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A higher-order nonlocal evolution equation describing internal waves in a deep
fluid is shown to be asymptotically integrable only if the coefficients of the higher-
order terms satisfy certain constraints. In this case, the nonlocal equation can be
transformed to the integrable Benjamin–Ono equation. The asymptotic integrability
of the reductions of the higher-order evolution equation to a complex Burgers
equation, to an envelope-wave equation, and to a finite-dimensional dynamical
system is also considered. ©1996 American Institute of Physics.
@S0022-2488~96!03206-9#

I. INTRODUCTION

The evolution of small amplitude waves of certain nonlinear dispersive systems can be studied
asymptotically using the so-called multiscale expansion method~see, e.g., Ref. 1!. This method
yields a basic evolution equation which is formally valid at the leading asymptotic order, as well
as a sequence of evolution equations at higher asymptotic orders. It turns out that for many
important physical systems the basic evolution equation is anintegrableequation~see Ref. 2 for
a discussion of this remarkable fact!. Each integrable evolution equation is a member of a hier-
archy of infinitely many integrable equations. It is interesting that the evolution equation valid at
the next asymptotic order, differs from the next member of the associated integrable hierarchy,
only in the value of the numerical coefficients of the nonlinear terms. For example, idealized
unidirectional water waves of small amplitude and large wave length satisfy3 the equation

h t1hxxx16hhx1e~a1hxxxxx1a2hhxxx1a3hxhxx1a4h
2hx!1O~e2!50, ~1.1!

wherea1,...,a4 are certain numbers. Ase→0, this equation becomes the Korteweg–deVries~KdV!
equation, which is an integrable equation. Furthermore, ifa2510a1, a3520a1, a4530a1, then the
O~e! term of Eq. ~1.1! becomes the right-hand side of the next member of the hierarchy of
integrable equations associated with the KdV equation.

If the basic evolution equation is integrable, we say that the underlying physical system is
asymptotically integrabletoO~e!. It turns out that in certain cases it is possible to formally extend
the asymptotic integrability of the system toO~e2!. For example, in the case of water waves
Kodama found4 an explicit transformation which maps Eq.~1.1! to the integrable equation ob-
tained by Eq.~1.1! when a2510a1, a3520a1, and a4530a1. A generalization of Kodama’s
transformation which actually maps Eq.~1.1! to KdV equation itself, and an extension of this
result to the case of water waves without the unidirectionalization assumption, are given in Ref. 5.
It is also shown in Ref. 5 that the concept of the mastersymmetries~see Ref. 6 and references
therein! provides an algorithmic approach to finding the transformations which map the physical
equations to the integrable ones. Similar results are valid for the case that the basic evolution
equation is the nonlinear Schro¨dinger ~NLS! equation.

In this paper we study the asymptotic integrability of the systems whose basic equation is the
Benjamin–Ono~BO! equation, i.e., we study the equation
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ut52uux1Huxx1e@auxxx1b1~uHux!x1b2uHuxx1b3H~uux!x1gu2ux#1O~e2!, ~1.2!

wheree is the small parameter of the multiscale expansion,H is the Hilbert transform,

~Hf !~x!5
1

pE2`

`

Á
f ~j!

j2x
dj, ~1.3!

and*” denotes the principal value integral.
Equation~1.2! occurs in the modeling of long internal waves in a deep continuously stratified

fluid, and was recently derived in Ref. 7. In this caseu denotes the horizontal velocity of the fluid
and the coefficientsa,...,g can be expressed through the parameters of the fluid stratification. The
particular case that the stratification profile can be approximated by a two-layer model with
densityr1 in the upper~shallow! layer andr2 in the lower~deep! layer, was studied in Ref. 8 and
is described by Eq.~1.2! with

a5
27

4 S 4d2

9
21D , b156, b25

3

2
, b35

27

2
, g523, ~1.4!

whered5r1/r2,1.
The structure of our paper is as follows. In Sec. II we present two main results for Eq.~1.2!.

~a! We show that if the coefficients satisfy the numerical constraints

3a1b11b21b350, ~1.5!

and

b11b32g50, ~1.6!

then Eq.~1.2! is asymptotically integrable toO~e2! ~see Propositions 2.1 and 2.2!.
~b! We study the pole-decomposition solution of Eq.~1.2! and establish that if Eqs.~1.5! and

~1.6! are satisfied, then the system describing these solutions is asymptotically integrable toO~e2!
~see Proposition 2.3!. This implies that in this case the algebraic solitary waves interact without a
phase shift toO~e2!.

