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a b s t r a c t

We obtain sharp criteria for transverse stability and instability of line solitons in the discrete nonlinear
Schrödinger equations on one- and two-dimensional lattices near the anti-continuum limit. On a two-
dimensional lattice, the fundamental line soliton is proved to be transversely stable (unstable) when
it bifurcates from the X (Γ ) point of the dispersion surface. On a one-dimensional (stripe) lattice, the
fundamental line soliton is proved to be transversely unstable for both signs of transverse dispersion. If
this transverse dispersion has the opposite sign to the discrete dispersion, the instability is caused by
a resonance between isolated eigenvalues of negative energy and the continuous spectrum of positive
energy. These results are obtained for focusing nonlinearity, and the results for defocusing nonlinearity
can be deduced from a staggering transformation. When the line soliton is transversely unstable,
asymptotic expressions for unstable eigenvalues are also derived. These analytical results are compared
with numerical results and good agreement is obtained.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

One-dimensional solitons, when viewed in two spatial dimen-
sions, become line solitons which are uniform along the line
direction (called the transverse direction). Thus an important phys-
ical question is the transverse stability of line solitons to trans-
verse perturbations. It is well known that in homogeneous media,
line solitons in the nonlinear Schrödinger (NLS) equation and other
related wave equations are always transversely unstable [1] (see
also [2–4] for applications in optics and [5,6] for reviews). This in-
stability has been observed in recent optical experiments [7–9].

In the presence of a one-dimensional (stripe) periodic potential,
many line solitons are still transversely unstable [10,11]. To
suppress this transverse instability, various techniques have been
proposed [12–15]. In particular, it was shown numerically in
[16,17] that when a one- or two-dimensional periodic potential is
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included in the continuousNLS equation, this transverse instability
can be completely eliminated if the line soliton bifurcates
from certain symmetry points of the dispersion surface. Similar
suppression of transverse instability was also reported for line
solitons in the discrete nonlinear Schrödinger (dNLS) equation on
a two-dimensional square lattice [18,19].

In this article, we analytically investigate transverse stability
of line solitons in the dNLS equations on two-dimensional
(square) and one-dimensional (stripe) lattices. Near the anti-
continuum limit, we derive sharp stability criteria for these
discrete line solitons. On a two-dimensional lattice, we prove
that the fundamental line soliton is transversely stable (unstable)
when it bifurcates from the X (Γ ) point of the dispersion surface.
On a one-dimensional lattice, we prove that the fundamental
line soliton is transversely unstable for both signs of transverse
dispersion. These results are obtained under focusing nonlinearity,
and the results with defocusing nonlinearity can be deduced
from a staggering transformation. For unstable line solitons, their
unstable eigenvalues are also derived asymptotically. In addition,
we investigate the transverse stability of line solitons numerically
both near the anti-continuum limit and away from it. Near the
anti-continuum limit, the numerical results fully agree with the
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analytical results. Away from the anti-continuum limit, we reveal
additional bifurcations of unstable eigenvalues which cannot be
captured by the theoretical analysis.

The main novelty of our article is the analytical determination
of transverse stability or instability of discrete line solitons by
the negative index theory [20–22]. In particular, near the anti-
continuum limit, we are able to check analytically the assumptions
of the negative index theory and to provide definite answers
on the stability or instability of discrete line solitons. Another
novelty of our article is the rigorous derivation of analytical
approximations for the relevant eigenvalues responsible for
transverse instabilities of discrete line solitons. In the case of
one-dimensional (stripe) lattices, these analytical approximations
deal with a delicate problem of a Hamilton–Hopf bifurcation
of neutrally-stable eigenvalues embedded inside the continuous
spectral band.

This article is organized as follows. In Section 2, we consider the
transverse stability of discrete line solitons on a two-dimensional
lattice. We show that the entire solution family bifurcating from
the Γ point is transversely unstable, whereas the solution family
bifurcating from the X point is transversely stable in the anti-
continuum limit. In Section 3, we consider the transverse stability
of discrete line solitons on a one-dimensional lattice, and show that
they are always unstable. Numerical results and their comparison
with the theory are reported in Section 4. Section 5 concludes the
article with a discussion of open problems.

Before we start, we first introduce some mathematical nota-
tions which will be used in later analysis. If {ψn}n∈Z is a bi-infinite
sequence (i.e., a sequence which is infinite in both directions), and
Z is the set of integers, then ψ denotes the vector for this se-
quence in some vector space such as l2(Z) or, more generally, lp(Z)
for p ≥ 1. Here l2(Z) denotes the space of bi-infinite squared-
summable sequences with the norm

∥ψ∥l2 ≡


n∈Z

|ψn|
2

1/2

and the inner product

⟨ψ, ϕ⟩ ≡


n∈Z

ψ̄nϕn,

with the overbar for complex conjugation, and lp(Z) denotes the
space of sequences with the norm

∥ψ∥lp ≡


n∈Z

|ψn|
p

1/p

.

2. The case of two-dimensional lattices

In this section, we study transverse stability of line solitons in
the dNLS equation on a two-dimensional lattice,

i
dum,n

dt
+ ϵ(um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n)

+ |um,n|
2um,n = 0, (2.1)

where (m, n) ∈ Z2, um,n are complex-valued amplitudes that
depend on the evolution time t , and ϵ is the lattice-coupling
constant. Here the sign of nonlinearity has been normalized to be
unity through a scaling of ϵ and t . The anti-continuum limit of
zero coupling between lattice sites (ϵ = 0) was found to be very
attractive formany analytical studies on the existence and stability
of discrete solitons in the framework of the dNLS equation (see,
e.g., [23,24]). Detailed accounts of mathematical results obtained
in the anti-continuum limit can be found in books [25,26].
In the above dNLS equation, the defocusing case ϵ < 0 can be
mapped to the focusing case ϵ > 0 by the staggering transforma-
tion

um,n(t) = (−1)m+nvm,n(t)e−8iϵt . (2.2)

If u solves the dNLS equation (2.1), then v solves the same equation
with ϵ replaced by −ϵ. Thus, in what follows, we will consider the
focusing case (ϵ > 0) only.

The linear dispersion surface of the dNLS equation (2.1) is given
by the function

ω(k, p) = ϵ(4 − 2 cos(k)− 2 cos(p))

= 4ϵ

sin2


k
2


+ sin2

p
2


,

where wavenumbers (k, p) reside in the first Brillouin zone
[−π, π] × [−π, π]. This dispersion relation can be derived by
substituting the discrete Fourier modes um,n(t) = eikm+ipn−iωt into
the linear dNLS equation (2.1).

To understand bifurcations of stationary line solitons in
Eq. (2.1), we need to classify the stationary points of the dispersion
surface, where ∇ω(k, p) = 0. In the semi-open Brillouin zone
(−π, π] × (−π, π], there are only four stationary points, which
are commonly labeled as Γ , X, X ′, andM .

