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Abstract
We consider homoclinic orbits in the fourth-order equation v(iv) + (1 − ε2)v′′ −
ε2v = v2 + γ (2vv′′ + v′2), where (γ, ε) ∈ R

2. Numerical computations
[CG97, C01] show that homoclinic orbits exist on certain curves γ (ε) in the
parameter plane (γ, ε). We study the dependence γ (ε) in the limit ε → 0
and prove that a curve γ (ε) passes through the point (γ0, 0) only if s(γ0) = 0,
where s(γ ) denotes the Stokes constant for the truncated equation (with ε = 0).
The additional condition s ′(γ0) �= 0 guarantees the existence of a unique curve
γ (ε) passing through the point (γ0, 0). Every homoclinic orbit is proved to be
single-humped for sufficiently small ε.

Mathematics Subject Classification: 34M40, 34M30, 35Q53, 37C29

(Figures in this article are in colour only in the electronic version)

1. Introduction

We address existence of homoclinic solutions to the fourth-order equation

v(iv)(z) + (1 − ε2)v′′(z) − ε2v(z) = v2(z) + γ (2v(z)v′′(z) + v′2(z)) (1.1)

in the limit ε → 0, where (γ, ε) are real parameters. This problem is equivalent to the problem
of persistence of the homoclinic solution

y1(x) = − 3

2 cosh2(x/2)
(1.2)

to the differential equation

y ′′ − y = y2 (1.3)
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that undergoes a singular perturbation

ε2y(iv) + (1 − ε2)y ′′ − y = y2 + ε2γ (2yy ′′ + (y ′)2). (1.4)

Indeed, equations (1.1) and (1.4) are related through the change of variables (rescaling)

v(z) = ε2y(x), x = εz − c, (1.5)

where the arbitrary constant c ∈ C is at our disposal.
Persistence of homoclinic solutions for various singularly perturbed problems, including

the problems related to dendrite crystal growth, flows in Hele-Shaw cells, solitary waves in
the presence of small surface tension, bending losses in optical fibres and shock waves in
combustion problems (see [STL92] and references there), has been discussed in the literature
during the last two decades. The main difficulty in all such problems is the fact that the
difference between perturbed stable and unstable solutions becomes exponentially small in
the perturbation parameter. Significant progress in overcoming this difficulty is associated
with the paper [KS91] that outlined the approach known nowadays as asymptotics beyond
all orders (the preprint of the paper appeared in 1985). This approach was formally applied
in [PRG88,GJ95] to show non-existence of homoclinic solutions to (1.4) with γ = 0 for small
ε > 0. The first rigorous proof of non-existence was obtained in [AM91] by a completely
different method (see also an earlier paper [HM89]). In the framework of the asymptotic
beyond all orders approach, the proof of non-existence was obtained in [T00].

The asymptotic beyond all orders approach to a singularly perturbed problem, for example,
to (1.4), consists of three major steps: (a) reduction of (1.4), called the outer equation, to (1.1),
called the inner equation, (b) analysis of solutions v±(z) of the truncated inner equation

v(iv)(z) + v′′(z) = v2(z) + γ (2v(z)v′′(z) + v′2(z)) (1.6)

that tend to zero as |z| → ∞ in the right or left half-planes of the complex z-plane, respectively,
(c) transition from equation (1.1) to (1.6), i.e. the proof that in the limit ε → 0 stable
and unstable solutions of (1.1) approach solutions v±(z) of (1.6), respectively. Then the
coincidence of solutions v+(z) ≡ v−(z), i.e. the fact that (1.6) has a nontrivial solution v(z)

analytic at z = ∞ and satisfying v(∞) = 0, becomes a necessary condition for persistence of
homoclinic solutions to (1.4). Existence of solutions analytic at infinity and their relation with
Stokes constants for analytic nonlinear ordinary differential equations was discussed in [T94b].
It was proved in [T00] that v+(z) �= v−(z) for equation (1.6) with γ = 0. Thus, in the case
γ = 0 equation (1.1) has no homoclinic solutions for small ε. However, there are homoclinic
solutions for other values of γ . For example,

v(z, ε) = −3ε2(4 + ε2)

8
sech2

(εz

2

)
, γ (ε) = 5

4 + ε2
(1.7)

is a homoclinic solution to (1.1) with γ = γ (ε). It corresponds to the smallest real zero
s( 5

4 ) = 0 of the Stokes constant s(γ ).
The main results of the present work are listed as follows.

1. Equation (1.1) has homoclinic solutions in a neighbourhood of the point (γ0, 0), γ0 ∈ R,
only if the Stokes constant s(γ ) of equation (1.6) vanishes at γ = γ0.

2. If s(γ0) = 0 but s ′(γ0) �= 0, then there exists a unique smooth curve γ (ε) passing through
the point (γ0, 0) in the parameter space (γ, ε), so that equation (1.1) with γ = γ (ε) has
homoclinic solutions for all sufficiently small ε. Such curves in the parameter space will
be referred to as homoclinic solution curves.
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3. Each homoclinic solution curve corresponds to a single-humped homoclinic orbit in a
neighbourhood of the point (γ0, 0) in the parameter space (γ, ε).

4. First zeros of s(γ ) are approximated numerically on a rigorous basis of a numerical
algorithm.

Our technique is based on the results of [T94b, T94c, T00] for the asymptotic beyond all
orders approach, applied to equation (1.1). The related problem of distribution of zeros of
s(γ ) for large γ is beyond the scope of this paper.

Our paper is structured as follows. Motivations of our studies of equation (1.1) are
described in section 2. The truncated inner equation (1.6) and the Stokes constant s(γ ) are
analysed in section 3. Analysis of the outer equation (1.4) is developed in section 4. Analysis
of the inner equation (1.1) is reported in section 5. Numerical computations of homoclinic
orbits are described in section 6. Technical proofs can be found in appendix A and appendix B.

2. Motivations

Our work is motivated by the connection of the fourth-order ODE (1.1) to the equation
describing travelling waves of the fifth-order Korteweg–de Vries (KdV) equation. Indeed,
the transformation

z = ωt, v(z) = − α

ω4
u(t), (2.1)

reduces (1.1) to the general form

u(iv) + (ω2 − κ2)u′′ − κ2ω2u + αu2 + β(2uu′′ + u′2) = 0, (2.2)

where α, β, ω and κ are real parameters. The ODE (2.2) is a travelling wave reduction
of the fifth-order KdV equation, which models gravity water waves on a surface of finite
depth [CG94]. Note that this equation is not a reduction of the integrable KdV hierarchy and
it is not integrable unless it is a linear equation with α = β = 0. The fifth-order KdV equation
leading to the ODE (2.2) generalizes the Kawahara equation (β = 0), for which there exists
a proof that no homoclinic connection to the zero equilibrium state exists [AM91, HM89].
Unfortunately, these proofs were very specific to the ODE (2.2) with β = 0 and did not allow
a direct generalization to a wider class of problems, such as, for example, equation (2.2) with
β �= 0.

When κ = 0, the linearization of the zero equilibrium state in the ODE (2.2) admits two
purely imaginary eigenvalues λ = ±iω and the double zero eigenvalue λ = 0, which is referred
to as the 02iω resonance. This dynamical system has the vector normal form, given in [IA98]
(exercise I.22 and problem 7). Using the formal polynomial transformation, the scalar ODE
(2.2) is transformed to the vector normal form [C01]. Non-persistence of homoclinic orbits
in the general vector normal form was considered in connection with the original water wave
problem by Iooss and Kirchgassner [IK92]. Analysis of exponentially small Melnikov integrals
was developed by Lombardi [L99], who derived a criterion for persistence of homoclinic orbits
in the vector normal form. Lombardi [L00] also proved that a general vector normal form for
the 02iω resonance admits homoclinic connections to exponentially small periodic orbits and
generally no homoclinic connections to the zero equilibrium states.

Altogether, these results do not exclude that there may exist values of parameters of
the ODE (2.2) when the true homoclinic orbits exist. Finding such curves numerically
happens to be very difficult because one has to distinguish between homoclinic connections
to exponentially small periodic orbits and true homoclinic connections. These numerical
studies of homoclinic orbits in the scalar ODE (2.2) were undertaken by Champneys [C01]
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(see also [CG97]). The numerical results reveal families of multi-pulse homoclinic orbits
along bifurcation curves of co-dimension one in a two-parameter plane (see figure 12 in
[CG97]). Formal applications of the Lombardi’s results for the vector normal forms [L99,L00]
undertaken in [C01] has indicated existence of infinitely many multi-pulse homoclinic orbits
of the ODE (2.2) for sign(αβ) = 1 and non-existence of homoclinic orbits for sign(αβ) = −1.
However, this formal application cannot be directly applied to the scalar ODE (2.2), because
the order of the normal form truncation is not controlled (see remark 7.1.17 in [L00]).

It was further suggested in [C01] that the families of homoclinic orbits intersect the line
κ = 0 at a set of points ω = {ωn}∞n=1, according to zeros of a Bessel function, where

lim
n→∞(ωn+1 − ωn) = π

4

√
α

3β
. (2.3)

The numerical approximations are inaccurate in the limit κ → 0 and the numerical values
of ωn are not computed to any precision except for the case n = 1 (see figure 1 in [C01]).
Nevertheless, there is strong numerical evidence that a sequence of values of ωn does indeed
exist, that is consistent with the distribution (2.3) [C01]. In the case n = 1, the explicit analytic
solution follows from (1.7) and it gives the exact value of ω1. All other (n �= 1) homoclinic
solutions to (1.1) seem to have no explicit expressions. At least, as it is proved in our paper,
they cannot be represented by a rational function of sech2(εz/2). We also show that each
homoclinic solution curve in the parameter space represents a single-humped homoclinic orbit
near the point κ = 0 and ω = ωn. Therefore, splitting of pulses occurs far from the limiting
point (all homoclinic orbits represent multi-pulse solutions in the opposite limit ω → 0 [C01]).
These results are in agreement with the concept from [KCBS02] that homoclinic orbits of the
ODE (2.2) are special and could not be treated as bound states of individual pulses.

We will show that the necessary condition for a bifurcation of the homoclinic orbit from
the point κ = 0 is the zero of the corresponding Stokes constant which may occur for discrete
values of ω. Moreover, the sufficient condition for existence of a single curve in the parameter
space (κ, ω) under fixed values of (α, β) is that the zero of the Stokes constant is simple. The
first result (based on [T00]) is of the same type as the one obtained by Lombardi for the 02iω

resonance. The proofs are very different although both proofs are based on a careful description
of the analytic continuation of solutions in the complex plane. The second result was expected,
but, to our best knowledge, has never been proved before. Moreover, theorem 3.10 in our paper
justifies an algorithmic way to compute the Stokes constant numerically. We shall compare
our numerical results with previous numerical computations in [CG97], which were carried
by different numerical algorithms.

Analysis of this paper can be generalized to the ODE (2.2) with different nonlinear terms
or to the general vector form for the 02iω resonance considered in [L00]. Most proofs admit
straightforward generalizations. However, in order to locate zeros of the Stokes constant
numerically, one needs to develop individual numerical computations for each given nonlinear
function. An example of such numerical computations for a class of differential advance-delay
equations was reported recently in [OPB06].

3. The truncated inner equation and the Stokes constant

In this section we study the existence of a solution to the truncated inner equation (1.6) that is
analytic at z = ∞. Equation (1.6) has the formal series solution

v̂(z) =
∞∑

k=1

αk

z2k
, (3.1)
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where the coefficients {αk}∞k=2 satisfy the recurrence equation

(2k)(2k + 1)(2k + 2)(2k + 3)αk + (2k + 2)(2k + 3)αk+1

=
k+1∑
m=1

αmαk−m+2 + 4γ

k∑
m=1

m(m + k + 2)αmαk−m+1, k ∈ N
+, (3.2)

starting with α1 = 6. The first coefficients α2, α3, and α4 can be found from the recurrence
equation (3.2) as

α2 = 18(4γ − 5),

α3 = 18(4γ − 5)(16γ − 31),

α4 = 54
5 (4γ − 5)(496γ 2 − 2308γ + 2759). (3.3)

Resolving (3.2) for αk+1, we obtain

(2k − 1)(2k + 6)αk+1 = −(2k)(2k + 1)(2k + 2)(2k + 3)αk

+
k∑

m=2

αmαk−m+2 + 4γ

k∑
m=1

m(m + k + 2)αmαk−m+1, k ∈ N
+, (3.4)

where α1 = 6. The main question to be addressed here is whether the formal power series
(3.1) converges for finite large values of z. The analysis of convergence is based on the Borel–
Laplace transform method (see, for example, [T94b]). The inverse Laplace transform L−1

converts the truncated inner equation (1.6) into the convolution equation:

(s4 + s2)V (s) = V (s) ∗ V (s) + γ [2V (s) ∗ (s2V (s)) + (sV (s)) ∗ (sV (s))], (3.5)

where s is a dual (Borel) variable, V (s) = [L−1v](s) and F(s)∗G(s) = ∫ s

0 F(s − τ)G(τ) dτ .
We shall prove the equivalence between convergence of the formal series (3.1), continuations
of two analytic solutions v+(z) and v−(z) of the truncated inner equation (1.6) and zero values
of the Stokes constant s(γ ) (see corollary 3.5).

