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Abstract. We study non-linear ground states of the Gross—Pitaevskii equation in the space of one, two and three dimensions
with a radially symmetric harmonic potential. The Thomas—Fermi approximation of ground states on various spatial scales was
recently justified using variational methods. We justify here the Thomas—Fermi approximation on an uniform spatial scale using
the Painlevé-1I equation. In the space of one dimension, these results allow us to characterize the distribution of eigenvalues in
the point spectrum of the Schrodinger operator associated with the non-linear ground state.
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1. Introduction

Recent experiments with Bose—Einstein condensates [15] have stimulated new interest in the Gross—
Pitaevskii equation with a harmonic potential. We take this equation in the form

ieus + 2Au+ (1 — |z)))u— [uPu=0, zcRLtecRy, (1.1)

where the space dimension d is one, two or three, u(z, t) € C is the wave function of the repulsive Bose
gas in the mean-field approximation and ¢ is a small parameter that corresponds to the Thomas—Fermi
approximation of a nearly compact atomic cloud [7,18].

A ground state of the Bose—Einstein condensate is a positive, time-independent solution u(z,t) =
ne(x) of the Gross—Pitaevskii equation (1.1). More precisely, 7. : R? — R satisfies the stationary Gross—
Pitaevskii equation

e2An.(z) + (1- \x!z)ns(ac) —nXx)=0, z¢ R, (1.2)

ne(x) > 0 for all z € R?, and 7, has a finite energy E.(n.), where E. is given by

E.(uw)= / (52|Vu|2 + (|z]* = Du? + lu4) da.
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For d = 2, existence and uniqueness of a radially symmetric ground state 7). for a fixed, sufficiently
small € > 0 is proven in [13], Theorem 2.1, similarly to earlier works of Brezis and Oswald [4] and
Aftalion, Alama and Bronsard [1] in bounded domains. It is also shown in [13] that 7.(x) converges to
no(z) as € — O for all z € R?, where 7 is the Thomas—Fermi’s compactly supported function

/2
_) (1= \:1:|2)1 for x| < 1, 13
() {0 for |z| > 1. (1.3)

To be precise, [13], Proposition 2.1, states that for d = 2, € > 0 sufficiently small,

0 < n(x) < Cel/3 exp<14_€2’/:2‘2) for [z| > 1, (1.4)

0< (1— 2" = ne@) < €21 — [2)'* for|z| < 1—¢&'/3 (1.5)
and

me = mollcrerey < Cre?s (1.6)

where K is any compact subset of {# € R? |z| < 1} and C and C are e-independent positive
constants. The method used by Ignat and Millot in the case d = 2 to prove the existence of a radially
symmetric ground state 7). can be extended to the cases d = 1, 3. The uniqueness of the positive, radially
symmetric ground state does not follow from [13] for d = 3, but we can establish it by a different
method, according to the following proposition. This proposition is proved in Section 5.

Proposition 1.1. The stationary Gross—Pitaevskii equation (1.2) has at most one positive radial solution
in Lz(Rd),for anyd > 1.

Our main goal in this paper is to prove a uniform asymptotic approximation of the ground state 7. on
R<, in the limit ¢ — 0, for d = 1,2, 3. At least two attempts have been made in physics literature [3,14]
to establish connection between the non-linear ground state 7). for d = 1 and solutions of the Painlevé-11
equation

W'y +yvy) -y =0, yeR. (1.7)
This equation arises as the formal limit as ¢ — 0 of the differential equation satisfied by v,:

4(1 = Py (y) — 262 dvl(y) + yre(y) — 2(y) = 0,y € (—o0,e %),
where v, is defined by

1 — |z
ne(x) = e Pua(y), y= 52/‘3| . (1.8)

The convergence of 7. to 1y as € — 0 suggests that we should consider the Hasting—McLeod solution
1 of the Painlevé-II equation [12], which is the unique solution of (1.7) such that

vy(y) ~ y1/2 asy — +oo and 1p(y) - 0 asy — —oo.



C. Gallo and D. Pelinovsky / On the Thomas—Fermi ground state in a harmonic potential 55

In both papers [3,14], the asymptotic solution 7). is constructed at three spatial scales
Lz <1-¢3 I |zle (1—-€314+*3) and I |z > 1473

Solutions of the Painlevé-II equation (1.7) are used at the intermediate scale II for matching conditions
and connection formulas between the WKB solutions at the inner scale I and the Airy function solutions
at the outer scale III. The same formal approach is also developed in [19] for approximations of excited
states of the stationary Gross—Pitaevskii equation in the case d = 1.

We address the problem of uniform asymptotic approximations of the ground state 7. of the stationary
Gross—Pitaevskii equation (1.2) using the Hasting—McLeod solution of the Painlevé-II equation (1.7).
Our main result (Theorem 1) in Section 2 establishes this approximation on a rigorous level. In the case
when d = 1, we also study eigenvalues of the Schrodinger operator

L[5 = 20>+ Vi(x), V() =3n(x) — 1 + 22,

that arises in the linearization of the stationary Gross—Pitaevskii equation (1.2) at the ground state 7.
We prove in Section 3 that the spectrum of LS in L?(R) consists of an infinite sequence of positive
eigenvalues { A7, },,>; such that for any fixed integer k£ > 1,

Ao s A5 ~ pke?® ase — 0, (1.9)
where p, is the kth eigenvalue of the Schrédinger operator
Mo = —49; + Wo(y),  Woly) = 315(y) — v.

We note that M, arises in the linearization of the Painlevé-II equation (1.7) at the Hasting—McLeod
solution 4. Therefore, the scaling transformation (1.8) leading to the Painlevé-II equation (1.7) becomes
useful for analysis of eigenvalues of the Schrodinger operator LS .

It is clear from the shape of 7. that the operator LS has a double-well potential V.(z) with two
symmetric minima converging to £1 as ¢ — 0, while the operator M has a single-well potential Wy(y).
These facts explain both the asymptotic correspondence between eigenvalues of LS and My and the
double degeneracy of each pair of eigenvalues in the asymptotic limit (1.9). Formal results of the semi-
classical theory for the operator L% are collected in Section 4.

While a different technique is exploited in our previous work [9], the result (1.9) provides the same
kind of asymptotic behavior for the smallest eigenvalue of LS as the one we obtained for the lowest
eigenvalue of the simplified operator

L5 = 22 + Vo(x), Volx) = 3nd(x) — 1 + 22

The spectral stability of the ground state in the Gross—Pitaevskii equation (1.1) is deducted from the
analysis of the symplectically coupled eigenvalue problem for Schrodinger operators L5 and L¢ , where

_ B 2,1
12 = 2R+ V@), Velw) = P@) — 1 +2° = &)
Ne ()
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Unfortunately, the asymptotic scaling (1.8) leading to the Painlevé-II equation (1.7) does not give a
correct scaling of the eigenvalues of L® nor the eigenvalues of the spectral stability problem because

the potential Va(z)is a single well with a nearly flat bottom on the interval [—1, 1], which is mapped
to [0,e2/3] by the change of variable y = (1 — %) / £2/3. Analysis of the eigenvalues of the spectral
stability problem and construction of excited states of the stationary Gross—Pitaevskii equation are two
open problems beyond the scope of this article.

Notations. If A and B are two quantities depending on a parameter ¢ belonging to a neighborhood £
of 0,

e A(e) < B(e) indicates that there exists a positive constant C' such that
A(e) < CB(e) foreverye € £.

o A(e)~._oB(e)if A(e)/B(e) — lase — 0.
e A(e) = O(B(¢)) as € — 0 if A(e)/B(e) remains bounded as ¢ — 0.

Let F'(x) be a function defined in a neighborhood of co. Given a € R, { i }men € R, and v > 0, the
notation

—

o0
F(x) e z® Z fma™ ™
m=0
means that for every M € N,
M
F(z) — z® Z fnz™ ™ = Oz MDY s — 00
m=0

and, moreover, that the asymptotic series can be differentiated term by term.
We use the following spaces:

o H*(R) =559 H*(R), where H*(R) is the standard Sobolev space.

o L2(R?) is the subspace of radially symmetric functions in L?(R?). Note that if f(| - |) € L2(R%),
then

£+ Dllrsy = 8] [~ 0

where [S?~!| is the surface of the unit sphere in R?. Similarly, |B“| is the volume of the unit ball
in RY.
2. Uniform asymptotic expansion of 7).

In what follows, d = 1,2 or 3 and € > 0 is sufficiently small such that, as it is proved in [13],
Theorem 2.1, there exists a positive classical solution 7. of

2 An:(x) + (1 — |z[*)ne(x) — ni(x) =0, 2R 2.1)
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Moreover, this ground state 7). is radially symmetric, so that we can define a function v, on J; :=
(—o0, e2/3] by

1/3 1—|35|2 d
Ne(x) =€/ Ve s ) r € RY (2.2)

Lety = (1 — |z|*)/*? be a new variable. Notice that i covers once .J. as || covers R . It is equivalent
for n. to solve (2.1) and for v, to solve the differential equation

4(1 = LBy y) — 2P dVl(y) + yrey) — 2@ =0, y € Je. (2.3)
Let N > 0 be an integer. We look for v, using the form
N
vey) = > ™ Pu(y) + 2N TVBRy L(y), y € .. (2.4)
n=0
Expansion (2.4) provides a solution of Eq. (2.3) if {v,, Jo<n<n and Ry . satisfy Eqs (2.5)—(2.7).
e 1 solves the Painlevé-II equation
i) +ymy) — vy =0, yER, 2.5)
e forl < n < N, v, solves

—4v, () + Wo)vn(y) = Fu(y), yE€R, (2.6)
where

Wo(y) = 3v5(y) — y
and

P =— Y. v @,y (y) — 2dv, () — dyvy_ (1),

ni,ny,n3<n
ny+ny+n3=n

e Ry . solves

—4(1 = Py Ry . + 267 dR)y . + WoRN - = Fn(y. Ry ).y € Je, (2.7)
where
2N—1
Fne(y, R) = —(4yvyr + 2dvyy) — Z g2n/3 Z VnyVnaVns
n=0 ni+ny+n3=n+N-+1

0<ny N3N

2N 2N+1
2n/3 2n/3 2
(e 3 )R- (33 #Pn)n
n=1 ny+ny=n n=N+1
0<n.na <N

_ SANED/3 3
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Notice that for 0 < n < N, v,(y) is defined for all y € R and does not depend on €, whereas Ry (y) is
a priori only defined for y € J.
Appropriate solutions of system (2.5)—(2.7) enable us to prove the following theorem.