Γ : (k, p) = (0, 0) is the minimum point of the dispersion surface
with ω(0, 0) = 0;

X: (k, p) = (0, π) is a saddle point of the dispersion surface with
ω(0, π) = 4ϵ;

X ′: (k, p) = (π, 0) is the other saddle point of the dispersion
surface with ω(π, 0) = 4ϵ;

M: (k, p) = (π, π) is themaximumpoint of the dispersion surface
with ω(π, π) = 8ϵ.

Discrete line solitons may bifurcate from any stationary point
provided that the effective envelope NLS equation is focusing
[26, Section 1.1.2]. Let us consider each of the possibilities. For
definiteness, we assume that the line soliton is localized along the
m-direction and uniform along the n-direction.

Γ : For (k, p) = (0, 0), we substitute um,n(t) = eiµ
2tψm and obtain

the stationary 1D dNLS equation

− µ2ψm + ϵ(ψm+1 + ψm−1 − 2ψm)+ |ψm|
2ψm = 0, (2.3)

which admits discrete solitons for any ϵ > 0 and µ ≠

0 [27,28]. Moreover, for fixed ϵ > 0, the discrete soliton is
approximated by the NLS soliton

ψm →
√
2µ sech


µm
√
ϵ


as µ → 0. (2.4)

This approximation was rigorously justified in the recent
work [29] (see also [26, Section 2.3.2]).

X: For (k, p) = (0, π), we substitute um,n(t) = (−1)nei(µ
2
−4ϵ)tψm

and obtain the same stationary dNLS equation (2.3), which
admits the discrete solitons for any ϵ > 0 and µ ≠ 0.

X ′: For (k, p) = (π, 0), we substitute

um,n(t) = (−1)me−i(µ2
+4ϵ)tψm

and obtain the stationary 1D dNLS equation

µ2ψm − ϵ(ψm+1 + ψm−1 − 2ψm)+ |ψm|
2ψm = 0. (2.5)

This stationary equation admits no discrete solitons for any
ϵ > 0 [26, Lemma 3.10]. Indeed, by projecting Eq. (2.5) to ψ
and denoting (1ψ)m ≡ ψm+1 + ψm−1 − 2ψm, we obtain a
contradiction

µ2
∥ψ∥

2
l2 + ϵ⟨ψ, (−∆)ψ⟩ + ∥ψ∥

4
l4 = 0,

since each term on the left side is positive definite.
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M: For (k, p) = (π, π), we substitute

um,n(t) = (−1)m+ne−i(µ2
+8ϵ)tψm

and obtain the same stationary dNLS equation (2.5), which
admits no discrete solitons for any ϵ > 0.

From the above analysis, we see that only two bifurcations of
discrete line solitons occur and the bifurcation points are Γ and X .
In the following, we will analyze transverse stability of these line
solitons in the anti-continuum limit ϵ → 0 for fixed µ > 0 (or
equivalently, µ → ∞ for fixed ϵ > 0).

Before the transverse-stability analysis in the anti-continuum
limit, it is useful to recall the transverse-stability results in the
opposite (continuum) limit that arise when ϵ → ∞ for fixed
µ > 0 (or equivalently, µ → 0 for fixed ϵ > 0).

Γ : For (k, p) = (0, 0), we substitute

um,n(t) = U(X, Y , t)eiµ
2t , X =

m
√
ϵ
, Y =

n
√
ϵ

into Eq. (2.1). Assuming smoothness of the envelope function
U(X, Y , t), we obtain an elliptic 2D NLS equation for U(X, Y , t)
as ϵ → ∞:

i
∂U
∂t

+
∂2U
∂X2

+
∂2U
∂Y 2

+ (|U|
2
− µ2)U = 0. (2.6)

The line soliton (2.4) is transversely unstable in this elliptic
NLS equation (2.6) due to neck-type instability (see [5,6] and
references therein).

X: For (k, p) = (0, π), we substitute

um,n(t) = (−1)nU(X, Y , T )ei(µ
2
−4ϵ)t , X =

m
√
ϵ
, Y =

n
√
ϵ

into Eq. (2.1). Assuming smoothness of the envelope function
U(X, Y , t), we obtain a hyperbolic 2D NLS equation for
U(X, Y , t) as ϵ → ∞:

i
∂U
∂t

+
∂2U
∂X2

−
∂2U
∂Y 2

+ (|U|
2
− µ2)U = 0. (2.7)

The line soliton (2.4) is also transversely unstable in this
hyperbolic NLS equation (2.7) due to snaking-type instability
(see [30,6] and references therein).

From reductions to 2D NLS equations (2.6) and (2.7), we see
that discrete line solitons (2.4) are always transversely unstable
in the continuum limit. Thus it is surprising that discrete line
solitons were reported to be transversely stable far from the
continuum limit when they bifurcate from the X point of the
dispersion surface [18,16]. Line solitons bifurcated from the Γ
point, however, remain transversely unstable for all values of ϵ
(i.e., both near the continuum limit and away from it) [18,16].
Below we shall prove these numerical observations by rigorous
spectral-stability analysis that relies on the count of eigenvalues of
negative energy [20–22]. In addition, asymptotic expressions for
unstable eigenvalues will also be derived in the anti-continuum
limit.

2.1. Instability of line solitons bifurcating from the Γ point

Discrete line solitons bifurcating from the Γ point are of the
form

um,n(t) = eiµ
2tψm, (2.8)

where ψ satisfies the stationary 1D dNLS equation (2.3). It can be
easily shown that {ψm}m∈Z in these discrete solitons is real-valued
(up tomultiplication by eiα for realα) [26, Lemma 3.11]. Perturbing
these line solitons as

um,n(t) = eiµ
2t ψm + vm,n(t)


,

and substituting it into the dNLS equation (2.1), we obtain the
linearized dNLS equation as

i
dvm,n
dt

− µ2vm,n + ϵ(vm+1,n + vm−1,n

+ vm,n+1 + vm,n−1 − 4vm,n)+ ψ2
m(2vm,n + v̄m,n) = 0.

For normal modes

vm,n(t) = eλt+ipn (Um + iWm) ,

v̄m,n(t) = eλt+ipn (Um − iWm) ,
(2.9)

we obtain the standard form of the eigenvalue problem

L+(p)U = −λW , L−(p)W = λU, (2.10)

where L±(p) are p-dependent 1D discrete Schrödinger operators,

(L+(p)U)m ≡ −ϵ [Um+1 + Um−1 + 2 cos(p)Um − 4Um]

+µ2Um − 3ψ2
mUm,

(L−(p)W )m ≡ −ϵ[Wm+1 + Wm−1 + 2 cos(p)Wm − 4Wm]

+µ2Wm − ψ2
mWm.