Unfortunately, in the physically important case that the coefficients of Eq.~1.2! are given by
Eq. ~1.4!, the constraints~1.5! and~1.6! are not satisfied. This is consistent with the fact that in this
case the interaction of the algebraic solitary waves exhibits phase shifts toO~e2!.9

Although we have only shown that the validity of Eqs.~1.5! and~1.6! is a sufficient condition
for asymptotic integrability, we conjecture that it is also a necessary condition. This conjecture is
supported by the following arguments. There exists an exact reduction from Eq.~1.2! to a complex
perturbed Burgers equation. In this case, if the coefficients of Eq.~1.2! satisfy a single constraint,
denoted here byn50, then the perturbed Burgers equation can be mapped to the integrable
Burgers equation. Furthermore, it was shown in Ref. 7 that there exists an asymptotic limit from
Eq. ~1.2! to a certain modulation equation for envelope waves. This equation contains a free
parameter, denoted byx and is an integrable equation ifx50.10 It is remarkable that the equations
n50 and x50 are equivalent to Eqs.~1.5! and ~1.6!. The reductions related to Eq.~1.2! are
discussed in Sec. III.

II. MAIN RESULTS

Proposition 2.1:Let v(x,t) satisfy the BO equation,

v t52vvx1Hvxx . ~2.1!
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Let u(x,t) be defined by

u5v1
e

2
~l1v

21l2Hvx1l3x@2vvx1Hvxx# !. ~2.2!

Then,u solves Eq.~1.2! where the coefficients of Eq.~1.2! satisfy the constraints given by Eqs.
~1.5! and ~1.6!. Actually, these coefficients can be parametrized byl1, l2, l3 through the equa-
tions

a5l3 , b152l2 , b25l12l3 , b352l11l222l3 , g52l122l3 . ~2.3!

Proof: This result can be verified by a direct calculation. However, we choose to derive a
more general result which contains the above as a particular case.

LetH(v) denote the ring consisting of smooth functions ofv(x,t), of its x derivatives, of the
action ofH on these functions, and of the multiplication byx on these functions. Letv solve the
equation,

v t5K~v !1eK̃~v !, ~2.4!

whereK,K̃PH. Defineu by the transformation,

u5v1et̃~v !, ~2.5!

wheret̃PH. Then by direct substitution it follows thatu solves the equation,

ut5K~u!1e~K̃~u!1@ t̃~u!,K~u!#L!1O~e2!. ~2.6!

Here [A,B] L denotes the Lie bracket ofA,BPH, defined by

@A~u!,B~u!#L5A8@B#~u!2B8@A#~u!, ~2.7!

and where prime denotes Frechet differentiation, i.e.,

A8@B#~u!5
]

]e
A@u1eB~u!#U

e50

. ~2.8!

In the particular case whenK̃50, t̃ is given by theO~e! terms of Eq.~2.2!, andK is the
right-hand side of the BO equation, i.e.,

K~v !52vvx1Hvxx , ~2.9!

then Eq.~2.6! becomes Eq.~1.2! with its parameters given by Eq.~2.3!. Eliminating thel’s from
~2.3! we obtain Eqs.~1.5! and ~1.6!.

Proposition 2.2:Let v satisfy the integrable equation

v t5K~v !1eaK1~v !, ~2.10!

whereK(v) is given by Eq.~2.9!, andK1(v) is defined by

K1~v !5@vxx2
3
2~vHvx1Hvvx!2v3#x . ~2.11!

Defineu by

u5v1
e

2
~m1v

21m2Hvx!. ~2.12!
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Then,u solves Eq.~1.2!, where the coefficients satisfy the constraints given by Eqs.~1.5! and
~1.6!. Actually, these coefficients can be parametrized by

b152 3
2a2m2 , b25m1 , b352 3

2a2m11m2 , g523a2m1 . ~2.13!

Proof: This result is a particular case of the more general result presented in the proof of
Proposition 2.1.

Remark 2.1:~a! Equation~2.10! is integrable becauseK1 is the first commuting flow of the
BO equation, i.e.,

@K,K1#L50. ~2.14!

~b! Let t(u)PH be defined by

t5u21 3
2Hux1x@2uux1Huxx#. ~2.15!

This function is themastersymmetryof the BO equation.6 It has the defining property that

K1~u!5 1
2 @t,K#L . ~2.16!

The terms ofK1(u) differ from theO~e! terms of Eq.~1.2! only in their numerical coefficients.
Thus, in order to find the form of the transformationt̃(u) in ~2.5! it is natural to replace the
numerical coefficients oft(u) by arbitrary constants; in this wayt(u) becomes theO~e! term of
Eq. ~2.2!.

~c! If the coefficients of Eq.~1.2! are defined by Eq.~1.4!, the constraints~1.5! and~1.6! are
not satisfied. However, even in this case, Eq.~2.2! defines a three parameter group of infinitesimal
transformations which maps Eq.~1.2! to itself. Using this group of transformations it is possible to
show that the equations for the velocity amplitude, and for the fluid interface displacement,
derived in Refs. 7 and 8 respectively, are equivalent.

