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For the stationary Gross–Pitaevskii equation with harmonic real and linear
imaginary potentials in the space of one dimension, we study the ground
state in the limit of large densities (large chemical potentials), where
the solution degenerates into a compact Thomas–Fermi approximation. We
prove that the Thomas–Fermi approximation can be constructed by using
the unstable manifold theorem for a planar dynamical system. To justify the
Thomas–Fermi approximation, the existence problem can be reduced to the
Painlevé-II equation, which admits a unique global Hastings–McLeod solution.
We illustrate numerically that an iterative approach to solving the existence
problem converges but give no analytical proof of this result. Generalizations
are discussed for the stationary Gross–Pitaevskii equation with harmonic real
and localized imaginary potentials.

1. Introduction

Ground states of the repulsive Bose–Einstein condensates placed in a harmonic
(magnetic) confinement are global minimizers of the Gross–Pitaevskii energy
[1]. For the large–density atomic gas, these ground states are well approximated
by a compact function, which is referred to as the Thomas–Fermi approximation.
The Thomas–Fermi approximation was rigorously justified using calculus of
variations [2].

It was also discovered in several independent studies [3–5] that the
nearly compact Thomas–Fermi approximation of the ground state has a
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superexponential spatial decay outside a transitional layer, where the ground
state satisfies the Painlevé-II equation [6]. A particular solution of the Painlevé-II
equation referred to as the Hastings-McLeod solution [7], [8] reconstructs
the Thomas–Fermi approximation by means of a change of dependent and
independent variables [1, section 1.2.3].

Justification of the Painlevé-II equation in the context of the radially
symmetrical ground states was developed in our previous work [9], where it was
shown that the Painlevé-II equation remains valid uniformly on the spatial scale
if the confining potential is purely harmonic. These results were further used for
several purposes. Expansions of energy for the Thomas–Fermi approximation
were studied in [10]. Excited states of the stationary Gross–Pitaevskii equation
were constructed with the method of Lyapunov–Schmidt reductions in [11].
More general nonradial trapping potentials were included by Karali and Sourdis
[12], where the Painlevé-II equation does not hold uniformly on the spatial
scale but is valid nevertheless in a transitional layer.

Very recently, ground states of the repulsive Bose–Einstein condensates were
considered under the presence of a complex-valued potential, which expresses
a certain balance between losses and gains occurring in the atomic gases.
This potential is symmetric with respect to the simultaneous parity (P) and
time-reversal (T ) transformations, hence it is referred to as the PT -symmetric
potential. Thomas–Fermi approximations in a localizedPT -symmetric potential
added to the harmonic potential were numerically considered in [13]. Ground
and excited states in a linear PT -symmetric potential added to the harmonic
potential were numerically constructed in [14]. In both works, it was discovered
that the existence of the ground state may be fragile in the presence of
the PT -symmetric potential, because the branch of the ground state may
disappear due to the coalescence with the branch of the first excited state.
Precise predictions on where this saddle-node bifurcation occurs and whether
the ground state can be extended to the Thomas–Fermi (large-density) limit
were not detailed in these works.

In thepresentwork,westudyexistenceof thegroundstate in theThomas–Fermi
limit for the Gross–Pitaevskii equation with a PT -symmetric potential. Because
no variational principle can be formulated for the PT -symmetric potential,
existence of ground states can not be established using calculus of variations.
We use again the transformation of the stationary Gross–Pitaevskii equation to
the Painlevé-II equation with the Hastings-McLeod solution. Persistence of the
Hastings-McLeod solution is analyzed analytically and numerically with an
iterative approach.

Our starting point is the stationary Gross–Pitaevskii equation with the
PT -symmetric harmonic potential

μU (X ) = (−∂2
X + X2 + 2iαX + |U (X )|2)U (X ), X ∈ R, (1)
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where μ ∈ R is the chemical potential, α ∈ R is the gain–loss coefficient, and
U : R → C is the wave function for the steady state. The spectrum of the
linearized operator

L0 := −∂2
X + X2 + 2iαX = −∂2

X + (X + iα)2 + α2

coincides with the spectrum of the operator L̃0 = −∂2
Z + Z2 + α2. Therefore,

the spectrum of L0 is purely discrete, real, and bounded from below. The
ground state of the stationary Gross–Pitaevskii Equation (1) bifurcates from
the smallest eigenvalue μ0 = 1 + α2 of the operator L0 and exists for μ � μ0.
This local bifurcation of the ground state (as well as excited states) was
formally considered by Zezyulin and Konotop [14].

As the Thomas–Fermi approximation is derived in the large-density limit
μ → ∞, we introduce the change of variables μ = ε−1 and U (X ) = ε−1/2

u(ε1/2 X ) with small positive ε. The stationary Gross–Pitaevskii Equation (1)
is now written in the form(

1 − x2 − 2iαε1/2x − |u(x)|2) u(x) = −ε2u′′(x), x ∈ R, (2)

where x = ε1/2 X . To incorporate the complex phase of u produced by the
gain–loss term, we use the polar form u = ϕeiθ for the ground state solution
with |u(x)| > 0 for all x ∈ R. Splitting Equation (2) for real and imaginary
parts, we obtain the system{(

1 − x2 − ϕ2(x) − ε2(θ ′)2(x)
)
ϕ(x) = −ε2ϕ′′(x),(

ϕ2θ ′)′ (x) = 2αε−3/2xϕ2(x),
x ∈ R. (3)

As we are looking for spatially decaying solutions with ϕ2θ ′(x) → 0 as
|x | → ∞, it is clear that the following constraint must be satisfied:∫

R

xϕ2(x)dx = 0. (4)

In particular, if ϕ2 and θ ′ are even in x , the constraint is satisfied, and the
parity requirement implies that the stationary solution is PT -symmetric with
u(−x) = ū(x)eiθ0 , where θ0 ∈ R. Note in passing that the question whether
PT -symmetric equations may admit non-PT -symmetric spatially decaying
solutions is open, recent results in this direction were obtained by Yang [15]
with perturbation techniques.

Using the scaled variable ξ (x) := εθ ′(x) and scaled parameter α = ε1/2η,
we obtain the final form of the existence problem:{(

1 − x2 − ϕ2(x) − ξ 2(x)
)
ϕ(x) = −ε2ϕ′′(x),(

ϕ2ξ
)′

(x) = 2ηxϕ2(x),
x ∈ R. (5)
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The existence problem has two parameters η and ε and we are looking for the
ground state with even and strictly positive ϕ in the limit of small ε. The other
parameter η can be either ε-independent or ε-dependent and we shall later
specify the conditions on this parameter to ensure that the ground state exists
in the limit of small ε.

