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Abstract. Asymptotic stability of localized modes in the discrete nonlinear

Schrödinger equation was earlier established for septic and higher-order nonlin-
ear terms by using Strichartz estimate. We use here pointwise dispersive decay

estimates to push down the lower bound for the exponent of the nonlinear

terms.

1. Introduction. We consider the discrete nonlinear Schrödinger (DNLS) equa-
tion with a power nonlinearity and a bounded potential,

iu̇n = (−∆ + Vn + |un|2p)un, n ∈ Z, (1.1)

where p > 0, {Vn}n∈Z ∈ l∞(Z), and

∆un := un+1 − 2un + un−1, n ∈ Z.
We shall assume that {Vn}n∈Z decays to zero as |n| → ∞ exponentially fast and
that the discrete Schrödinger operator,

H := −∆ + V : l2(Z)→ l2(Z),

supports only one eigenvalue ω0 < 0 outside the continuous spectrum σc(H) = [0, 4]
and no resonance at the end points {0, 4}. We note that the operator H has no
eigenvalues in (0, 4) (see [16, Theorem 1]).

A localized mode of the DNLS equation (1.1) is a real-valued solution of the
stationary DNLS equation,

(−∆ + Vn + φ2p
n )φn = ωφn, n ∈ Z. (1.2)

It is known from the variational methods (see Pankov [14] for details) that under the
above assumptions on V and H, there is a localized mode of the stationary DNLS
equation (1.2) in l2(Z) for any ω ∈ (ω0, 0). Asymptotic stability of the small local-
ized mode for a small value of |ω−ω0| was considered recently by Cuccagna & Tirulli
[4] and Kevrekidis, Pelinovsky & Stefanov [5]. Both papers employed the analysis
based on the Strichartz estimate, which are deduced from the l2-conservation law
of the DNLS equation (1.1) and the pointwise dispersive decay estimate,

‖e−itHPa.c.(H)f‖l∞ ≤ C(1 + |t|)− 1
3 ‖f‖l1 , t ∈ R, (1.3)
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where Pa.c.(H) is the orthogonal projection to the continuous spectrum σc(H) =
[0, 4].

Using the stationary phase method for H = −∆ + V , the decay estimate (1.3)
was obtained by Stefanov & Kevrekidis for V = 0 [19], by Komech, Kopylova &
Kunze for a compactly-supported potential V [8], and by Pelinovsky & Stefanov for
a potential V in a weighted l1 space [16]. Using the Strichartz estimate, asymptotic
stability of localized modes with small |ω−ω0| was established in the DNLS equation
(1.1) with p ≥ 3, that is, for septic and higher-order nonlinear terms [4, 5]. The
cases of cubic and quintic nonlinearity, which have important applications in the
context of the Gross–Pitaevskii equation with periodic coefficients (see Belmonte–
Beitia & Pelinovsky [1] for details), were excluded from the previous analysis. It
is worth mentioning in this context the work of Cuccagna [3], where the author
showed that if H supports two eigenvalues ω0 < 0 and ω1 > 4, then localized modes
undertake long-time oscillations without dispersive decay.

Improved pointwise dispersive decay estimates for the linear DNLS equation were
recently derived by Mielke & Patz [11] using a modification of the stationary phase
method and an approximation of discrete sums by continuous integrals. The main
result of [11] is the pointwise dispersive decay estimate,

‖eit∆f‖ls ≤ C(1 + |t|)−αs‖f‖l1 , αs =

{
s−2
2s , 2 ≤ s < 4,
s−1
3s , 4 < s ≤ ∞. (1.4)

We note that the Riesz–Thorin interpolation between the l2-conservation law
and the decay estimate (1.3) gives the bound,

‖e−itHPa.c.(H)f‖ls ≤ C(1 + |t|)−βs‖f‖ls′ , βs =
s− 2

3s
, s′ =

s

s− 1
. (1.5)

Compared to (1.5), bound (1.4) gives a faster decay αs > βs for any 2 < s < ∞ if
f ∈ l1(Z) and H = −∆ (V = 0).

Using the pointwise dispersive decay estimate (1.4) and interpolation of the non-
linear terms in ls spaces, Mielke & Patz [11] proved scattering to zero of a small
initial data in l1 for the DNLS equation (1.1) with 2p+ 1 > 4 (p > 3

2 ) and V = 0.
These results improved the earlier computations of Stefanov & Kevrekidis [19], who
proved nonlinear scattering of solutions with small initial data in l2 for 2p+ 1 ≥ 7
(p ≥ 3) using the Strichartz estimate. These authors also proved nonlinear scat-

tering of solutions with small initial data in ls
′

by using the decay estimates (1.5)
with

1 +
1

2p+ 1
≤ s′ < 2p+ 1

p+ 2
,

provided that 2p + 1 > 2 +
√

7 ≈ 4.65 (p > 1+
√

7
2 ≈ 1.875). (Actually, s′ = 5

4 and

p > 2 were claimed in [19, Theorem 7] but a sharper condition p > 1+
√

7
2 can be

obtained using the same proof.)
We shall employ the improved dispersive decay estimate (1.4) to push down the

exponent p of the nonlinear terms that guarantees asymptotic stability of localized
modes of the stationary DNLS equation (1.2) with small |ω − ω0|. In this way,
we obtained that p must exceed 2.75. The exponent is still too high to include
the cubic and quintic DNLS equations because we need integrability in time of a
small linear term in our argument. We expect that dispersive estimates for time-
dependent potentials such as Kirr & Mizrak [6] and Kirr & Zarnescu [7] could be
useful to overcome this difficulty.
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We anticipate that the results of this paper can be extended to the DNLS equa-
tion (1.1) with V ≡ 0. Weinstein [20] proved orbital stability of localized modes in
this equation for any p > 0 provided the l2-norm is large enough. The limit of a large
l2-norm can be rescaled to the anti-continuous limit of the DNLS equation, where
the resolvent analysis for localized modes was recently developed by Pelinovsky &
Sakovich [17]. It was shown that the linearization spectrum of a single-peaked lo-
calized mode near the anti-continuum limit has no isolated eigenvalues outside the
continuous spectrum, excluding the double zero eigenvalue that persists due to the
gauge symmetry of the DNLS equation (1.1). Because the spectral assumption for
the standard asymptotic stability theory is satisfied, it is natural to expect that
the details of this work can be extended to the DNLS equation (1.1) with V ≡ 0
near the anti-continuum limit, for the price of working with dispersive estimates for
non-self-adjoint linearized operators.