Theorem 1. Let vy be the unique solution of the Painlevé-II equation (2.5) such that
vo(y) ~ y1/2 asy — +oo and vy —0 asy— —oo.

For n > 1, there exists a unique solution vy, of Eq. (2.6) in H*°(R). For every N > 0, there exists
ey > 0and Cn > 0 such that for every 0 < € < ey, there is a solution Ry . € C®(J;) of Eq. (2.7)
with

1—|af?

1R el < One™ 0 and o R (-

) e H2(RY),

such that the unique radially symmetric ground state of Eq. (2.1) in L*(R?) is given by

1/3 al 2n/3 1— |z 2N/3+1 1— |z d
ne(x) =&'P Y Py, a5 ) e Ryel 75 ) =R (2.8)
n=0

Remark 2.1. For d = 3, the remainder term in (2.8) may have the same order as the last term in the
sum, because of the growth of the upper bound on | Ry | zo(s.) ase | 0.

Remark 2.2. The uniqueness of the ground state is proved in [13] for d = 2 (without assuming the
radial symmetry of the ground state). The method of Ignat and Millot can be extended to the case d = 1,
but apparently not to d = 3. Proposition 1.1 states the uniqueness of a positive, radially symmetric
ground state in L>(R%) for d = 1,2, 3. This proposition is proved in Section 5.

The proof of Theorem 1 is described in the following three subsections. Notice first that it is sufficient
to prove the theorem for an arbitrarily large value of N. Indeed, for every integer Ny > 0, the result of
the theorem for N < Nj is a direct consequence of the result for N = Nj. Also, for convenience, we
shall assume in the sequel that N > 2.

2.1. Construction of v, for0 < n < N

We are looking for a solution v.(y) of Eq. (2.3) that satisfies the following limit as € — 0:

ey (2 (1 - o?)) — (1— x2)1/2 forz € [—1,1],
=0 10 for |z| > 1.

Therefore, we choose 1(y) to be the unique solution of the Painlevé-II equation (2.5) that satisfies the
asymptotic behavior vo(y) ~ y'/? as y — +oo and converges to zero as y — —oo. Existence and
uniqueness of this solution are proved by Hastings and McLeod [12]. Asymptotic behavior of 1y(y) as
y — =oo is described in more details in Theorem 11.7 of [8]. These results are combined together in
the following proposition.
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Proposition 2.1 ([8,12]). The Painlevé-II equation

4"y +yv(y) — @) =0, yeER,
admits a unique solution vy € C*°(R) such that

vo(y) ~ y1/2 asy — +oo and vy — 0 asy— —oo.

Moreover, vy is strictly increasing on R, v has exactly one zero on R, which is an inflection point of vy.
The behavior of vy as y — —o0 is descrzbed by

v(y) = f< 2y) e (L Oy )~ o, (2.9)

whereas as y — 400, it is described by

o0 bn
LONCINDS (2.10)

Foo — (zy)Sn/z ’

where by = 1,b; = 0 and forn > 0,
n+l 1 n+1n+2—1
bz = 4(9n — 1)b Z bmbntam =53 D bibmbnia-iom:

=1 m=1

Next, we construct v, € H*>°(R) for n > 1 by induction on n. For n > 0, we consider the following
property:

e v, € H™(R) solves (2.6) (with n replaced by k),
o0
Vk e {l,...,n} * vi(y) y—too y > Gy "% for some {gr.um tmen, (H,)

+ m=0
ey(y) =~ 0O,
y——00

where

g [5/2 ifd=1,
12 ifd=2,3.

(Hp) is empty and, therefore, true by convention. Fix n > 1 and assume that (H,,_) is true. We are going
to construct v, such that (H,) is satisfied. We will make use of the following two lemmas, which are
proved in Sections 6 and 7.

Lemma 2.1. Let W € CY(R) such that W' € L>(R.) and such that there exists Cy, Cy, Ay > 0 with

W(x) 2 Crx forx > Ay, W) >Cy forr €R and W'(x) >0 forz > A,.



60 C. Gallo and D. Pelinovsky / On the Thomas—Fermi ground state in a harmonic potential

Let f € L*(R) such that z® f € L™(A,, +o0) for some o > 0. Let
o= (=2 +W)'fe H®).
Then, as © — +00,
p(x) = O(x~ @), (2.11)

Moreover, if f and W admit asymptotic series

+00 +oo
f@), 5 o 2 eme™ W@ 5w ), vma ™" 2.12)
m=0 m=0

for some coefficients {cp}men, {Vm}men and v > 0 such that 3/ is an integer, then ¢ admits an
asymptotic series

“+00
~ —(a+1) —ym
plr) =~ w g_:o dpm (2.13)
for some coefficients {d,, } men. In particular, as x — +00,

¢ (x) = Oz~ @), ¢"(x) = Oz~ @), (2.14)

Lemma 2.2. Let Wy(y) := 31/3(3/) — 1y, where vy(y) is the solution of the Painlevé-1I equation (2.5) given
in Proposition 2.1. Then,

Whin := inf Woy(y) > 0.
yeR

From the asymptotic behaviors of 1y(y) as y — +oo, we infer that
Wo(y) ~2y asy — +oo and Wy(y) ~ —y asy — —oo. (2.15)
Let us consider the operator
My := —40; + Wo(y)
on L*(R) with the domain,
Dom(My) = {u € L*R): —4u" + Wyu € L*(R)}.

The Schrodinger operator M, arises in the linearization of the Painlevé-1I equation at v = 4. The
spectrum of M), is purely discrete and, thanks to Lemma 2.2, it consists of a sequence of strictly positive
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eigenvalues which goes to infinity. If n = 1, it follows from the choice of 1 and from properties (2.9)—
(2.10) that

—+oco
Fity) & (U =dy ™24y 30 30m 4 Dby 22 (1= 30m - 2)y " (2.16)

— 400 m—0

and

Fi(y) 2 0. (2.17)

——00
Thanks to Lemma 2.2, we can look for v solution of (2.6) with n = 1 in the form

(I — dP(y)

) = iy 2

+i)1(y)’ yGR,

where @ € C*°(R) is such that &(y) = 0if y < 1/2, &(y) = 1 if y > 1. Then, 7, has to solve

45 (y) + Woi(y) = Fi(y) := Fi(y) — (1 — dyy~"/*d(y)

@ ((1 — dyd(y)

4 A At
* dy? \ Wy(y)y'/2

>, y €R. (2.18)

From the asymptotic expansions (2.9)—(2.10) of vy, we infer that W), also admits asymptotic expansions
as y — too. Since vy € C*°(R), it follows from (2.15)—(2.18) that Fl € H*°(R). Then, property (H;)
follows from Lemma 2.1 applied on the one side to 7y := M, lﬁ’l with o = 7/2, so that y(y) =
O(y—/?) as y — o0, and on the other side to y — ,(—y) with « arbitrarily large. Furthermore, if
n > 2, we have

Fp=— Y U@,y (¥)

0<ni,ny,n3<n
ni+ny+n3=n

=3 Y @ @), (y) — 2duy,_ (y) — dyvi ().

0<ni,ny<n
ni+ny=n

Thanks to (H,,—;), all the terms in the right-hand side admit an asymptotic expansion at +oo. More
precisely,

+0o0
Foy) ~ P23 fomy 2

o0
Y=+ m=0
for some coefficients { fy, m, }men, Whereas

F.(y) =~ 0.
Yy

——00
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Since F,, € C*®°(R) and n > 2, we deduce that F,, € H*°(R), and we can define v,, = MO’IFn S
H>(R). By Lemma 2.1 with v = 3/2 and o = 2n — (3 — 1, we then have

+0o0
va@W) ~ YN gy
y——4o00 0 ’

for some coefficients {gn m }men, and

vn(y) =~ 0
Yy

——00

where we have applied Lemma 2.1 with v = 3/2 to the function v,(—y). Therefore, (H,,) is true, which
completes the construction by induction of the sequence of solutions {7, (y)},>1 of the inhomogeneous
equations (2.6).

2.2. Construction of Ry

In this subsection, we construct a solution Ry . to Eq. (2.7), such that given the v,,’s constructed in
Section 2.1, expansion (2.4) provides a solution of Eq. (2.3). The solution Ry . of Eq. (2.7) is obtained
by a fixed point argument. In order to explain the functional framework in which the fixed point theorem
will be applied, let us first introduce the functional spaces

d/4—1/2

L2 = {u € Lig(Jo): (1= y) " Pue 12010}

and
H' = {ue L% (1 -2y € LX) and (1 — 2Py) V2w Py e L2),

endowed with their respective squared norms

e—2/3

d/2—1
w2 = el = [ (=) gy

—0oQ
and
c—2/3

lulfy = [ 40 =P PP+ (1= 2 W] ay

We are looking for a solution Ry (/) of Eq. (2.7) on J. such that the function Ry (¢ ~2/3(1 — |z[?)) is
regular on RY. As a result, it is convenient for the sequel to introduce the map 7¢ : L2 + L?(R?) defined
for u € L? by

(T°u)(2) := u(5*2/3 — 52/3|z|2),
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which makes the link between functions defined on .J. and radial functions defined on R?, in terms of
the variable z = ¢~%/3z € R?. An easy calculation shows that T°¢ is a bijection from L? into L%(Rd),
and that for every u € L2,

e, |12 |Sd 1| 2
HT UHLZ(Rd) 2e2d— H2d—1)/3 ” ” (2.19)
Moreover, T induces a bijection from H! into
Q. = {u € L2(R%): /d[|Vu|2 + Wo(e™23 = 2312 [ul] dz < oo}
R
and for every u € H],
e, 112 e, 12 -2/3 2/3 € |Sd_1| 2
|T=ul, = /Rdnw ul> + Wole )Tl dz = S sl (2.20)
Let us rewrite Eq. (2.7) for the remainder term Ry .(y) in the operator form
MaRN,s(y) =Fne(y, Bye), y € Je, (2.21)
where M€ is the self-adjoint operator on L2 defined by
Me = —4(1 — 23" 9, (1 = 23?0, + Woy) = (T°) ' K=T7, 2.22)
Dom(M?®) = {u € L*: K°T.u € L*(RY)} '

and K¢ denotes the Schrodinger operator on L?(R%),
K& = —A+ Wy (e7¥3 — ¥32%).