Lemma 3.1. The formal series solution (3.1) with α1 = 6 and {αk}∞k=2 satisfying (3.4) is
the only non-trivial formal power series solution to (1.6) in powers of z−2. Moreover, if
γ = γ1 = 5

4 , then all αk = 0 for k = 2, 3, . . ., so that v̂(z) = 6/z2. If γ �= γ1, then, there is
no k0 � 2, such that αk0 �= 0 but αk = 0 for all k > k0.

Proof. It is straightforward to check that the leading term of any formal power series solution
to (1.6) in powers of z−2 is 6/z2. Then for any k ∈ N

+ there exists a unique value of αk+1,
computed from values {αm}km=1 in the recurrence equation (3.4). If γ = γ1 = 5

4 , it is clear
from (3.3) that α2 = α3 = α4 = 0. By induction, assuming that αk = 0 for 2 � k � k0, we
prove that αk0+1 = 0. If γ �= γ1, we assume that there exists k0 � 2, such that all αk = 0 for
k > k0. The recurrence equation (3.4) with k = 2k0 − 1 results in

α2k0 = γ
k0(3k0 + 1)

(k0 + 1)(4k0 − 3)
α2

k0
�= 0. (3.6)

The contradiction proves that there is no k0 � 2. �

Remark 3.2. Lemma 3.1 shows that v = 6/z2 and γ = γ1 = 5
4 is the only possible (up to a

translation) nontrivial solution to (1.6) that is polynomial in inverse powers of z. Combined with
results of section 5, it shows that the only possible nontrivial solution to the inner equation (1.1)
that is polynomial in ε2sech2(εz/2) is the explicit solution (1.7), which matches the solution
v = 6/z2 when γ = γ1 = 5

4 and ε = 0. Moreover, the following lemma implies that the same
solution (1.7) is the only solution to the inner equation (1.1) that is rational in ε2sech2(εz/2).
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Lemma 3.3. The truncated inner equation (1.6) has a nontrivial rational solution only if
γ = γ1 = 5

4 ; this solution is unique (up to a translation) and given by v(z) = 6/z2.

Proof. Any nontrivial rational function v(z) should have at least one finite pole at z = z0.
Direct calculations show that the leading term of the Laurent expansion of v(z) at z = z0 is

15

2γ
(z − z0)

−2 if γ �= 0 and
8!

4!
(z − z0)

−4 if γ = 0. (3.7)

We show that the Laurent expansion of v(z) at z = z0 contains only even powers of z − z0.
Indeed, in the case γ �= 0, let v(z) = (15/2γ )(z− z0)

−2 +w(z)+vk(z− z0)
k +O((z− z0)

k+1),
where w(z) contains only even powers of z−z0 and k > −2 is odd. Substituting this expression
into (1.6) and equating the coefficients of the leading odd power term (z − z0)

k−4, we obtain

k(k − 1)(k − 2)(k − 3)vk = 15(k2 − 3k + 6)vk. (3.8)

It is easy to see that k(k − 1)(k − 2)(k − 3) > 15(k2 − 3k + 6) if k � 7 and that
k(k − 1)(k − 2)(k − 3) �= 15(k2 − 3k + 6) if k = −1, 1, 3, 5. Thus, vk = 0 for all odd
k > −2. In the case γ = 0 equation (3.8) becomes k(k − 1)(k − 2)(k − 3)vk = 8 · 7 · 6 · 5vk .
Since k is odd, it also implies vk = 0 for all odd k > −2. Thus, the Laurent expansion of
v(z) at z = z0 contains only even powers of z − z0 and v(z) is symmetric with respect to any
finite pole z = z0. So, the assumption that v(z) has two different finite poles would imply that
v(z) has infinitely many poles. Thus, the only possible rational solution (up to a translation)
is v(z) = 6/z2 with γ = γ1 = 5

4 . �

Theorem 3.4. For any γ ∈ C, the convolution equation (3.5) admits a unique nontrivial power
series solution in odd powers of s. This solution defines a function V (s) that is analytic at
the whole s-plane except, possibly, two vertical cuts: from s = i upwards and from s = −i

downwards. The function V (s) may grow at most exponentially (has exponential order 1)
along any nonvertical ray in the cut s-plane.

This statement is a particular case of the main theorem of [T94b], which is valid for
systems of convolution equations that are inverse Laplace transforms of so-called ‘level one’
systems of ODEs.

Corollary 3.5. Let v±(z) be defined by

v±(z) =
∫ ±∞

0
e−zsV (s) ds. (3.9)

These functions are the only analytic solutions of the truncated inner equation (1.6) that satisfy

v±(z) ∼ v̂(z) as z → ∞, z ∈ S±, (3.10)

where S± are sectors

S+ = {z : |arg z| < π}, S− = {z : |arg z − π | < π}. (3.11)

Moreover,

v+(z) − v−(z) = −2π is(γ )eiz(1 + o(1)), as z → ∞, 0 < arg z < π, (3.12)

where the constant s(γ ) is determined through

s(γ ) = lim
s→−i

(s + i)V (s). (3.13)
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Proof. The Taylor expansion of V (s) at s = 0 can be obtained by applying the inverse Laplace
transform (Borel transform) to the formal series v̂(z). The function V (s) is analytic on a
Riemann surface that has possible branch points of the logarithmic type at s = ik, where
k ∈ N. The statement on behaviour of V (s) at the singularity s = i follows from theorem 2.2
in [T94c]. The uniqueness of solutions v±(z) satisfying (3.10) follows from theorem 3.4 and
properties of the Laplace transform. �

Definition 3.6. The constant s(γ ) in (3.13) is called the Stokes constant for the truncated inner
equation (1.6).

Proposition 3.7. For a given γ ∈ C the following three conditions are equivalent: (i) the
formal power series solution (3.1) has a positive radius of convergence; (ii) s(γ ) = 0 and
(iii) v+(z) ≡ v−(z).

Proof. The fact that (i) implies (iii) is obvious. The inverse statement follows from the fact
that v(z) = v+(z) ≡ v−(z) implies that the function v(z) is single-valued near infinity and has
asymptotic expansion v̂(z) in the full neighbourhood of infinity (see [W76]). It is also clear
that (i) implies (ii), since in this case L−1v̂(s) is an entire function. Suppose now s(γ ) = 0.
Since V (s) is real-analytic on R, we obtain that V (s) = o(1/(s − i)) as s → i. That means,
according to corollary 2.2 in [T94c], that v+(z) coincides with v−(z) in both lower and upper
z half-planes. Thus (ii) implies (iii). �

Remark 3.8. The constant s(γ ) is related to the limiting behaviour of the coefficients in the
formal power series (3.1). In order to show this relation, we define a new sequence {βk}∞k=1 by

αk = (−1)k−1(2k − 1)!βk, k ∈ N
+. (3.14)

Then the recurrence equation (3.4) becomes

βk+1 − βk = 6βk

(2k − 1)(k + 3)
+

1

2(2k − 1)(k + 3)

k∑
m=2

(2m − 1)!(2k − 2m + 3)!

(2k + 1)!
βmβk−m+2

− γ

(2k − 1)(k + 3)

k∑
m=1

(m + k + 2)(2m)!(2k − 2m + 1)!

(2k + 3)!
βmβk−m+1, (3.15)

where k ∈ N
+, and β1 = 6.

Proposition 3.9. The series v̂(z) is divergent and, consequently, s(γ ) �= 0 for γ � 0.

Proof. It follows from the recurrence equation (3.15) that the sequence {βk}∞k=1 is positive
and, consequently, the sequence {αk}∞k=1 is sign-alternating if γ � 0. To prove the lemma by
contradiction, we suppose that the series v̂(z) is convergent. Then the solution

V (s) =
∞∑

k=1

αk

(2k − 1)!
s2k−1 =

∞∑
k=1

(−1)k−1βks
2k−1 (3.16)

of the convolution equation (3.5) is an entire function. Therefore, the left-hand side of (3.5)
is zero at s = −i. On the other hand, iV (s) is positive along the negative imaginary axis, so
that V (s) ∗V (s) < 0 and the expression in the square brackets in (3.5) is positive there. Since
γ � 0, that means that the right-hand side of (3.5) is strictly negative at s = −i, thus leading
to contradiction. So, the series v̂(z) is divergent and s(γ ) �= 0 for γ � 0. �

In the particular case γ = 0 this proposition was proven in [T94c].
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Theorem 3.10. For any γ ∈ C we have

s(γ ) = 1

2
lim

k→∞
βk = lim

k→∞
(−1)k−1αk

2(2k − 1)!
, (3.17)

where the coefficients {αk}∞k=1 and {βk}∞k=1 are defined by (3.2) and (3.15), respectively.

Proof. Let us consider first the case when γ is real and γ � 0. Then all βk(γ ) are positive and
the sequence {βk(γ )}∞k=1 is increasing. The arguments above together with (3.13) show that

V (s) ∼ s(γ )

s + i
as s → −i, (3.18)

where s(γ ) �= 0. Changing the variable s = −i
√

ξ , we obtain

V (s) = −iξ−1/2
∞∑

k=1

βk(γ )ξk = −iξ−1/2h(ξ) . (3.19)

Then, according to (3.18),

h(ξ) ∼ 2s(γ )

1 − ξ
(3.20)

as ξ → 1. Now we can use the Hardy–Littlewood theorem ([Ti39], section 7.51) that states
that under the assumptions that all βk(γ ) � 0 and s(γ ) �= 0 we have

n∑
k=1

βk(γ ) ∼ 2s(γ )n (3.21)

as n → ∞. Then the statement of the theorem in the case γ � 0 follows from (3.21). Let us
show that β(γ ) = limk→∞ βk(γ ) exists for any γ ∈ C. Using (3.15), we obtain

|βk+1(γ ) − βk(γ )| � 3b2
k(γ )

(2k + 1)2k(2k − 1)(k + 3)

k∑
m=2

(2m − 1)(2m − 2) . . . 4

(2k − 1)(2k − 2) . . . (2k − 2m + 4)

+
6|βk(γ )|

(
1 +

2|γ |(3k + 2)

2k + 1

)
(k + 3)(2k + 1)

+
3|γ |b2

k(γ )

k(2k − 1)2(k + 3)

×
k−1∑
m=2

(m + k + 2)(2m)(2m − 1) . . . 4

(2k + 1)(2k − 2)(2k − 3) . . . (2k − 2m + 2)
, (3.22)

where k ∈ N+ andbk(γ ) = max1�j�k |βj (γ )|. Note that |βk(γ )| � βk(−|γ |)∀k ∈ N
+ follows

immediately from (3.15). Thus, |βk(γ )| and bk(γ ) do not exceed M = 2s(|γ |) ∀k ∈ N
+.