(2.11)

It is easy to see that eigenvalues λ in the above linear-stability
problem always appear as quadruples (λ, λ̄,−λ,−λ̄) when λ is
complex or as pairs (λ,−λ)when λ is real or purely imaginary.

Among the two parameters µ and ϵ in the above eigenvalue
problem, the ratio ϵ/µ2 is invariant with respect to a scaling
transformation. The anti-continuum limit corresponds to the limit
of ϵ/µ2

→ 0.Without loss of generality,we fixµ = 1 and consider
small values of ϵ > 0 below.

We are interested in transverse stability of the fundamental
line soliton ψm, which is positive for all m ∈ Z and confined to
a single lattice site, say at m = 0, in the anti-continuum limit
ϵ → 0. Because the stationary equation (2.3) is analytic in ϵ and
polynomial in ψ , whereas the difference operator is bounded, the
dependence of ψ on ϵ is real analytic near ϵ = 0 [26, Theorem
3.8]. Using the regular perturbation method, we can easily obtain
the power series expansion for ψ as

ψm = δm,0 + ϵ(δm,1 + δm,0 + δm,−1)+ O(ϵ2), (2.12)

where δm,m′ is the Kronecker notation with δm,m′ = 1 for m = m′

and 0 otherwise.
We shall now present the instability theorem for fundamental

discrete line solitons bifurcating from the Γ point. This fundamen-
tal line soliton exists for any ϵ > 0 [27,28] (see also [26, Theorem
3.12]). Our instability theorem below applies to all values of ϵ > 0,
except that the asymptotic expression for the unstable eigenvalue
is valid only near the anti-continuum limit ϵ → 0.

Theorem 1. Consider the fundamental discrete line soliton (2.8) bi-
furcating from the Γ point in the dNLS equation (2.1). For any ϵ > 0,
there is p0(ϵ) ∈ (0, π] such that for any p ∈ (−p0(ϵ), p0(ϵ))\{0} the
linear-stability problem (2.10) admits a symmetric pair of real eigen-
values ±λ(ϵ, p) with λ(ϵ, p) > 0. Hence this fundamental line soli-
ton is transversely unstable for all ϵ > 0. In addition, p0(ϵ) = π if
0 < ϵ < 1

2 . Furthermore, for any p ∈ [−π, π], the eigenvalueλ(ϵ, p)
has the following asymptotic expansion in the anti-continuum limit,

λ2(ϵ, p) = 8ϵ sin2
p
2


+ O(ϵ2) as ϵ → 0. (2.13)

Proof. We first rewrite operators L±(p) in (2.11) as

L±(p) = L±(0)+ 2ϵ [1 − cos(p)] .

These are bounded operators from l2(Z) to l2(Z), which have both
continuous and discrete spectra.
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The stationary equation (2.3) is simply L−(0)ψ = 0. Because
ψ is positive, 0 is at the bottom of the spectrum of L−(0), so that
L−(0) is non-negative [31,32]. By the perturbation theory, L−(p) is
strictly positive for any p ∈ [−π, π] \ {0} and ϵ > 0. On the other
hand, L+(0) has at least one negative eigenvalue because

⟨L+(0)ψ,ψ⟩ = −2∥ψ∥
4
l4 < 0,

where ∥ψ∥
4
l4 =


n∈Z |ψn|

4. Moreover, in the limit ϵ → 0, only
one negative eigenvalue of L+(0) exists, which is the eigenvalue
−2 associated with the central site m = 0. By the variational
arguments [27], this negative eigenvalue persists and remains the
only negative eigenvalue of L+(0) for any ϵ > 0. Since L+(p) ≥

L+(0), L+(p) has at most one negative eigenvalue and no zero
eigenvalues. It follows from the stationary equation (2.3) withµ =

1 that

∥ψ∥
4
l4 = ∥ψ∥

2
l2 + ϵ⟨ψ, (−∆)ψ⟩ ≥ ∥ψ∥

2
l2 ,

where∆ is the 1D discrete Laplacian. Thus we obtain

⟨L+(p)ψ,ψ⟩ = −2∥ψ∥
4
l4 + 2ϵ [1 − cos(p)] ∥ψ∥

2
l2

≤ 2 {ϵ [1 − cos(p)] − 1} ∥ψ∥
2
l2 ,

hence L+(p) admits a negative eigenvalue for any p ∈ [−π, π]

if 0 < ϵ < 1
2 and for at least small p if ϵ > 0 is arbitrary. In

other words, for any ϵ > 0, there is p0(ϵ) ∈ (0, π] such that L+(p)
has a negative eigenvalue for any p ∈ (−p0(ϵ), p0(ϵ)). Moreover,
p0(ϵ) = π at least for 0 < ϵ < 1

2 .
For p = 0, the linear eigenvalue problem (2.10) admits zero

eigenvalue of algebraic multiplicity two for any ϵ > 0 because
L−(0)ψ = 0 and

L+(0)
∂ψ

∂(µ2)
= −ψ.

This zero eigenvalue is destroyed when p ≠ 0 and this may cause
instability when splitting of this double zero eigenvalue occurs
along the real axis. Using the negative index theory [20–22,26], we
obtain:

N−

real + N−

imag + Ncomp = n(L+(p)),
N+

real + N−

imag + Ncomp = n(L−(p)),
p ∈ [−π, π] \ {0}, (2.14)

where N+

real (N
−

real) are the numbers of real positive eigenvalues
λ with positive (negative) quadratic form ⟨L+(p)U,U⟩ at the
eigenvector (U,W ) of the eigenvalue problem (2.10), N−

imag is
the number of purely imaginary eigenvalues λ with Im(λ) >
0 and negative quadratic form ⟨L+(p)U,U⟩, and Ncomp is the
number of complex eigenvalues λ with Re(λ) > 0 and Im(λ) >
0, counting their algebraic multiplicities. Note that eigenvalues
contributing to N−

imag are called eigenvalues with a negative Krein
signature [21]. The eigenvalue-counting formula (2.14) follows
directly from Theorem 4.5 of [26] because operators L±(p) have no
zero eigenvalues for any p ≠ 0.

The preceding computations show that n(L−(p)) = 0, and
n(L+(p)) = 1 for p ∈ (−p0(ϵ), p0(ϵ)). In these cases, the index
formula (2.14) yields

N−

real = 1, N+

real = N−

imag = Ncomp = 0,

which proves the statement of Theorem1 on transverse instability.
It remains to justify the asymptotic expansion (2.13) for the real
positive eigenvalue λ(ϵ, p) as ϵ → 0.

When ϵ = 0, the spectral problem (2.10) with µ = 1 has
three points in the spectrum: λ = 0 of algebraic multiplicity two
and λ = ±i of infinite algebraic multiplicity. Continuous spectral
bands bifurcate from the points λ = ±i for ϵ ≠ 0. This bifurcation
was studied in detail in the recent work [33], and no unstable
eigenvalues arise in this bifurcation. We shall now calculate the
splitting of the double zero eigenvalue for any fixed p > 0 and
small ϵ > 0, using the expansion (2.12) near the anti-continuum
limit.