The paper is organized as follows. Section 2 presents the main result after a
decomposition of the solution of the DNLS equation (1.1) into the localized mode
with slowly varying parameters and the remainder term. Section 3 gives the proof
of the main result using pointwise dispersive decay estimates (1.4) and continuation
arguments in weighted ls spaces. To develop nonlinear analysis, we use the l1α–l∞−α
dispersive decay estimate for any α ∈ [0, 1]. A continuous analogue of this estimate
was developed in a similar context by Krieger & Schlag [9, 18] (see also Buslaev &
Perelman [2]). The proof of the improved estimate (1.4) for H = −∆ + V with an
exponentially decaying potential is given in Section 4 and the l1α–l∞−α estimate is
proved in Section 5.

2. Preliminaries and the main result. In what follows, we use bold-faced no-
tations for vectors in discrete space ls(Z) defined by their norms

‖u‖ls :=

(∑
n∈Z
|un|s

)1/s

, s ≥ 1.

Components of u are denoted by un for n ∈ Z. We denote < n >= (1 + n2)1/2 and
use < n > u to denote {< n > un}n∈Z.

Let lsσ(Z) be a Banach space whose norm is defined by ‖u‖lsσ = ‖ < n >σ u‖ls
for 1 ≤ s ≤ ∞ and σ ∈ R. We denote by 〈·, ·〉 the inner product of l2(Z).

We recall the continuous embedding ls1 ⊂ ls2 for any 1 ≤ s1 < s2 ≤ ∞ with
the bound ‖u‖ls2 ≤ ‖u‖ls1 . We also recall the interpolation inequality for any
s0, s1 ∈ [1,∞] and θ ∈ [0, 1],

‖u‖ls ≤ ‖u‖1−θls0 ‖u‖
θ
ls1 , where

1

s
=

1− θ
s0

+
θ

s1
.

Our convention is that if a positive constant depends on a parameter α, we
denote it by Cα. We use a generic positive constant C and change it from one line
to another line.

To formulate the problem, we use the previous work of Kevrekidis et al. [5]. In
particular, we consider a localized mode of the stationary DNLS equation (1.2) for
small |ω − ω0| and derive the modulation equations for slowly varying parameters
of the localized mode.

The following result is standard and proved in many papers by using the local
bifurcation analysis.
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Lemma 1. Assume that {Vn}n∈Z ∈ l∞(Z) and that H has a simple eigenvalue
ω0 < 0 with a normalized eigenfunction ψ0 ∈ l2 such that ‖ψ0‖l2 = 1. For any p >
0, there exist positive constants ε0, κ and C such that for all ω ∈ [ω0, ω0 + ε0), there
exists a unique real-valued solution φ(ω) ∈ C([ω0, ω0 + ε0), l2)∩C2((ω0, ω0 + ε0), l2)
of the stationary DNLS equation (1.2) satisfying∥∥∥∥∥∥eκ|·|∂iω

φ(ω)− (ω − ω0)
1
2pψ0

‖ψ0‖
1+ 1

p

l2p+2

∥∥∥∥∥∥
l2

≤ C(ω − ω0)1−i+ 1
2p for i = 0, 1. (2.1)

Recall that the DNLS equation (1.1) is globally well-posed in any polynomially
weighted l2 space (see, e.g., [12, 13, 15]). Using Lemma 1, we decompose a suitable
solution to the DNLS equation (1.1) into a family of stationary solutions with time
varying parameters and a radiation part using the substitution,

u(t) = e−iθ(t) (φ(ω(t)) + z(t)) , (2.2)

where (ω, θ) ∈ R2 represents a two-dimensional orbit of stationary solutions (their
time evolution will be specified later) and z(t) ∈ C1(R, l2(Z)) solves the time-
evolution equation,

iż = (H − ω)z− (θ̇ − ω)(φ(ω) + z)− iω̇∂ωφ(ω) + N(φ(ω) + z)−N(φ(ω)), (2.3)

where H = −∆ + V and [N(ψ)]n = |ψn|2pψn.
The linearized operator around a stationary solution u(t) = e−itωφ(ω) of the

DNLS equation (1.1), where ω is fixed, is given by

L(ω)z := (H − ω)z +W(ω)z + pW(ω)(z + z̄), (2.4)

where W(ω) : l2(Z) → l2(Z) is a diagonal operator with Wn(ω) = φ2p
n (ω). The

generalized kernel of the linearized operator (2.4) is spanned by iφ(ω) and ∂ωφ(ω).
To determine uniquely the time evolution for (ω, θ), we assume that z satisfies

the symplectic orthogonality conditions to the generalized kernel of the linearized
operator at each time t ∈ R:

Re〈z(t),ψ1(ω(t))〉 = Im〈z(t),ψ2(ω(t))〉 = 0 , (2.5)

where

ψ1(ω) =
φ(ω)

‖φ(ω))‖l2
, ψ2(ω) =

∂ωφ(ω)

‖∂ωφ(ω)‖l2
.

Under this condition, z(t) belongs to the subspace associated to the continuous
spectrum of the linear operator L(ω(t)) for each t ∈ R.

Lemma 1 implies ψ1 and ψ2 are locally close to ψ0, the normalized eigenfunction
of H for eigenvalue ω0, that is, for any ω ∈ (ω0, ω0 + ε0), α ≥ 0, and s ≥ 1, there
exists Cα,s > 0 such that

‖ < n >α (ψ1 −ψ0)‖ls + ‖ < n >α (ψ2 −ψ0)‖ls ≤ Cα,s(ω − ω0). (2.6)

The following result has been proved by Kevrekidis et al. [5].