The solution IR . of the non-linear equation (2.21) will be obtained from the fixed point theorem applied
to the map

~1
Py R (M7) Fne(, R),
which will be shown to be continuous from H! into itself. First, we shall prove the following lemma.

Lemma 2.3. The operator MF¢ is invertible, and for every f € L2,

1) ™ L < W11

Proof. Let us consider the continuous, bilinear, coercive form on (). defined by

a(u,v) = /d [VuVu + Wo(€72/3 — 52/3]2]2)1“)] dz.
R
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By the Cauchy—Schwarz inequality and Lemma 2.2, for every f € L2,

v»—>/ T¢ fodz
Rd

defines a continuous linear form on (). Thus, by the Lax—Milgram theorem [10], there exists a unique
1 € Q)¢ such that for every v € @,

a(,v) = /]Rd T¢ fvdz.

Moreover, 1 € (). is radial and satisfies
K¢ =T°f inD'(RY).

Thus, ¢ := (T¢)" 14y € H! N Dom(M?) satisfies
Mo = f.

From (2.20) and a calculation similar to (2.19), we also check that

—2/3

2£2d=1)/3 2£2d-1/3 € d/a—
el = “gar-at ) = gy [ T fvdz= [ (-2 foay

~1/2
<N llellelle < W1 Fllell
from which the upper bound on ¢ = (M¢)~! f in H] follows. O

Next, we prove that R — F -(-, R) continuously maps H into L2. We write

Fne(y,R) = Fno(y) + Gne(y, R),

where
" /
Fno = —(4yvf +2dvyy) — > Vny VnyVns (2.23)
ni+ny+n3=N-+1
0<ny,n2,n3 <N
and
2N—1 2N
2n/3 2n/3
D DD DR (326"/ > )R
n=1 ni+ny+n3=n+N+1 n=1 ni+ny=n
0<ny,n,n3 <N 0<ny,na <N
2N+1
2 4N 1)/3 p3
<3 Z IJn (N+1)>R (N+D/ R-. (224)
n=N+1
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We first show that Fiy € Lg. Indeed, from the properties of the v,,’s, we infer that

Fnoy) ~ O
Y 00

and Fy o also admits an asymptotic expansion as y — +00, with
Ayvi(y) + 2dvy(y) = O (y° ' 72N)
andifn; +n, +n3 =N + 1,
O(yflg/Z*ZN) ifd =1and n;,ny,n3 >0,

Vi, VnyVns (Y) = (’)(y‘l3/2_2N) ifd =1 and n, or n, or n3 = 0,
Oy~ '22Ny ifd>2

(notice that n; + ny +n3 = N + 1 with 0 < ny,ny, n3 < N implies that at most one of the numbers
ni, Ny, n3 is equal to 0). Since N > 2, we deduce that in any case,

Fnoy) =O0(y™?) asy— +oo, while Fyo®) ~ 0.

—

Therefore, for o > 0 sufficiently large and € < 1,

e—2/3

d/2—1
[ (1 -y Ffv,odyS/

—00

1 e=2/3
—2a _ d _
(1 +y) 2 dy+/l YO (1 — 23 gy,

In the case d = 1, the second integral in the right-hand side is estimated by

J

e -9 2/3,\—1/2 163 [ 27
— < -

65 /3 12, S16/3 11 1
< £16/3,/2 94 / dz < 1,
~¢€ &2/ ¢ odet 22 Jip(d—2)/2 Z

whereas for d > 2,

J

Therefore in both cases Fyyo € L2 and

e—2/3 -2/3

£
y (1 —62/3y)d/271dy5/ y P dy S 1.
1

[Fnolle ST (2.25)

Similarly, the term which does not depend on R in the right-hand side of (2.24) is O, (€?).LetR €
H 31 To estimate the linear term in R in the definition of G ., notice that if n; +n, = n > 1, then ny
or 1, is not equal to 0, thus vy, vy, (y) = Oy~ ") as y — +o0. In particular, Up,Vn, € L*°(R) and

v, Vs Rlle < [y v [l 2@ 1Rl < Vi, v | ooy Wi IRl a1 S IR - (2.26)
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In order to estimate the quadratic and cubic terms in the right-hand side of (2.24), the following lemma
will be useful.

Lemma 2.4. Let p = 1,2 or 3. There exists a e-independent constant C > 0 such that for every € > 0,
ifu € H! thenuP € L? and

[l < Cem®=DED uf,.
Proof. Let u € H!. We have checked in (2.20) that T°u € Q. C H'! (R%) and

1T g1 ey S 1 T5ull g, S ™5 full ;- (2.27)

Rd) ull,

By Sobolev embeddings, it follows that Tu € L?P(R%), and

H“pHg S 5((1_1)/3“TE (u) ||L2(Rd) = @D ’|T5“”§2P(Rd)
< 8(al—l)/3HTequlir’j[l(Rd) < 8,(p,1)(d,1)/3|’u|’%“ (2.28)

where we have also made use of (2.19) with u replaced by v”. O
Remark 2.3. The statement of Lemma 2.4 can be extended for all values of p for which H'(R%) is
continuously embedded into L*(R?), thatis 1 < p < coford = 1,1 < p < oo for d = 2 and
1<p<3ford=3.
Thanks to Lemma 2.4, for any integer k > 1,

B2, S lallzee IR < e @ 2RI, (2.29)
whereas for k = 0,

[0 B2l S Nvollzmrae™ PRI S e Rl (2.30)
On the other side,

IR, < e PRI, 2.31)
thanks to Lemma 2.4 again. By Lemma 2.3 as well as bounds (2.25), (2.26), (2.29)—(2.31),

[&ne(R) = Ry ol S € + PRl gy + €PN OB | RIG + e4NFO2OR R,

where

RY . := (M®) ™' Fyy.
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In particular, for € > O sufficiently small and for some e-independent constant C' > 0, @ . maps the
ball

B. := By (RY .. C*?)

into itself, where we have used the assumption N' > 2. Similarly, there exists an e-independent constant
C' > 0 such that for every Ry, R; in Be,

@5 (R) = BN (o) y < || Ry = Rl -

As a result, provided € is sufficiently small, @y . is a contraction on B,. The Fixed Point Theorem
ensures that @ . has a unique fixed point Ry . € B;. In particular,

IRy = Ry el S €77 (2.32)

We next prove that Ry . satisfies the regularity properties stated in Theorem 1. The fixed point Ry . €
H 81 of @ has been constructed in such a way that T°* Ry . € H I(R?) solves the equation

K°T°Ry. = T°(Fn.(-, Rn.)) € L*(RY). (2.33)
Thanks to Lemma 2.3 and (2.25), we obtain

IR el S 1Ewolle S 1. (2.34)
Thus, (2.32) yields

[BNelle S NBNellm S 1. (2.35)
As aresult, from (2.25), (2.26), (2.29)—(2.31), we infer

[FneC Ryl S 1. (2.36)
From (2.33), (2.36) and (2.19) we deduce

HKETERN,EHLZ(W) = HTE (FN,a(" RNse)) HLZ(Rd) S g @=Vh3, (2.37)
Next, we use the following lemma, which is proved in Section 8.
Lemma 2.5. (K¢)~! € L(LARY), H*(R%)) is uniformly bounded in €.

As a result, we infer from the Sobolev embedding of H2(R?) into L>°(R?) that T* Ry . € H?*(R?)
and

BN el = 1T Rivel poogga) S €@V (2.38)

Moreover, a bootstrapping argument shows that 7Ry . € C®(RY). As aresult, R Ne € C®(Jy).
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2.3. v(y) > O0forally € J.
We have constructed above {1, },>0 and Ry in such a way that
|2

N
_ n l— |z . _
fo(z) =€/ E €2 /SI/n( 62% ) —|—E2N/3+1(T Ry.)(e 2/3.%')

n=0

1— 2
= 51/31/6(%), r € RY, (2.39)

is a classical, radially symmetric solution of Eq. (2.1). In order to claim that 7. is a ground state, it is

sufficient to check that 7j.(x) > 0, for every x € R?, which is equivalent to v-(y) > 0, for every y € J..
For every n > 1, ||vp|lLe®) < 1. Therefore, from (2.38), (2.39), since N > 2, we deduce the

~

existence of a constant C' > 0 such that for every y € J,,
ve(y) — nly) > —Ce%.
Since 1(y) increases from 0 to 00 as y goes from —oo to +00, we deduce that for ¢ < 1,
ve(y) = w(—1) — Ce¥3 >0, ye 1,672,
Coming back to the variable z, it follows that
fe@) >0, 2| < (143" (2.40)

It remains to prove that 7.(z) > 0 for all |z| > (1 4 £*/?)'/2. Assume by contradiction that 7, is not
strictly positive on R%. Then, let

re = inf{r > 0, f.(r) = 0} € (1 +¢*3)" 00),

where for convenience, since 7. is radial, we denote 7:(|x|) = 7:(z). By construction, 7j.(r-) = 0 and
fL(re) < 0. If 77L(r;) = 0, then 7). = 0, because 7)-(r) satisfies the differential equation

1 d/ g4d_ L, L0~
_rdi—l dT’(r dr”k—:)(r)‘{'é_z(r — 1+ 7n(r) )775(7“)20-

This is a contradiction with (2.40). Thus, 77.(rz) < 0. Let
Fe :=sup{r > re,7:(r') < O0forr’ € (r.,7)} € (re, +ox].