We rewrite the eigenvalue problem (2.10) with µ = 1 at the
central sitem = 0 as follows:

2U0 + ϵ [U1 + U−1 + 2 cos(p)U0 + 2U0] + O(ϵ2)U0 = λW0,

ϵ [W1 + W−1 + 2 cos(p)W0 − 2W0] + O(ϵ2)W0 = −λU0.

By using the scaling transformation U =
√
ϵU,W = W , and

λ =
√
ϵΛ, the system can be rewritten in the equivalent form:

2U0 + ϵ(U1 + U−1 + 2 cos(p)U0 + 2U0)+ O(ϵ2)U0 = ΛW0,

W1 + W−1 + 2 cos(p)W0 − 2W0 + O(ϵ)W0 = −ΛU0.

At the adjacent sitesm = ±1, the linear eigenvalue problem (2.10)
is

U±1 − ϵ [U±2 + U0 + 2 cos(p)U±1 − 4U±1]
+ O(ϵ2)U±1 = −ΛW±1,

W±1 − ϵ [W±2 + W0 + 2 cos(p)W±1 − 4W±1]
+ O(ϵ2)W±1 = ϵΛU±1,

since ψ2
±1 = O(ϵ2). Similar equations can be written for any

m ≠ 0.
For Λ = O(1), we have the reduction U±m = O(ϵm)U0 and

W±m = O(ϵm)W0 for any m ∈ N, which enables us to close the
leading-order equations for (U0,W0):

2U0 + O(ϵ)U0 = ΛW0,

[2 cos(p)− 2]W0 + O(ϵ)W0 = −ΛU0.

After eliminating W0, we obtain the algebraic equation forΛ as

Λ2
= 2(2 − 2 cos(p))+ O(ϵ) = 8 sin2

p
2


+ O(ϵ),

which then yields the asymptotic expansion (2.13). �

Remark 1. For any fixed p ∈ [−π, π] \ {0}, we obtain Λ2 > 0 as
ϵ → 0, which guarantees spectral instability of these discrete line
solitons for small ϵ > 0. Note that the asymptotic formula (2.13)
is not uniform as ϵ → 0 and p → 0, and a different perturbation
theory is needed in the limit p → 0 for fixed ϵ > 0 (see [5,6] and
references therein).

Remark 2. Using the resolvent analysis from [33], one can show
that the continuous spectral bands are the two line-segments on
the imaginary axis,

iλ ∈ [−1 − 2ϵ(3 − cos(p)),−1 − 2ϵ(1 − cos(p))]
∪[1 + 2ϵ(1 − cos(p)), 1 + 2ϵ(3 − cos(p))],

whereas no discrete (isolated) eigenvalues bifurcate out from the
point λ = ±i as ϵ ≠ 0.

Remark 3. In the continuous limit ϵ → +∞, the discrete line
solitons are asymptotically described by the elliptic NLS equation
(2.6), where unstable real eigenvalues are restricted to the p-
interval (−p0(ϵ), p0(ϵ)) \ {0} with p0(ϵ → ∞) =

√
3 (for µ =

1) [5,6]. Therefore, p0(ϵ) < π for sufficiently large positive ϵ.

2.2. Stability of line solitons bifurcating from the X point

Discrete line solitons bifurcating from the X point are of the
form

um,n(t) = (−1)nei(µ
2
−4ϵ)tψm, (2.15)

where ψ is a real-valued solution of the stationary 1D dNLS
equation (2.3). Notice that these solitons at adjacent lattice sites
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along the transverse n-direction are out-of-phase with each other,
which contrastswith the line solitons bifurcating from theΓ point,
where the solitons at adjacent lattice sites along the transverse
direction are in phase with each other.

Linearizing the dNLS equation (2.1) around this solution, we
substitute

um,n(t) = (−1)nei(µ
2
−4ϵ)t ψm + vm,n(t)


,

and obtain the linearized dNLS equation

i
dvm,n
dt

− µ2vm,n + ϵ(vm+1,n + vm−1,n − vm,n+1 − vm,n−1)

+ψ2
m(2vm,n + v̄m,n) = 0.

For normal modes (2.9), we obtain the eigenvalue problem

L+(p)U = −λW , L−(p)W = λU, (2.16)

where

(L+(p)U)m ≡ −ϵ [Um+1 + Um−1 − 2 cos(p)Um]

+µ2Um − 3ψ2
mUm,

(L−(p)W )m ≡ −ϵ [Wm+1 + Wm−1 − 2 cos(p)Wm]

+µ2Wm − ψ2
mWm.

(2.17)

Again, we are interested in transverse stability of the funda-
mental line soliton ψ which is positive and given by the power
series expansion (2.12) in the anti-continuum limit ϵ → 0. As be-
fore, we will fix µ = 1 without loss of generality. The next theo-
rem guarantees stability of this fundamental discrete line soliton
for small values of ϵ.

Note that, although the operators L±(p) in (2.17) are only
different from the operators L±(p) in (2.11) by the diagonal terms
(uniform in m), the stability result of the next theorem is very
different from the instability result of Theorem 1. In particular,
these two results are not related to each other by a staggering
transformation.

Theorem 2. Consider the fundamental discrete line soliton (2.15) bi-
furcating from the X point in the dNLS equation (2.1). There exists
ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0) and p ∈ [π, π], the linear-
stability problem (2.16) does not admit any unstable eigenvalues,
thus the fundamental line soliton for small values of ϵ is transversely
stable. This stable line soliton possesses a pair of discrete imaginary
eigenvalues ±iω(ϵ, p) of negative Krein signature. Moreover, for any
p ∈ [−π, π] and small ϵ, this eigenvalue ω(ϵ, p) has the following
asymptotic expression,

ω2(ϵ, p) = 8ϵ sin2
p
2


+ O(ϵ2) as ϵ → 0. (2.18)

Proof. We first rewrite operators L±(p) in (2.17) as

L±(p) = L±(0)− 2ϵ [1 − cos(p)] .

Because L−(0)ψ = 0 and ψ is positive, 0 is the lowest eigenvalue
of L−(0) for any ϵ > 0 [31,32]. By perturbation theory, L−(p) has
exactly onenegative eigenvalue for any p ∈ [−π, π]\{0} and small
positive ϵ. On the other hand, sinceψ and L+(0) for the line soliton
(2.15) are the same as those for the line soliton (2.8), the variational
arguments from [27] imply that L+(0) has exactly one negative
eigenvalue and no zero eigenvalue for any ϵ > 0. Therefore, L+(p)
has a single negative eigenvalue for any p ∈ [−π, π] and small
positive ϵ.