Taking into account that the terms in both sums of (3.22) do not exceed one, we can rewrite
(3.22) as

|βk+1(γ ) − βk(γ )| � 3M(1 + 4|γ |)
k2

+
3M2(1 + 2|γ |)

8k3
. (3.23)

Then it is clear that {βk(γ )}∞k=1 is a Cauchy sequence so that β(γ ) = limk→∞ βk(γ ) exists. It
remains to show that β(γ ) = 0 implies s(γ ) = 0. Assuming the opposite in the case γ ∈ R

(when b(γ ) ∈ R), we see that the geometric series s(γ )
∑∞

k=0 ξk = s(γ )/(1 − ξ) majorizes
the series for h(ξ) given by (3.19) for all sufficiently large k ∈ N+, i.e. |s(γ )| > |βk(γ )|.
Thus, h(ξ) cannot satisfy (3.20) with s(γ ) �= 0. So, s(γ ) = 0. In the case γ ∈ C the proof is
similar. �
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4. Asymptotic analysis of the outer equation

We consider here the outer equation (1.4) and study stable and unstable solutions ys(x, ε) and
yu(x, ε), i.e. solutions that satisfy

lim
x→+∞ ys(x, ε) = 0 and lim

x→−∞ yu(x, ε) = 0, (4.1)

respectively. The unperturbed outer equation (1.3) has only one stationary point (y, y ′) =
(0, 0) and it is hyperbolic with two stable and two unstable directions. There exist two different
separatrix solutions of the unperturbed equation (1.3)

y1(x) = − 3

2 cosh2(x/2)
, y2(x) = 3

2 sinh2(x/2)
, (4.2)

where y1(x) is bounded on x ∈ R and y2(x) is unbounded on x ∈ R. However, if x is
considered as a complex variable, then the unperturbed equation (1.3) has only one (up to the
translation invariance) ‘complex’ separatrix solution since y2(x ± iπ) = y1(x).

In the case ε �= 0 the outer equation (1.4) has a stationary point (y, y ′, y ′′, y ′′′) =
(0, 0, 0, 0) with four eigenvalues λ1 = 1, λ2 = −1, λ3 = i/ε, and λ4 = −i/ε. Let us
look for the stable and unstable solutions ys(x, ε) and yu(x, ε) with the exponential series

ys(x, ε) =
∞∑

k=1

yk(ε)e
−kx, yu(x, ε) =

∞∑
k=1

yk(ε)e
kx, (4.3)

where the choice of y1(ε) is arbitrary, while the coefficients {yk(ε)}∞k=2 are uniquely defined
from the recurrence equation

yk(ε) = 1

(ε2k2 + 1)(k2 − 1)

k−1∑
j=1

(1 + ε2γj (j + k))yj (ε)yk−j (ε), k = 2, 3, . . . . (4.4)

As in the case of complex separatrix for (1.3), the series (4.3) for ys(x, ε) with y1(ε) < 0
and y1(ε) > 0 represent both bounded and unbounded branches of the same complex
stable solution to (1.4). The same is true for unstable solutions yu(x, ε). Note that the
transformation y1(ε) �→ cy1(ε), where c is an arbitrary constant, results in the transformation:
yk(ε) �→ ckyk(ε), k ∈ N. Therefore, the series (4.3) with an arbitrary y1(ε) can be rewritten as

ys(x, ε) =
∞∑

k=1

ck
+(ε)yk(ε)e

−kx, yu(x, ε) =
∞∑

k=1

ck
−(ε)yk(ε)e

kx, y1(ε) = 6. (4.5)

Here and henceforth we will always assume that y1(ε) = 6. The normalization y1(ε) = 6 is
chosen for convenience since the separatrix solution y = 3

2 sinh−2(x/2) for the unperturbed
equation (1.3) has y1(0) = 6 in the representation (4.3). Introducing x0(ε) through c±(ε) =
e±x0(ε), we represent the series (4.5) in the equivalent form:

ys(x, ε) =
∞∑

k=1

yk(ε)e
−k(x−x0(ε)), yu(x, ε) =

∞∑
k=1

yk(ε)e
k(x−x0(ε)), y1(ε) = 6. (4.6)

Therefore, the arbitrary parameter c±(ε) in (4.5) corresponds to the translation of the stable
and unstable solutions (4.3) by x0(ε). We will prove that any stable solution ys(x, ε) belongs
to a one-parameter family given by the exponential series (4.6). Moreover, if x0(ε) ∈ R, it has
a unique minimum on x ∈ (−µ(ε), ∞), where (−µ(ε), ∞) is the domain of ys(x, ε). Here
µ(ε) � ∞. Similar results hold for the unstable solution yu(x, ε).

Lemma 4.1. The series (4.3) for ys(x, ε) (with y1(ε) = 6) converges absolutely for �x �
ln(1 + 2|γ |).
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Proof. Observe that ε2j (j + k)/(ε2k2 + 1) < 2 for all k ∈ N and all j = 1, 2, . . . , k − 1.
Therefore, according to (4.4), the series (4.3) is majorized by the series

y̌(x) =
∞∑

k=1

y̌ke−kx, (4.7)

where y̌1 = y1 = 6 and the coefficients {y̌k}∞k=2 satisfy the recurrence equation

y̌k = (1 + 2|γ |)
(k2 − 1)

k−1∑
j=1

y̌j y̌k−j , k = 2, 3, . . . . (4.8)

It is easy to check that the series y̌(x) satisfies the differential equation

y̌ ′′ − y̌ = (1 + 2|γ |)y̌2, (4.9)

which has the exponential series solution

y̌0(x) = 3

2(1 + 2|γ |) sinh2(x/2)
=

∞∑
k=1

6k

1 + 2|γ |e−kx . (4.10)

Then the series y̌(x) = ∑∞
k=1 y̌ke−kx with y̌1 = 6 and {y̌k}∞k=2 satisfying (4.8) is given by

y̌(x) = y̌0(x − ln[1 + 2|γ |]) =
∞∑

k=1

6k(1 + 2|γ |)(k−1)e−kx . (4.11)

That leads to the estimate

|yk(ε)| � 6k(1 + 2|γ |)(k−1), k ∈ N, (4.12)

which proves the statement. �

Lemma 4.2. If a stable solution ys(x, ε) of the outer equation (1.4) has an extremum x = x0,
then ys(x0, ε) � − 3

2 .

Proof. There exists a conserved quantity for the outer equation (1.4):

ε2(2y ′′′y ′ − y ′′2) + (1 − ε2)y ′2 = y2 + 2
3y3 + 2ε2γyy ′2, (4.13)

where the integration constant is taken zero because of the zero boundary condition (4.1).
Substitution of y ′(x0) = 0 into the conserved quantity (4.13) yields

− ε2y ′′2(x0) = 1
3y2(x0)(2y(x0) + 3). (4.14)

If 2y(x0) + 3 > 0, then y(x0) = y ′′(x0) = 0 and y ′′′(x0) �= 0, since otherwise y(x) ≡ 0. In
this case, the function y(x) is monotonic in a neighbourhood of x = x0. Since x0 is the point
of extremum, we have 2y(x0) + 3 � 0. �

Lemma 4.3. Any stable solution ys(x, ε) of the outer equation (1.4) has the form (4.6).

Proof. Let y(x) denote the stable solution ys(x, ε) to the outer equation (1.4). Since y(x) is
small for allx ∈ [x̃, ∞), where x̃ is a large positive constant, y ′(x) is sign-definite by lemma 4.2.
Thus y(x) is monotonic and y(x)y ′(x) < 0 for x ∈ [x̃, ∞), such that y ′(x) ∈ L1[x̃, ∞).
To show that all first four derivatives of y belong to L1[x̃, ∞), it is sufficient to show that
y ′, y ′′, y ′′′ approach zero as x → ∞. We will follow the arguments of [AM91] to prove the
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latter statement. Indeed, integrating (1.4) once and twice, we see that there exists some C > 0
such that

|y ′(x)|, |y ′′(x)|, |y ′′′(x)|, |y ′′′′(x)| � C(1 + x2) (4.15)

for all x ∈ [x̃, ∞) and γ ∈ E, where E is any finite segment of R. Multiplying (1.4) by e−ax

with arbitrary a > 0 and taking integral over [x, ∞), where x ∈ [x̃, ∞), we obtain after some
algebra

ε2y ′′′(x) + aε2y ′′(x) + [1 − ε2(1 − a2 − 2γy(x))]y ′(x) = ε2γ ay2(x)

+eax

∫ ∞

x

e−at {a[1 − ε2(1 − a2)]y ′(t) + ε2γy ′2(t) − [y(t) + (1 + a2)y2(t)]} dt.

(4.16)

Existence of the integral in (4.16) follows from (4.15). Since the limit of the right-hand side
of (4.16) as x → ∞ is zero, we obtain

ε2y ′′′(x) + aε2y ′′(x) + [1 − ε2(1 − a2 − 2γy(x))]y ′(x) → 0 (4.17)

as x → ∞. Because a > 0 is an arbitrary parameter, equation (4.17) for different values of
a implies that y ′(x), y ′′(x), and y ′′′(x) all approach zero as x → ∞. It is now clear that all
derivatives of y(x) are absolutely integrable on [x̃, ∞). Then∫ x

x̃

[y(t) + y2(t)] dt = ε2[y ′′′(x) − y ′′′(x̃)] + (1 − ε2)[y ′(x) − y ′(x̃)]

−ε2γ

∫ x

x̃

[2y(t)y ′′(t) + y ′2(t)] dt (4.18)

shows that y(x) ∈ L1[x̃, ∞). We now rewrite the outer equation (1.4) in the vector form

Y ′ =




0 1 0 0

0 0 1 0

0 0 0 1

1

ε2
0

ε2 − 1

ε2
0


 Y +




0

0

0

1

ε2


 [Y 2

1 + ε2γ (2Y1Y3 + Y 2
2 )], (4.19)

where Y = Col(Y1, Y2, Y3, Y4) and Yj = y(j−1), j = 1, 2, 3, 4. The Jordan form of the
coefficient matrix in the linear part of the vector equation (4.19) is Q = diag(−1, 1, −i/ε, i/ε).
Using a linear change of variables, we can rewrite the vector equation (4.19) in an equivalent
integral form

Y (x) = eQxC + eQx

∫
β(x)

e−Qtf (t, Y ) dt, (4.20)

where f (t, Y ) is the transformed nonlinear part of the vector equation (4.19) and β(x) =
{βj (x)}4

j=1 is a set of four contours of integration (a specific contour for each entry of the
vector integrand). We consider the contour where β1(x) = [x̃, x] and β2(x) = β3(x) =
β4(x) = (∞, x]. It is easy to show that if all components of a vector Y (x) ∈ C

4 belong to
L1[x̃, ∞), then

Y̌ (x) = eQx

∫
β(x)

e−QtY (t) dt → 0 as x → ∞. (4.21)

For all but the first component this limit follows from definitions of (β2(x), β3(x), β4(x)). In
order to prove the limit (4.21) for the first component, we split the integral

Y̌1(x) = e−x

{∫ (x−x̃)/2

x̃

+
∫ x

(x−x̃)/2

}
et Y1(t) dt. (4.22)
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Then the limit (4.21) follows from the fact that the first integral in (4.22) does not exceed
e−(x+x̃)/2‖Y‖L1[x̃,∞) while the second integral does not exceed ‖Y‖L1[(x−x̃)/2,∞). Returning
to the integral equation (4.20), we notice that the components of the integrand f (t, Y ) ∈
L1[x̃, ∞). Taking the limit x → ∞ in the integral equation (4.20), we observe that only the
first component of C can be different from zero if y(x) is a stable solution. Thus, the set of all
stable solutions of the outer equation (1.4) coincides with the one-parameter set of solutions
of the integral equation (4.20), where C = ce1, e1 = Col(1, 0, 0, 0), and c ∈ C is a free
parameter. Then, the statement follows from theorem 3.1 in [T94a]. �

Lemma 4.4. There exists a formal power series solution to the outer equation (1.4)

ŷ(x, ε) =
∞∑

k=0

ε2kPk+1(p), (4.23)

where Pk+1(p) are polynomials with real coefficients

Pk+1(p) = ak+1,0p
k+1 + ak+1,1p

k + · · · + ak+1,kp (4.24)

and p = p(x) = sinh−2(x/2). All polynomials Pk(p) are uniquely defined.