Then, for every r € (r., 7),

d<7“d_1 iﬁ )(7") = e (r* = 1+ 7(r)*)ie(r) < 0
dr dr e? c O
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and we deduce by integration that for every r € (r¢, 7¢),

r il < L) < 0

and
.
Ne(r) < rﬁ’lﬁ;(re)/ s'=ds. (2.41)
Te

The right-hand side in (2.41) is a negative, decreasing function of r, which implies 7. = +o00, as well as
a contradiction with the fact that 7).(rr) — 0 as r — +oc. Therefore 7.(r) > O for all r € R ..

3. Spectrum of the Schrodinger operator L% in the case d = 1

Consider the Schrédinger operator
L[5 =22+ Vi(x), Vilx)=3n*(x)— 1+ 2?

associated with the stationary Gross—Pitaevskii equation (1.2) linearized at the ground state 7).. It is a
self-adjoint operator on L?(R). Since the potential V.(x) is confining in the sense of V.(x) — +oo as
|z| — oo, L5 has compact resolvent and a purely discrete spectrum. By Sturm-Liouville theory, the
eigenvalues of L, denoted {7, },>1 (sorted in increasing order) are simple. Moreover, thanks to the
even symmetry of V; on R, the eigenfunctions of L% corresponding to \;, are even (resp. odd) in x if
n is odd (resp. even). If A is an eigenvalue of LS and ¢ € L2(R) is a corresponding eigenfunction, we
define a function v € L2 by

_ 2

T
SD(QL’):”U(&M), $ER+

Let us denote W.(y) = 3v2(y) — y. Then, » € L*(R) is an even eigenfunction of L% corresponding to
the eigenvalue ) if and only if v € L2 satisfies the differential equation

(—4(1 =) 2 0,(1 — &Py) 0, + W) o(y) = e oy, y € L, (3.1)
and the Neumann boundary condition

©'(0) = 223 ((1 — &2/3y) 2/ ()| —0. (NC)

y=e—2/3

Similarly, ¢ € L*(R) is an odd eigenfunction of L% corresponding to the eigenvalue X if and only if
v E Lg satisfies (3.1) and the Dirichlet boundary condition

0(0) = v(e¥3) = 0. (DC)
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As aresult, the eigenvalues of LS are directly related to the eigenvalues of the two self-adjoint operators
on Lg, Me¢ and M€, where

ME ::v_4(1 _ 62/3y)1/2v0y(1 _ 52/32/) 1/2 8y 4 Ws(y)’
Dom(M*®) = {v € LZ: M®v € L? and v satisfies (NC)}

and M¢ is defined similarly by replacing (NC) by (DC) in the definition of the domain. Namely, if we
denote {fi;, }n>1 (resp. {fi;, }n>1) the eigenvalues of M* (resp. M*) sorted in increasing order, then for
everyn > 1,

~e _ _—2/3y\e ~c _ _—2/3\¢
Hp =€ / 2n—1 and By =€ /)‘Zn

As ¢ — 0, the eigenvalue problems (3.1) for the operators M¢ and M¢ formally converge to the eigen-
value problem for the Schrodinger operator M, defined after Lemma 2.2,

(—48; + Wo))v(y) = pu(y), y € R, where p = e 23,

By the discussion below Lemma 2.2, the purely discrete spectrum of M in L?(R) consists of an increas-
ing sequence of positive eigenvalues { /i, },>1. We shall prove that the eigenvalues of L% converge to
the eigenvalues of M as € — 0, according to the following result.

Theorem 2. The spectrum of L% consists of an increasing sequence of positive eigenvalues {\;, },>1
such that for eachn > 1,

£

lim Ant _ lim Aon (3.2)
clo g2/3 elo g2/3 Hn: :

Proof. We prove only the convergence of fi;, = A5,/ €23 to i, for every n > 1. The proof of the
convergence of i, = A5,/ €23 to puy, is identical.

Denote by (-,-) and || - || the scalar product and the norm in L*(R), and by (-, ). and || - || the scalar
product and the norm in Lg. If u,v € L*(R), v L v means that (u,v) = 0, whereas if u,v € Lg, ul.v
means that (u, v). = 0. We denote by

Q°(v,v)

RE(v) =
="

the Rayleigh quotient for the operator M€, where Q¢ denotes the corresponding bilinear form

W
Q°(u,v) = /J (4(1 — 2Py b+ (l_gzﬁi’;)mu(y)v(y)) dy,

defined for u,v € H g Similarly,

Q,v)

o]

R(w) =
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denotes the Rayleigh quotient for My, where () is the corresponding bilinear form

Qu.v) = /R (48,u 8,0 + Wopu(y)o(y) dy

defined for u,v € {u € H'(R): Wo"*u € LX(R)}.
Let @, (resp. u,) denote an eigenfunction of M*¢ (resp. M) corresponding to the eigenvalue /i, (resp.

{n), normalized by || |- = 1 (resp. ||un|| = 1). The eigenvalues of M, are given by the Max—Min
principle:
Hn = venﬁ Moy R(v), (3.3)

whereas the eigenvalues of M ¢ are similarly given by

i = inf_  R(v). (3.4)
vEDom(M¢)

7€ 7€
vJ_Sul RN VA

Letus fix 0 € (0,2/3). Let ® € C*°(R) be an non-decreasing function such that ® =0onR_ and & = 1
on [1, 4+00). For € > 0 sufficiently small, we also define x. € C:°(R) by

—2/3 —2/3 _
Xg(m):@< 2r + € )@(5 2z >

g72/3 —2e—9 g72/3 —2e—9

such that . is even, x. = 1 on [— 7%, %] and Supp(x.) C [—#, #]. We shall prove recursively
the following properties:

(Dn fi5, = pin + (’)(82/3’5),

(ii),, forevery k > n + 1, <Xsuk,ﬂ%>5 - (’)(51/3—5/2)’

(iii),, for every k > n, (xcUf, Un—1) = @(61/375/2)’ G
1v)n lgﬂg ngﬂfl — cUnH = 0(61/3_6/2),

Z
>

(V)n églg ||Xgun_1 — Cai_ng = 0(51/375/2)’

where for n = 1, (iii); and (v); have to be understood as empty properties. Let us fix n > 1 and assume
that (Gy,) is true for every k € {1,...,n — 1} (for n = 1, this condition is empty, therefore true by
convention). The proof of (G,,) is then divided in five steps.

Step 1 (Upper bound on /i7,). First, we shall prove that

n—1
RE(v5) = pn + O(¥?70),  where v = Xeun — Y (Xeln, U5,) 5. (3.5)
k=1

Then, thanks to (3.4), since v € Span(@s, . .., @5,_,)™= C L? by construction, (3.5) yields

i, < pn + O(379). (3.6)
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From (i) and (ii)g, which are satisfied for £ < n — 1 thanks to the recursion assumption, we have

) _ Q°(XelUn» Xeln) — Z;ll ﬂi<X€un’ ﬂi>§ _ Q°(XeUn, Xeln) + 0(52/3_5)

R®(v8 = = (3.7
) P ctall — S et )2 Ixcunl? + OE
Next,
e 232 )
HXeuanz/ %dy
—e—2/3/2 (1 — e23y)V/
e=d 2,2
= (1 + O35 / 24 / X gy, 3.8
(1+0(°79) L R e T TR (3.8)
The last term in the right-hand side of (3.8) is estimated as follows
X2us, NG 2 ) 2/3
— 2 dy < V2 us dy < exp(—2e77) < g7/, 3.9
/s—6<|y<52/3/2 (1 —c2Pyy2 ™Y pzes 0 Pl )= 39
where we have used the following lemma.
Lemma 3.1. For every m > 1, there exists a constant C,, > 0 such that for every y € R,
[um(y)| < Crnexp(—|y|) (3.10)
and
[tn, ()| < Cr(Jy] + 1) exp(—|y])- (3.11)

Proof. Since Wy(y) — 400 as y — oo, we can fix b, > 0 such that inf{Wy(y): |y| = b,} > 4 + up.
Then,

(—402 + Woy) — pn)e ¥ = (Woy) — pin —4)e ¥ > 0, |y| > by
Since u,, solves the eigenvalue problem

(—40; + Woy) — pn)un =0, y€R,
thanks to [2], Corollary 2.8, there exists C' > 0 such that

lun@)] < Ce™ W, |y > b, + 1.

Bound (3.10) follows, since u,, € Dom(M,) C H'(R) C L*(R). Then, from the differential equation
Myu,, = pnuy, and thanks to the asymptotic behavior of W, we infer

1
@] = 3 limun@) = Woyun@)| < (v + De ™.y eR. (3.12)
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By integration of (3.12) between —oo and y, we deduce, for y < 0,

/ L

The same kind of estimate is obtained for ¥y > 0 by integration of (3.12) between y and +o0, which
provides (3.11) and completes the proof of Lemma 3.1. O

Using Lemma 3.1 again, as well as the normalization of u,,, we infer that

-5

/ updy=1+0(7). (3.13)

g
From (3.8), (3.9) and (3.13), we deduce that

Ixctn|? = 1+ O(2/379). (3.14)
On the other side,

€ _ 2/3 \1/2 2 W8|X5un’2
Q (Xeun’Xaun)—/J [4(1 —&y) 7|0y (xzun)| +W dy

€

=4 : (1- 82/3y)1/2x’52u% dy + 8/ (1- 52/3y)l/2x’5x8u;un dy

e—9o

4 (- £23y) /ulzdy+4/ (1 — e23y)" > *u dy
~S<lyl<e=2/3/2

—3/2

Welxetn|?
dy ——dy. 3.15
+/ -s/2 (1 — 52/3 )1/2 * /55/2<|y|<62/3/2 (11— 52/3y)]/2 Y ( )

The first two integrals in the right-hand side of (3.15) are (9(52/ 3), because u,, € H'(R),

Xl Loy S €3

and

max{ (1 — 62/3y)1/2: y € Supp x:} < \/3/2.