For any p ≠ 0, we again use the eigenvalue-counting formula
(2.14), which equally applies to the linear eigenvalue problem
(2.16). The preceding computation shows that there is ϵ0 > 0
such that n(L−(p)) = 1 and n(L+(p)) = 1 for any ϵ ∈ (0, ϵ0)
and p ∈ [−π, π] \ {0}. Since eigenvalues in the spectral problem
(2.16) appear as quadruples (λ, λ̄,−λ,−λ̄) for complex λ2 and
as pairs ±λ for real λ2 and since the zero eigenvalue for p = 0
has algebraic multiplicity two, this zero eigenvalue splits along the
real or imaginary axis as a pair of simple eigenvalues for p ≠ 0.
Combining this with the eigenvalue-counting formula (2.14), we
easily see that this splitting occurs along the imaginary axis, and
for any ϵ ∈ (0, ϵ0) and p ∈ [−π, π] \ {0},

N−

imag = 1, N+

real = N−

real = Ncomp = 0,

which proves the transverse-stability statement in Theorem 2.
Note that the imaginary eigenvalues of negative Krein signature
persist on the imaginary axis, unless they coalesce with other
eigenvalues of positive Krein signature or continuous spectral
bands.

Next we prove the asymptotic expansion (2.18) for the
imaginary eigenvalue iω(ϵ, p) as ϵ → 0. When ϵ = 0, the spectral
problem (2.16) with µ = 1 has three points in the spectrum:
λ = 0 of algebraicmultiplicity two and λ = ±i of infinite algebraic
multiplicity. For small ϵ, we only need to compute the splitting of
the double zero eigenvalue for any fixed p ∈ [−π, π], using the
expansion (2.12) near the anti-continuum limit.

Repeating the perturbation expansions and using the scaling
transformation U =

√
ϵU,W = W , and λ =

√
ϵΛ, we obtain

the linear eigenvalue problem at the central sitem = 0:

2U0 + ϵ [U1 + U−1 − 2 cos(p)U0 + 6U0] + O(ϵ2)U0 = ΛW0,

W1 + W−1 − 2 cos(p)W0 + 2W0 + O(ϵ)W0 = −ΛU0.

Similar to the proof of Theorem 1, for Λ = O(1), we have the
reduction U±m = O(ϵm)U0 and W±m = O(ϵm)W0 for any m ∈ N,
hence the above equations yield

Λ2
= −2 [2 − 2 cos(p)] + O(ϵ) = −8 sin2

p
2


+ O(ϵ),

which yields the asymptotic expansion (2.18). �

Remark 4. For any p ∈ [−π, π] \ {0} and small values of ϵ,
we get Λ2 < 0, which gives imaginary eigenvalues ±iω(ϵ, p).
It is easy to see that these imaginary eigenvalues have negative
Krein signature, meaning that the quadratic form ⟨L+(p)U,U⟩ at
the eigenvector (U,W ) is negative. For small values of ϵ, these
imaginary eigenvalues are bounded away from the continuous
spectrum bifurcating out of the points ±i, which guarantees
spectral stability of discrete line solitons for small positive ϵ.

Remark 5. Using the resolvent analysis from [33], one can show
that the continuous spectral bands are located at the two segments
on the imaginary axis:

iλ ∈ [−1 − 2ϵ(1 + cos(p)),−1 + 2ϵ(1 − cos(p))]
∪[1 − 2ϵ(1 − cos(p)), 1 + 2ϵ(1 + cos(p))],

and no discrete (isolated) eigenvalues bifurcate out from the points
λ = ±i as ϵ → 0.

Remark 6. In the continuum limit ϵ → +∞, discrete line
solitons (2.15) from the X point in Eq. (2.1) are asymptotically
described by the hyperbolic NLS equation (2.7), where line
solitons are transversely unstable for any nonzero transverse
wavenumber p [30,6]. Hence unstable eigenvaluesmust appear for
these discrete line solitons at sufficiently large positive ϵ. These
unstable eigenvalues can appear through collisions of imaginary
eigenvalues of negative Krein signature with the continuous
spectral band or with additional imaginary eigenvalues of positive
Krein signature.
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3. The case of one-dimensional (stripe) lattices

In this section, we consider transverse stability of line solitons
in the dNLS equation on a one-dimensional (stripe) lattice with
continuous transverse dispersion. This problem arises in nonlinear
fiber arrays [34–36] and optically-induced stripe lattices [17]. The
mathematical model for this problem is

i
∂um

∂t
+ ϵ(um+1 + um−1 − 2um)+ κ

∂2um

∂y2
+ |um|

2um = 0, (3.1)

where m ∈ Z, the complex variable um depends on the
evolution time t and the transverse coordinate y. Here the sign of
nonlinearity has been normalized to be unity through a scaling of
ϵ, κ and t . By the staggering transformation

um(y, t) = (−1)mvm(y, t)e−4iϵt , (3.2)

we can map the dNLS equation (3.1) for u with ϵ < 0 to the
same equation for v with ϵ > 0. Thus we set ϵ > 0 below
but consider both positive and negative values of the transverse
dispersion parameter κ . Through a scaling of y, we normalize κ so
that κ = ±1.

Transverse instability of line solitons was reported in [17] for
κ = −1 and any ϵ > 0. We shall prove this numerical observation
by rigorous study of spectral stability. We shall also study the case
κ = +1 for completeness.

First, by inserting the discrete Fouriermodes um(y, t) = eikm−iωt

into the linear dNLS equation (3.1), we find that the discrete-
dispersion relation is

ω(k) = 2ϵ [1 − cos(k)] ,

where thewavenumber k is in the first Brillouin zone k ∈ [−π, π].
For ϵ > 0, discrete line solitons bifurcate from the minimum of
this dispersion curve towards negative values of ω. Therefore the
discrete line solitons are of the form

um(y, t) = eiµ
2tψm, (3.3)

where ψ is a real-valued solution of the stationary 1D dNLS
equation (2.3). Linearizing around this solution, we substitute

um(y, t) = eiµ
2t [ψm + vm(y, t)]

into the dNLS equation (3.1) and obtain the linearized dNLS
equation

i
∂vm

∂t
− µ2vm + ϵ(vm+1 + vm−1 − 2vm)

+ κ
∂2vm

∂y2
+ ψ2

m(2vm + v̄m) = 0.

For the normal mode

vm(y, t) = eλt+ipy (Um + iWm) ,

v̄m(y, t) = eλt+ipy (Um − iWm) ,

we obtain the linear-stability eigenvalue problem

L+(p)U = −λW , L−(p)W = λU, (3.4)

where

(L+(p)U)m ≡ −ϵ(Um+1 + Um−1 − 2Um)

+ (µ2
+ κp2)Um − 3ψ2

mUm,

(L−(p)W )m ≡ −ϵ(Wm+1 + Wm−1 − 2Wm)

+ (µ2
+ κp2)Wm − ψ2

mWm.