Proof. The polynomial P1(p) is uniquely defined by (4.2) as P1(p) = 3
2p. Substitution of

(4.23)–(4.24) into the outer equation (1.4) yields the recurrence equation

D2
xPk+1(p) − (1 + 3p)Pk+1(p) = −D4

xPk(p) + D2
xPk(p) +

k∑
j=2

Pj (p)Pk+2−j (p)

+γ

k∑
j=1

[2Pj (p)D2
xPk−j (p) + (DxPj (p))(DxPk−j (p))], (4.25)

where k = 1, 2, . . . and Dx = d/dx. It is easy to check that the identities

D2
xp

k =
(

k

(
k +

1

2

)
p + k2

)
pk, Dxp

k = −k
√

1 + ppk (4.26)

hold for any k ∈ Z. Using these identities one can prove by induction that the right-hand side
of (4.25) is a polynomial in p of order k + 1 with no constant and linear terms. The statement
follows from the observation that j (j + 1

2 ) − 3 �= 0 for any j ∈ N. �

Remark 4.5. The statement of lemma 4.4 is still valid if the outer equation (1.4) is considered
with γ = γ (ε), where γ (ε) is a smooth function on [0, ε0] for some ε0 > 0 that admits
asymptotic expansion

γ (ε) ∼
∞∑

k=0

γkε
2k (4.27)

as ε → 0, where the coefficients γk are real numbers.

Remark 4.6. The coefficients of the formal series (4.23) are even functions in x. Therefore,
the formal power series (4.23) cannot capture the difference between stable and unstable
solutions (i.e. it cannot capture the breakdown of the separatrix solution) in any order of the
small parameter ε. This phenomenon is called ‘asymptotics beyond all orders’ (see review
in [STL92]).



Exact conditions for existence of homoclinic orbits 2289

Remark 4.7. Introducing r(x) = sech2(x/2), we observe that p(x±ip) = −r(x). Therefore,
a formal series solution to (1.4) in terms of r(x) is given by

ŷ(x, ε) =
∞∑

k=0

ε2kPk+1(−r(x)). (4.28)

In fact, a stable solution ys(x, ε) admits the asymptotic expansion (4.28) in the limit ε → 0.
To be more precise, we need the following definition.

Definition 4.8. Let A be any positive constant and Bj , j ∈ Z be the Banach spaces of
continuous functions y(x) on x ∈ [−A, ∞) with the norm

‖y‖j = inf

{
M > 0 : |y(x)| <

M

cosh2j (x/2)
for all x ∈ [−A, ∞)

}
. (4.29)

It is clear that Bk ⊂ Bj and ‖y‖j � ‖y‖k if k > j .

Theorem 4.9. Let ŷN (x, ε) denote the first (N + 1) terms in the formal series (4.28), where
N ∈ N. Then there exists some A > 0 such that for every N ∈ N we can construct a stable
solution yN(x, ε) satisfying

‖yN − ŷN , y ′
N − ŷ ′

N, y ′′
N − ŷ ′′

N, y ′′′
N − ŷ ′′′

N ‖B2 = O(ε2(N+1)) (4.30)

as ε → 0 uniformly on bounded sets of γ .

The proof and further details can be found in appendix A. According to lemma 4.3, every
solution yN(x, ε) can be represented in the form (4.6).

Lemma 4.10. Let ε > 0 be sufficiently small. A stable solution ys(x, ε) to the outer
equation (1.4) has a unique global minimum on (−µ(ε), ∞), where (−µ(ε), ∞) is the domain
of ys(x, ε) and µ(ε) � ∞.

Proof. By lemma 4.3, any stable solution can be represented by the series (4.6) with the proper
shift x0(ε). Therefore, it is sufficient to prove the statement for a particular stable solution, say
y0(x, ε), where ŷ0 = − 3

2 cosh−2(x/2). By theorem 4.9,

‖y0 − ŷ0, y
′
0 − ŷ ′

0, y
′′
0 − ŷ ′′

0 , y ′′′
0 − ŷ ′′′

0 ‖B2 = O(ε2). (4.31)

Since ŷ ′
0(x) changes sign at x = 0, hence y ′

0(x
∗(ε), ε) = 0 at some point x = x∗(ε), such

that |x∗(ε)| = O(ε2). There is only one such point x∗(ε) in some finite and independent of ε

neighbourhood U of x = 0. Indeed, the opposite assumption would contradict (4.31) and the
fact that ŷ ′′

0 (x, 0) = 3
4 . Clearly, x∗(ε) is a point of local minimum of y0(x, ε). To complete the

proof, it remains to show that y0(x, ε) has no extremal points on x ∈ (−µ(ε), ∞) outside U .
The assumption that x1 �∈ U is an extremal point of y0(x, ε) leads to a contradiction. Indeed,
by lemma 4.2,

y0(x1, ε) � − 3
2 . (4.32)

On the other hand, if x1 > −A then theorem 4.9 implies that |y0(x1, ε) − ŷ0(x1)| = O(ε2),
which contradicts (4.32). Suppose now that x1 ∈ (µ(ε), −A) and that x1 is the largest extremal
point on this interval. Then y0(x, ε) is decreasing on (x1, x

∗(ε)), so that the requirement (4.32)
leads to contradiction again. �

Lemma 4.10 provides us with the opportunity to ‘normalize’ a stable solution by requiring
that it has a minimum at x = 0. Here and henceforth we will denote by ys(x, ε) and will
simply call stable solution (unless otherwise specified) this ‘normalized’ stable solution. The
following theorem states that ys(x, ε) has asymptotic expansion ŷ(x, ε) as ε → 0.
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Theorem 4.11. There exists A > 0 such that the stable solution ys(x, ε) of the outer
equation (1.4), which satisfies

y ′
s(0, ε) = 0, (4.33)

possesses the asymptotic expansion as ε → 0 and x ∈ [−A, ∞):

ys(x, ε) ∼ ŷ(x, ε) (4.34)

in B1 that is uniform in γ ∈ E, where E is a bounded subset of R. The exact meaning of the
latter statement is that ∀N ∈ N and ∀γ ∈ E

ys(x, ε) − ŷN (x, ε) = ε2(N+1)rn(x, ε), (4.35)

where rn ∈ B1, rn depends on ε continuously and does not depend on γ , and ŷN (x, ε) is the
N th partial sum of the formal power series ŷ(x, ε).

Proof. According to theorem 4.9, for any N ∈ N there exists xN(ε) ∈ R, such that

ys(x, ε) ≡ yN(x − xN(ε), ε) = ŷN (x − xN(ε), ε) + O(ε2(N+1)) (4.36)

uniformly in x ∈ [−A, ∞), γ ∈ E. The corresponding expressions also hold for derivatives
of ys(x, ε) in x. Thus, xN(ε) = O(ε2(N+1)). This fact together with (4.36) yield the
statement. �

Corollary 4.12. The coefficient c+(ε) in the exponential series (4.5) for the stable solution
ys(x, ε) has asymptotic expansion

c+(ε) ∼ 4
∞∑

k=0

ε2kak+1,k as ε → 0. (4.37)

where coefficients ak+1,k are defined in (4.24).

Proof. The statement follows from lemma 4.3 and theorem 4.11. �

Remark 4.13. When we move from analysis of the outer equation to analysis of the
inner equation, it is convenient to place the singularity of the solution of the unperturbed
equation (1.3) at the origin. Therefore, we consider a ‘deformation’ of the separatrix solution
y2(x) = 3

2 sinh−2(x/2). Considering x ∈ C, the line �x = π corresponds to the bounded
separatrix solution y1(x) = − 3

2 cosh−2(x/2). Then the inner equation (1.1) is related with the
outer equation (1.4) through the change of variables (1.5) with the shift c = 0. Exponential
series solutions to the outer equation (1.4) are given by the series (4.6). Then exponential
series solutions to the inner equation (1.1) are given by

vs(z, ε) = ε2
∞∑

k=1

ck
+(ε)yk(ε)e

−εkz, vu(z, ε) = ε2
∞∑

k=1

ck
−(ε)yk(ε)e

εkz, (4.38)

where yk(ε), k ∈ N, are determined by the recurrence equation (4.4) with y1(ε) = 6. By
lemma 4.1, the series (4.38) for vs(x, ε) converge for �z > ln(1 + 2|γ |)/ε and define 2πi/ε-
periodic functions of z. Taking into account the symmetry with respect to the real axis, we
restrict our attention to the strip

R =
{
z : 0 � �z � π

ε

}
.
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By lemma 4.3, any stable solution to the inner equation (1.1) is a translation of the first series in
(4.38). Using theorem 4.11, we denote by vs(z, ε) the stable solution to the inner equation (1.1)
that corresponds to the stable solution ys(x, ε) to the outer equation (1.4) shifted by iπ , i.e.

vs(z, ε) = ε2ys(εz − iπ, ε), Dzvs

(
iπ

ε
, ε

)
= 0, (4.39)

where Dz = d/dz.

Remark 4.14. Formal solution of the inner equation (1.1) can be written in terms of the new
variable

q(z, ε) = 2

ε
sinh

εz

2
, (4.40)

such that limε→0 q(z, ε) = z. Since p = sinh−2(εz/2) = (2/εq)2, the formal solution
(4.23)–(4.24) can be transformed as

v̂(q, ε) = ε2
∞∑

k=0

ε2kPk+1

(
2

εq

)2

=
∞∑

k=0

ε2kv̂k(q), (4.41)

where polynomials Pk+1(p) = ∑k
j=0 ak+1,jp

k+1−j and their coefficients {aj,k} are defined in
lemma 4.4, and

v̂k(q) =
∞∑

j=k+1

22(j−k)aj,k

q2(j−k)
. (4.42)

As ε → 0 and q → z, the solution (4.42) matches the power series (3.1) with the
correspondence αk = 22kak,0, k ∈ N.

5. Analysis of the inner equation

The main result of this section is a proof that a simple zero γ0 of the Stokes constant s(γ )

implies a unique curve γ (ε) of homoclinic solutions to the inner equation (1.1) in the parameter
space (γ, ε) passing through the point (γ0, 0). The central part of this proof is the study of
behaviour of the stable and unstable solutions to the inner equation (1.1) in the limit ε → 0.
In particular, we show that

lim
ε→0

vs(z, ε) = v+(z), lim
ε→0

vu(z, ε) = v−(z),

where v±(z) are solutions to the truncated inner equation (1.6) (see corollary 3.5) and find the
asymptotic meaning of the formal expansion (4.41).

The exponential series solutions to the inner equation (1.1) are given by (4.38). Taking
into account the symmetry with respect to the real axis, it is sufficient to consider the strip
0 � �z � π/ε of the complex z-plane. Let Rz0 , where z0 ∈ (0, π/ε), denote the semi-strip
0 � �z � π/ε, 0 � �z with the cut square {�z < z0} ∩ {�z < z0}. The purpose of this cut
is to separate Rz0 from the singularity z = 0 of q−1(z, ε) (so that q−1(z, ε) can be estimated
from above in Rz0 ). The domain Rz0 is shown in figure 1.

Definition 5.1. Let X be the complex Banach space of vector-valued functions W(z, ε) ∈ C
4

that are analytic in z ∈ Rz0 and continuous in ε ∈ [0, ε0] with the norm ‖W‖X = M0 =
infR+ M , where∥∥∥∥

(
W1

W2

)∥∥∥∥ � M|q−3(z, ε)||e−(ε/2)z|,
∥∥∥∥
(

W3

W4

)∥∥∥∥ � M|q−4(z, ε)|,

z ∈ Rz0 , ε ∈ [0, ε0]. (5.1)
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z 

0 

i π/ε
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i z
0

R
z

0
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0

Figure 1. The domain Rz0 on the complex plane of z.

The substitutions

v(z, ε) = u(z, ε) + 6c(ε)q−2(z, ε) (5.2)

and U = T W , where U = Col(u, u′, u′′, u′′′) and

T =
(

1 −1
λ1 −λ2

)
⊗

(
1 0
0 1

)
, (5.3)

reduce the inner equation (1.1) to the vector equation

W ′ =




0 1 0 0
λ1 0 0 0
0 0 0 1
0 0 λ2 0


 W − θ ′

2θ

(
I I

I I

)
W +

1

θ




0
1
0
1


 [(W1 − W3)

2 − f (q, W)], (5.4)

where

λ1,2 = ε2 − 1 ±
√

(1 + ε2)2 + 48q−2

2
, θ =

√
(1 + ε2)2 + 48q−2. (5.5)

Theorem 5.2. Let c(ε) be a continuous function such that there exists some B > 0 satisfying

|c(ε) − 1| � Bε (5.6)

for all ε ∈ [0, ε0]. There exists a unique solution W ∈ X of the vector equation (5.4) such that
the function v(z, ε) in (5.2) solves the inner equation (1.1). This W is a continuous function
in ε ∈ [0, ε0] and an analytic function in γ ∈ E.