The fourth and last integrals in the right-hand side of (3.15) are also (’)(52/ 3), thanks to Lemma 3.1. From
Lemma 3.1, we also infer that

-4 -4

/8 (1— ey )1/2 Py = (140 2/3—6))/5

_e—$ e

+o0
u? dy :/ u?dy + O (379, (3.16)



74 C. Gallo and D. Pelinovsky / On the Thomas—Fermi ground state in a harmonic potential

From Theorem 1 and from the decay properties of the function v,, for n > 1 provided in (H,), we
deduce that v. = vy + £*/3r., where 7. = Opcom)(1) and vor. = Opso)(1) as e — 0. As a result,
W, - W, = 3(’/52 — Vg) € L*°(R), and

[We = Wl ooy S €%, (3.17)

Then, since Wy(y) = O(y) as y — £,

We

2/3—6
H—(l —2 iz o S e, (3.18)

~

Loc(,s—é/Z’e—é/Z)

As a result, using once more Lemma 3.1,

—46/2 2
c W un Foeo —
Jon gty = [ Worldy+ O, (3.19)

Finally, we get from (3.7), (3.14)—(3.16), (3.19) and the estimates on the other term in the right-hand
side of (3.15):

R*(v5) = R(up) + O(¥*7%) = pp + O(2379), (3.20)
which completes the proof of (3.5) and of its corollary (3.6).

Step 2 (Asymptotic behavior of the eigenfunction 5,). Property (i), will be obtained as a consequence
of (3.6) and of the converse inequality

pn < Ji5, + O(777°).

The proof of the latter inequality is delivered in Step 3. The proof uses the following properties of the
eigenfunction 5, corresponding to the nth eigenvalue fif, of M-.

Lemma 3.2. There exists a constant Cy, > 0 such that for every y € J. and € > 0 sufficiently small,

@5 ()| < Cre™ Y, (3.21)
whereas
Collyl + 1) ify <0,
() ()] < Co(Jy| +1)e 1+ eXp(—gm) fO0<y< 822/3’ (3.22)
Cuexp(—=/* /4 P <y

(1— 52/3y)1/2
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Proof. In order to prove (3.21), we come back to the eigenfunction
(1 =27
Pan() = Ty, <52T)
of L% corresponding to the eigenvalue \5, = ji5,e%/>. Since

a5 |13y = @F (5, 5) = s |1 |2 = 7,

it follows from (3.6) and Lemma 2.4 that for ¢ sufficiently small,

1950l ooy = 1Tl oo,y < /5 < C\/Mn +0(e237%) < cn, (3.23)
where ¢, > 0 is an e-independent constant. Since Wy(y) 2 |y| as y — +oo, we can fix a,, large enough

such that inf{Wy(y) : |y| > an} > 4 + pn. Then, using (3.17) and (3.6), we obtain, for 22 < 1 — a, />
and for € small enough,

1 — 2
(=&’ 0 +2” = 14302 — i) eXp<——x>

£2/3
1 — 22 1 —a?
_2/3 2/3 2 ~e
—E/ (—25/ — 4z +WE<W) —,U,n> exp(— 52/3 )
. _ 1 — z2
> &3 (—4 +inf{Wo): y = an} — pin + O(7°7)) exp <_52T) > 0. (3-24)

On the other side, ¢5,, solves the differential equation

(=2 + 2> — 1+ 312 — 23 [iE) 5, = 0. (3.25)
Thus,

(202 + 2% — 1 +30% — 2P e, >0, o] < (1 — ape?)"?, (3.26)
where

1—=z

2
Y5 (x) = cp exp <an — W) + 5, (x).
Moreover, from (3.23), we get
£ (£(1 — ane??)'?) > 0.
As aresult, since for € small enough, we also have like in (3.24)
2 2 2/3~¢ 2/3 1—a? ~c
$—1+3775_5 Hp =€ Wk 627 — Hp

> 2B (inf{Wo(y): y = an} — pn + O(¥37%)) > 0, (3.27)
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the maximum principle ensures that
2/3\1/2
Yii(@) >0, |z < (1—ane??)",
which is equivalent to

€ 1—a° 2/3\1/2
‘902n(37)| < cpexpl an — W ) |l‘| < (1 — Qp€ ) .

In terms of 5, it means that
[@(y)| < cne®e™, a, <y <e (3.28)

On the other side, for |z| > (1 + a,£%?)'/? and for ¢ sufficiently small, we obtain like in (3.24)

- x> —1
(—e?0; + 27 — 1 +3n2 — )15 exp(—y)

i {155) o 220
e 9

1 —a? (1 =2/ W = 2P/
2/3( 2/3
e ( 4+W°( e2/3 ><4€ Woll — a2/ T W —x2>/52/3>>

2 —1
— Hn + 0(82/3)> CXP<—W>
> 0. (3.29)

2. . .. . .
Thus, exp(—iz—/;) is a positive, continuous supersolution of

(—2 2 + 2> — 14302 —3E)p =0

in{z: |z|] >0+ anez/ 3)1/ 2}. From a slightly modified version of [2], Corollary 2.8, we deduce that

2

_ 1), 2] > (1+ (an + D)2

“P;n($)| < 2¢, exp(] +a, — A

More precisely, the constant 2¢,e® 1 above has been chosen in such a way that the inequality holds
for || = (1 + (an, + 1)£2/3)!/2 and the result in [2] ensures that then the inequality holds for any x such
that || > (1 + (a, 4+ 1)€*?)'/2. In terms of 45, it means that

|75 (y)] < 2e,e™ Y,y < —(an + D). (3.30)

Then, (3.21) follows from (3.23), (3.28) and (3.30). We next prove (3.22). From (3.21) and the differen-
tial equation M¢uf, = i us,, we infer that for every y € Jo,

Cpe™ V! Wo(y)
0, (1 — 2P ? 0,08 ) ()| <« —2 ( n ( 0 ) O(230 ) 3.31
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where we have also used (3.6) and (3.17). The estimate (3.22) in the case y < 0 directly follows by
integration of (3.31) between —oc and y:

!/ ~ / v ~
@)@l < 10-9) @ wl=| [ 0,0 -2 0,50 ds

< (lyl + 1)e L, (3.32)
As for the case 0 < y < 2 integration of (3.31) between y and e gives
Y 3 g Yy 7 8
2/3, \1/2 1~/ 1 ~e\/ e2/? —lyl

(1= ) (@) @ = 5 (@) | =5 )| < (yl+ e, (3.33)
which provides thanks to the triangular inequality
e/ —|y| N g~2/3

(@) @] S (lyl+ e +| (@) ( 5 )] (3.34)

Using basic integration, we also have

c—2/3 c—2/3
~c __~€
“"( 2 ) “"( 4 >

=232 . ~e NI —2/3 ~e Nl —2/3 232
[ (@0 = 2 E Y an SIE D [T s

~2/3/4 \/5(1 _ 52/33)1/2 237 (1 — 52/33)‘/2
(3.35)
Since the last integral in the right-hand side of (3.35) is bounded from below by #, we deduce
from (3.35), (3.33) and (3.21) that
-2/3 —2/3
‘(ﬁ)'(a 5 )’ < exr>(—€ i ) (3.36)
Combining (3.36) and (3.34), we get (3.22) in the case when 0 < y < 5_22/3. Finally, we consider the
case when 3722/3 <y < e 2/3. Integration of (3.31) between 6722/3 and y yields

o 1 1, (e y (|s| + De !
‘(un) (y)| S (1 - 52/3y)1/2 (\/; (u") ( 2 >’ T /52/3/2 (1 —23s)1/2 ds

1 e—2/3 e—2/3 e 2/3 1
< - _ —2/3 _ -
S Ay (e"p< 4 ) e exp( 2 ) /5—2/3/2 (1—e2Ps)1/2 ds)

< exp(—e =23 /4)
~ (- 82/33/)1/2 ’

(3.37)
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where we have also used (3.36). This completes the proof of (3.22) and the proof of Lemma 3.2. O

Step 3 (Lower bound on i, and proof of (i),,). In order to show that (i),, holds, we next prove the
converse inequality

fin < 5+ O(2379), (3.38)

which will be deduced from (3.3) and

n—1

R(5) = ji5, + O(*7%),  where &, = x5, — > (XeT5, wk)up. (3.39)
k=1

In order to prove (3.39), we proceed similarly as for the proof of (3.5). First, since (iii); is assumed to
be satisfied for k < n — 1,

R(5) = Qe Xetln) — it pi{xet, ur)
" et 1 = 52 (et ux)?

_ QUeln Xe) — pno1 (Xl un1)? + OE0)

= - (3.40)
IxTS |1 = (XS, un—1)? + O(e2/379)
Then, thanks to Lemma 3.2 and the normalization of 5,
—2/3
a2 [f 7, e
Ienlf= [, el ay
g9 |aa ‘2
= 1 O 2/3_6 / 1 nl d / 2|~€ 2d
( + (6 )) e (1 —62/3y)]/2 y+ e o< ly|<e=2/3/2 X6|un’ Y
J. (1 _ 52/3y)1/2
=14 0(e¥*79). (3.41)

Similarly, using Lemma 3.2 and (3.18) and proceeding as in (3.15), we get

+oo
Qv xein) = [ (@10, (¢35 + Walxeiis ) dy

— 00
too 2|~ |2 oo / ~e\/ ~
=4 Xz || dy+8/ XeXe () g, dy
— 00 — 00
-5

€
Fa 0@ [ -y ) ay

—e—

+4 (5 P g
6*5<|y\<5_2/3/2)(5](un)’ y
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—5/2

3 B 5 ) )
+ Wolas |™d -+ / W aclFd
/—5_5/2 0’ n‘ y 5—5/2<|y|<€—2/3/2 0’X€ n‘ y

=410 [ 1= )35 oy

g

e=0/2 W |&6 |2
el®%n 2/3-6
+ /_/ s dy O

= Q% (a5, 05) + O(237%) = g + O(*/379). (3.42)
In order to deduce (3.39) from (3.40), it remains to estimate the scalar product (x-S, u,—;). Notice that

in the case when n = 1, this term does not exists, and there is then nothing to do. From (iv),,_;, there
exists ¢,—1 € R such that

Xy — oottt S '/37%2, (3.43)
Then, by triangular inequality, and thanks to (3.41) for n replaced by n — 1,
llen—il = 1] < [len—run—1 = Xt || + | xetti | = 1] S /22, (3.44)
whereas
Jen—11[(xetin, un—1))|
< (Xl CntUn—1 — Xelis,_y)| + ’<<x2 - W)unun_lﬂ + (s, @),
SR, (3.45)
where the first term in the right-hand side of (3.45) has been estimated thanks to the Cauchy—Schwarz

inequality, (3.43) and (3.41). The second term has been estimated thanks to Lemma 3.2 for @5, and for
us,_, and the last one is equal to 0. We deduce from (3.44) and (3.45) that

(Xt 1) = O(e'/379/2), (3.46)

Then, (3.39) and (3.38) follow from (3.40)—(3.42) and (3.46). Property (i), is a direct consequence of
(3.38) and (3.6).