Lemma 2. Fix ω∗ ∈ (ω0, ω0 + ε0). There exist δ0, C > 0 such that for any
δ ∈ (0, δ0) and any u ∈ l2 satisfying

‖u− φ(ω∗)‖l2 ≤ δ(ω∗ − ω0)
1
2p , (2.7)

there exist unique (ω, θ) ∈ R2 and z ∈ l2(Z) in the decomposition

u = e−iθ (φ(ω) + z)
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subject to the symplectic orthogonality conditions

Re〈z,ψ1(ω)〉 = Im〈z,ψ2(ω)〉 = 0 ,

and the bound

|ω − ω∗| ≤ Cδ(ω∗ − ω0), |θ| ≤ Cδ, ‖z‖l2 ≤ Cδ(ω∗ − ω0)
1
2p . (2.8)

The mapping l2(Z) 3 u 7→ (ω, θ, z) ∈ R2 × l2(Z) is a C1 diffeomorphism.

Assuming (ω, θ) ∈ C1(R,R2) and using the decomposition (2.2), we define the
time evolution of (ω, θ) from the projections of the time evolution equation (2.3)
with the symplectic orthogonality conditions (2.5). The resulting system is written
in the matrix–vector form

A(ω, z)

[
ω̇

θ̇ − ω

]
= f(ω, z), (2.9)

where

A(ω, z) =

[
〈∂ωφ(ω),ψ1(ω)〉 0

0 〈φ(ω),ψ2(ω)〉

]
+

[
−Re〈z, ∂ωψ1(ω)〉 Im〈z,ψ1(ω)〉
Im〈z, ∂ωψ2(ω)〉 Re〈z,ψ2(ω)〉

]
and

f(ω, z) =

[
Im〈N(φ(ω) + z)−N(φ(ω))−W(ω)z,ψ1(ω)〉
Re〈N(φ(ω) + z)−N(φ(ω))− (2p+ 1)W(ω)z,ψ2(ω)〉

]
.

Using an elementary property for power functions, we see that for p ≥ 1, there
exists a Cp > 0 such that

||a+ b|2p(a+ b)− |a|2pa| ≤ Cp(|a|2p|b|+ |b|2p+1), ∀a, b ∈ C. (2.10)

As a result, for any s ≥ 1, the vector fields of system (2.3) and (2.9) are bounded
by

‖N(φ(ω) + z)−N(φ(ω)‖ls ≤ Cs
(
‖φ2p(ω)z‖ls + ‖z‖2p+1

ls

)
, (2.11)

and

‖f(ω, z)‖ ≤ C
2∑
j=1

(
‖φ(ω)2p−1ψj(ω)z2‖l1 + ‖ψj(ω)z2p+1‖l1

)
, (2.12)

for some Cs, C > 0, where the pointwise multiplication of vectors on Z is understood
in the sense of (φψ)n = φnψn.

Thanks to Lemma 1, A(ω, z) is invertible for small z ∈ l2 and any ω ∈ (ω0, ω0 +
ε0). Using bounds (2.1), (2.6), and (2.12), we obtain that for any z such that

‖z‖l2 ≤ C0(ω − ω0)
1
2p for a C0 > 0, there exists a C > 0 such that

|ω̇| ≤ C(ω − ω0)2− 1
p ‖e−κ|n|z2‖l1 , (2.13)

|θ̇ − ω| ≤ C(ω − ω0)1− 1
p ‖e−κ|n|z2‖l1 . (2.14)

The following theorem describes our main result.
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Theorem 1. Assume that {Vn}n∈Z ∈ l∞(Z) decays exponentially fast to zero as
|n| → ∞ and that H has only one eigenvalue ω0 < 0 outside of the continuous
spectrum σc(H) = [0, 4] and has no resonance at the end points {0, 4}. For any
p > 2.75, there exist an ε0 > 0 and a δ > 0 such that if ε := ω∗ − ω0 ∈ (0, ε0) and

‖ < n > (u(0)− φ(ω∗))‖l1 ≤ δε
1
2p , (2.15)

then there exist C > 0, θ∞ ∈ R, ω∞ ∈ (ω0, ω0 + ε0), (ω, θ) ∈ C1(R+,R2), such that

lim
t→∞

(
θ(t)−

∫ t

0

ω(s)ds

)
= θ∞ , lim

t→∞
ω(t) = ω∞ , (2.16)

and
sup
t≥0
|ω(t)− ω∗| ≤ Cδε , (2.17)

whereas u(t) ∈ C1(R+, l
2) solves the DNLS equation (1.1) and, for any s ∈ (2, 4)∪

(4,∞] and t ≥ 0, there exists Cs > 0 such that

‖u(t)− e−iθ(t)φ(ω(t))‖ls ≤ Csδε
1
2p (1 + t)−αs ,

where αs ∈
(
0, 1

3

]
is given by (1.4).

3. Proof of Theorem 1. Let y(t) = e−iθ(t)z(t) and write the time-evolution
problem for y(t) in the form,

iẏ = Hy + g, g = g1 + g2 + g3, (3.1)

where

g1 :=
(
N(φ(ω) + yeiθ)−N(φ(ω))

)
e−iθ,

g2 := −(θ̇ − ω)φ(ω)e−iθ,

g3 := −iω̇∂ωφ(ω)e−iθ.

Let P0 = 〈·,ψ0〉ψ0, Q0 = (I − P0) ≡ Pa.c.(H), where ψ0 is defined in Lemma 1.
We decompose the solution y(t) into two orthogonal parts,

y(t) = a(t)ψ0 + η(t), (3.2)

where 〈η(t),ψ0〉 = 0 and a(t) = 〈y(t),ψ0〉. The new coordinates a(t) and η(t)
satisfy the time evolution problem,{

iȧ = ω0a+ 〈g,ψ0〉,
iη̇ = Hη +Q0g.

(3.3)

The time-evolution problem for η(t) can be written in the integral form,

η(t) = e−itHQ0η(0)− i
∫ t

0

e−i(t−s)HQ0g(s)ds. (3.4)

We shall use the following lemmas to estimate decay of η(t).