When η = 0, we can choose ξ ≡ 0 and the existence problem (5) reduces to
the stationary Gross–Pitaevskii equation, studied in our previous work [9].
In the most general case, we can solve the second equation of system (5)
uniquely from the boundary condition lim

x→±∞ϕ
2(x)ξ (x) = 0. In this way, we

obtain the integral representation

ξ (x) = 2η

ϕ2(x)

∫ x

−∞
sϕ2(s)ds, (6)

which allows us to close the first equation of system (5) as an integro–differential
equation.

The formal Thomas–Fermi limit corresponds to the solution of the truncated
problem {

1 − x2 − ϕ2(x) − ξ 2(x) = 0,(
ϕ2ξ

)′
(x) = 2ηxϕ2(x),

x ∈ [−1, 1], (7)

subject to the boundary conditions ϕ(±1) = ξ (±1) = 0. In the following
theorem, we state the existence of suitable solutions to the limiting problem
(7) for a sufficiently small but ε-independent η. Since the component ξ is
uniquely determined by (6), we set

ξ (x) = 2η

ϕ2(x)

∫ x

−1
sϕ2(s)ds, x ∈ (−1, 1), (8)

and state the result in terms of ϕ only.

THEOREM 1. There exists η0 > 0 such that for any |η| < η0, the truncated
existence problem (7)–(8) admits a unique solution ϕTF ∈ C∞(−1, 1) such that
ϕTF(x) > 0 for all x ∈ (−1, 1) and

ϕ2
TF(x) = 1 − x2 + O((1 − x2)2) as |x | → 1. (9)

Figure 1 illustrates components ϕ (left) and ξ (right) of the Thomas–Fermi
solution in Theorem 1 for three different values of η. The numerical solution
is obtained with the fourth-order Runge–Kutta method applied to the closed
first-order differential equation for variable ξ , after the variable ϕ2 is eliminated
from the system (7). The solution terminates at η0 ≈ 0.93 because the derivative
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Figure 1. Components ϕ (left) and ξ (right) for the numerical solution to the limiting
problem (7) for three different values of η.

of ξ diverges near x = 0. The numerical approximations illustrate the statement
of Theorem 1 that the Thomas–Fermi approximation exists only for |η| < η0,
where the value of η0 is finite.

REMARK 2. From Theorem 1 and numerical illustrations, we can see that
the Thomas–Fermi radius (|x | = 1 in this particular case) is independent
of the gain–loss parameter η and that the PT -symmetric linear potential leads
to the decrease of the ground state amplitude ϕ near the center of the harmonic
potential (x = 0). These two facts appear to be universal for spatially decaying
PT -symmetric potentials.

The limit leading to the Painlevé-II equation appears after the formal change
of dependent and independent variables near the Thomas–Fermi radius (x = 1):

ϕ(x) = ε1/3ν(y), ξ (x) = ε2/3χ (y), y = 1 − x2

ε2/3
. (10)

The new variables satisfy the modified existence problem:{
4ν ′′(y) + yν(y) − ν3(y) = ε2/3

(
4yν ′′(y) + 2ν ′(y) + χ2(y)ν(y)

)
,(

ν2χ
)′

(y) = −ην2(y), y ∈ (−∞, ε−2/3),
(11)

subject to the decay condition ν(y) → 0 as y → −∞. The truncated version
of the first equation in system (11) is the Painlevé-II equation

4ν ′′(y) + yν(y) − ν3(y) = 0, y ∈ R, (12)

which admits a unique solution ν0 [7] satisfying the following asymptotic
behavior [6]

ν0(y) =
{

y1/2 − 1
2 y−5/2 + O(y−11/2) as y → +∞,

π−1/2|y|−1/4e− 1
3 |y|3/2 (1 + O(|y|−3/4)

)
as y → −∞.

(13)
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This function ν0 is referred to as the Hastings–McLeod solution of the
Painlevé-II Equation (12). Moreover, the asymptotic expansion as y → +∞ in
(13) can be differentiated term by term.

The persistence of the Hastings–McLeod solution ν0 with respect to small
perturbation terms in ε needs to be considered within the modified existence
problem (11). For technical reasons, it is easier to control the perturbation terms
if η is ε-dependent. Even with this simplification, we obtain a partial progress
toward the proof of persistence of ν0. Since the component χ is uniquely
determined by integrating the second equation of system (11), we set again

χ (y) = − η

ν2(y)

∫ y

−∞
ν2(s)ds (14)

and state the desired result in terms of ν only.

CONJECTURE 3. Let ν0 be the Hastings–McLeod solution of the Painlevé-II
equation, defined by (12) and (13). For any q > 5

6 , there exist εq > 0, ηq > 0,
and Cq > 0 such that for every ε ∈ (0, εq) and |η| < ηqε

q , the coupled system
(11) admits a unique solution νP ∈ C∞(−∞, ε−2/3) such that νP(y) > 0 for all
y ∈ (−∞, ε−2/3), νP(y) → 0 as y → −∞, and

sup
y∈(−∞,ε−2/3)

|νP(y) − ν0(y)| � Cq

{
ε2q−4/3 |log(ε)|1/2 , q � 1,
ε2/3, q > 1.

(15)

REMARK 4. It follows from the bound (15) that for every x ∈ (−1, 1), we
have

ε2/3ν2
P(y) → 1 − x2 as ε → 0, (16)

where y = 1−x2

ε2/3 .

The bound (15) in Conjecture 3 is found from the rigorous analysis of
the solution of the persistence problem if a suitable bounded function χ is
substituted in the first equation of the system (11). For this reduced problem,
we can prove existence of the solution for the component ν satisfying the
bound (15) (see Theorem 6 below). When this solution for the component
ν is used in Equation (14), we can also fully characterize properties of the
component χ (see Lemmas 12 and 13 below). By alternating solutions of these
two uncoupled problems, we can develop a simple iterative method, which
approximates numerically solutions of the coupled system (11). Although this
numerical method is found to converge extremely fast, we still lack nice
Lipschitz properties of Equation (14) in order to achieve a rigorous proof of
the statement in Conjecture 3.
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Figure 2. Components ν (left) and χ (right) for the numerical solution to the coupled
system (11) with ε = 0.0067 and three different values of η.