Step 4 (Proof of (ii),, and (iv),,). From the definition of ¢, in (3.39), it is clear that
~g 1
Uy, € Span(uy, ..., Up—1)".

Thus, v5, can be decomposed as

05 = cu, +wy,, where ¢, € Rand w;, € Span(uy,. .. S Up) T (3.47)
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From (3.39) and (i),,, we have

PN _ o ()P + Qg wh) () i+ [[wp P
+0 52/3 0 _ e +0 82/3 5 — R(i£) = ~=n nw nl s Xn n
pn o+ O(770) = iy + 077 = R(3) = = 20 (@) + [[wg]?

It follows that

(1 — )|y ||* S 23705 | (3.48)
Thanks to the definition of 5, in (3.39), property (iii);, for £ < n — 1 as well as (3.46),
|05 — x5 || < e'/302. (3.49)

On the other side, (3.41) ensures that || x.45|| — 1 ase — 0. As aresult, |[05|| — 1 ase — 0, and (3.48)
implies

Jwg|| S e'/3707, (3.50)

Moreover, from Lemmas 3.1 and 3.2, we infer that for any & > 1,

=

€
(i) = [ xeazudy + [ Xeiis g dy
) £—§<|y‘<872/3/2
_ 2/3-48 XeUk Uy, 2/3
=(1+0(e ))/Jg —(1_52/3;)1/2 dy + O(e*7). (3.51)

From (3.50) and (3.51) we deduce in particular that for every k > n + 1,

O(e*) + (xeur, @) (1 + O 7)) = (xeli un) = (05 ur) = (wh up)
= O('3797), (3.52)
which proves (ii),,. Then, (iv), is a consequence of the triangular inequality, (3.49) and (3.50):
Ixes, — cunll < lxeds — 5| + s || < €702
Step 5 (Proof of (iii),, and (v),). Like in (3.47), we decompose v;,_, as
V5 =G, U5,y +w,_,, whereé, ; €Randw;,_, € Span(ij, .. .,ﬂi,l)Lg.

From (3.5) for n replaced by n — 1 and (i),,—;, we have

(G iy + Q°(W5,_y, 05, ,)
(G5 )2+ |lwg, |12

oy + O = ey + O(E¥P7%) = RE(v_)) =

(& 2hEy + |lwh 1205

(&2 + [Jwg,_y ||2
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Using (i), and (i),—1, it follows that

(n = s + OEPNN@5 2 = (85— ) 052 S 27 o2 (3.53)
Thanks to the definition of v5,_; given by (3.5) and property (ii); for £ < n — 2,

€

[ 051 — Xetn—1]|, S /3702 (3.54)

Thanks to (3.14) for n replaced by n — 1, || xcun—1|lc — 1 ase — 0, thus |[v5_,||c — lase — 0. Asa
result, we deduce from (3.53) that

5, ||, < e/ (3.55)
Then, for every k > n, we get

<X6ﬁi’un—l>(l + 0(52/376» = <X5un—l’ﬂi‘>5 = <v;71’a2>5 = <7I)18171’ﬂ2>5

= O (3792, (3.56)

using similar arguments as in the derivation of (3.52). Moreover,

(e, = (14 0 ) ()~ | Y

—OLyl<e=2/3 )2
Xsunflai
+ _Aen— 1Tk g
/a—6<|y<82/3/z (1 —2Pyy 12 ™Y
= (1 + O (Xt un_1) + O(e¥3), (3.57)

where the two integrals in the right-hand side of (3.57) have been estimated thanks to the Cauchy—
Schwarz inequality, Lemma 3.1 and the normalization condition ||%}|. = 1. The combination of
(3.56) and (3.57) completes the proof of (iii),,. Then, (v),, follows from the triangular inequality, (3.54)
and (3.55):

erun4 - 52—171781—1HE < ||X€un71 - Ui—lHE + Hwi‘;_llls N e300,

It completes the proof of (G,,), and therefore the proof of Theorem 2. O

4. Semi-classical limit for eigenvalues of L5

We list here formal results of the semi-classical theory that describe the distribution of eigenvalues
of L5 . We will show that the standard Bohr-Sommerfeld quantization rule does not give the correct
asymptotic behavior of the eigenvalues of L5 as ¢ — 0 because the potential V.(x) depends on ¢.
Nevertheless, the Bohr—Sommerfeld quantization rule gives the correct scaling O(¢%/?) in agreement
with the asymptotic limit (3.2) in Theorem 2.
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Eigenvalue problem for operator L can be rewritten in the form
(=02 + e V(@) u(x) = e du(x), = €R. (4.1)

By properties of 7. following from Theorem 1, the potential V;(x) has the properties:

o V.(z) € C®(R) for any small £ > 0,
e lim._o Vo(z) = Vy(x), where V) € C(R) is given by

2(1—2%), |z| <1

Vo(x) = ’ ’

o) {a:2—1, 1z > 1,

o V_(x) takes its absolute minimum at +a. for any smalle > 0O and a. — 1 ase — 0,
e V.(xr) — 400 as |z| — oo for any small € > 0.

If V.(x) is replaced by Vj(x), the eigenvalue problem (4.1) takes a simplified form
(=02 + e Vp(@)u(x) = e 2 du(r), z €R, (4.2)

which describes the eigenvalues of the operator i‘i mentioned in the Introduction. As it is well known
(see arecent review in [5]), the eigenvalues of the Schrodinger operator —8325 + &2V (), with a smooth,
e-independent double well potential V(x), are twice degenerate in the semi-classical limit ¢ — O.
Namely, the eigenvalues are grouped by pairs. In each pair, the two eigenvalues are exponentially close
one from another as ¢ — 0. The asymptotic distribution of these pairs of eigenvalues is determined by
the Bohr—Sommerfeld quantization rule.

Let us try to apply the Bohr—Sommerfeld quantization rule to the eigenvalue problems (4.1) and (4.2)
for the operators LS and L< , in spite of the fact that this rule was proved rigorously by Fedoryuk [6] only
for a class of e-independent, analytic potentials. Since neither (4.1) nor (4.2) satisfies assumptions of the
main theorem in [6], this application is purely formal. According to the standard Bohr—Sommerfeld
rule, the consequent eigenvalues A5, _; and A5, of the Schrodinger equation (4.1) with the double-well
potential V.(x) would be given asymptotically by

xS (V)

1
VA= Ve(z)de ~ €K<n — 5), ase — 0, for fixedn > 1, 4.3)

z= (N)

where 25 () are the roots of V.(z) = A on R, such that 0 < 2% (A) < 1 < x5 (\) < oo. Let us use the
scaling

1 — a2
y=—"p V@ =lWaw, A=V, (4.4)
where W.(y) = 312(y) — y and p is a new eigenvalue. The Bohr—Sommerfeld rule is rewritten in an
equivalent form by

/qu—mwd
Y

© (w) \/1 = 52/3:1/

y~mn2n—1), ase—0, forfixedn > 1,



C. Gallo and D. Pelinovsky / On the Thomas—Fermi ground state in a harmonic potential 83

where yZ (1) are the roots of W.(y) = p on R, such that —oo < y° (1) < 0 < y7 () < oo. Taking the
limit ¢ — O for a fixed n > 1, we obtain

Y+ (1)

uw—Woy)dy ~ n(2n — 1) forfixedn > 1, 4.5)

y—(p)

where Wy(y) = 313(y) — v and y+(u) are the roots of Wy(y) = p on R. The new expression is the
Bohr—Sommerfeld quantization rule for the Schrédinger operator M, = —485 + W)y and it is only valid
for large n > 1. Therefore, the Bohr—Sommerfeld quantization rule (4.3) does not recover the statement
of Theorem 2 correctly. Meantime, it still implies that the eigenvalues A5, _, and A5, for a fixed n > 1
are scaled as O(%/3) as ¢ — 0. The discrepancy of the Bohr—Sommerfeld rule is explained by the fact
that the smooth potential Vz(x) in the eigenvalue problem (4.1) depends on ¢.

Note that the limit ¢ — 0 can be computed exactly for the simplified eigenvalue problem (4.2) thanks
to the scaling transformation (4.4). In this case, the limiting formula (4.5) holds with Wy(y) replaced by
2y fory > 0 and —y for y < 0, so that y_(u) = —p and y4 () = p/2. In other words,

0 n/2
/ vu-i—ydy—k/ Vi —2ydy ~ t(2n—1) forfixedn > 1
— 0

and the computations of integrals gives p,, ~ ((2n — 1))2/ 3, in agreement with the behavior O(nz/ 3) of
eigenvalues of the Schrédinger operator with a linearly growing potential as |y| — oo [17]. Therefore,
the Bohr—Sommerfeld quantization rule suggests that the eigenvalues {5\% }n>1 of the simplified operator
i}i considered in our previous work [9] satisfy the asymptotic limit

\e \E
lim 25t = lim 2% = (n(2n 1) forfixedn > 1. (4.6)

However, the justification of the asymptotic limit (4.6) cannot rely on the work of Fedoryuk [6] because
the e-independent potential Vy(x) in the simplified eigenvalue problem (4.2) is continuous but not C!
on R.