Lemma 3. Assume that {Vn}n∈Z ∈ l∞(Z) decays exponentially fast to zero as
|n| → ∞ and that H has only one eigenvalue ω0 < 0 outside the continuous spectrum
σc(H) = [0, 4] and no resonance at the end points {0, 4}. For any s ≥ 2, there is
Cs > 0 such that for all t ∈ R,

‖e−itHQ0f‖ls ≤ Cs(1 + |t|)−αs‖f‖l1 , αs =

{
s−2
2s , 2 ≤ s < 4,
s−1
3s , 4 < s ≤ ∞. (3.5)

The proof of Lemma 3 will be given in Section 4.
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Lemma 4. Assume that {Vn}n∈Z ∈ l∞(Z) decays exponentially fast to zero as
|n| → ∞ and that H has only one eigenvalue ω0 < 0 outside the continuous spectrum
σc(H) = [0, 4] and no resonance at the end points {0, 4}. There is C > 0 such that

‖ < n >−1 e−itHQ0f‖l∞ ≤ C(1 + |t|)− 4
3 ‖ < n > f‖l1 , t ∈ R, (3.6)

The proof of Lemma 4 will be given in Section 5. Note that a continuous analogue
of the bound (3.6) for the one-dimensional Schrödinger operator was proved by
Schlag [18].

Corollary 1. Under assumptions of Lemma 4, for any α ∈ [0, 1], there is Cα > 0
such that for all t ∈ R,

‖ < n >−α e−itHQ0f‖l∞ ≤ Cα(1 + |t|)− 1
3−α‖ < n >α f‖l1 . (3.7)

Proof. The corollary is proved by the interpolation between bounds (1.3) and (3.6).

Lemma 5. Let u(t) ∈ C(R, l2(Z)) be a solution of the DNLS equation (1.1) and
assume that < n > u(0) ∈ l2(Z). For any α ∈ [0, 1], there is Cα > 0 such that for
all t ∈ R,

‖ < n >α u(t)‖l2 ≤ Cα(1 + |t|)α‖ < n > u(0)‖l2 . (3.8)

Proof. We first recall the l2-conservation law for the DNLS equation (1.1),

‖u(t)‖l2 = ‖u(0)‖l2 , t ∈ R. (3.9)

It follows from the DNLS equation (1.1) that

d

dt

∑
n∈Z

(1 + n2)|un(t)|2 = i
∑
n∈Z

(1 + n2) (ūnun+1 − unūn+1 + ūnun−1 − unūn−1)

= i
∑
n∈Z

(1 + 2n) (ūn+1un − un+1ūn) .

By the Cauchy-Schwarz inequality and the l2-conservation law (3.9), there exists a
C > 0 such that ∣∣∣∣ ddt‖ < n > u(t)‖l2

∣∣∣∣ ≤ C‖u(0)‖l2 , (3.10)

which yields

‖ < n > u(t)‖l2 ≤ C(1 + |t|)‖ < n > u(0)‖l2 , (3.11)

that is, a bound (3.8) for α = 1. To get (3.8) for an arbitrary α ∈ [0, 1], we represent

‖ < n >α u‖2l2 =
∑
n∈Z

< n >2α |un|2α|un|2(1−α)

and use the Hölder inequality to obtain

‖ < n >α u(t)‖l2 ≤ ‖ < n > u(t)‖αl2αq‖u(t)‖1−α
l2(1−α)q′ ,

1

q
+

1

q′
= 1.

The choice q = 1
α ≥ 1 and q′ = 1

1−α ≥ 1, the l2-conservation law (3.9), and the

estimate (3.11) imply (3.8) for any α ∈ [0, 1].
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We shall now set up function spaces, where the solution of the time-evolution
equation (3.1) is bounded. We define

M1(t) := sup
0≤τ≤t

(1 + τ)α2p+1‖y(τ)‖l2p+1 + sup
0≤τ≤t

(1 + τ)α4p‖y(τ)‖l4p ,

M2(t) := sup
0≤τ≤t

(1 + τ)να‖ < n >−α y(τ)‖l∞ ,

M3(t) := sup
0≤τ≤t

|ω(τ)− ω∗|,

(3.12)

where αs = s−1
3s for s > 4 and α and να are positive constants that will be fixed

later (see (3.21) and (3.25) below).
To control (ω, θ) along the solution, we use estimates (2.13) and (2.14) that follow

from the modulation equations (2.9). We need to show that ω̇, θ̇ − ω ∈ L1(R) so
that there exist limits

ω∞ := lim
t→∞

ω(t), θ∞ := lim
t→∞

(
θ(t)−

∫ t

0

ω(s)ds

)
.

It follows from the bound (2.13) that for any t ≥ 0 and any α ∈ [0, 1],

|ω̇(t)| ≤ C(ω − ω0)2− 1
p ‖ < n >2α e−κ|n|‖l1‖ < n >−α y(t)‖2l∞

≤ C(ω − ω0)2− 1
p (1 + t)−2ναM2

2 (t). (3.13)

Therefore, ω̇ ∈ L1(R) if M2(t) is bounded on R+ and να >
1
2 .

Similarly, the bound (2.14) implies that

|θ̇(t)− ω(t)| ≤ C(ω − ω0)1− 1
p (1 + t)−2ναM2

2 (t), (3.14)

hence we have θ̇ − ω ∈ L1(R) if M2(t) is bounded on R+ and να >
1
2 .

Now we need to estimate ‖ < n >−α y(t)‖l∞ by using the decomposition (3.2)
and the integral equation (3.4). First, the projection of y(t) to ψ0 is controlled
by the orthogonality condition (2.5) and an approximation formula (2.6). For any
α ∈ [0, 1], there is Cα > 0 such that

|a(t)| = |〈y,ψ0〉| ≤ |Re〈z,ψ0 −ψ1〉|+ |Im〈z,ψ0 −ψ2〉|
≤ (‖ < n >α (ψ1 −ψ0)‖l1 + ‖ < n >α (ψ2 −ψ0)‖l1) ‖ < n >−α z(t)‖l∞
≤ Cα(ω − ω0)‖ < n >−α y(t)‖l∞ . (3.15)

Using the bound

‖ < n >−α y(t)‖l∞ ≤ |a(t)|‖ < n >−α ψ0‖l∞ + ‖ < n >−α η(t)‖l∞ (3.16)

and the estimate (3.15) with small (ω − ω0), we have

‖ < n >−α y(t)‖l∞ ≤ 2‖ < n >−α η(t)‖l∞ . (3.17)

Next, we consider the dispersive term η(t). Using the bound (2.11), the decay
estimate in Corollary 1, and the integral equation (3.4), we obtain for any α ∈ [0, 1]
and all t ∈ R,