Figure 2 illustrates components ν (left) and χ (right) of the numerical
solution of the coupled system (11) for ε = 0.0067 and three different values
of η. The numerical solution is obtained with the iterative method described
above. Because the component ν is close to the Hastings–McLeod solution ν0,
the difference between the three cases of η is not visible on the left panel of
the figure. The convergence of the numerical method is lost for η ≈ ε0.15,
which may signal that no solution of the coupled system (11) exists for such
large values of η.

This paper is organized as follows. Section 2 gives the proof of Theorem 1 on
the existence of the compact Thomas–Fermi approximation. Section 3 describes
properties of decaying solutions of the system (5) closed with Equation (6).
Section 4 gives the details of how a solution of the persistence problem can be
obtained if a suitable bounded function χ is substituted in the first equation of
the system (11) without computing it from Equation (14). Section 5 is
devoted to the study of Equation (14). Section 6 illustrates numerically the
persistence of the Hastings–McLeod solution beyond the Painlevé-II equation
in Conjecture 3. Section 7 discusses generalizations of our results to spatially
decaying PT -symmetric potentials superposed with the harmonic confining
potential.

2. Proof of Theorem 1

First, we rewrite the truncated problem (7) in terms of the variable z := 1 − x2

and introduce a new function ω(z) := ϕ2(x). Hence the truncated problem (7)
is rewritten as {

ω(z) = z − ξ 2(z),
(ωξ )′ (z) = −ηω(z),

z ∈ [0, 1], (17)

subject to the boundary conditions ω(0) = ξ (0) = 0. Here and in what follows,
we use the same notation ξ for the function of variables x and z. The system
(17) can be closed as a first-order nonautonomous differential equation for ξ
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as a function of z:

d

dz
(zξ − ξ 3) = −η (z − ξ 2

)
, z ∈ [0, 1], (18)

starting with ξ (0) = 0. Formally, Equation (18) is solved by the power series
expansion given by

ξ (z) = −1

2
ηz

[
1 + 1

12
η2z + 1

24
η4z2 + O(η6z3)

]
. (19)

This expansion suggests us to write ξ under the form

ξ (z) = −1

2
ηzψ(ζ ), ζ := η2z. (20)

Note that if ξ satisfies the power series expansion (19), then ψ satisfies the
boundary condition ψ(0) = 1. Moreover, straightforward substitution imply
that ψ solves the first-order differential equation

dψ

dζ
= 2(1 − ψ) − 1

2ζψ
2 + 3

4ζψ
3

ζ (1 − 3
4ζψ

2)
, ζ ∈ [0, η2], (21)

starting with ψ(0) = 1.
In order to prove Theorem 1, we first prove existence and uniqueness

of a suitable solution for ψ(ζ ). For this purpose, we shall transform the
first-order nonautonomous equation (21) into a planar dynamical system,
where the point (ζ, ψ) = (0, 1) is an equilibrium state with a unique unstable
manifold extending to the domain ζ > 0. To do this, we set τ := log(ζ ) as an
evolutionary variable of the planar dynamical system and rewrite Equation
(21) in the dynamical system form{

ζ̇ = ζ,

ψ̇ = 2(1−ψ)− 1
2 ζψ

2+ 3
4 ζψ

3

1− 3
4 ζψ

2 ,
(22)

where the dot stands for the derivative in τ . We can see that (ζ, ψ) = (0, 1) is
a saddle point of the dynamical system (22) and that the dynamical system is
analytic near this point.

The stable manifold of the linearized system at the critical point (0, 1)
corresponds to the eigenvalue −2 and is the line ζ = 0. The unstable manifold
of the linearized system at the critical point (0, 1) corresponds to the eigenvalue
λ = 1 and is the line ψ − 1 = 1

12ζ , which also follows from the power series
expansion (19). There exists a unique solution of the linearized system for
ζ > 0 such that ψ(τ ) → 1 and ζ (τ ) → 0 as τ → −∞. By the Unstable
Manifold Theorem, there exists a unique solution of the full nonlinear system
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(22) with the same properties and this solution is tangent to the unstable
manifold of the linearized system at (0, 1) in the sense that

lim
ζ→0

ψ − 1 − 1
12ζ

ζ
= 0,

again in agreement with the power series expansion (19). This solution exists
at least locally, e.g., for (−∞, τ0) for some τ0 ∈ R. It is not clear if it exists
globally or not, because the unstable manifold on the plane (ζ, ψ) may intersect
the curve 3ζψ2 = 4, where the dynamical system (22) is singular.

We transfer now the result of the Unstable Manifold Theorem back to the
solutions of the truncated problem (17). The solution to the dynamical system
(22) we have constructed for τ ∈ (−∞, τ0) provides a solutionψ(ζ ) to Equation
(21) for ζ ∈ [0, ζ0), with ζ0 := eτ0 . Using the scaling transformation (20), we
obtain the existence of a solution ξ (z) to Equation (18) for z ∈ [0, ζ0η

−2). For
|η| < η0 = ζ

1/2
0 , this interval includes the interval [0, 1]. Then,ω(z) = z − ξ 2(z)

is a smooth solution of the truncated problem (17) for all z ∈ [0, 1]. It follows
from (20) and (21) that there is a positive constant C such that

|ξ (z)| + |ξ ′(z)| � C |η| for all z ∈ [0, 1]. (23)

Therefore, for sufficiently small values of η, we have

ω′(z) = 1 − 2ξ (z)ξ ′(z) > 0, for all z ∈ [0, 1],

hence, the solution satisfies ω(z) > 0 for all z ∈ (0, 1] and ω(z) = z + O(z2)
as z → 0. Defining ϕTF(x) =

√
ω(1 − x2) for x ∈ [−1, 1], we complete the

proof of Theorem 1.

3. Properties of decaying solutions

Here, we assume the existence of an even, C1, spatially decaying solution of
the system (5). We prove that such a solution has a fast decay at infinity with a
specific rate and remains positive at least outside the Thomas–Fermi interval
[−1, 1]. Both parameters ε and η are considered to be positive and fixed.

LEMMA 5. Assume that ϕ is an even C1 solution of system (5) such that
ϕ(x) → 0 as |x | → ∞ and satisfies for large values of |x |,

ϕ(x) > 0,

∣∣∣∣
∫ x

−∞
sϕ2(s)ds

∣∣∣∣ < ∞. (24)



Thomas–Fermi Approximation of the Ground State 407

Assume that 1 − ε − ε2η2 > 0. Then, there is γ > 0 such that

ϕ(x) ∼
|x |→∞

γ |x | 1−ε−ε2η2

2ε e− x2

2ε , (25)

and ϕ(x) > 0 for all |x | � 1.