5. Proof of Proposition 1.1
For a radial function u(z) = wu(|x|) solution to (1.2), (1.2) can be rewritten as

e d

Fd_w*lu/) + (-7 —uP)u=0, r=0,4(0)=0. G.D
T T

Let u,v € L*(R%) be two radial positive solutions of (5.1). Up to a change of u and v, we assume
u(0) < v(0). Let p = u/v. Then, a straightforward calculation shows that

d _ _
E25(,02741 1p1> _ 7,cl lv4p(p2 _ 1)_
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If u(0) = v(0), since u/(0) = v'(0) = 0, we have u = v. Let us assume by contradiction u(0) < v(0),
that is, p(0) < 1. Then r — v(r)zrd_lp’ (7) is strictly decreasing in a neighborhood of 0, and therefore,
since p/(0) = 0, we infer p'(r) < 0 for r > 0 sufficiently small. Let

= inf{r > 0,p/(r) = 0}.
p is decreasing on (0, ), and since for every r, 0 < p(r) < p(0) < 1, we infer that v*p(p> — 1) < 0
on that interval. As a result, 7 — v(r)*r@-! p'(r) is decreasing on (0, 79). Moreover, if ry was finite,

we would have v(ro)2 d=1y p'(rg) < 0, which would be a contradiction with the definition of ry. Thus
= +00, such that both P and v(r)*r?=1p/(r) are decreasing on R_.. We deduce

< o0 =) = [ par <o) [T ar <o,

In particular, the integral

o 1
———d 00
/1 v(rrd1 <t

converges. On the other side, since v € LA(RY),
o
/ 1)(7“)27“‘1_1 dr < 4o0.
0

Thanks to the Cauchy—Schwarz inequality, it turns out that

[e'e) 00 d 1/2 ) 1 1/2
(o s) ([ e
00 /1 dr </1 v(r)r dr) ( o) dr < 00,

which gives contradiction. Thus, p(0) = 1 and ©v = v.

6. Proof of Lemma 2.1

Let o > 1 be like in the assumption of the lemma, and A = ||z® f|| Lo, ) < 00. We first prove (2.11)
by contradiction. We proceed as follows. We suppose that (2.11) is not true. Namely, we make the
assumption

(@) # Oz~ @), 22f € L®(A4, +00). (Ga)

If a > 2, we prove that (G,) implies (G,—»), such that after a finite number of steps, (G,) implies (Gg)
for some & € (0, 2]. On the other side, we show that for 0 < a < 2, (G, ) yields a contradiction.

If (2.11) is not true, then, up to a change of f and ¢ into — f and —, there exists a sequence (2, )n>n,
(where ny > A), such that x,, T oo, x,, > A4 and

o Wi(xp)p(xy) > n.
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Then,
20" (@) = 20W (@n)p(an) — 28 f(@) = 22 W (@) p@n) — A > n — Al
For n > ny > A, we define
Yn = sup{y > z,, V& € (T, y), W (x)p(x) — A > (n — A)/2}.
By continuity of W and ¢, for every n > ny, either y,, = +00 or

n+ A
2y%W(yn) .

We distinguish the two following cases:

©(Yn) = 6.1)

(A) There exists n; > ng such that y,,, = +oc.
(B) Forevery n = ng, yn, < +00.

In case (B), extracting a subsequence of (z,,),>n, if necessary, one can assume that
Tny < Yng < Tng+1 < Yngt+l < Tpgt2 < 0.

For n > ng + 1, we define
Iy = inf{y < 2, V& € (y, xp), W ()p(x) — A > 3(n — A)/4}.

Since y,—1 < x, and
Yn W Yn-1)pYn-1) = A= (n—1—A4)/2 <3(n - A)/4

we deduce Z,, > y,—1 > —00. Moreover, by continuity, p(Z,) = 3n + A)/(4z5W(Z,)), and p(z) >
Bn + A)/(4x*W (x)) for > &, x close to Z,,. Therefore

3 A d 1 3 A | .00 1
danz AL ()| e Ao ey
4  dex\zW(@)/ =z, 4 C+ AW (Zy,)
1
>_C ~ i Trrs s~ ~
mw%HW(aﬁn)

for some C} > 0. By definition of y,, and Z,,, for every € (Tn, yn),

n—A

o, M
=
%o (x) 5

Thus,

_ n—A [ 1
P> ¢+ [y
o Y

1 n—A [~ 1
= — — =: Gp(2). .
> Cln;nger(j:n) + 2 /5; . dy Gn(x) (6.2)

n
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Notice that G,,(Z,,) < 0, whereas

400 ifa <1,

Gin(+00) = {gn ifa>1,

where for o > 1,

n—A

Nw>0 as n — +o0.

9n

As a result, for n sufficiently large, since G, is increasing on (Z,, +o0), G;, vanishes exactly once on
that interval. Moreover, this unique zero z, of G, is defined by

/Z" 1 dy — 20177, 1
e v T n— AW (@)

thus

=0+ 05 )

72
Tn

By integration of (6.2), we infer that for z € (Z,, yy),

o) > o(En) + / Gly) dy

> e@)+ [ Gaay
- 0171 .
> = _
> QD(ﬂj‘n) f%+1W(fn) (Zn — Tn)
3n+ A 1 Chn

> —
4 ZeW(Z,) Z0PW(E,)

for some constant C; > 0. Therefore, for n large enough, for every x € (Z,,, yn), since W is increasing
on (A4, +00),

Sn 1 Sn 1
>

KO W S e

For n sufficiently large, 5n/8 > (n+ A)/2, and it provides a contradiction with (6.1), which means that
case (B) can not happen. In case (A), for every z > z,,,

%" (x) = (ny — A)/2 > 0. (6.3)

Therefore ¢'(z) 1 0 as = | oo, otherwise ¢ would not be in L*(R). Thus, for every = > z,, ¢'(z) < 0,
and therefore ¢(z) | Oasx T oo. If 0 < a < 1, (6.3) provides a contradiction with the fact that
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o' (r) — 0as x — oo. If a > 1, integration of (6.3) between x and +oo yields

TL1—A

J e’

—¢'(x) >

This is a contradiction with ¢(x) — 0, if 1 < a < 2. Finally, if @ > 2, by integration of (6.4),

. n —A
T 2a—a-2"

2—a

ny — A oo 1—
2 - (0%
©(x) 2(04—1)/95 y “dy
Thus,

o(r) # O(x*(o‘*z)*l).

T—00

Since the assumption 2% f € L>®(A,, +00) implies 22 f € L*(A,, +00), we have proved that (G,)
implies (Gg) if o > 2. The proof of (2.11) is completed by induction. Then, since ¢ = W — f, we
deduce

¢"(x) = O(z™?). (6.5)

We next prove that

ion_ JO@E@) ifa>1,
wle) = {0(1) if0<a<1. (6.6)

By integration of (6.5), if & > 1, ¢/(x) has a limit as z — -+oo. This limit can only be 0, because
¢ € L?.(6.6) is then obtained by integration of (6.5) between x an +o0. If o < 1, (6.6) is a consequence
of the fact that ¢(z) — 0 and ¢"(z) — 0 as z — +oo.

Let x € C*°(R) be such that

- [0 i<l
X =91 itz > 2.

Form € N, let w.,, frn € C*°(R) be the functions defined by
(@) = x(@a D
and

fm(@) = =g, (2) + W(@)pm ().

From now on, we assume that f and W have asymptotic series (2.12) as x — +00, so that

—+00
fm@ o~ 7O T 4 (a4 ym+ D@+ ym o+ ) @m0

T——+00 k=0
—+00
~ g latym) Z o7k,
r—+00

k=0
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where 9y = vy if k # 3/ and U3/, = v3/, +(a+ym+ 1)(a+~ym+2). Notice also that the assumption
W(z) > Cix implies vg > Cy > 0. As a result, there exists coefficients (¢,,)men such that for every
M >0,

M

f@) =" Enfm(@) + gu(@),

m=0

where gyr(x) = Oz~ YM+D) a5 & — +00. Then,

M
p@)= (R +W) @) =Y Enpm@ + Pur(@),

m=0

where V) = (_8325 + W)~ 'gps. Thanks to (2.11), (6.6) and (6.5), for M large enough, 1y/(z) =
Oz~ YMAD=1y "yt (z) = O(x= ¥ YM+DHD) and Y (z) = Oz~ YM+D). Since this is true for
arbitrarily large values of M, then (2.13) and (2.14) follow.

7. Proof of Lemma 2.2

By Proposition 2.1, we know that vy is a strictly increasing function on R, with asymptotics at +co
given by (2.9) and (2.10). Moreover, 14 has a unique inflection point. From the behavior of vy(y) as
y — oo, we infer that Wy(y) = 3up(y)> — y — +oo as y — oo. We are going to prove that the
global minimum of W is actually strictly positive. We argue by contradiction. If it is not the case, we
can define

yi = inf{y > 0,m() = \/y/3},

where we recall that Wy(y) > 0 if y < 0. By continuity, vy(y;) = /y1/3. We also denote the unique
inflection point of vy by 1. Since vy > 0 solves (2.5), yo > 0 is the unique solution of the equation
v0(y0) = /%o, and v (y) > 0if y < yo, whereas 1 (y) < 0if y > yo. Notice that since 1(0) > 0 and
vo(y1) = /y1/3 < \/y1, we have necessarily 0 < yo < y1. Moreover, since 1 is strictly increasing, we

have /yo = vo(yo) < vo(y1) = \/y1/3, and therefore 0 < 3yy < ;.