(3.5)

As before, we set µ = 1 by variable rescaling and consider
the fundamental line soliton represented by the power series
expansion (2.12) for small ϵ.
When ϵ = 0, the eigenvalue problem (3.4) with µ = 1
has four points in the spectrum: two simple eigenvalues at λ =

±

κp2(2 − κp2) and two other eigenvalues of infinite algebraic

multiplicities at λ = ±i(1 + κp2).
If κ = 1, the simple eigenvalues λ = ±p


2 − p2 are real for

0 < p2 < 2, thus the discrete line soliton (3.3) is transversely
unstable even in the unperturbed (ϵ = 0) case. These real
eigenvalues persist for small ϵ. The following theorem shows that
the transverse instability of discrete line solitons (3.3) with κ = 1
holds for any ϵ > 0.

Theorem 3. Consider the fundamental discrete line soliton (3.3) in
the dNLS equation (3.1) with κ = 1. For any ϵ > 0, there is
p0(ϵ) > 0 such that for any p ∈ (−p0(ϵ), p0(ϵ)) \ {0} the linear-
stability problem (3.4) admits a pair of real eigenvalues±λ(ϵ, p)with
λ(ϵ, p) > 0, thus this line soliton is transversely unstable. In addition,
for small ϵ, p0(ϵ) and λ(ϵ, p) are given asymptotically by

p0(ϵ) =
√
2 + O(ϵ),

λ(ϵ, p) = p

2 − p2 + O(ϵ) as ϵ → 0.

(3.6)

Proof. We first rewrite operators L±(p) in (3.5) as

L±(p) = L±(0)+ p2.

Similar to the proof of Theorem 1, we can see that L−(p) is strictly
positive for any p ≠ 0 and ϵ ≥ 0. On the other hand, for any
ϵ ≥ 0, L+(0) has a single negative eigenvalue −β , where β > 0.
In particular, when ϵ = 0, the negative eigenvalue with β = 2 is
associated with the central site m = 0. Thus by denoting p0(ϵ) ≡
√
β , we see that L+(p) has exactly one negative eigenvalue for

p ∈ (−p0(ϵ), p0(ϵ)) and is strictly positive for any |p| > p0(ϵ).
The eigenvalue-counting formula (2.14) then yields that when p ∈

(−p0(ϵ), p0(ϵ)) \ {0},

N−

real = 1, N+

real = N−

imag = Ncomp = 0.

The asymptotic expansions (3.6) directly follow from the preceding
computations at ϵ = 0 and the analyticity of the linear eigenvalue
problem (3.4) in ϵ. �

Remark 7. The asymptotic expansion λ(ϵ, p) = p

2 − p2 +

O(ϵ) works equally well for |p| > p0(ϵ), where this λ(ϵ, p) is
purely imaginary. These imaginary eigenvalues have positive Krein
signature and are bounded away from the continuous spectrum
located at

iλ ∈ [−(1 + p2 + 4ϵ),−(1 + p2)] ∪ [1 + p2, 1 + p2 + 4ϵ].

If κ = −1 and ϵ = 0, the simple eigenvalues λ =

±ip

2 + p2 are purely imaginary, so are the eigenvalues λ =

±i(1 − p2) of infinite algebraic multiplicities. These eigenvalue
branches intersect at p = ±pc , where pc =

1
2 . When p ≠

±pc and 0 < ϵ ≪ 1, the simple eigenvalues persist on iR,
whereas two continuous spectral bands bifurcate from the non-
simple eigenvalues λ = ±i(1 − p2) along the two segments on
iR as

iλ ∈ [1 − p2, 1 − p2 + 4ϵ] ∪ [−(1 − p2 + 4ϵ),−(1 − p2)].

However, when p = ±pc and 0 < ϵ ≪ 1, a resonance
occurs between these simple and non-simple eigenvalues, and
as a consequence, complex (unstable) eigenvalues bifurcate out.
Notice that the simple eigenvalues λ = ±ip


2 + p2 have negative

Krein signature, whereas the non-simple eigenvalues λ = ±i(1 −

p2) have positive Krein signature. This bifurcation of complex
eigenvalues due to the collision of eigenvalues with opposite Krein
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Fig. 1. Numerical results for discrete line solitons (2.8) bifurcating from the Γ point of the dNLS equation (2.1) on a two-dimensional lattice. Upper row: profiles of discrete
line solitons ψm; middle row: real parts of eigenvalues λ of the spectral stability problem (2.10) versus the transverse wavenumber p; lower row: imaginary parts of
eigenvalues λ versus p (the shaded pink region is the continuous spectrum). Left column: ϵ = 0.1; middle column: ϵ = 1; right column: ϵ = 4. The red dashed line in the
middle left panel is the leading-order analytical approximation (2.13) in Theorem 1. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
signatures is a common phenomenon in Hamiltonian systems
[21,37].

The following theorem guarantees instability of discrete line
solitons (3.3) in the dNLS equation (3.1) with κ = −1 for small
values of ϵ > 0. This instability is caused by complex eigenvalues
with small real parts, and it occurs for intermediate values of
transverse wavenumbers p.

Theorem 4. Consider the fundamental discrete line soliton (3.3) in
the dNLS equation (3.1) with κ = −1. There exists ϵ0 > 0 such
that for any ϵ ∈ (0, ϵ0), there exist p±

c (ϵ) with ordering 0 <

p−
c (ϵ) < p+

c (ϵ) < +∞, so that for any |p| ∈ (p−
c (ϵ), p

+
c (ϵ)) the

linear-stability problem (3.4) admits a quartet of complex eigenvalues
±λ(ϵ, p),±λ̄(ϵ, p) with Reλ(ϵ, p) > 0 and Imλ(ϵ, p) > 0. In
addition, when ϵ → 0, p±

c (ϵ) and λ(ϵ, p) are given asymptotically
by

p±

c (ϵ) =
1
2

+
ϵ

2


1 ±

√
15
2


+ O(ϵ2), (3.7)

and

λ(ϵ, p) =
3
4
i +

iϵ
15
(14 + 17δ)

+
2ϵ
15


15 − 4(1 − 2δ)2 + O(ϵ2), (3.8)

where δ ≡ ϵ−1(p2 −
1
4 ) = O(1). Furthermore, the most unstable

eigenvalue λmax(ϵ) occurs at the transverse wavenumbers ±pmax(ϵ),
where λmax(ϵ) and pmax(ϵ) are given by

λmax(ϵ) =
3
4
i + ϵ


2

√
15

+
3
2
i


+ O(ϵ2),

pmax =
1
2

+
1
2
ϵ + O(ϵ2).

(3.9)

Proof. Modifying the arguments from the proof of Theorem 3, we
have now

L±(p) = L±(0)− p2.