The statement is proved in appendix B. The proof of the particular case γ = 0 can be
found in [T00].

Remark 5.3. By corollary 4.12 and theorem 5.2, in the case c+(ε) = 6c(ε) the solution (5.2)
to the inner equation (1.1) is the stable solution (i.e. Dzv(iπ/ε, ε) = 0), represented by the
exponential series (4.38).
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Remark 5.4. In the case

|f (q, 0)| = O(ε2q−4) + O(q−6) (5.7)

in Rz0 × [0, ε0] the Banach space X in theorem 5.2 can be replaced by the Banach space Y ,
where ‖G(z, ε)‖Y = infR+ M , such that

‖G(z, ε)‖ � M|q−4| (5.8)

in Rz0 × [0, ε0]. This observation is also valid in a general case, described in remark B.5. In
particular, (5.7) is true when condition (5.6) in theorem 5.2 is replaced by

|c(ε) − 1| � Bε2 (5.9)

for some B > 0.

It is easy to show that the smoothness of c(ε) determines the smoothness of W(z, ε) in
ε. To this end one can use the relation between inner and outer solutions v(z, ε) and y(x, ε)

together with theorem A.1 and corollary 4.12.

Lemma 5.5. Let v(z) be defined by

v(z) = v(z, 0) = 6

z2
+ W1(z, 0) − W3(z, 0), (5.10)

where W(z, ε) is defined in theorem 5.2. The function v(z) is a solution to the truncated inner
equation (1.6) and v(z) ≡ v+(z).

Proof. When ε = 0 we have c(0) = 1 and limε→0 q(z, ε) = z uniformly on a bounded subset
of C. Then, by construction (see appendix B), the function v(z) in (5.10) solves the truncated
inner equation (1.6). Moreover, according to remark 5.4,

W1(z, 0) − W3(z, 0) = O(z−4), as z → ∞, 0 � arg z <
π

2
, (5.11)

and the vector-function W(z, ε) is real valued when z ∈ R
+ and z > z0. Suppose that W(z, 0)

has an asymptotic expansion in z−1 as z → ∞ in 0 � arg z < π/2. Then, using the symmetry
consideration, we obtain that v(z) has an asymptotic expansion in the right half-plane and
v(z) − (6/z2) = O(z−4). The only formal power series solution to (1.6) consistent with
the latter condition is given by (3.1). Now the statement of the lemma follows from the fact
that v+(z) is the only solution to (1.6) that has the asymptotic expansion v̂0(z) in the right
half-plane. To prove the existence of a power series for W(z) in z−1 in 0 � arg z < π/2,
we notice that θ−1f (z, 0) in the integral equation (B.9) has an asymptotic expansion and the
integral operator I, determined by (B.13) preserves this property. Thus, all W(k)(z, 0) in the
series (B.15) have asymptotic expansions in powers of z−1 when 0 � arg z < π/2, such that
W(k)(z, 0) = O(z−k−3). �

Corollary 5.6. Let c(ε) in theorem 5.2 be

c(ε) = 1 + bε + o(ε), (5.12)

where b ∈ C, and let the solution v(z, ε) be defined by (5.2). Then

lim
ε→0

v(z, ε) = v+(z + b) (5.13)

for any z ∈ Rz0 .
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Proof. In the case c(ε) ≡ 1 the statement follows from theorem 5.2 and lemma 5.5 immediately.
In the general case (5.12), the solution v(z, ε) has form (4.38) by lemma 4.3. Then the statement
of the corollary follows from the fact that limε→0(ln c(ε)/ε) = b. �

Remark 5.7. Since equation (1.1) is time-reversible, all the obtained results about stable
solutions can be extended to unstable solutions by making change of variable z �→ (iπ/ε)− z.
A solution to the inner equation (1.1) is a homoclinic solution if it is simultaneously a stable
and an unstable solution. It is clear that any homoclinic solution can be turned into an even
solution by a proper translation.

Theorem 5.8. If s(γ ) �= 0 then there exists a neighbourhood D of the point (γ, 0) so that the
inner equation (1.1) has no homoclinic solutions when (γ, ε) ∈ D.

Proof. Suppose the opposite. Then there exist a sequence {γn, εn} ⊂ D, approaching (γ, 0) as
n → ∞, and the corresponding homoclinic solutions vsn(z, εn) to the inner equation (1.1) with
γ = γn, satisfying Dzvsn(iπ/εn, εn) = 0. By corollary 4.12 and remark 4.13, vsn(z, εn) can be
represented by (4.38), where c(εn) = 1 + O(ε2

n) as n → ∞ uniformly in some neighbourhood
E of γ . By theorem 5.2, vsn(z, εn) → v+(z) for any z ∈ Rz0 . Similar statement is true for
v−(z) in the second quadrant of C. Thus, for any z ∈ (iz0, iπ/ε), we have v+(z) ≡ v−(z). By
lemma 3.7, the equivalence of v+(z) and v−(z) contradicts the assumptions of the theorem. �

Remark 5.9. Let q(z, ε) be defined by (4.40). The inner equation (1.1) is then rewritten in
the equivalent form,[(

1 +
ε2q2

4

)
D2

q +
ε2q

4
Dq + 1

] [(
1 +

ε2q2

4

)
D2

q +
ε2q

4
Dq − ε2

]
v

= v2 + γ

[
2v

(
D2

q +
ε2

4
(qDq)

2

)
v +

(
1 +

ε2q2

4

)
(Dqv)2

]
, (5.14)

where Dd = d/dq. Equation (5.14) has three singular points q = ±2i/ε and q = ∞ in the
complex q plane. Each of these singularities is a regular singular point, i.e. the characteristic
exponentials in each singular point are trivial (see [T94a]– [T94c] for details). Thus, every
formal power series centred at q = ±2i/ε or at q = ∞ and satisfying (5.14) defines an analytic
solution of (5.14). Considering, for example, q = ∞, it is easy to see that the coefficient φ1(ε)

in the power series

v(q, ε) =
∞∑

j=1

φj (ε)q
−2j (5.15)

is at our disposal, whereas the remaining coefficients φj (ε), j = 2, 3, . . ., can be determined
by substitution of (5.15) into (5.14). By lemma 4.3, any stable solution can be represented as
the series (5.15), where φ1(ε) = 6c(ε). With a particular choice of φ1(ε) = c+(ε) in (5.15),
where c+(ε) is defined in corollary 4.12, the series (5.15) determines the solution vs(q, ε) of
the equation (5.14) that corresponds to the solution vs(z, ε) of the inner equation (1.1). By
theorem 5.3, the series (5.15) converges in the region |q| � 2/ε, and singularities at q = ±2i/ε
are branch-points. Note that the line �z = π/ε is mapped by q = q(z) onto the contour l

in the q-plane, that goes from q = i∞ down to q = 2i/ε along the imaginary axis, circles
around q = 2i/ε and goes back to q = i∞. Thus, existence of a homoclinic solution to the
inner equation (1.1) is equivalent to the requirement that the stable solution vs(q, ε) is analytic
in a vicinity of q = 2i/ε (see [T00]). Figure 2 shows a mapping of the z-plane to the complex
q-plane and the deformation of the contour described above.
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Figure 2. The mapping of the horizontal line �z = π/ε by q = q(z).

Remark 5.10. Behaviour of stable and unstable solutions to the inner equation (1.1) in the
limit ε → 0 can be described through the study of collision of regular singular points q = 2i/ε
and q = ∞ of equation (5.14) that form in the limit ε → 0 an irregular singularity at q = ∞
of the truncated inner equation (1.6). Certain results on collision of regular singular points can
be found in [G99, G04], but they do not cover the case of equation (5.14).

Remark 5.11. On the formal level, the series (5.15) can be obtained by changing the order of
summation in the formal solution (4.41)

v̂(q, ε) =
∞∑

j=0

ε2k+2Pk+1

(
2

εq

)
=

∞∑
j=1

φ̂j (ε)q
−2j , (5.16)

where

φ̂j (ε) = 22j

∞∑
k=j

ak,k−j ε
2k. (5.17)

It is easy to show that if φ1(ε) ∼ φ̂1(ε) as ε → 0 for j = 1, then φj (ε) ∼ φ̂j (ε) as ε → 0 for
all j ∈ N

+. Similarly to the formal power series solution (4.23) of the outer equation (1.4), we
shall consider the formal power series solution

v̌(q, ε) =
∞∑

m=0

ε2mvm(q) (5.18)

of the inner equation (1.1), where v0(q) satisfies the truncated inner equation (1.6) (note that
q = z in the case ε = 0) and the higher-order coefficients vm(q) satisfy nonhomogeneous
linear equations

[(∂2
q + 1)∂2

q − 2v0(q)]vm(q) = Hm(q), m � 1. (5.19)

Here Hm depends on v0, v1, . . . , vm−1 but not on vm. The difference between the formal
solutions v̌(q, ε) and v̂(q, ε) in (4.41) is that the coefficients vm(q) in (5.18) are analytic
functions of q (see lemma 5.12 below) whereas the coefficients v̂m(q) in (4.41) are formal
series in q−1 given by (4.42).

Lemma 5.12. Let S± be defined by (3.11). If v0(q) = v±(q) then there exist uniquely defined
solutions vm(q) = (vm)±(q), m = 1, 2, . . ., to the nonhomogeneous problem (5.19) that have
the same domain of analyticity as v0(q) and such that

(vm)±(q) ∼ v̂m(q), as q → ∞, q ∈ S±. (5.20)
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Proof. The statement is proved in two steps: (i) verification that the formal series v̂m(q)

satisfies the corresponding equation (5.19) for m � 1 and (ii) application of the main theorem
in [T94b] to equation (5.19). Both steps are checked directly. �

Remark 5.13. Similarly to condition (3.12), the solutions (vm)± satisfy

(vm)+(z) − (vm)−(z) = −2π ism(γ )eiz(1 + o(1)), as z → ∞, 0 < arg z < π, (5.21)

where sm(γ ) is the Stokes constant for the solution vm(z), which is determined through

sm(γ ) = lim
s→−i

(s + i)L−1[vm](s). (5.22)

It is clear that in the new notations s(γ ) = s0(γ ).

Theorem 5.14. Let Y be defined in remark 5.4. Then

vs(z, ε) ∼
∞∑

m=0

ε2m(vm)+(q(z)), as ε → 0 (5.23)

in Y , i.e. for any N ∈ N there exists MN > 0 such that

‖vs(z, ε) − VN(q(z), ε)‖Y � ε2N+2MN, (5.24)

where VN(q, ε) = ∑N
m=0 ε2m(vm)+(q).

The proof of the theorem can be found in appendix B. This theorem proves asymptotic
expansion for the inner equation (1.1).

Remark 5.15. Here we state two simple conditions, each of them equivalent to the existence
of a homoclinic solution to (1.1). Let v±(z, ε) be stable and unstable solutions (not necessarily
normalized) to the inner equation (1.1) that are analytic (in z) in the regions R+ = Rz0 and
R− = iπ/ε − Rz0 , respectively (see remark 5.7). By theorem 5.2, we have limε→0 v±(z, ε) =
v±(z), where v±(z) is defined by (3.9). Solutions v±(z, ε) coincide and form a homoclinic
solution if and only if for any a, b, z0 < a < b < π/ε, v+(z, ε) ≡ v−(z, ε) on [ia, ib] (see
figure 1). The latter condition can be rewritten as

F0(γ, ε) =
∫ ib

ia

|v+(z, ε) − v−(z, ε)| dz = 0. (5.25)

An equivalent condition is given by the system

v′
s

(
iπ

ε
, ε

)
= 0, v′′′

s

(
iπ

ε
, ε

)
= 0, (5.26)

where v′(z, ε) = Dzv(z, ε). Indeed, if both v′(z1) = v′′′(z1) = 0 at some point z1, then all odd
derivatives of v(z) are zero at z = z1, so that v(z) is symmetric with respect to z = z1. The
first condition (5.25) is used in theorem 5.16. The second condition (5.26) is used in numerical
computations in section 6.

Theorem 5.16. If s(γ0) = 0 for some γ0 ∈ R but s ′(γ0) �= 0 then there exists a unique smooth
curve of homoclinic solutions γ (ε) in the parameter space (γ, ε) with γ (0) = γ0, such that
the inner equation (1.1) has a homoclinic solution in a neighbourhood of the point (γ0, 0) if
and only if the parameters of (1.1) are on the curve γ (ε).