Step 1 (Upper bound on y;). For y > 0, we introduce the function z(y) = vy(y)/ /v and rewrite (2.5)
in terms of z(y) as

1 1
Y 4 Y

Since 2(y) — +oo as y — 01 and 2(y) — 1 as y — +oo with z(y) < 1 for y large enough (because
for y > yo, 15 (y) < 0 and therefore 1(y) < /y), we deduce that z(y) admits a global minimum at
Yy = ym > 0, where

mZ(Ym 1
0< gy = m2Wm) (e 14 L),
4 v
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The assumption of non-positivity of W, implies that z(y,,) < 1/ /3. Thus,

1 2
= z 1= z2(yn)” 2 3.
Y 3
As aresult, since vo(Ym) < /Ym /3,

3

1/3
3yo < Y1 < Ym < (5) . (7.1)

Step 2 (Upper bound on v(y)). Since 1 is increasing on R and 1(y)* — y > 0if y < yo, we deduce,
for every y < yo,

0 vt
vy (yo) — vp(y) = /y VOT()(VO(t)Z —t)dt
Yy
Yo
< /y Voiy()) (vo(yo)® —t) dt = @(@/0 -y’ (7.2)

By integration, it follows that for y < yo,

Yo ,
vo() = \/iio — / vt dt
Y

< VY — Vo) (yo — y) + g(yo —y)°. (7.3)

The right-hand side reaches its minimum (for y < yo) aty = y,, where y, < yo is defined by (yo—yp)2 =
8v4(40)/ /Yo, and (7.3) at y = y, yields

4V2 v (yo)*?
VO(yp) < \/y_— Toyyl—o/“
0

Since vy > 0, the right-hand side has to be strictly positive. Therefore
9\ 1/3
i < (55) Vi (1.4

Step 3 (Upper bound on v/(y;)). On the one side, notice that for y > yo, /) (y) < 0, and therefore
vh(y1) < v)(yo). On the other side, if y < 1, vo(y)* > y/3, and vo(y;)?> = /3, thus

1
y=p  2V3Y1
As a result, thanks to (7.4) and (7.1)

, NPy 1
vigan) < min( () W’zﬁ—yl)' (1.5)

d
V(I)(yl) < d_y %
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Step 4 (Upper bound on v/(y) for y > y;). For § € (0,2/3) to be fixed later, we define
y2(8) = sup{y > y1,Vt € (Y1, v ()’ < (1 - o)t}

(notice that v5(y1)> = y1/3 < (1 — &)y1). Then, for every y € (y1,12(5)),

Y vo(t)
Y1

Y vo(y1)
y 4

VoY) = vo(y1) + (vo(t)? — t) dt

<v(y) + (—dt)dt

<%@O—@%ﬁﬂf—yﬂ (7.6)

Step 5 (Bound from below on y,(6)). For § € (0,2/3), we introduce the function hs defined for y > y;
by

vo(y1) 2 2\ 1-6

From (7.5) and since § < 2/3, we infer hs(y;) < 0. Thus, if we define

hs(y) == vy(y1) —

y3(0) := sup{y > y1,Vt € (y1,y), hs(t) < 0},

we deduce from (7.6) that for y € (y;, min(y»(6), y3(4))),
y

) — V1 =0y =nuy(y) — V1 —6yy1 + | hs(t)dt <O, (7.7)
Y1

which implies that

Y3(9) < 42(9). (7.8)

Step 6 (y; = +00). We shall see next that for an appropriate choice of 4, y3(6) = 400, which implies
that 3,(0) = +o0 thanks to (7.8). This provides a contradiction with the assumption of non-positivity of
W, since vy(y) ~ /y as y — +00. An elementary calculation shows that hs reaches its maximum (for

y > yp)at

\/g /—1 — 5>2/5 N
7\/@(5 Y1,

where the inequality comes from (7.1) and from the fact that § < 2/3. From (7.5), we obtain

yzmwz(

(7.9)

hs( )<min((__)l/3¢m 1 ) I R ) e
B 32 V3723 83 8. 31/10

For 06 = 1/3, elementary calculations show that the right-hand side in (7.9) is strictly negative for any
y1 € (0,(3/ 2)!/3), which implies that y3(1/3) = +o0 and completes the proof of the lemma.
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8. Proof of Lemma 2.5
We denote
Ud(2) = Wo(e723 = Y3127, 2 eR%

We are going to show that there exists a constant C' > 0 such that for € > 0 sufficiently small, for every
ball B C RY,

C
< — . .
rzneaé;Ue(z)\ B /B U.(z)dz (8.1)

According to [16], Theorem 0.3, Lemma 2.5 follows. First, we notice that, thanks to Lemma 2.2
and (2.15), there exist C', C; > 0 such that for every y € R,

Ci(1+ Jyl) < Woy) < Co(1 + [yl). (8.2)

Given zy € R% and r > 0, as z describes B(z, ), |z| describes the interval [|z| — 7, | 20| + 7] if | 20| = 7
and the interval [0, | 29| + 7] if |29| < 7. Since the function

fls) = |€*2/3 - 82/332], seRy

is decreasing on [0, £=2/3] and increasing on [e~2/3, +00), we infer that max{ f(|z]), z € B(zp,7)} can
only take the three different values depending on z( and r: either

max  f(|z]) = e¥3(|20] + r)2 — 723 and |z|+r>e?? (case ),

z€B(2,1)
or
max  f(|z]) = e 3 — 3 (20| — r)2 and 0 <|z| —r<e ?? (case?),
z€B(2,1)
or

max f(|z]) =% and |z|—r <0 (case3).
z2€B(z0,1)

We are next going to prove (8.1) in each of these 3 cases.

Case 1. We first show that for every zy, 7 like in case 1, we have

2] + —= > =23, (8.3)

V)

Under the extra assumption

€23 (|z0| + 7’)2 —e Bz, (8.4)
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(8.3) clearly holds. On the other side, if (8.4) is not true, then |z9| — » > 0 since otherwise, 0 €
[|zo| — 7, | 20| + ] and max{ f(|z|), z € B(zp,7)} > f(0) = £?/3, contradicting the assumption that we
are in case 1. Then, we also have
2/3 2 -2/3 -2/3 2/3 2
e |z +7)" = e = fllzol +7) = f(|l20] = 7) = e = (|20 — 1),
which can be rewritten as

20> + 12 > 43,

Since r < |zp|, we deduce

7’2 r 2
P a1 < o o+ S+ Vrlzol = (Jaol + )

V2

which means that (8.3) also holds if (8.4) is not true. Let o« = \/§/2 >1/2+ \/5/4 Then,

1 1 2
@ (anl + 0’ = ) = 3@l + 17 = 2) = 5 (2 (al + T5) - )

= 252/3|z0|7“<a o L) + 32 (0 —1/2 - 1/4). (8.5)

We deduce from (8.3) and (8.5) that for every z € B(z,7) such that |z| > |zy| + ar,
F2) =PIz =727 > & (|z0] + ar)® = 7

(52/3(]z0\ + 7")2 — 572/3) = ! max f(|z]). (8.6)

>
= 2 z€B(zy,r)

M| —

Then, we conclude thanks to (8.2) and (8.6) that

|B(z—10,7‘)| - Us(2)dz > HBS'W /B%’T)(l + f(|z])) d=
S PRI (S C LS
C
- W /{zEB(zo,r): z-%>|zo|+ar} (1 + f(\z|)) dz
> % Jnax (14 (=)
N ) (8.7)

- 2|Bd‘02 z2€B(z,r)

where v,, denotes the volume of {z € B(0,1): z; > a}.
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Case 2. The assumption that we are in case 2 implies

e723 — 23 (|| - r)2 = f(l20] =) = f(Jzo] +7) = 23 (2] + r)? — 723
and thus

1202 < |20 + 72 < 43

It follows that

-2/3 2/3 2 1 —2/3 2/3 2 1 —2/3 2/3 ) 52/3,,,.2
(e = e’ (|20l = 7/2) )—5(5 — e (|z0] — 1) ):5(5 — %)) + 1 > 0.
We deduce that for every z € B(z, r) such that |z| < |z9| — /2,
1
F(Izl) = 3£ (2] = 7). (8.8)

Then, we show that this last estimates holds as soon as z € B(z, r) and z- 2o/ |z0| < |20| —7r/8. Indeed,
under this assumption, Pythagoras’ theorem ensures that

2 2
|2)* = (z‘ﬁ) + |z — z|* — ((z—zo)‘ﬁ)
kN |20l
2 2
(-2 o ()
8 8

N’ 3r \ 2
— (Il = 5) = 5ol =) < (Jol = 5) -

Then, we conclude similarly as in case 1, thanks to (8.2) and (8.8)

1 C,
- U(z)dz>7/ 1+ f(lz])) dz
|B(z0.7)| JBGzo) - |Bd|rd B(ZM)( f(lz1)
& /
> Rl 1+ f(|2]) dz
‘Bd’rd {z€B(z9,7): z'%<|zo|*7r/8}( ( ))
C]'U7/8
Z 1
2‘Bd| ZGB(zo,r)( +f(’Z’>)
C
1v7/8 Ug(z)- (8'9)

——'— max
= 2|Ed‘02 z€B(zp,7)
Case 3. First, we notice that the assumption that we are in case 3 yields

723 > f(lzo] +7) > 52/3(120\ —H’)z — 723,
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which gives
|20 + 7 < V2723, (8.10)

Thus, since |zo| < 7, we get

1
20| < —=2/3. 8.11

If the extra assumption
r > 5|z /4 (8.12)

holds, then (8.11) and the triangular inequality give B(0,7/5) C B(z, ). Moreover, if z € B(0,r/5),
then we get from (8.10)

g3 2B|2? » 23723 )25. (8.13)
Then, we conclude similarly as in cases 1 and 2:

1 C —2/3
. — U(2)dz > / 1 +23c23/25)dz
|B(20,7)| JBzoy - |B|rd B(O,T/S)( /25)

23C,
N . 8.14
35340, -cnax | Ue(2) 8.14)

As for the last case when (8.12) is not true, we have then

7
{z € B(zg,7): 2z - 20 < —T} C B(zo,7) N B(0, |20])-
‘Zo| 40

5|0
4

Indeed, using also |z < 7 < , we have then

2 2
ZO Z ZO
2P = <z) Flr— aft - <|zo|z-0) — 12— 20l — |20f? + 2J20]z - 22
|20] |20l |20]

7|z
<o + 0 . (8.15)

On the other side, for z € B(0, |zo|), thanks to (8.11), we have

f(|2’|) — 872/3 - 82/3|Z|2 > 872/3/2'
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Then, we conclude similarly as in the previous cases:

1 Cy
e U(z)dz>—/ 1+ 7(2)) d=
| B(20, )| JBzo.1) : |Bd’7“d B(Zon")( f(| D)

Ci

=
|B | /{zeB(zo,r>,z-z—g|<7r/40}

(1+ f(l2])) dz

C1vs3/40
> — . 1
2B C ~ehix,, Ue® (8.16)

From (8.7), (8.9), (8.14) and (8.16), we infer that (8.1) holds, with

c :min< Civa  Civgs 230, 01033/40>’

2|B4|C,’ 2|B4|Cy’ 25 - 39C, 2|BY|C;

which completes the proof of the lemma.
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