Proof: We justify the decay (25) from the Unstable/Stable Manifold
Theorem and the WKB theory. Let us consider decaying solutions of the linear
second-order differential equation

ε2ϕ′′
∞(x) + (

1 − x2 − ξ (x)2
)
ϕ∞(x) = 0, (26)

where ξ is defined by the integral formula (6) computed at ϕ = ϕ∞. By the
WKB method without turning points [16, Chapter 7.2], for a fixed positive ε,
decaying solutions of (26) satisfying (24) exist and are all proportional to the
particular solution ϕ∞ given by

ϕ∞(x) = eε
−1
∫

B(x)dx√
B(x)

, (27)

where B(x) satisfies

B(x) =
√

x2 + ξ (x)2 − 1 + ε2(2B B ′′ − 3(B ′)2)

4B2
. (28)

Since B(x) → +∞ as x → −∞, integration by parts yields∫ x

−∞
sϕ2

∞(s)ds = − ε|x |
2B(x)2

e2ε−1
∫

B(x)dx

×
[

1 + O
(

ε

|x |B(x)

)
+ O

(
εB ′(x)

B2(x)

)]
as x → −∞.

It follows from the integral formula (6) that

ξ (x) = −εη|x |
B(x)

[
1 + O

(
ε

|x |B(x)

)
+ O

(
εB ′(x)

B2(x)

)]
as x → −∞. (29)

From (28) and (29), we deduce that ξ (x) = o(|x |) and B(x) = O(x) as x → −∞.
By Taylor expansions, this further specifies the asymptotic expansions

ξ (x) = −εη
[

1 + O
(

1

x2

)]
as x → −∞
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and

B(x) = |x | + ε2η2 − 1

2|x | + O
(

1

|x |3
)

as x → −∞.

By using (27), we obtain

ϕ∞(x) = |x | 1−ε−ε2η2

2ε e− x2

2ε

[
1 + O

(
1

x2

)]
as x → −∞.

This asymptotic decay recovers (25) by the Unstable Manifold Theorem,
which states that decaying solutions ϕ of system (5) are all proportional to the
decaying solution ϕ∞ of Equation (26) as x → −∞.

To justify positivity of ϕ, we represent the first equation in (5) as follows:

ε2 d2ϕ

dx2
= (x2 − 1 + ξ 2 + ϕ2)ϕ. (30)

By the decay (25), we have ϕ(x) > 0 and ϕ′(x) > 0 for large negative
values of x . Then ϕ′′(x) > 0 for all x ∈ (−∞,−1), so that ϕ(x) > 0 for all
x ∈ (−∞,−1]. �

4. Mapping χ → ν

Here, we consider system (11) for a family of functions χ ∈ L∞(−∞, ε−2/3),
which depend on ε and η. We assume that there are constants C+ � 1 and
C− > 0 such that for every ε > 0 small enough and every η ∈ R, the function
χ satisfies

1

C+
|η|y � |χ (y)| � C+|η|(1 + y), y ∈ (0, ε−2/3) (31)

and

|χ (y)| � C−|η|, y ∈ (−∞, 0). (32)

Additionally, we assume the asymptotic behavior

χ (y) ∼
y→−∞ −ε1/3η. (33)

Under these assumptions on χ , we consider the scalar equation

4ν ′′(y) + yν(y) − ν3(y) = ε2/3
(
4yν ′′(y) + 2ν ′(y) + χ2(y)ν(y)

)
,

y ∈ (−∞, ε−2/3). (34)

The Hastings–McLeod solution ν0 solves (34) for ε = 0. For ε > 0 small,
we are looking for a solution ν to Equation (34) near ν0. Thus, using the
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decomposition ν = ν0 + R, we rewrite (34) as

MεR = Hε + Nε(R), (35)

where the linear operator Mε, the source term Hε and the nonlinear function
Nε(R) are given by

Mε = −4(1 − ε2/3 y)1/2∂y(1 − ε2/3 y)1/2∂y + W0(y), (36)

Hε := −ε2/3
(
4yν ′′

0 (y) + 2ν ′
0(y) + χ2(y)ν0(y)

)
(37)

and

Nε(R) := −3ν0 R2 − R3 − ε2/3χ2 R, (38)

with W0(y) := 3ν2
0 (y) − y. By Lemma 2.2 in [9], there is a positive constant

Wmin such that

W0(y) � Wmin for all y ∈ R. (39)

Let us define the Hilbert spaces L2
ε and H 1

ε as the sets of functions in
L1

loc(−∞, ε2/3) with finite squared norms

‖u‖2
L2
ε

:=
∫ ε−2/3

−∞
(1 − ε2/3 y)−1/2|u(y)|2dy,

‖u‖2
H 1
ε

:=
∫ ε−2/3

−∞
(1 − ε2/3 y)−1/2

[
4(1 − ε2/3 y)|u′(y)|2 + W0(y)|u(y)|2] dy.

By Lemma 2.3 in [9], Mε is defined as a self-adjoint unbounded invertible
operator on L2

ε and for ε > 0 small enough, the inverse operator satisfies the
ε-independent bound

∀ f ∈ L2
ε, ‖M−1

ε f ‖H 1
ε

� W −1/2
min ‖ f ‖L2

ε
. (40)

By the implicit function theorem arguments, we obtain the following result.

THEOREM 6. Let ν0 be the Hastings–McLeod solution of the Painlevé-II
equation, defined by (12) and (13). Let χ ∈ L∞(−∞, ε−2/3) satisfy (31)–(33).
For any q > 5

6 , there exist εq > 0, ηq > 0, and Cq > 0 such that for every
ε ∈ (0, εq) and |η| < ηqε

q , there exists a unique solution R ∈ H 1
ε of Equation

(35) such that

‖R‖H 1
ε

� Cq

{
ε2q−4/3 |log(ε)|1/2 , if q � 1,
ε2/3, if q > 1.

(41)
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If ν := ν0 + R, then ν(y) > 0 for all y ∈ (−∞, ε−2/3) and there is γ > 0 such
that

ν(y) ∼
y→−∞ γ |y| 1−ε−ε2η2

4ε e− |y|
2ε1/3 . (42)

Furthermore, if ν1,2 correspond to χ1,2, then there exists an ε-independent
positive constant C such that

‖ν1 − ν2‖H 1
ε

� Cε2/3‖(χ2
1 − χ2

2 )ν1‖L2
ε
. (43)

The proof of this theorem is divided into three subsections.