Proof. Without any loss of generality we can assume v+ = vs, v− = vu in (5.25), where vu

is the unstable solution satisfying Dzvu(iπ/ε, ε) = 0. Since vu(iπ/2 − ξ) = vs(iπ/2 + ξ),
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ξ ∈ C, hence the difference v+ − v− is purely imaginary on [iz0, iπ/2]. By theorem 5.14 and
the representation (3.12) we know that

v+(z, ε) − v−(z, ε) �= 0 when z ∈ [ia, ib] (5.27)

if s(γ ) �= 0 and if ε is sufficiently small. In the case s(γ0) = 0 condition (5.27) still holds if
we additionally require s1(γ0) �= 0. Then condition F0(γ, ε) = 0 is equivalent to

F(γ, ε) =
∫ ib

ia

[v+(z, ε) − v−(z, ε)] dz = 0. (5.28)

The proof of the theorem is based on the implicit function theorem applied to (5.28), with
the special case s1(γ0) = 0 considered later. According to remark B.5 and theorem 5.14, the
solutions v± have continuous derivatives in γ and in ε2 for γ ∈ E, ε ∈ [0, ε0]. Then F(γ, ε)

also has continuous derivatives in γ and in ε2 in the same region. To apply the implicit function
theorem, it is sufficient to show that

F(γ0, 0) = k1s(γ0) and
∂

∂γ
F (γ, ε)|(γ0,0) = k2s

′(γ0), (5.29)

where the real coefficients k1,2 = k1,2(a, b) �= 0. Indeed, using (3.12) for z ∈ [ia, ib], we
obtain

F(γ0, 0) = 2π(e−a − e−b)s(γ0)(1 + o(1)), as a → ∞. (5.30)

It is clear that by choosing some sufficiently large a, b we can guarantee that k1 = 2π(e−a −
e−b)(1 + o(1)) �= 0.

Since v(z, ε) is continuously differentiable with respect to γ , we obtain

∂

∂γ
F (γ, ε) =

∫ ib

ia

[
∂v+

∂γ
(z, ε) − ∂v−

∂γ
(z, ε)

]
dz. (5.31)

Repeating the previous arguments for ∂v/∂γ instead of v, we obtain ∂/∂γF (γ0, 0) =
k2s(γ )(γ0), where k2 = 2π(e−a − e−b)(1 + o(1)) > 0 and s(γ )(γ ) is the Stokes constant
for the solution vγ (z). Thus, it remains to show that s ′(γ ) = s(γ )(γ ) to complete the proof.
To this end we convert (1.6) into the integral equation described in theorem 1.3, [T94c]. The
desired result follows from differentiating both sides of this equation with respect to γ .

To consider the remaining case s1(γ0) = 0, we start with the linear equation

L
∂v

∂γ
= (D2

z + 1)(D2
z − ε2)

∂v

∂γ
− 2v

∂v

∂γ
− 2γ

[
∂v

∂γ
D2

z v + vD2
z

∂v

∂γ
+ DzvDz

∂v

∂γ

]
= �(v)

(5.32)

for ∂v/∂γ , where the free term �(v) does not depend on ∂v/∂γ . Note that ∂v/∂ε2 satisfies
the same nonhomogeneous problem (5.32) but with a different free term, i.e.

L
∂v

∂ε2
= �(v), (5.33)

where �(v), as well as �(v), can be calculated explicitly. The Stokes constant of ∂v/∂γ (z, 0)

is s ′(γ0) whereas the Stokes constant of ∂v/∂ε2(z, 0) = v1(z) is s1(γ0). Let us change the
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parameter γ = µ + ε2 in the inner equation (1.1), where µ is a new independent parameter.
This change will not affect the truncated equation (1.6), so the Stokes constant of v0(z) remains
the same. However, the higher order equations in (5.19) will be altered. In particular, equation
for ∂v/∂ε2(z, 0) = v1(z) will become

L
∂v

∂ε2
= �(v) + �(v) , (5.34)

where ε = 0 and µ = γ0. Then the Stokes constant of the solution ∂v/∂ε2(z, 0) will be
s ′(γ0) + s1(γ0) �= 0. Thus, even if s1(γ0) = 0 but s ′(γ0) �= 0, the condition F(µ, ε) = 0
is still equivalent to (5.25). Since ∂v/∂µ(z, 0) = ∂v/∂γ (z, 0), we can continue as above
to prove the existence of a homoclinic solution curve µ(ε), such that µ(0) = γ0. Then
γ (ε) = µ(ε) + ε2. �

6. Numerical computations of homoclinic orbits

We report here numerical results on computations of the Stokes constant and homoclinic
solutions of the inner equation (1.1). Our numerical results illustrate the analytical theory
developed in the paper. We focus on computations of the first five one-parameter families of
homoclinic orbits on the parameter plane (γ, ε).

The Stokes constant s(γ ) is computed from the limit of the sequence {βk}∞k=1 which
converges for any γ ∈ C according to theorem 3.10. We restricted our attention to the
case γ ∈ R. Figure 3(a) shows the coefficients β60, β70 and β80 in the sequence versus
parameter γ . Absolute and relative errors between two subsequent elements in the sequence
|βk+1(γ ) − βk(γ )| are shown in figures 4(a) and (b) for k = 60, 70, 80. It follows from
figure 4(a) that the truncation error of the numerical approximation is of the order of 10−4.
Since the slopes s ′(γ ) are order of O(1) near zeros of s(γ ), the error of approximating zeros
of s(γ ) by zeros of β80(γ ) is also of the order of 10−4. Numerically, the first five zeros of
β80(γ ) have been computed as follows:

γ1 = 1.250, γ2 ≈ 2.401, γ3 ≈ 3.931, γ4 ≈ 5.852, γ5 ≈ 8.172, (6.1)

where the first zero is exact according to lemma 3.1.
By using the numerical approximations for a zero γn of the Stokes constant s(γ ), we can

approximate the homoclinic orbit v(z) in the inner equation (1.1). Let us consider the N th
partial sum ŷN (x) of the formal power series ŷ(x), defined in lemma 4.4. The partial sum
ŷ1(x) can be computed explicitly as follows:

ŷ1(x) = −3

2
sech2

(x

2

)
+ ε2

[
3(7 − 6γ )

4
sech2

(x

2

)
+

9(4γ − 5)

8
sech4

(x

2

)]
. (6.2)

Within the partial sum truncation ŷ1(x), we can replace the value of γ by its limiting value
γn = limε→0 γ (ε). We also rewrite the approximation ŷ1(x) in the variables (1.5) with c = 0 as
v̂1(z). The approximation v̂1(z) is shown in figure 3(b) for the first five zeros (6.1) and ε = 0.2.
It is clear from figure 3(b) that the first five homoclinic orbits v(z) remain single-humped in
z ∈ R. The width and amplitude of the homoclinic orbit increase with larger values of γ .

Homoclinic orbits v(z) have been approximated in a numerical solution of the differential
equation (1.1). We solve the differential equation (1.1) by the Runge–Kutta method, starting
with the initial value:

(v, v′, v′′, v′′′)(L) = c∞(1, ε, ε2, ε3)eεL, (6.3)

where L is a large negative number and c∞ is a small negative number, e.g. L = −50 and
c∞ = −0.001. The solution of the initial-value problem (6.3) would correspond to the unstable
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Figure 3. (a) The numerical coefficients β60, β70, and β80 versus γ from the recurrence
equation (3.15). (b) Homoclinic orbits obtained from the truncated solution (6.2) for ε = 0.2.

solution vu(z). We continue the numerical solution for z > L until the first minimum point
occurs at z = z0 such that v′(z0) = 0. The value of v′′′(z0) is plotted in figure 5(a) versus
γ for ε = 0.2. Zeros of v′′′(z0) in γ give approximations of the values γn(ε) for location of
the homoclinic orbits. The homoclinic orbit solutions are shown in figure 5(b) after the shift
v(z − z0), which map all minima points to the origin. The first five homoclinic orbits are
single-humped in z ∈ R for ε = 0.2. Furthermore, the width and amplitude of the homoclinic
orbits increase with larger values of γ . Figure 5(c) shows the distance between the numerical
approximation for the first zero γ1(ε) and the exact solution (1.7) for ε = 0.2. The absolute
error of the numerical approximation is of the order of 10−6.

Figure 6 shows the five one-parameter curves γ (ε)which correspond to the first homoclinic
orbits v(z). These curves are obtained from numerical zeros of v′′′(z0) in γ for different values
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Figure 4. (a) Absolute numerical error Ek(γ ) = |βk+1(γ )−βk(γ )| for k = 60, 70, 80. (b) Relative
numerical error Ek(γ ) = |βk+1(γ ) − βk(γ )|/|βk(γ )| for k = 60, 70, 80.

of ε (see figure 5(a)). The black dots in figure 6 show locations of zeros of the Stokes constant
s(γ ) in (6.1) (see figure 3(a))). Dotted curves show results of the first-order approximation of
the curve γ (ε):

γ (ε) = γn + ε2γ (1)
n + O(ε4), γ (1)

n = − s1(γn)

s ′(γn)
, (6.4)

where s1(γ ) is the Stokes constant for the formal power series of the first-order
correction:

v̂1(z) = −1

2
+

∞∑
k=1

α
(1)
k

z2k
= −1

2
+

∞∑
k=1

(−1)k−1(2k − 1)!β(1)
k

z2k
, (6.5)

such that s1(γ ) = 1
2 limk→∞ β

(1)
k (γ ). The Stokes constant s1(γ ), defined by (5.21), exists
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Figure 5. (a) Dependence of v′′′(z0) versus γ for ε = 0.2 from a numerical solution of the inner
equation (1.1) with initial values (6.3), where z0 is the first minimum of v(z). (b) Homoclinic
orbits obtained from the numerical solution v(z) after the shift v(z − z0) for the first five zeros
of v′′′(z0) in γ . (c) Error between the numerical solution for the first zero of v′′′(z0) and the
solution (1.7).

in accordance with lemma 5.12 and remark 5.13. We note that the formal series (6.5) for
v̂1(z) is obtained from the formal series (4.41)–(4.42), where q(z) is expanded in powers of
z in (4.40). The graph for elements of the first-order corrections β

(1)
k (γ ) looks similar to

figure 3(a), while the numerical values of γ (1)
n for the first five zeros have been computed as

follows:

γ
(1)
1 ≈ −0.316, γ

(1)
2 ≈ −3.374, γ

(1)
3 ≈ −11.542, γ

(1)
4 ≈ −28.846, γ

(1)

5 ≈ −58.626.