Therefore, for sufficiently small ϵ, there is p0(ϵ) > 0 such that
the operators L±(p) have exactly one negative eigenvalue for all
p ∈ (−p0(ϵ), p0(ϵ)) \ {0}. Note that p0(ϵ) = 1 + O(ϵ) as ϵ → 0.

The eigenvalue-counting formula (2.14) yields now

N−

imag + Ncomp = 1, N+

real = N−

real = 0,

p ∈ (−p0(ϵ), p0(ϵ)) \ {0}.

The preceding computations and the analyticity of the linear
eigenvalue problem (3.4) in ϵ imply that for sufficiently small ϵ,
there are p±

c (ϵ) with ordering 0 < p−
c (ϵ) < p+

c (ϵ) < p0(ϵ) such
that

N−

imag = 1, Ncomp = 0, for |p| ∈ (0, p−

c (ϵ)) and

(p+

c (ϵ), p0(ϵ)),

where p±
c (ϵ) =

1
2 +O(ϵ) as ϵ → 0. For these values of ϵ and p, the

discrete line solitons are spectrally stable. It remains to show that

N−

imag = 0 and Ncomp = 1 for |p| ∈ (p−

c (ϵ), p
+

c (ϵ))
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Fig. 2. Numerical results for discrete line solitons (2.15) bifurcating from the X point of the dNLS equation (2.1) on a two-dimensional lattice. Upper row: profiles of
discrete line solitons ψm; middle row: real parts of eigenvalues λ of the spectral stability problem (2.16) versus the transverse wavenumber p; lower row: imaginary parts
of eigenvalues λ versus p (the shaded pink region is the continuous spectrum). Left column: ϵ = 0.01; middle column: ϵ = 0.2; right column: ϵ = 4. The red dashed line in
the lower left panel is the leading-order analytical approximation (2.18) in Theorem 2.
due to a resonance between eigenvalues of negative and positive
Krein signatures.

First we introduce a scaling transformation

p2 =
1
4

+ ϵδ, λ =
3i
4

+ iϵγ ,

Um =
am + bm

2
, Wm =

am − bm
2i

,

where δ, γ = O(1). Under this transformation, the eigenvalue
problem (3.4) for µ = 1 and κ = −1 becomes

−ϵ(am+1 − 2am + am−1)− (1 + 2ϵ)δm,0(2a0 + b0)

+ O(ϵ2)(2am + bm) = ϵ(γ + δ)am, (3.10)
−ϵ(bm+1 − 2bm + bm−1)− (1 + 2ϵ)δm,0(a0 + 2b0)

+ O(ϵ2)(am + 2bm) = −


3
2

+ ϵγ − ϵδ


bm. (3.11)

From the second equation (3.11), we obtain

b0 = −2(1 − 2ϵ + 2ϵγ − 2ϵδ + O(ϵ2))a0, (3.12)

whereas b±m = O(ϵm)b0 for any m ∈ N. The first equation (3.10)
for any m ≠ 0 produces the second-order difference equation

−(am+1 − 2am + am−1)+ O(ϵ)am = (γ + δ)am, m ∈ Z \ {0},

which admits a unique decaying solution for both m → ∞ and
m → −∞:

am = a0e−ρ|m|, m ∈ Z \ {0},

where ρ is a unique root of the transcendent equation

γ + δ = 2 − 2 cosh(ρ), Re(ρ) > 0. (3.13)
To obtain the value for ρ we close the first equation (3.10) at
m = 0:

−2ϵ(e−ρ
− 1)a0 − (1 + 2ϵ + O(ϵ2))(2a0 + b0) = ϵ(γ + δ)a0.

Utilizing (3.12), this equation becomes

−2(e−ρ
− 1)− 4(1 − γ + δ)+ O(ϵ) = γ + δ.

Substituting (3.13) and neglecting the O(ϵ) term, we convert this
equation to a quadratic equation for z = eρ :

3z2 + 4(2δ − 1)z + 5 = 0,

which admits two possible solutions

z =
2(1 − 2δ)± i


15 − 4(1 − 2δ)2

3
.

With the help of (3.13), these solutions produce expressions for γ
as

γ =
14 + 17δ ∓ i


15 − 4(1 − 2δ)2

15
,

which are complex-valued if (1 − 2δ)2 < 15
4 . These expressions

yield the asymptotic approximations (3.7) and (3.8). From (3.8), we
see that themost unstable eigenvalue occurs at δ =

1
2 , which yields

the asymptotic approximation (3.9). �

4. Numerical results

In this section, we present numerical results on transverse-
stability eigenvalues of discrete line solitons in one- and two-
dimensional lattices for various values of lattice coupling
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Fig. 3. Numerical results for discrete line solitons (3.3) in the dNLS equation (3.1) on a one-dimensional lattice with κ = 1. Upper row: profiles of discrete line solitonsψm;
middle row: real parts of eigenvalues λ of the spectral stability problem (3.4) versus the transverse wavenumber p; lower row: imaginary parts of eigenvalues λ versus p
(the shaded pink region is the continuous spectrum). Left column: ϵ = 0.1; middle column: ϵ = 2; right column: ϵ = 4. The red dashed lines in the middle and lower left
panels are the leading-order analytical approximations (3.6) in Theorem 3.
parameter ϵ (with fixedµ = 1). These numerical results are shown
to be in good agreement with the analytical results both qualita-
tively and quantitatively.

4.1. Numerical results for the dNLS equation on a two-dimensional
lattice

First we consider discrete line solitons (2.8) bifurcating from
the Γ point in the dNLS equation (2.1). At three values of ϵ,
eigenvalues of the spectral stability problem (2.10) for various
transverse wavenumbers p in the interval [0, π] are presented in
Fig. 1 (eigenvalues for negative p are the same as those for positive
p). We see that when ϵ = 0.1, a single pair of real eigenvalues
exists for all values of p in (0, π], in agreement with Theorem 1.
These real eigenvalues closelymatch the asymptotic formula (2.13)
in Theorem 1 (middle left panel). When ϵ = 1, this pair of real
eigenvalues exist only in the interval of 0 < p < p0, where
p0 ≈ 2.51. For p > p0, these real eigenvalues become purely
imaginary. When ϵ = 4, the p-interval of real eigenvalues further
shrinks to (0, p0)with p0 ≈ 0.91. Meanwhile, an additional pair of
imaginary discrete eigenvalues appear for all values of p in [0, π].
When ϵ → +∞, the discrete line soliton ψm approaches the
slowly-varying function (2.4) with µ = 1, and the interval of real
eigenvalues shrinks to (0, p0) with p0(ϵ) →