‖ < n >−α η(t)‖l∞ ≤ Cα(1 + |t|)− 1
3−α‖ < n >α η(0)‖l1

+Cα

∫ t

0

(1 + |t− s|)− 1
3−α‖ < n >α g(s)‖l1ds. (3.18)
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By (2.1), (2.6), (2.11), (3.13), and (3.14), we have

‖ < n >α g1(s)‖l1 ≤ C‖ < n >2α φ2p(ω)‖l1‖ < n >−α y(s)‖l∞
+ C‖ < n >α y2p+1(s)‖l1

≤ C(I1(s) + I3(s))

and

‖ < n >α g2,3(s)‖l1 ≤ C(|θ̇ − ω|‖ < n >α φ(ω)‖l1 + |ω̇|‖ < n >α ∂ωφ(ω)‖l1)

≤ CI2(s) ,

where

I1(s) := (ω − ω0)(1 + s)−ναM2(s),

I2(s) := (ω − ω0)1− 1
2p (1 + s)−2ναM2

2 (s),

I3(s) := ‖y(s)‖2pl4p‖ < n >α y(s)‖l2 .
We recall the standard pointwise estimate. For any β1, β2 > 0 such that β1, β2 6=

1, there exists a C > 0 such that for all t > 0,∫ t

0

1

(1 + t− s)β1

1

(1 + s)β2
ds ≤ C

(1 + t)γ
, γ = min(β1, β2, β1 + β2 − 1). (3.19)

This estimate is useful only if either β1 > 1 or β2 > 1 (or both), in which case
γ = min(β1, β2). If both β1, β2 < 1, then γ = β1 + β2 − 1 < min(β1, β2) and the
decay estimates for the bound (3.18) cannot be closed.

In view of Corollary 1, we expect that 0 < να ≤ α+ 1
3 . Thus, in order to obtain∫ t

0
(1 + t− s)− 1

3−α(I1(s) + I2(s))ds

≤ C(1 + t)−να
[
(ω − ω0)M2(t) + (ω − ω0)1− 1

2pM2
2 (t)

]
from (3.19) with β1 = 1

3 + α and β2 = να, we need α > 2
3 .

The nonlinear term I3 can be estimated if y(t) inherits the dispersive decay
estimate (3.5) for s = 4p. Indeed by Lemma 5, we have

I3(t) ≤ C(1 + t)−2pα4pM2p
1 (t)((1 + t)α‖ < n > u(0)‖l2 + ‖ < n >α φ(ω)‖l2)

≤ C(1 + t)−2pα4p+αM2p
1 (t)

(
ε

1
2p + (ω − ω0)

1
2p

)
. (3.20)

Applying (3.19) with β1 = 1
3 + α > 1 and β2 = 2pα4p − α = 2

3p−
1
6 − α, we obtain∫ t

0

(1 + t− s)−α− 1
3 I3(s)ds ≤ C(1 + t)−ναM2p

1 (t)
(
ε

1
2p + (ω − ω0)

1
2p

)
with

να = min

(
1

3
+ α,

2

3
p− 1

6
− α

)
. (3.21)

To ensure that να >
1
2 , we require 2

3p−
1
6 −α >

1
2 , that is, p > 1 + 3

2α > 2. Hence,
it follows from (3.16), (3.18), and (3.20) that

M2(t) ≤ C‖ < n >α η(0)‖l1 + C(ω − ω0)M2(t) + C(ω − ω0)1− 1
2pM2

2 (t)

+ CM2p
1 (t)

(
ε

1
2p + (ω − ω0)

1
2p

)
. (3.22)

Now we turn to estimate M1(t). We have

‖y(t)‖ls ≤ 2‖η(t)‖ls (3.23)
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in the same way as (3.17). Applying Lemma 3 to the integral equation (3.4), we
obtain for any s ∈ [2,∞]\{4} and t ≥ 0,

‖η(t)‖ls ≤ Cs(1 + t)−αs‖η(0)‖l1 + Cs

∫ t

0

(1 + t− s)−αs‖g(s)‖l1ds. (3.24)

By the bound (2.11), there exists a Cα > 0 for any α ∈ [0, 1] such that

‖g1(s)‖l1 ≤ Cα

(
‖ < n >α φ2p(ω)‖l1‖ < n >−α y(s)‖l∞ + ‖y(s)‖2p+1

l2p+1

)
≤ CαI1(s) + Cα(1 + s)−(2p+1)α2p+1M2p+1

1 (s) .

Furthermore,
‖g2(s)‖l1 + ‖g3(s)‖l1 ≤ CαI2(s) .

Now we apply (3.19) with (β1, β2) = (αs, να), (αs, (2p+1)α2p+1), (αs, 2να) to obtain∫ t

0

(1 + t− s)−αs‖g(s)‖l1ds

≤ C(1 + t)−αs
[
(ω − ω0)M2(t) + (ω − ω0)1− 1

2pM2
2 (t) +M2p+1

1 (t)
]
.

Because β1 = αs < 1, we now need

να > 1 and (2p+ 1)α2p+1 =
2

3
p > 1.

The condition p > 3
2 (2p + 1 > 4) corresponds to an exponent that appears in

Mielke–Patz [11] so that small solutions to the DNLS equation (1.1) with V ≡ 0
decay like eit∆u(0). Since α > 2

3 , the condition να > 1 is attained if

2

3
p− 1

6
− α > 1 ⇒ p >

7

4
+

3

2
α >

11

4
= 2.75,

in which case we can fix α for any

2

3
< α < min

(
1,

2

3
p− 7

6

)
. (3.25)

Thus for α and να satisfying (3.25) and (3.21) respectively, we have

M1(t) ≤ C‖η(0)‖l1 +C(ω−ω0)M2(t) +C(ω−ω0)1− 1
2pM2

2 (t) +CM2p+1
1 (t). (3.26)

By Lemma 2 and the bound (3.13), we obtain

M3(t) ≤ |ω(0)− ω∗|+
∫ t

0

|ω̇(s)|ds ≤ Cδε+ sup
0≤τ≤t

|ω(τ)− ω0|2−
1
pM2

2 (t) .

By the triangle inequality,

|ω(t)− ω0| ≤ |ω(t)− ω∗|+ |ω∗ − ω0| ≤M3(t) + ε,

we have ω(t) − ω0 = O(ε) as long as M2(t) remains bounded. Thanks to the
smallness of ω − ω0, it follows from (3.22) and (3.26) that

M1(t) +M2(t) ≤ C‖ < n >α η(0)‖l1 + CM2
2 (t) + CM2p

1 (t)
(
ε

1
2p +M1(t)

)
.