The exact value for γ
(1)
1 can be computed from the analytical solution (1.7) as γ

(1)
1 = − 5

16 =
−0.3125. It is clearly seen from figure 6 that the numerical curvesγ (ε) approach the asymptotic
approximation (6.4) as ε → 0. Nevertheless, numerical continuation of the homoclinic orbits
were stopped at ε ≈ 0.15 as the numerical computations of the ODE solve become unreliable
for small ε. This numerical problem is similar to the one observed in [C01], where numerical
curves have been terminated before they reach the limit ε = 0.
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Figure 6. First five families of homoclinic orbits on the plane (γ, ε). Black dots show location of
zeros of the Stokes constant s(γ ) computed from data of figure 3(a). Dotted curves show asymptotic
approximations (6.4).
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Appendix A. Proof of theorem 4.9

Let ŷN (x, ε) denote the first (N+1) terms in the formal series (4.28), where N ∈ N. Linearizing
(1.4) around ŷN (x, ε) defined by lemma 4.4,

y(x, ε) = ŷN (x, ε) + ỹ(x, ε) ≡ yN(x, ε), (A.1)

we find the equation for ỹ(x) in the form

(ε2D2
x + 1)(D2

x − 1)ỹ = ỹ2 + ε2γ (2ỹD2
x ỹ + (Dxỹ)2) + 2ŷN ỹ

+2ε2γ (ŷND2
x ỹ + DxŷNDxỹ + ỹD2

x ŷN ) − ε2(N+1)RN, (A.2)

where Dx = d/dx and the remainder term

ε2(N+1)RN = (ε2D2
x + 1)(D2

x − 1)ŷN − ŷ2
N − ε2γ (2ŷND2

x ŷN + (DxŷN)2) (A.3)

is a polynomial in r . Since the leading term of ŷN is − 3
2 r , we considered the nonlinear

equation (A.2) as a perturbed linear equation

(ε2D2
x + 1)(D2

x − 1)ỹ + 3rỹ = ỹ2 + f (ŷN , ỹ), (A.4)

where

f (ŷN , ỹ) = ε2γ (2ỹD2
x ỹ + (Dxỹ)2) + 2

(
ŷN +

3

2
r

)
ỹ

+ 2ε2γ (ŷND2
x ỹ + DxŷNDxỹ + ỹD2

x ŷN ) − ε2(N+1)RN . (A.5)
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Note that f (ŷN , 0) = −ε2(N+1)RN . Introducing Ỹ = Col(Ỹ1, Ỹ2, Ỹ3, Ỹ4), where Ỹj = D
j−1
x ỹ,

j = 1, 2, 3, 4, we rewrite the perturbed equation (A.4) in the vector form as

Ỹ ′ =




0 1 0 0

0 0 1 0

0 0 0 1

1 − 3r

ε2
0

ε2 − 1

ε2
0


 Ỹ +




0

0

0

1

ε2


 [Ỹ 2

1 + f (ŷN , Ỹ )]. (A.6)

The notation f (ŷN , Ỹ ) is used to emphasize that f depends on the first three components of the
vector Ỹ . In order to block-diagonalize the matrix in the linear part of the vector equation (A.6),
we represent this 4-by-4 matrix by direct products of 2-by-2 matrices:

I ⊗ H+ + S ⊗ H−, (A.7)

where

H+ =
(

0 1

0 0

)
, H− =

(
0 0

1 0

)
, S =


 0 1

(1 − 3r)

ε2

ε2 − 1

ε2


 . (A.8)

The matrix S has two eigenvalues

λ1,2 = ε2 − 1 ±
√

(1 + ε2)2 − 12ε2r

2ε2
(A.9)

with the corresponding eigenvectors Col(1, λ1) and Col(−1, −λ2). Using a similarity
transformation Ỹ = T W , where

T =
(

1 −1

λ1 −λ2

)
⊗ I, (A.10)

we transform the vector equation (A.6) to the block-diagonal form:

W ′ = 1

ε




0 1 0 0

λ1 0 0 0

0 0 0 1

0 0 λ2 0


 W − θ ′

2θ

(
I I

I I

)
W +

1

θ




0

1

0

1


 [(W1 − W3)

2 + f (ŷN , W)],

(A.11)

where

θ =
√

(1 + ε2)2 − 12ε2r. (A.12)

Equation (A.11) will be considered as a perturbation of the trivial solution to the homogeneous
linear equation

W̃ ′ = 1

ε




0 1 0 0

1 − 3r 0 0 0

0 0 0 1

0 0 −ε−2 0


 W̃ , (A.13)

which has the fundamental solution W̃ = J−1V , where J = diag(1, 1, 1, ε),

V =
(

V1 0

0 V2

)
=




v1 v2 0 0

v′
1 v′

2 0 0

0 0 eix/ε e−ix/ε

0 0 ieix/ε −ie−ix/ε


 , (A.14)
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and v1,2 are linearly independent solutions of the scalar equation v′′ = (1 − 3r)v and
v2(x) = v1(x)

∫ x

0 (dt/v2
1(t)). To study stable solutions, we convert the vector equation (A.11)

into its integral form

W(x, ε) = W̃ (x)

∫ x

∞
W̃−1(t)

[(
A1 0

0 A2

)
− θ ′

2θ

(
I I

I I

)]
W(t, ε) dt

+
1

θ
W̃ (x)

∫ x

∞
W̃−1(t)




0

1

0

1


 [(W1(t, ε) − W3(t, ε))

2 + f (ŷN , W)] dt, (A.15)

where

Aj =
(

0 0

ρj 0

)
, j = 1, 2 (A.16)

and

ρ1 = λ1 − (1 − 3r) = O(ε2), ρ2 = λ2 +
1

ε2
= O(1). (A.17)

The latter estimates hold uniformly with respect to x ∈ R. The vector equation (A.15) can be
written in the operator form as

W(x, ε) = IR[W ](x, ε), (A.18)

where I is the solution operator for a nonhomogeneous equation with the homogeneous part
(A.13) and R[W ] is the operator in the integrand of (A.15). We consider the solution to the
integral equation (A.18) by iterations:

W(k)(x, ε) = IB[W(k−1)](x, ε), k = 1, 2, . . . , (A.19)

where W(0)(x, ε) ≡ 0, �W(k) = W(k) − W(k−1), and

W(x, ε) =
∞∑

k=1

�W(k)(x, ε), (A.20)

provided that the series converges.

Theorem A.1. For any N ∈ N, any A > 0 and any bounded segment E ⊂ R, there exists
some ε0 such that the series (A.20) converges in B2 uniformly in ε ∈ [0, ε0] and in γ ∈ E.
The function W(x, ε) is a smooth function of (ε, γ ) in ε ∈ [0, ε0] and γ ∈ E. Moreover,
‖W(x, ε)‖B2 = O(ε2(N+1)).

Proof. The proof consists of three main steps: (i) estimates for linear operator I; (ii) estimates
for operator R, and; (iii) convergence of iterations.

(i) According to the representation (A.14), we block-diagonalize I = diag(I1, I2). Since
the Wronskian of v1(x) and v2(x) is identically one, it is easy to see that for a given vector-
function G(x) = Col(g1(x), g2(x)) we have

I1[G] =
(

[−v1
∫

v2g2 dt + v2
∫

v1g2 dt] + [v1
∫

v′
2g1 dt − v2

∫
v′

1g1 dt]

[−v′
1

∫
v2g2 dt + v′

2

∫
v1g2 dt] + [v′

1

∫
v′

2g1 dt − v′
2

∫
v′

1g1 dt],

)
(A.21)
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where all integrals are taken over [x, ∞). Using explicit expressions for v1(x) and v2(x), we
can show that there exist some L > 0 (that depends on A) such that

‖v1(x)‖B1 , ‖v′
1(x)‖B1 < L, ‖v2(x)‖B−1 , ‖v′

2(x)‖B−1 < L. (A.22)

Using (A.21) and elementary calculations, it is easy to see that the I1 is a bounded operator in
Bj when j � 2. We choose a constant K such that ‖I1‖ � K in the Banach space B2. In order
to consider the integral operator I2, we use the transformation Ǐ2 = diag(ε−1, 1)I2diag(ε, 1)

and find the representation for Ǐ2:

Ǐ2[G] = 1

2

∫ ∞

x

(
1 1

i −i

) (
ε−i((t−x)/ε) 0

0 εi((t−x)/ε)

) (
1 −i

1 i

)
G(t) dt

=
∫ ∞

x


cos

t − x

ε
− sin

t − x

ε

sin
t − x

ε
cos

t − x

ε




(
g1(t)

g2(t)

)
dt

=
(

�
�

) ∫ ∞

x

εi((t−x/ε)[g1(t) + ig2(t)] dt, (A.23)

where G(x) = Col(g1(x), g2(x)) ∈ B2. It is clear that Ǐ2 is a bounded operator in Bj for
j � 1. We assume that the constant K , chosen above, is such that it is greater than the norm
of Ǐ2 in B2. For any four-dimensional vector W let W̌ = diag(1, 1, ε−1, 1)W . Let us choose
L > 0 in (A.22) such that∥∥∥∥RN

θ

∥∥∥∥
B2

� 1
2L, (A.24)

where θ is given by (A.12). Then, according to (A.19), (A.20)

‖W̌ (1)‖B2 � 1
2LKε2(N+1). (A.25)

(ii) We use (A.9), (A.10) to calculate

ỹ = W1 − W3, ỹ ′ = W2 − W4, ỹ ′′ = λ1W1 − λ2W3. (A.26)

Then, according to (A.15), (A.2), the operator R = RD + RI + RN + RR , where

RDW =
(

A1 0
0 εA2

)
diag(1, 1, ε−1, 1)W,

RIW = − θ ′

2θ

(
I I

I I

)
W,

RNW = e0[(W1 − W3)
2 + ε2γ (2(W1 − W3)(λ1W1 − λ2W3) + (W2 − W4)

2)],

RRW = e0[(2ŷN + 3r + 2ε2γ ŷ ′′
N)(W1 − W3) + 2ε2γ (ŷ ′

N(W2 − W4) + ŷN (λ1W1 − λ2W3))],

where e0 = (0, 1, 0, 1)T. We rewrite the integral equation (A.18) as

diag(1, 1, ε−1, 1)W = ǏRDW + Ǐdiag(1, 1, ε−1, 1)RIW + ǏRRW + ǏRNW, (A.27)

where Ǐ = diag(I1, Ǐ2). To prove the convergence of (A.20), we need to estimate the norm of

�W̌(k) = ǏRD�W(k−1) + Ǐdiag(1, 1, ε−1, 1)RI�W(k−1) + ǏRR�W(k−1)

+ (ǏRNW(k−1) − ǏRNW(k−2)). (A.28)



2306 A Tovbis and D Pelinovsky

Lemma A.2. There exists some B > 0 such that

{‖RDW‖2, ‖diag(1, 1, ε−1, 1)RIW‖2, ‖RRW‖2} � εB‖W̌‖2, (A.29)

where W̌ ∈ B2.

Proof. For operators RD, RI the statement follows from (A.9), (A.16). The factors in front
of W1 −W3 and W2 −W4 in the expression for RR are of the order O(ε2). Replacing W3 with
εW̌3 we see that the last term in RR is of the order ε‖W̌‖2. The proof is completed. �

(iii) Our final goal is to prove that

‖�W̌(n)‖B2 � LKε2(N+1)

2n
, n = 1, 2, . . . , (A.30)

by induction. Suppose that this is true for all n < k for some k ∈ N. To prove (A.30) for
n = k, we show that the norm of each term in (A.28) does not exceed (LKε2(N+1))/4 · 2k .
According to lemma A.2, the condition

ε � 1

8BK
(A.31)

guarantees the required estimate for the first three terms of (A.28). To estimate the remaining
difference we observe that the square brackets expression in RN can be rewritten as

[1 − γ (1 − ε2)](W1 − W3)
2 + θ(W 2

1 − W 2
3 ) + ε2γ (W2 − W4)

2. (A.32)

The difference

[W(k−1)
1 − W

(k−1)
3 ]2 − [W(k−2)

1 − W
(k−2)
3 ]2

= [W(k−1)
1 + W

(k−2)
1 − W

(k−1)
3 − W

(k−2)
3 ](�W

(k−1)
1 − �W

(k−1)
3 ). (A.33)

According to our assumptions, the norm of this difference does not exceed
8((KLε2N+2)2/2k−1). Making similar estimates for other terms in (A.32), we establish that

‖RNW(k−1) − RNW(k−2)‖B2 � 24M
(KLε2N+2)2

2k−1
, (A.34)

where M = max{1 − γ (1 − ε2), θ, ε2γ }. Thus, the condition

ε � min

{
1

8BK
,

1

(48MK2L)1/(2N+2)

}
(A.35)

guarantees (A.30) for n = k. So, the series W̌ = ∑∞
k=1 W̌ (k) is strongly convergent in B2 and

‖W̌‖B2 � LKε2N+2. �

Appendix B. Existence of inner solutions

We start by constructing an iterative stable solution to the inner equation (1.1) that is a real
translation of vs(z, ε) defined by (4.40). Our construction will have some common elements
with the corresponding construction for the outer equation, described in appendix A. The
results of [T00], where the case γ = 0 was studied, will be used.

Let us linearize the inner equation (1.1) by the substitution

v(z, ε) = u(z, ε) + 6c(ε)q−2(z, ε), (B.1)
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where c(ε) is a continuous function and q(z, ε) is defined by (4.40). Then the inner
equation (1.1) is reduced to the form

(D2
z + 1)(D2

z − ε2)u − 12q−2u = u2 − f (q, U), (B.2)

where U = Col(u, u′, u′′, u′′′) and

f (q, U) = 720cq−6 − 36c(1 − c + 4ε2)q−4 − 12(c − 1)q−2u − γ

×
(

2uu′′ + u′2 + 12c[(6q−4 + ε2q−2)u − 2 cosh(εz/2)q−3u′ + q−2u′′]

+ 36c2[16q−6 + 3ε2q−4]

)
.