4.1. Nonlinear and residual terms Nε(R) and Hε

First, we note the following embedding property.

LEMMA 7. There exists C > 0 such that if ε > 0 is small enough and if
u ∈ H 1

ε , then u ∈ C0(−∞, ε−2/3) satisfies

‖u‖L∞(−∞,ε−2/3) � C‖u‖H 1
ε
. (44)

Proof: We introduce the map Tε defined for u ∈ L2
ε by

(Tεu)(z) = u(ε−2/3 − ε2/3z2), z ∈ R.

In [9], we showed that Tε is an isometry between L2
ε and the space L2

even(R) of
even squared-integrable functions on R. Also, Tε induces an isometry between
H 1
ε and

H 1
w = {

f ∈ L2
even(R) : ‖ f ‖H 1

w
< ∞}

,

where

‖ f ‖2
H 1
w

:=
∫

R

(| f ′(z)|2 + W0(ε−2/3 − ε2/3z2)| f (z)|2) dz.

As a result, Sobolev embedding implies for every u ∈ H 1
ε that

‖u‖L∞(−∞,ε2/3) = ‖Tεu‖L∞(R) � ‖Tεu‖H 1(R) � ‖Tεu‖H 1
w

= ‖u‖H 1
ε
,

which yields (44). �
Next, we write Nε(R) = N0(R) +�Nε(R), where

N0(R) = −3ν0 R2 − R3, �Nε(R) = −ε2/3χ2 R,

with a given χ ∈ L∞(−∞, ε−2/3). We estimate the nonlinear terms in the
following lemma.
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LEMMA 8. There exists C > 0 such that for every R ∈ H 1
ε , we have

N0(R) ∈ L2
ε with

‖N0(R)‖L2
ε
� C

(
‖ν0‖L∞(−∞,ε−2/3)‖R‖2

H 1
ε
+ ‖R‖3

H 1
ε

)
. (45)

There exists C > 0 such that for ε > 0 small enough, for χ ∈ L∞(−∞, ε−2/3)
satisfying (31) and (32), and for every R ∈ H 1

ε , we have

‖�Nε(R)‖L2
ε
� Cε−2/3η2‖R‖H 1

ε
. (46)

Proof: By Sobolev embedding of H 1(R) into L p(R) for any p � 2, for
every R ∈ H 1

ε and p = 2, 3, we have

‖R p‖L2
ε
= ‖Tε(R p)‖L2 = ‖TεR‖p

L2p � ‖TεR‖p
H 1 � ‖TεR‖p

H 1
w

= ‖R‖p
H 1
ε
,

which yields bound (45).
Similarly, from (31) and (32), we have

‖�Nε(R)‖L2
ε
� ε2/3‖χ‖2

L∞(−∞,ε−2/3)‖R‖L2
ε
� Cε−2/3η2‖R‖L2

ε
,

which yields bound (46). �
REMARK 9. Since ‖ν0‖L∞(−∞,ε−2/3) = O(ε−1/3), bound (45) implies that,

for fixed C0 > 0 and α > 1/3, N0 maps the ball of radius C0ε
α centered at the

origin in H 1
ε into itself, provided ε is small enough. Moreover, estimating

N0(R1) − N0(R2) similarly, one can show that if ε is small enough, N0 induces
a contraction on these balls.

REMARK 10. The term ε2/3χ2 in �Nε(R) is a small bounded perturbation
to the linear operator Mε if η = O(εq) with q > 1

3 , which is satisfied if q > 5
6 .

Finally, we write Hε = H0 +�Hε, where

H0 = −ε2/3
(
4yν ′′

0 (y) + 2ν ′
0(y)

)
, �Hε = −ε2/3χ2ν0,

with a given χ ∈ L∞(−∞, ε−2/3). We estimate the residual terms in the
following lemma.

LEMMA 11. There exists C > 0 such that

‖H0‖L2
ε
� Cε2/3, (47)

There exists C > 0 such that for ε > 0 small enough and forχ ∈ L∞(−∞, ε−2/3)
satisfying (31) and (32), we have

‖�Hε‖L2
ε
� Cε−4/3η2| log(ε)|1/2. (48)

Proof: The first term H0 was analyzed in [9]. The bound (47) holds because
4yν ′′

0 (y) + 2ν ′
0(y) =

y→+∞O(y−7/2), whereas this function decays even faster as

y → −∞.
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The second term is analyzed with the following auxiliary result,∫ ε−2/3

0

dy

(1 − ε2/3 y)1/2(1 + y)
=
∫ ε−2/3

0

dy

1 + y
+
∫ ε−2/3

0

1 − (1 − ε2/3 y)1/2

(1 − ε2/3 y)1/2(1 + y)
dy

= log(1 + ε−2/3) +
∫ 1

0

1 − (1 − t)1/2

(1 − t)1/2(ε2/3 + t)
dt

=−2

3
log(ε)+O(1), (49)

where for the last equality, we have used Lebesgue’s theorem, which is possible
since for every t ∈ (0, 1) and ε > 0,

1 − (1 − t)1/2

(1 − t)1/2(ε2/3 + t)
� g(t)=

{
t

(1−t)1/2t sups∈[0,t]
1

2
√

1−s
= 1

2(1−t) if t ∈ (0, 1/2)
2

(1−t)1/2 if t ∈ (1/2, 1)

and g ∈ L1(0, 1). Hence, from (31) and (32), we have

‖�Hε‖L2
ε
� ε2/3‖χ‖2

L∞(−∞,ε−2/3)‖ν0‖L2
ε
� Cε−2/3η2‖ν0‖L2

ε

� Cε−4/3η2‖(1 + |y|)−1ν0‖L2
ε
,

where (1 + |y|)−1ν0 = O(y−1/2) as y → ∞ and decays fast as y → −∞. By
using (49), this bound yields (48). �

4.2. Existence and properties of R ∈ H 1
ε

For ε > 0 small enough, let χ ∈ L∞(−∞, ε−2/3) satisfy (31), (32), and (33).
Then, we prove the existence of a unique solution R ∈ H 1

ε of Equation (35)
satisfying (41) provided that η = O(εq) as ε → 0 for any q > 5

6 .
The existence of R follows from a fixed-point argument in Bε, where Bε

denotes the ball of H 1
ε centered at the origin, with radius

ρε := Cq

{
ε2q−4/3 |log(ε)|1/2 , if q � 1,
ε2/3, if q > 1,

(50)

for some Cq > 0. Indeed, inverting Mε, we rewrite (35) as the fixed point
equation

R = �(R), �(R) := M−1
ε (H0 +�Hε + N0(R) +�Nε(R)) , (51)

By bounds (40), (45), (46), (47), and (48), we obtain

‖�(R)‖H 1
ε

� C
(
ε2/3 + ε2q−4/3| log(ε)|1/2 + ε−1/3ρ2

ε + ρ3
ε + ε2q−2/3ρε

)
.