Since M1(t) and M2(t) are continuous, we have

sup
t≥0

(M1(t) +M2(t)) ≤ 2C‖ < n >α y(0)‖l1 ≤ 2Cδε
1
2p (3.27)

and
sup
t≥0

M3(t) ≤ 2Cδε, (3.28)
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if δ is chosen sufficiently small in (2.15). Once we prove (3.27), decay estimates

‖y(t)‖ls ≤ Cα,s(1 + t)−αs‖ < n >α y(0)‖l1 , s ∈ [2,∞] \ {4} , t ≥ 0 ,

follows immediately from (3.24). Thus the proof of Theorem 1 is now complete.

We finish this section with a remark that the bound (3.8) can be extended to
α > 1. To be precise, for any α ≥ 1, there exists Cα > 0 such that for all t ∈ R,

‖ < n >α u(t)‖l2 ≤ Cα (‖ < n >α u(0)‖l2 + |t|α‖ < n > u(0)‖l2) . (3.29)

Indeed, for any α ∈ R, there is Cα > 0 such that∣∣(2 + 2n+ n2)α − (1 + n2)α
∣∣ ≤ Cα(1 + n2)α−1/2, n ∈ Z.

Using the same technique as in the proof of Lemma 5, we obtain from the DNLS
equation (1.1),∣∣∣∣∣ ddt∑

n∈Z
(1 + n2)α|un(t)|2

∣∣∣∣∣ ≤ Cα∑
n∈Z

(1 + n2)α−1/2 |ūn+1un − un+1ūn| ,

so that ∣∣∣∣ ddt‖ < n >α u(t)‖l2
∣∣∣∣ ≤ Cα‖ < n >α−1 u(t)‖l2 . (3.30)

Bound (3.29) follows from the integration of (3.30) in t using the bound (3.8) and
recursion in α.

4. Proof of Lemma 3. In this section, we prove Lemma 3 by using the Jost
function for the discrete Schrödinger operator. First, let us introduce the free
resolvent R0(λ) = (−∆−λ)−1 for λ ∈ C\[0, 4] and the perturbed resolvent RV (λ) =
(H − λ)−1 for λ ∈ C\σ(H). Under the assumption of the fast decay of {Vn}n∈Z to
zero at infinity, for any fixed ω ∈ (0, 4), there exist

R±0 (ω) = lim
ε↓0

R0(ω ± iε), R±V (ω) = lim
ε↓0

RV (ω ± iε)

as bounded operators from l1(Z) to l∞(Z). In particular, we have

(R±0 (ω)f)n = ± 1

2i sin(θ)

∑
m∈Z

e∓iθ|n−m|fm, (4.1)

where θ ∈ (−π, 0) is uniquely defined from the roots of 2 − 2 cos(θ) = ω with
ω ∈ (0, 4). By the Cauchy formula, we write

e−itHQ0f =
1

2πi

∫ 4

0

e−itω
[
R+
V (ω)−R−V (ω)

]
fdω , (4.2)

where Q0 = Pa.c.(H).
To begin with, let us recall fundamental properties of the Jost functions. Let

ψ+(θ) and ψ−(θ) be solutions of the linear discrete Schrödinger equation,

Hψ = ωψ , ω = 2− 2 cos(θ), (4.3)

satisfying boundary conditions

lim
n→∞

|ψ+
n − e−inθ| = 0 , lim

n→−∞
|ψ−n − einθ| = 0 .

The Wronskian

W [φ,ψ] := φnψn+1 − φn+1ψn
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is independent of n if both φ and ψ are solutions of the same equation (4.3).
Moreover, we have

W [ψ+(θ),ψ+(−θ)] = 2i sin(θ) , W [ψ−(θ),ψ−(−θ)] = −2i sin(θ) ,

and we define
W (θ) := W [ψ+(θ),ψ−(θ)].

Furthermore, the scattering relation holds by the linear dependence of one set of
two fundamental solutions from another set of two fundamental solutions of the
discrete Schrödinger equation (4.3),{

ψ−(θ) = a(θ)ψ+(θ) + b(θ)ψ+(−θ) ,
ψ+(θ) = −b(−θ)ψ−(θ) + a(−θ)ψ−(−θ) , (4.4)

where a(θ) = a(−θ), b(θ) = b(−θ), 1 + |a(θ)|2 = |b(θ)|2 and

a(θ) =
W [ψ−(θ),ψ+(−θ)]

2i sin(θ)
, b(θ) =

W (θ)

2i sin(θ)
.

Note that ψ±(θ) = ψ±(−θ) for θ ∈ R because the potential V is real-valued.
Because |b(θ)| ≥ 1 for all θ ∈ [−π, π], the Wronskian W (θ) does not vanish unless

θ = 0,±π. Since neither 0 nor 4 is a resonance of H, the Wronskian W (θ) does not
vanish at θ = 0, ±π. Therefore, solutions ψ+ and ψ− of the discrete Schrödinger
equation (4.3) are linearly independent for all θ ∈ [−π, π].

Let f±n (θ) = e±inθψ±n (θ) for n ∈ Z. Then f±n are solutions of

f+
n (θ) = 1− i

2 sin θ

∞∑
m=n

(1− e−2i(m−n)θ)Vmf
+
m(θ) ,

f−n (θ) = 1− i

2 sin θ

n∑
m=−∞

(1− e2i(m−n)θ)Vmf
−
m(θ) .

There exists a C0 > 0 such that

sup
θ∈[−π,π]

∣∣∣∣1− e−2iNθ

sin(θ)

∣∣∣∣ ≤ C0N for any N ∈ Z. (4.5)

By the estimate (4.5) and the exponential decay of V as n→ ±∞, we see that for
any k ≥ 0,

sup
n≥0

∞∑
m=n

(m− n)k|Vm| ≤
∞∑
m=0

mk|Vm| <∞.

Thus f±n (θ) are smooth and

sup
θ∈[−π,π]

‖∂kθ f±(θ)‖l∞(Z±) <∞ for any k ≥ 0, (4.6)

where Z+ is the set of nonnegative integers and Z− is the set of nonpositive integers.
Now we are ready to prove Lemma 3.