The vector form of equation (B.2) is

U ′ =




0 1 0 0

0 0 1 0

0 0 0 1

ε2 + 12q−2 0 ε2 − 1 0


 U +




0

0

0

1


 [u2 − f (q, U)]. (B.3)

The change of variables U = T W , where

T =
(

1 −1

λ1 −λ2

)
⊗ I, (B.4)

reduces (B.3) to

W ′ =




0 1 0 0

λ1 0 0 0

0 0 0 1

0 0 λ2 0


 W − θ ′

2θ

(
I I

I I

)
W +

1

θ




0

1

0

1


 [(W1 − W3)

2 − f (q, TW)], (B.5)

where

λ1,2 = ε2 − 1 ±
√

(1 + ε2)2 + 48q−2

2
, θ =

√
(1 + ε2)2 + 48q−2. (B.6)

Vector equation (B.5) is a perturbation of the linear equation

V ′ =




0 1 0 0

ε2 + 12q−2 0 0 0

0 0 0 1

0 0 −1 0


 V, (B.7)

which has a fundamental solution

V =
(

V1 0

0 V2

)
=




v1 v2 0 0

v′
1 v′

2 0 0

0 0 eiz e−iz

0 0 ieiz −ie−iz


 . (B.8)

Here v1,2 are linearly independent solutions of v′′ = (ε2+12q−2)v, such that v1(z) = 6(q−2)′ =
−12q3 cosh(εz/2) and v2(z) = v1(z)

∫ z

0 (dt/v2
1(t)). The differential equation (B.5) can be
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converted into the integral equation

W(z, ε) = V (z)

∫ z

∞
V −1(t)

[(
A1 0

0 A2

)
− θ ′

2θ

(
I I

I I

)]
W(t, ε) dt

+
1

θ
V (z)

∫ z

∞
V −1(t)




0
1
0
1


 [(W1(t, ε) − W3(t, ε))

2 − f (q, TW)] dt, (B.9)

where the contour of integration is a horizontal ray �t = �z, �t � �z,

Aj =
(

0 0

ρj 0

)
, j = 1, 2, (B.10)

and

ρ1 = θ − (1 − ε2)

2
− (ε2 + 12q−2), ρ2 = −θ − (1 + ε2)

2
. (B.11)

The vector integral equation (B.9) can be written in the operator form as

W(z, ε) = IR[W ](z, ε), (B.12)

where

I[F ] = V (z)

∫
γ (z)

V −1(t)F (t) dt (B.13)

acts on four-dimensional vector-valued functions that are analytic in Rz0 and R[W ] is
the operator in the integrand of (B.9). The block-diagonal structure of V (z) induces the
corresponding block-diagonal structure of I[F ] = diag(I1[F ], I2[F ]), where I1[F ] and I2[F ]
act on the first (last) two components of F respectively.

Let

W(0)(z, ε) ≡ 0, W(k)(z, ε) = IB[W(k−1)](z, ε), (B.14)

where k = 1, 2, . . . , and �W(k) = W(k) − W(k−1). Then

W(z, ε) =
∞∑

k=1

�W(k)(z, ε) (B.15)

is a solution to (B.12) provided that the series converges. We need the following statements
to prove convergence of iterations for the integral equation (B.9).

Lemma B.1. [T00] The inequality

ε

2
|e−εz/2| � |q−1(z)| � 2

z0
|e−εz/2| (B.16)

holds for all z ∈ Rz0 and all ε � 0 provided εz0 � ln 2.

Remark B.2. Note that q(z) = −(2/ε) cosh(ε�z/2) along the upper boundary �z = π/ε of
the region Rz0 . Therefore, on this boundary the inequality (B.16) turns into

ε

2
|e−εz/2| � |q−1(z)| � ε|e−εz/2|. (B.17)

Based on lemma B.1, the constant ε0 is chosen as ε0 = ln 2/z0. This implies that iz0 ∈ Rz0

for any ε ∈ [0, ε0].
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Lemma B.2. The inequality

|ρ1| � 36|q−2||ε2 + 12q−2|, |ρ2| � 24|q−2| (B.18)

holds for all z ∈ Rz0 and ε ∈ [0, ε0] provided z0 � 14.

Proof. According to (B.11),

ρ1 = − 48q−2(ε2 + 12q−2)

2(θ + 1 + ε2 + 24q−2)
, ρ2 = − 48q−2

2(θ + 1 + ε2)
. (B.19)

Taking into account (B.16), we obtain 48|q−2| � 192/z2
0 in Rz0 . Thus the choice z0 � 14

guarantees arg θ < π/4, so that the denominator for ρ2 is greater than 2 by absolute value.
This implies the second inequality in (B.18). Similar arguments can be applied for the first
inequality. �

Lemma B.4. [T00] If G(z) is a two-dimensional vector such that

‖G(z)‖ � |q−4| or ‖G(z)‖ � |q−6| (B.20)

for z ∈ Rz0 then, respectively,

‖I1G(z)‖ � 4

ε
|q−3(z)||e−(ε/2)z|, ‖I2G(z)‖ � 8|q−3(z)||e−(ε/2)z|

or

‖I1G(z)‖ � 24|q−4(z)||e−(ε/2)z|, ‖I2G(z)‖ � 8|q−5(z)||e−(ε/2)z|.

Proof of theorem 5.2. By lemma B.1 and lemma B.4, there exists some M > 0, such that

‖�W(1)‖X � M

2
. (B.21)

Similarly to the proof of theorem A.1, we represent the operator R = RD + RI + RN + RR ,
where

RDW =
(

A1 0
0 A2

)
W,

RIW = − θ ′

2θ

(
I I

I I

)
W,

RNW = e0[(W1 − W3)
2 + γ (2(W1 − W3)(λ1W1 − λ2W3) + (W2 − W4)

2)],

RRW = 12e0q
−2[1 − c + cγ (6q−2 + ε2)](W1 − W3)

−12e0cγ [2 cosh(εz/2)q−3(W2 − W4) − q−2(λ1W1 − λ2W3)],

and e0 = (0, 1, 0, 1)T. To prove the convergence of (B.15) we need to estimate the norm of

�W(k) = IRD�W(k−1) + IRI�W(k−1) + IRR�W(k−1) + (IRNW(k−1) − IRNW(k−2)).

(B.22)

According to lemma 5.1 from [T00], the norms of operators IRD, IRI : X → X are bounded
by K/z0, where K > 0 is some constant. To prove the same estimate for IRR (K can be
increased, if necessary) we use (B.6), (B.22) and lemma B.1 to observe that the expression in
the brackets in RRW can be estimated by O(|q−6|) uniformly in ε on [0, ε0]. Now the desired
estimate follows from lemma B.4. Our goal is to prove that

‖�W(n)‖X � M

2n
, n = 1, 2, . . . , (B.23)
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by induction. Suppose that this is true for all n < k for some k ∈ N. To prove (B.23) for
n = k, we want to show that the norm of each term in (B.22) does not exceed M/4 · 2k . For
the first three terms that can be achieved by choosing z0 > 1/8K . For the nonlinear term
IRNW(k−1) −IRNW(k−2) of (B.22) we repeat the corresponding arguments from lemma A.2
to obtain that z0 > 64MLK , where the constant L > 0 depends on γ , yields the necessary
estimate on this term. Then convergence of the series (B.15) follows by induction. �

Remark B.5. It is clear that the statements of theorem 5.2 remain true if the expression
(W1 − W3)

2 − f (q, TW) in (B.9) is replaced by any function h(q, W) that is analytic in W

in a vicinity of 0 ∈ C
4 and satisfies the following properties: (1) IR[0] ∈ X ; (2) the norm of

the corresponding operator IRR : X �→ X in (B.22), where RRW = (∂h/∂W)|W=0 · W , can
be made as small as necessary by choosing sufficiently small z−1

0 and ε; (3) if ‖X‖X , ‖Y‖X �
1
2‖IR[0]‖X , then ‖IRNX−IRNY‖X < δ‖X−Y‖X , where RNX denotes the nonlinear part
of h(q, X) and the value of δ > 0 can be made as small as necessary by choosing sufficiently
small z−1

0 and ε.
A particular example of the equation satisfying the requirements of remark B.5 can be

obtained by substituting vγ (z, e) = u(z, ε)−4(a1
2,1(γ ))c(ε)q−2(z, ε), where c(ε) is described

in theorem 5.2, into the equation

v′′′′
γ + (1 − ε2)v′′

γ − ε2vγ = 2vvγ + (2vv′′ + v′2) + 2γ (vγ v′′ + v′v′
γ + vv′′

γ ) (B.24)

for the derivative vγ = ∂v/∂γ .

Proof of theorem 5.14. Let us fix some N ∈ N. Substitution of

vs(z, ε) = VN(q(z), ε) + ε2N+2v(z, ε). (B.25)

into inner equation (1.1) yields

(D2
z + 1)(D2

z − ε2)v = 2(VNv + γ [V ′′
Nv + V ′

Nv′ + VNv′′])

+ ε2N+2(v2 + γ [2vv′′ + v′2]) + ρN, (B.26)

where

ρN = ε−2N−2(V 2
N + γ [2VNV ′′

N + V ′2
N ] − (D2

z + 1)(D2
z − ε2)VN). (B.27)

According to (4.40) and (4.26),

(D2
z + 1)(D2

z − ε2) =
[
D2

q + 1 +
ε2

4
(qDq)

2

] [
D2

q +
ε2

4

(
(qDq)

2 − 4
)]

. (B.28)

Substituting (B.28) into (B.27) and taking into account lemma 5.12, we obtain after some
algebra

ρN(q, ε) = 1
4 (D2

q + 1)[((qDq)
2− 4) + (qDq)

2D2
q]vN + 1

16 (qDq)
2[(qDq)

2− 4](vN−1 + ε2vN)

−
∑

i+j=N+1

[vivj + γ (2viD
2
qvj + (Dqvi)(Dqvj ))]

+
γ

4

∑
i+j=N

[2vi(qDq)
2vj + q2(Dqvi)(Dqvj )] + O(ε2q−4), (B.29)

where vj denotes (vj )+, j = 0, 1, . . . , N . It is easy to see now that ρN(q, ε) = O(q−4)

uniformly on Rz0 .
Substituting ρN together with

v = β(ε)q−2 + u (B.30)
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into (B.26), we obtain

[(D2
z + 1)(D2

z − ε2) − 12q−2]u = 2{(VN − 6q−2)u + γ [V ′′
Nu + V ′

Nu′ + VNu′′]}
+ε2N+2{(β(ε)q−2 + u)2 + γ [2(β(ε)q−2 + u)(β(ε)q−2 + u)′′ + (β(ε)q−2 + u)′2]}
+2β(ε){q−2VN + γ [q−2V ′′

N + V ′
N(q−2)′ + VN(q−2)′′]} + ρN. (B.31)

Similarly to (B.2), we rewrite (B.31) as

[(D2
z + 1)(D2

z − ε2) − 12q−2]u = ε2N+2u2 − f (q, U), (B.32)

where U = Col(u, u′, u′′, u′′′). Let us define

β(ε) =
(

c+(ε) − 4
N∑

k=0

ε2kak+1,k

)
ε−2N−2 (B.33)

where c+(ε) is the coefficient in the exponential series expansion (4.38) of vs . Then, according
to corollary 4.12 and remark 5.3, vs = VN + ε2N+2(β(ε)q−2 + u), where u is the solution to
(B.32) constructed by iterations as in theorem 5.2, provided that u = O(q−4) uniformly on
Rz0 . To demonstrate the latter fact, we first note that f (q, 0) = O(q−4) uniformly on Rz0 .
Since β(ε) = 4aN+2,N+1 + O(ε2) and v̂N+1(q) = 4aN+2,N+1q

−2 + O(q−4), hence, according to
lemma 5.12, f (q, 0) = O(ε2q−4)+O(q−6) uniformly on Rz0 . It follows now from remark B.5,
remark 5.4 that the solution u to (B.32) can be constructed by iterations as in theorem 5.2 in
the region RzN

with some zN � z0, and that u = O(q−4) uniformly on RzN
. However, we can

replace the region RzN
by Rz0 , since functions vs(z, ε) and vj (z), j = 0, 1, . . . , N are analytic

in Rz0 . �
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