√
3/ϵ, according to

the elliptic 2D NLS equation (2.6) (see [5] and [6, Section 5.9]).
Next we consider discrete line solitons (2.15) bifurcating from

the X point in the dNLS equation (2.1). At three values of ϵ,
eigenvalues of the spectral stability problem (2.16) for various
transverse wavenumbers p in the interval [0, π] are presented in
Fig. 2.We see thatwhen ϵ = 0.01, a single pair of purely imaginary
eigenvalues exists for all values of p in (0, π], in agreement with
Theorem 2. These imaginary eigenvalues match the asymptotic
formula (2.18) in Theorem 2 (lower left panel). When ϵ = 0.2, this
pair of imaginary eigenvalues intersect the continuous spectrum
(lower middle panel). As a consequence, complex eigenvalues
appear on the p-interval of 0.97 < p < 1.97 (center panel). When
ϵ = 4, additional eigenvalues exist. The eigenvalue curves on the
left side of the p-interval (right middle and lower panels) are the
counterparts of similar curves for line solitons in the hyperbolic 2D
NLS equation (2.7) (see [30] and [6, Section 5.9]). But the curve of
real eigenvalues on the right side of the p-interval (right middle
panel) has no counterpart in the hyperbolic 2D NLS equation (2.7).
These real eigenvalues bifurcate out from the origin inside the
continuous spectrum. As ϵ → +∞, the eigenvalue curves on the
left side of the p-interval shrink towards p = 0 at the asymptotic
rate of ϵ−1/2. Meanwhile, the real-eigenvalue curve on the right
side of the p-interval approaches the edge point p = π , and its
width shrinks at the asymptotic rate of ϵ−1/2.

4.2. Numerical results for the dNLS equation on a one-dimensional
lattice

Now we consider discrete line solitons (3.3) in the dNLS
equation (3.1) with κ = 1. At three values of ϵ, eigenvalues
of the spectral stability problem (3.4) for various transverse
wavenumbers p are presented in Fig. 3. We see that when ϵ = 0.1,
a pair of real eigenvalues exists in the interval (0, p0), where p0 ≈

1.53. For p > p0, these real eigenvalues become purely imaginary.
This is in agreementwith Theorem3. Quantitatively, these real and
imaginary eigenvalues arewell approximated by the leading-order
asymptotic formula (3.6) in Theorem 3. At ϵ = 2, we still have the
instability band (0, p0)with p0 ≈ 1.81. Meanwhile, two additional



10 D.E. Pelinovsky, J. Yang / Physica D 255 (2013) 1–11
Fig. 4. Numerical results for discrete line solitons (3.3) in the dNLS equation (3.1) on a one-dimensional lattice with κ = −1. Upper row: profiles of discrete line solitons
ψm; middle row: real parts of eigenvalues λ of the spectral stability problem (3.4) versus the transverse wavenumber p; lower row: imaginary parts of eigenvalues λ versus
p (the shaded pink region is the continuous spectrum). Left column: ϵ = 0.1; middle column: ϵ = 2; right column: ϵ = 4.
Fig. 5. The ϵ-dependence of the most unstable eigenvalue λmax and its corresponding transverse wavenumber pmax for discrete line solitons (3.3) in the dNLS equation (3.1)
with κ = −1. The red dashed lines are the leading-order analytical approximations (3.9) in Theorem 4.
branches of purely imaginary eigenvalues appear over certain p-
intervals. When ϵ = 4, the instability band (0, p0) has p0 ≈ 1.75,
and one additional branch of purely imaginary eigenvalues exists
over the entire p-axis. When ϵ → +∞, p0(ϵ) →

√
3 according to

the elliptic 2D NLS equation (2.6) [5,6].
Next we consider discrete line solitons (3.3) in the dNLS equa-

tion (3.1) with κ = −1. At the same values of ϵ, eigenvalues of the
spectral stability problem (3.4) for various transverse wavenum-
bers p are presented in Fig. 4. We see that when ϵ = 0.1, a pair of
imaginary eigenvalues intersect the continuous spectrum (lower
left panel). As a consequence, complex eigenvalues bifurcate out
near p = 1/2, in agreement with Theorem 4 (middle left panel).
When ϵ = 2, additional eigenvalue bifurcations occur (middle col-
umn). When ϵ = 4, eigenvalue curves split into two parts. The left
part is the counterpart of similar curves for line solitons in the hy-
perbolic 2DNLS equation (2.7) [30,6], while the right part is a curve
of real eigenvalues at large p. Notice that this eigenvalue struc-
ture at ϵ = 4 qualitatively resembles that in Fig. 2 (right column)
for discrete line solitons bifurcated from the X point in the dNLS
equation (2.1). As ϵ → +∞, the left part of this structure asymp-
totically approaches eigenvalue curves for line solitons in the
hyperbolic 2DNLS equation (2.7). On the other hand, the location of
the right real-eigenvalue curvemoves to p → ∞ at the asymptotic
rate of ϵ1/2, and its width shrinks at the asymptotic rate of ϵ−1/2.

Lastly, we quantitatively compare the numerical complex
eigenvalues bifurcating from p = 1/2 with the analytical formulas
for small ϵ in Theorem 4. For this purpose, we have numerically
determined the most unstable complex eigenvalue λmax and its p-
location pmax for each ϵ in the range of 0 < ϵ < 0.3, and the
results are displayed in Fig. 5. For comparison, the leading-order
analytical approximations (3.9) for λmax and pmax are also plotted
in this figure. We can see that the analytical and numerical results
closely match each other.

5. Summary and discussion

In this article, we have analytically determined the transverse
stability and instability of line solitons in the discrete nonlinear
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Schrödinger equations on one- and two-dimensional lattices
in the anti-continuum limit. On a two-dimensional lattice, the
fundamental line soliton was proved to be transversely stable
(unstable)when it bifurcates from theX (Γ )point of the dispersion
surface. On a one-dimensional (stripe) lattice, the fundamental
line soliton was proved to be transversely unstable for both signs
of transverse dispersion. In addition to these qualitative stability
results, we have also derived asymptotic expressions for unstable
eigenvalues and compared them with numerical results, and good
agreements have been obtained.

It is noted that the discrete nonlinear Schrödinger equations are
generally used to describe wave dynamics in the continuous NLS
equations with a deep periodic potential and without inter-band
mode coupling. Although the analytical results in this article nicely
explainedmany of the numerical results on the transverse stability
of line solitons in the continuous NLS equations [16,17], they
cannot explain some other notable facts in the continuous models.
For instance, our analytical results for the dNLS equation (3.1) on a
one-dimensional lattice say that all line solitons are transversely
unstable, but the numerical results in [17] showed that in the
continuous model, line solitons near the second Bloch band can
be transversely stable. The reason for this discrepancy is that line
solitons near the second Bloch band contain a strong coupling
between the first and second Bloch bands, which is neglected in
the discrete NLS model. How to analytically explain the existence
of transversely-stable line solitons in the continuousNLS equations
with a one-dimensional lattice is still an open question which
merits further study.
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