Ifq > 1, then2q − 4
3 >

2
3 and forε > 0 small enough,ε2/3 
 ε2q−4/3| log(ε)|1/2,

thus the operator � maps the ball Bε to itself. If q � 1 but q > 5
6 , then

ε2/3 � ε2q−4/3| log(ε)|1/2 and the operator�maps the ballBε to itself. Similarly,
one can show that � is a contraction on the ball Bε, see Remarks 9 and 10.
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Next, we set ν := ν0 + R and prove positivity of ν(y) for all y ∈ (−∞, ε−2/3)
and decay of ν(y) as y → −∞, according to the asymptotic behavior (42).

By Sobolev embedding (44), we have ‖R‖L∞(−∞,ε−2/3) � Cρε, where ρε → 0
asε → 0.Sinceν0 is increasing andν0(0) > 0, thenν(y) > 0 forall y ∈ (0, ε−2/3)
and ε > 0 small enough. Additionally, we know that R ∈ C0(−∞, ε−2/3) and
R(y) → 0 as y → −∞. By bootstrapping arguments, we obtain a higher
regularity of ν ∈ C2(−∞, ε−2/3), and hence ν ∈ C∞(−∞, ε−2/3).

Next, coming back to the variable x in the transformation (10), we can see
that ϕ(x) = ε1/3ν(y) satisfies the first equation of system (5), whereas since χ
satisfies (33), then

ξ ∼
|x |→∞

−εη.

By the same method as in the proof of Lemma 5, we obtain positivity of ν(y)
for y ∈ (−∞, 0) and the decay of ν(y) → 0 as y → −∞. The decay behavior
(42) follows from the decay behavior (25) by the change of variables (10).

4.3. Lipschitz continuity of the map χ �→ ν

We prove the bound (43) and hence complete the proof of Theorem 6. First, we
write Equation (34) for ν1 and ν2 related to χ1 and χ2. Taking the difference
and denoting δν := ν1 − ν2, we obtain

(Mε +�W1 +�W2) δν = −ε2/3(χ2
1 − χ2

2 )ν1, (52)

where �W1 := ε2/3χ2
2 and �W2 := ν2

1 + ν1ν2 + ν2
2 − 3ν2

0 . By the assumptions
(31) and (32), there is an ε-independent positive constant C such that

‖�W1‖L∞(−∞,ε−2/3) � Cη2ε−2/3,

which shows that, if η = O(εq) with q > 1
3 as ε → 0, then �W1 is a small

bounded perturbation to the positive potential W0 in Mε. On the other hand,
denoting ν1,2 = ν0 + R1,2, we have

�W2 = 3ν0(R1 + R2) + R2
1 + R1 R2 + R2

2 .

Since both R1 and R2 belongs to Bε with radius (50), there is another
ε-independent positive constant C such that

‖�W2‖L∞(−∞,ε−2/3) � Cρεε
−1/3.

If q > 5
6 , then �W2 is another small bounded perturbation to the positive

potential W0 in Mε. Hence (Mε +�W1 +�W2) is an invertible operator with
an ε-independent bound on its inverse from L2

ε to H 1
ε . Therefore, we obtain

from Equation (52) that

‖δν‖H 1
ε

= ε2/3‖ (Mε +�W1 +�W2)−1 (χ2
1 − χ2

2 )ν1‖H 1
ε

� Cε2/3‖(χ2
1 − χ2

2 )ν1‖L2
ε
,

which yields the bound (43).
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5. Mapping ν → χ

Here, we consider the integral formula (14) for a family of positive functions
ν ∈ L2(−∞, ε−2/3) ∩ C0(−∞, ε−2/3), which depends on ε. This integral
formula defines a solution of the second equation in system (11). We assume
that there are constants C+ � 1 and C− > 0 such that for every ε > 0 small
enough, the function ν satisfies

1

C+
y � ν2(y) � C+(1 + y), y ∈ (0, ε−2/3), (53)

and ∫ y
−∞ ν

2(s)ds

ν2(y)
� C−, y ∈ (−∞, 0). (54)

In addition, we assume that there is γ > 0 such that ν satisfies the asymptotic
decay

ν(y) ∼
y→−∞ γ |y| 1−ε−ε2η2

4ε e− |y|
2ε1/3 . (55)

We shall study the mapping ν → χ , defined on some neighborhood of ν0 in a
suitable space such that (14) provides a bounded function χ . First, we obtain
the following elementary result.

LEMMA 12. Let ν ∈ L2(−∞, ε−2/3) ∩ C0(−∞, ε−2/3) satisfy (53)–(55).
Then, χ ∈ L∞(−∞, ε−2/3) is well-defined by the integral formula (14) and
satisfies properties (31)–(33).

Proof: Thanks to assumptions (53) and (54), we obtain

(1 + y)2 − 1

2C+
� ‖ν‖2

L2(−∞,y) � C+

(
C− + (1 + y)2 − 1

2

)
, y ∈ [0, ε−2/3].

Hence, the lower and upper bounds on |χ (y)| in (31) follow from the lower
and upper bounds on ν2(y) in (53). Bound (32) follows from the definition
(14) and bound (54). Finally, the asymptotic decay (55) gives∫ y

−∞ ν
2(s)ds

ν2(y)
∼

y→−∞ ε
1/3,

which is equivalent to the property (33). �
The following result gives a Lipschitz continuity property of the mapping

ν → χ in a neighborhood of ν0.

LEMMA 13. Let χ1,2 be defined by (14) for ν1,2 ∈ L2(−∞, ε−2/3) ∩ C0

(−∞, ε−2/3), where ν1,2 satisfy (53)–(54) and are close to ν0 so that for a
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positive δ, they satisfy the bound

‖ν1,2 − ν0‖L2(−∞,ε−2/3) + ‖ν1,2 − ν0‖L∞(−∞,ε−2/3) � δ.

For ε > 0 sufficiently small, there is an ε-independent positive constant C
such that

‖χ1−χ2‖L∞(0,ε−2/3) �C |η| (‖ν1−ν2‖L2(−∞,ε−2/3)+ε−1/3‖ν1−ν2‖L∞(0,ε−2/3)

)
.