Proof of Lemma 3. For t ∈ [0, 1], the bound (3.5) follows from the fact that

‖e−itHQ0f‖ls ≤ ‖e−itHQ0f‖l2 = ‖f‖l2 ≤ ‖f‖l1
for any f ∈ l1, s ≥ 2 and t ∈ R.

For t ≥ 1, we will prove the bound (3.5) by using the representation(∫ 4

0

e−itω
[
R+
V (ω)−R−V (ω)

]
fdω

)
n

=:
∑
m∈Z

Sm,n(t)fm .
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By Minkowski’s inequality, it suffices to show

sup
m∈Z

(∑
n∈Z
|Sm,n|s

) 1
s

≤ Ct−αs , t ≥ 1 , (4.7)

to prove Lemma 3.
Using the Jost functions, we can represent Sm,n as

Sm,n(t) =


−2

∫ π

−π
eit(2−2 cos θ)ψ

+
m(θ)ψ−n (θ)

W (θ)
sin(θ)dθ if m > n,

−2

∫ π

−π
eit(2−2 cos θ)ψ

−
m(θ)ψ+

n (θ)

W (θ)
sin(θ)dθ if m ≤ n.

(4.8)

Since W (θ) is continuous on [−π, π] and W (θ) 6= 0 for all θ ∈ [−π, π], there exists
a positive constant c such that |W (θ)| ≥ c for all θ ∈ [−π, π].

Let δ be a positive constant and let

Γm(t) = {n ∈ Z : min
ω∈[0,4]

min
σ1 , σ2=±1

|σ1m+ σ2n− ωt| ≤ δt} .

Now we will show a decay estimate of Sm,n(t) for m 6∈ Γm(t) to prove (4.7). By
symmetry, it suffices to consider the case m ≥ n. As in the proof of [16, Lemma 2],
the cases m ≥ 0 ≥ n, m ≥ n > 0 and 0 > m ≥ n can be shown differently.

Suppose n 6∈ Γm(t) and m ≥ 0 ≥ n. Substituting

ψ+
m(θ) = e−imθf+

m(θ), ψ−n (θ) = einθf−n (θ) (4.9)

into the integral representation (4.8) and integrating the resulting equation 2N
times by parts, we see from the bound (4.6) that there exists a positive constant
CN,δ depending only on N ∈ Z+ and δ > 0 such that for t ≥ 1,

|Sm,n(t)| ≤ CN,δt−2N ≤ CN,δt−N (1 + ||m| − |n||)−N . (4.10)

Suppose n /∈ Γm(t) and m ≥ n > 0. We substitute (4.9) and the first equation
of system (4.4) into the integral representation (4.8). Noting that the singularity
of a(θ) and b(θ) at θ = 0 and θ = ±π cancels out with zeros of sin(θ) and that the
derivatives of a(θ) sin(θ) and b(θ) sin(θ) are bounded, we can prove (4.10) in the
same way as above.

The case 0 > m ≥ n can be shown in the similar manner. Therefore for an
arbitrary N , we have

sup
m∈Z

∑
n 6∈Γm(t)

|Sm,n(t)|s = O(t−sN ) as t→∞.

For n ∈ Γm(t), we rely on the argument of Mielke and Patz [11]. Substituting
(4.9) into the integral representation (4.8) and using system (4.4) again, we obtain

sup
m,n∈Z

|Sm,n(t)| ≤ Ct− 1
3 for any t ≥ 1, (4.11)

and

sup
m,n∈Z

|Sm,n(t)| ≤ Ct− 1
2

(
1 +

∑
σ=±1

∣∣∣∣ |m+ σn|
t

− 2

∣∣∣∣− 1
4

)
(4.12)
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for any t ≥ 1 and m, n satisfying |m ± n| 6= 2t in exactly the same way as [11,
Lemmas 3.5 and 3.6]. Let

Am(t) =

{
n ∈ Z : min

σ=±1
||m+ σn| − 2t| ≤ t 1

3

}
,

Bm(t) =

{
n ∈ Z : t

1
3 ≤ min

σ=±1
||m+ σn| − 2t| ≤ (4 + δ)t

}
.

Then Γm(t) ⊂ Am(t) ∪Bm(t) and it follows from (4.11) and (4.12) that∑
n∈Am(t)

|Sm,n(t)|s ≤ Ct−
s−1
3 ,

∑
n∈Bm(t)

|Sm,n(t)|s ≤

{
Ct−

s−1
3 if s > 4,

Ct−
s−2
2 if s ∈ (2, 4),

where C is a constant that does not depend on m. The proof of Lemma 3 is
complete.

5. Proof of Lemma 4. In this section, we prove Lemma 4 by using the inverse
Laplace transformation (4.2).

Fix ω0 ∈ (0, 1) and let χ ∈ C∞0 (0, 4) be such that χ(ω) = 0 for ω ∈ [0, ω0] ∪ [4−
ω0, 4] and χ(ω) = 1 for ω ∈ [2ω0, 4 − 2ω0]. Decay estimate (3.6) follows from the
following lemma.

Lemma 6. Under assumptions of Lemma 4, there is C > 0 such that for all t ∈ R,∥∥∥< n >−1
∫ 4

0
χ(ω)e−itω

[
R+
V (ω)−R−V (ω)

]
fdω

∥∥∥
l∞

≤ C < t >−
4
3 ‖ < n > f‖l1 (5.1)

and ∥∥∥< n >−1
∫ 4

0
(1− χ(ω))e−itω

[
R+
V (ω)−R−V (ω)

]
fdω

∥∥∥
l∞

≤ C < t >−
3
2 ‖ < n > f‖l1 . (5.2)

To prove the bound (5.1), we use the technique of Lemma 3 in [16], where the
dispersive decay |t|−1/3 is obtained in the l1-l∞ norm without weights. We note that
the bound (5.1) needs not be proved for |t| ≤ 1 because χ(ω)R±V (ω) are bounded
operators from l1(Z) to l∞(Z). For any |t| ≥ 1, we integrate by parts and obtain

< n >−1

∫ 4

0

χ(ω)e−itω
([
R+
V (ω)−R−V (ω)

]
f
)
n
dω

=
1

it
< n >−1

∫ 4

0

e−itω
∂

∂ω
χ(ω)

([
R+
V (ω)−R−V (ω)

]
f
)
n
dω. (5.3)

Substituting the finite Born series

RV (λ) = R0(λ)−R0(λ)V R0(λ) +R0(λ)V RV (λ)V R0(λ) (5.4)

into the integral (5.3), we obtain three terms, which we estimate separately using a
particular version of the van der Corput Lemma.

