is not true, we have then

{
z ∈ B(z0, r): z · z0

|z0 | � 7r

40

}
⊂ B(z0, r) ∩ B

(
0, |z0 |

)
.

Indeed, using also |z0 | � r � 5|z0 |
4 , we have then

|z|2 =
(

z · z0

|z0 |

)2

+ |z − z0 |2 −
(

|z0 | − z · z0

|z0 |

)2

= |z − z0 |2 − |z0 |2 + 2|z0 |z · z0

|z0 |

� r2 − |z0 |2 +
7r|z0 |

20
� |z0 |2. (8.15)

On the other side, for z ∈ B(0, |z0 |), thanks to (8.11), we have

f
(

|z|
)

= ε−2/3 − ε2/3 |z|2 � ε−2/3/2.
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Then, we conclude similarly as in the previous cases:

1
|B(z0, r)|

∫
B(z0,r)

Uε(z) dz � C1

|Bd|rd

∫
B(z0,r)

(
1 + f

(
|z|
))

dz

� C1

|Bd|rd

∫
{z∈B(z0,r),z· z0

|z0 | �7r/40}

(
1 + f

(
|z|
))

dz

�
C1v33/40

2|Bd|C2
max

z∈B(z0,r)
Uε(z). (8.16)

From (8.7), (8.9), (8.14) and (8.16), we infer that (8.1) holds, with

C = min
(

C1vα

2|Bd|C2
,

C1v7/8

2|Bd|C2
,

23C1

25 · 3dC2
,
C1v33/40

2|Bd|C2

)
,

which completes the proof of the lemma.
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