(56)

Furthermore, for any fixed y0 ∈ (−∞, 0) and ε > 0 sufficiently small, there is
another ε-independent positive constant C(y0) such that

‖χ1−χ2‖L∞(y0,0) � C(y0)|η| (‖ν1−ν2‖L2(−∞,ε−2/3)+‖ν1−ν2‖L∞(−∞,ε−2/3)

)
.

(57)

Proof: We write

χ1(y) − χ2(y) = − η

ν2
1 (y)

∫ y

−∞
(ν2

1 (s) − ν2
2 (s))ds − χ2(y)

ν2
1 (y)

(ν2
1 (y) − ν2

2 (y)).

(58)
By using the Cauchy–Schwarz and triangle inequalities, we obtain

|χ1(y) − χ2(y)| � |χ1(y)|
‖ν1‖L2(−∞,y)

(
1 + ‖ν2‖L2(−∞,y)

‖ν1‖L2(−∞,y)

)
‖ν1 − ν2‖L2(−∞,y)

+ |χ2(y)|
ν2

1 (y)
(ν1(y) + ν2(y))|ν1(y) − ν2(y)|. (59)

Since ν0 is increasing, we have ν0(0) > 0 and ‖ν0‖L2(−∞,0) > 0. As a result,
for δ > 0 sufficiently small, we have

inf
y∈[0,ε−2/3]

ν1,2(y)>
1

2
ν0(0)

and

‖ν1,2‖L2(−∞,0) >
1

2
‖ν0‖L2(−∞,0).

Using these bounds as well as bounds (31) and (53) in the bound (59) for
y ∈ (0, ε−2/3), we obtain (56).

Using (59) for y ∈ (−∞, 0) and (32), we obtain for y ∈ (y0, 0)

‖χ1 − χ2‖L∞(y0,0) � C−|η|
(

1 + ‖ν2‖L2(−∞,0)

‖ν1‖L2(−∞,y0)

) ‖ν1 − ν2‖L2(−∞,0)

‖ν1‖L2(−∞,y0)

+C−|η|
(

1 + supy∈[y0,0] |ν2(y)|
inf y∈[y0,0] |ν1(y)|

) ‖ν1 − ν2‖L∞(y0,0)

inf y∈[y0,0] |ν1(y)| ,
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Provided

δ <
1

2
min

[‖ν0‖L2(−∞,0), ν0(y0)
]
,

the triangle inequality |ν1| � |ν0| − |ν1 − ν0| yields

‖χ1 − χ2‖L∞(y0,0) � C−|η|
(

1 + ‖ν0‖L2(−∞,0) + δ

‖ν0‖L2(−∞,y0) − δ

) ‖ν1 − ν2‖L2(−∞,ε−2/3)

‖ν0‖L2(−∞,y0) − δ

+C−|η|
(

1 + ‖ν0‖L∞(−∞,0) + δ

ν0(y0) − δ

) ‖ν1 − ν2‖L∞(−∞,ε−2/3)

ν0(y0) − δ
, (60)

which yields (57). �

There are two main reasons why we are unable to prove convergence of an
iterative method for obtaining solutions of the system (11) by coupling the
maps χ → ν and ν → χ together. These two reasons are related to the decay
of the component ν to zero as y → −∞, after which finding the component χ
from the second equation of system (11) becomes a degenerate problem.

First, it is hard to justify the bound (54) for the solution ν in Theorem 6
because the correction term R decays much slower than the Hastings–McLeod
solution ν0. Although the bound (54) holds for sufficiently large negative y,
thanks to the asymptotic decay (55), the asymptotic formula (55) blows up if
we fix the value of y and send ε to zero. As a result, the asymptotic decay
formula (55) cannot be used to justify bound (54) for all y ∈ (−∞, 0).

Second, the Lipschitz continuity of Lemma 13 is established for a fixed
value of y0. However, to match the solution ν with the asymptotic decay
formula (55), we need to consider the value of y0 to be ε-dependent such
that y0 → −∞ as ε → 0. So far, we have not obtained good bounds on the
Lipschitz constant C(y0) in the limit of y0 → −∞.

6. Solution in Conjecture 3 via a numerical iterative method

We shall develop an iterative numerical scheme to illustrate the validity of
the existence result stated in Conjecture 3. The leading-order solution for the
component ν of the problem (11) is the Hastings–McLeod solution ν0 of the
Painlevé-II equation defined by (12)-(13). Let us define the zero iteration for
the component χ by

χ0(y) = − η

ν2
0 (y)

∫ y

−∞
ν2

0 (s)ds. (61)

Properties of this function are described by the following proposition.
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PROPOSITION 14. χ0 ∈ C∞(R) and satisfies the asymptotic behavior

χ0(y) = −η
{

1
2 y + 3

2 y−2 + O(y−5) as y → +∞
|y|−1/2 + O(|y|−5/4) as y → −∞ (62)

Proof: First, since ν0(y) > 0 for all y ∈ R [7, 8] and ν2
0 (y) decays fast as

y → −∞, the integral formula (61) defines χ0(y) for every y ∈ R. Moreover,
since ν0 ∈ C∞(R), then χ0 ∈ C∞(R). We shall now consider the asymptotic
behavior of χ0 as y → ±∞.

For y → −∞, we use the asymptotic behavior of ν0 given by (13) and
integration by parts to obtain∫ y

−∞
ν2

0 (s)ds = 1

π

∫ y

−∞
|s|−1/2e− 2

3 |s|3/2 (1 + O(|s|−3/4)
)

ds

=
y→−∞

1

π |y|e
− 2

3 |y|3/2 (1 + O(|y|−3/4)
)
.

Dividing this expression by ν2
0 (y) and using the asymptotic behavior (13) as

y → −∞, we obtain the second line of (62).
For y → +∞, we use the asymptotic behavior (13) and write∫ y

−∞
ν2

0 (s)ds =
y→+∞

1

2
y2 + y−1 + O(y−4). (63)

Dividing this expression by ν2
0 (y), we obtain the first line of (62). �

Replacing χ by χ0 in Equation (34), we obtain the first iteration ν1 from
Theorem 6. Because the asymptotic behavior (33) is replaced by the asymptotic
behavior given in the second line of (62), the asymptotic decay (42) is modified
as follows:

ν1(y) ∼
y→−∞ γ1|y| 1−ε

4ε e− |y|
2ε1/3 . (64)

Nevertheless, the integral formula (14) can be used with ν1 to obtain the first
iterate χ1, which satisfies the same properties (31)–(33) in spite of the modified
asymptotic decay (64). Then, we compute the second iterates ν2 from Theorem
6 and χ2 from the integral formula (14), and continue on this computational
algorithm.