Lemma 7. Assume that ψ ∈ C1(−π, π) and there is θ0 ∈
(
0, π4

)
such that

supp(ψ) ⊂ [−π + θ0,−θ0] ∪ [θ0, π − θ0].
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Then, for any |t| ≥ 1, there is C > 0 such that

sup
a∈R

∣∣∣∣∫ π

−π
e−2it(1−cos(θ))+iaθψ(θ)dθ

∣∣∣∣ ≤ C|t|−1/3 (‖ψ‖L∞ + ‖∂θψ‖L1) .

Proof. Conditions of the van der Corput Lemma (see, e.g., Corollary 1.1 in [10])
are satisfied with k = 3 because the smooth phase function,

φ(θ) = 2(1− cos(θ))− aθ

t

satisfies φ′(θ±) = φ′′(θ±) = 0 and φ′′′(θ±) = ∓2 for θ± = ±π2 and a = ±2t. As a
result, there is C > 0 such that |φ′′(θ)|+ |φ′′′(θ)| ≥ C for all θ ∈ supp(ψ).

The first term in (5.3)–(5.4) is estimated using the change of variables in the
integration and the representation (4.1),

1

it
< n >−1

∫ 4

0

e−itω
∂

∂ω
χ(ω)

([
R+

0 (ω)−R−0 (ω)
]
f
)
n
dω

= − 1

2t

∑
m∈Z

< m > fm

∫ π

−π
e−2it(1−cos(θ))−iθ|n−m|ψn,m(θ)dθ,

where

ψn,m(θ) =
|n−m|

< n >< m >

χ(2− 2 cos(θ))

i sin(θ)

+
1

< n >< m >

∂

∂θ

χ(2− 2 cos(θ))

sin(θ)
.

Using Lemma 7, bound

sup
n,m∈Z

|n−m|
< n >< m >

<∞,

and the fact that a C∞-function χ is compactly supported in the region where sin(θ)
is bounded away from zero, we obtain for any |t| ≥ 1,∥∥∥∥< n >−1

∫ 4

0

χ(ω)e−itω
([
R+

0 (ω)−R−0 (ω)
]
f
)
n
dω

∥∥∥∥
l∞
≤ C|t|−4/3‖ < n > f‖l1 .

The second term in (5.3)–(5.4) yields

− 1

4it

∑
m∈Z

∑
k∈Z

< m > Vm < k > fk

∫ π

−π
e−2it(1−cos(θ))−iθ|n−m|−iθ|m−k|ψn,m,k(θ)dθ,

where

ψn,m,k(θ) =
|n−m|+ |m− k|
< n >< m >< k >

χ(2− 2 cos(θ))

i sin2(θ)

+
1

< n >< m >< k >

∂

∂θ

χ(2− 2 cos(θ))

sin2(θ)
.

Using Lemma 7 and bound

sup
n,m,k∈Z

|n−m|+ |m− k|
< n >< m >< k >

<∞,

this term in l∞-norm is estimated by

C|t|−4/3‖ < n > V ‖l1‖ < n > f‖l1 .
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Finally, we will prove a bound for

< n >−1

∫ 4

0

e−itω
∂

∂ω

[
χ(ω)R±0 (ω)V R±V (ω)V R±0 (ω)f

]
n
dω .

Let B =< n >σ V with σ > 5
2 and G±(ω) =< n >−σ R±V (ω) < n >−σ and

represent G±(ω) by components,

(G±(ω)f)n =
∑
k∈Z

G±m,n(ω)fm.

Using this representation, we can write the third term in (5.3)–(5.4) as a sum of

±i
4t

∑
m∈Z

∑
k∈Z

∑
l∈Z

< m > Bm < k > Bk < l > fl

×
∫ ±π

0

e−2it(1−cos(θ))−iθ|n−m|−iθ|k−l|ψ±n,m,k,l(θ)dθ,

where

ψ±n,m,k,l(θ) =
|n−m|+ |k − l|

< n >< m >< k >< l >

χ(2− 2 cos(θ))

i sin2(θ)
[G±(ω)]k,m

+
1

< n >< m >< k >< l >

∂

∂θ

χ(2− 2 cos(θ))

sin2(θ)
[G±(ω)]k,m.

By the limiting absorption principle under the assumption of the exponential decay
of V (Theorem 1 in [16]), it follows that ∂kωR

±
V (ω) : l2s → l2−s (k = 0, 1, · · · ) are

bounded for any s > k + 1
2 and continuous in ω ∈ supp(χ). Thus there exists a

positive constant C such that

|∂kωG±m,n(ω)| ≤ sup
‖f‖l2=1

‖∂kωG±(ω)f‖l2 ≤ C for k = 0, 1, 2 and ω ∈ supp(χ),

since G±m,n(ω) = (G±(ω)em)n for em such that (em)k = 1 if k = m and (em)k = 0
if m 6= k. Combining this argument with the bound

sup
n,m,k,l∈Z

|n−m|+ |k − l|
< n >< m >< k >< l >

<∞,

and using Lemma 7 again, we estimate the last term in l∞-norm by

C|t|−4/3‖ < n >σ+1 V ‖2l1‖ < n > f‖l1 .

All together, the bound (5.1) is now proved.
The proof of the bound (5.2) relies on the technique of Lemma 2 in [16], where

the dispersive decay |t|−1/2 is obtained in the l1-l∞ norm without weights. To do
this task, we use properties of Jost functions (4.4) and (4.6). Computations near
the end points of the continuous spectrum for the discrete Schrödinger operator can
be done in the same way as those for the continuous Schrödinger operator, which
have been described in full details in the proof of Theorem 3.1 by Schlag [18]. Since
the proof is analogous but lengthy, we omit it here. We remark that a(θ) + b(θ) is
bounded near θ = 0 and θ = ±π although a(θ) and b(θ) are unbounded near these
points.
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