Next, we implement this iterative scheme numerically to show that the
sequence {(νn, χn)}n∈N converges to a solution of the coupled system (11).

We first approximate numerically the Hastings–McLeod solution ν0 of the
Painlevé-II equation (12). We use the second-order Heun’s method supplemented
with a shooting algorithm. The solution is shown on the left panel of Figure 3.
The dashed lines showing asymptotical expansions (13) for y � 1 and y � −1
are not distinguished from the numerical approximations (dots). We truncate
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Figure 3. Components ν0 (left) and χ0 (right) for the numerical approximation of the
Hastings–McLeod solution of the Painlevé-II equation (12) and the integral formula (61) for
η = ε with ε = 0.0067.

the solution at y0 = 28 and choose ε = y−3/2
0 = 0.0067. Then, we use the

composite trapezoidal rule and approximate the component χ0 from Equation
(61) for η = ε. The solution is shown on the right panel of Figure 3. Again,
the dashed lines show asymptotical expansions (62) for y � 1 and y � −1.

Finally, we use the iterative method to obtain the sequence {(νn, χn)}n∈N

numerically. At each step, the numerical solution for νn is obtained from
Equation (34) with χ = χn−1 by the result of Theorem 6. Implemented
numerically with a second-order difference method, it takes just very few
iterations to obtain a suitable approximation for νn . Then, the numerical
solution for χn is obtained from Equation (14) with ν = νn by applying the
composite trapezoidal rule. The iterations are terminated when the difference
between two subsequent approximations becomes smaller than 10−15. For the
same value of ε = 0.0067, the numerical method converges in three iterations
for η = ε, in 6 iterations for η = ε0.5, and in 11 iterations for η = ε0.25. No
convergence of this method was found for η = ε0.15.

Figure 4 shows details of the numerical solution for η = ε. The top left panel
shows the component R := ν − ν0 of the final iterate of the numerical solution.
The top right panel shows the component χ , where the dashed line indicates
the asymptotic value (33) for large negative y. The bottom left panel shows
the component ν (dots) in comparison with the asymptotic decay behavior
(13) of the Hastings–McLeod solution ν0 (dashed line). It is clear from the
semi-logarithmic scale that the component ν decays slower, which agrees with
the asymptotic behavior (42). The bottom right panel shows the component ν
(dots) in comparison with the growth condition (13) of the Hastings–McLeod
solution ν0 (dashed line). Because the values of R are small for y = O(ε−2/3),
the components ν and ν0 have similar growth rate. The situation changes when
the value of η is larger, e.g., for η = ε0.25, when the values of R become large
near the end y = y0 of the computational interval. For such large values of η,
the bound (41) cannot be justified.
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Figure 4. Details of the numerical approximation of the solution of the coupled system (11)
for η = ε with ε = 0.0067: component R (top left panel), component χ (top right panel),
component ν (bottom panels) in comparison with the asymptotic behavior (13) shown by
dashed lines.

7. Discussion

Here we discuss the Thomas–Fermi limit of the ground state in the stationary
Gross–Pitaevskii equation with a more general PT -symmetric potential:

μU (X ) = (−∂2
X + X2 + 2iαX W (X ) + |U (X )|2)U (X ), X ∈ R, (65)

where W is an even, bounded, and decaying potential. Changing the variables
μ = ε−1, x = ε1/2 X , and U (X ) = ε−1/2ϕ(x)eiθ(x), and using the scaled variable
ξ (x) = εθ ′(x) and scaled parameter α = ε1/2η, we obtain the existence problem
in the form,

{(
1 − x2 − ϕ2(x) − ξ 2(x)

)
ϕ(x) = −ε2ϕ′′(x),(

ϕ2ξ
)′

(x) = 2ηxW (ε−1/2x)ϕ2(x),
x ∈ R. (66)

The existence problem has now two scales x and X = ε−1/2x thanks to the
bounded and decaying potential W . As a result, the analysis of this existence
problem at least for finite and even large values of η can be performed by a
straightforward asymptotic method.
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Solving the second equation of system (66) uniquely from the condition
lim

x→±∞ϕ
2(x)ξ (x) = 0, we obtain an integral representation

ξ (x) = 2ηε

ϕ2(x)

∫ ε−1/2x

−∞
sW (s)ϕ2(ε1/2s)ds. (67)

Assuming now that ϕ ∈ C2 near x = 0 and X3W (X ) ∈ L1(R), we expand (67)
into the asymptotic approximation,

ξ (x) = 2ηε

(∫ ε−1/2x

−∞
sW (s)ds

)
ϕ2(0) + O(ε)

ϕ2(x)
. (68)

This asymptotic approximation shows that the phase-related component ξ
gives a contribution to the PT -symmetric ground state only if η is as large
as O(ε−1) as ε → 0 and that this contribution is only affecting the ground
state in the tiny region |x | = O(ε1/2) around the origin as ε → 0. Therefore,
the solution ϕ of the existence problem (66) for η = O(ε−1) is close to the
solution of the existence problem (66) with η = 0 (which was justified in our
previous work [9]), except for the values |x | = O(ε1/2), where the solution ϕ
is close to the modified Thomas–Fermi approximation

ϕ2
TF(x) = 1 − x2 − 4η2ε2

(∫ ε−1/2x

−∞
sW (s)ds

)2

, |x | � Cε1/2, (69)

where C is ε-independent. From the requirement ϕ2
TF(0) > 0, we find the

existence interval η ∈ (−η0, η0) of the PT -symmetric ground state at the
Thomas–Fermi limit, where

η0 := 1

2ε| ∫ 0
−∞ sW (s)ds|

.

Note that the breakdown of the ground state occurs at the origin x = 0,

because the absolute value of the integral
∫ ε−1/2x
−∞ sW (s)ds quickly drops when

x deviates from the origin. Therefore, we reiterate the two facts mentioned in
REMARK 2: the Thomas–Fermi radius |x | = 1 is independent of the gain-loss
parameter η and the PT -symmetric potential leads to the decrease of the
ground state amplitude ϕ near the center x = 0 of the harmonic potential.

Justification of the asymptotic approximations above for the ground state of
the existence problem (66) appears to be a simple analytical problem if W is
bounded and decaying, while η = O(ε−1) as ε → 0. We do not include this
justification analysis in the present work.
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