Proposition 2.3:Let aj (t) and Xj (t) be complex valued scalar functions oft, aj* (t) and
Xj* (t) denote their complex conjugation,j51,...,N, and assume that ImXj,0. Equation~1.2!
admits the pole-decomposition solution

u5(
j51

N F ia j~ t !

x2Xj~ t !
2

ia j* ~ t !

x2Xj* ~ t !G , ~2.17!

if and only if: ~a! The coefficients of Eq.~1.2! satisfy Eqs.~1.5! and ~1.6!;
~b! aj is given by

aj512
eb2

2
Ẋj1O~e2!; ~2.18!

~c! Xj satisfy the perturbed Calogero–Moser dynamical system,

Ẍj58(
k

8
1

~Xj2Xk!
3 112ea(

k
8

Ẋj1Ẋk

~Xj2Xk!
3 1O~e2!, ~2.19!

where Ẋj5dXj /dt, Ẍj5d2Xj /dt
2, and the sign(k8 denotes summation overk from 1 toN ex-

cluding j .
Proof: Substituting the pole expansion~2.17! into ~1.2! one finds a fourth-order polynomial in

terms of (x2Xj )
2n. Equating the coefficients of the terms withn54 andn51 to zero it follows

that
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6a13b112b213b32g50, ~2.20!

and

@b11b21b32g#Ẍj28b2(
k

8
1

~Xj2Xk!
3 50. ~2.21!

The O~1! term of Eq. ~1.2! is the BO equation, thus to the leading order
Ẍj 5 8(k8(Xj 2 Xk)

23.11 Substituting this expression into Eq.~2.21!, we find that Eqs.~2.20! and
~2.21! yield ~1.5! and~1.6!. Using these two equations, the coefficient of the term (x2Xj )

2n with
n53 implies Eq.~2.18!, while that withn52 implies

iẊ j52(
k

8
1

Xj2Xk
22(

k

1

Xj2Xk*
1 i eF23aS (

k
(
l

9
1

~Xj2Xk!~Xj2Xl !

22(
k

8 (
l

1

~Xj2Xk!~Xj2Xl* !
1(

k
(
l

1

~Xj2Xk* !~Xj2Xl* ! D
1~b32b123b2!(

k

1

~Xj2Xk* !2G1O~e2!; ~2.22!

the sign(k( l9 denotes summation over allk andl from 1 toN which are not equal toj and to each
other. Equations~2.22! are different from those derived by Case11 from the integrable equation
~2.10! where the lastO~e! term in Eq. ~2.22! is absent. However, differentiating~2.22! with
respect tot and using the pole-decomposition technique discussed in Ref. 12, it can be shown that
this term cancels out toO~e2!, and Eq.~2.22! reduces to~2.19!.

Remark 2.2:~a! Let Yj , j51,...,N, satisfy the integrable Calogero–Moser dynamical system,

Ÿj58(
k

8
1

~Yj2Yk!
3 . ~2.23!

DefineXj by

Xj5Yj1
ea

2
YjẎj . ~2.24!

Then,Xj satisfy Eq.~2.19! to O~e2!. We note that the transformation~2.24! also follows from
Proposition 2.1. Indeed, sincev satisfies the BO equation~2.1!, it admits the pole decomposition,

v5(
j51

N F i

x2Yj~ t !
2

i

x2Yj* ~ t !G . ~2.25!

Substituting this expansion and the corresponding one foru @see~2.17!# into ~2.2! with l15a1b2,
l252b1, andl35a we find that Eq.~2.2! reduces to~2.24!.

~b! The pole decomposition of Eq.~1.2! yields an integrable dynamical systems if the coef-
ficients satisfy the constraints given by Eq.~1.5! and ~1.6!. This provides further evidence that
these constraints are necessary and sufficient conditions for the asymptotic integrability of Eq.
~1.2!. Furthermore, explicit soliton and periodic wave solutions of this equation can be found in
the integrable case by means of the pole-decomposition representation~2.17! ~see Ref. 11!.
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III. RELATED REDUCTIONS

In this section we discuss the integrability of certain equations related to Eq.~1.2!.
Reduction 3.1:Let u be analytic in the upper half plane of the complex extension ofx. Then

Hu5 iu, and Eq.~1.2! reduces to the complex perturbed Burgers equation

ut52uux1 iuxx1e@auxxx1 i ~b11b3!ux
21 i ~b11b21b3!uuxx1gu2ux#1O~e2!. ~3.1!

It can be shown that ifv satisfies the complex Burgers equation

v t52vvx1 ivxx , ~3.2!

and if u is defined by

u5v1
e

2
~n1v

21n2vx]
21v1n3x@2vvx1 ivxx# !, ~3.3!

thenu satisfies Eq.~3.1!, where the coefficients of Eq.~3.1! satisfy the single constraint

n53a13b11b213b322g50. ~3.4!

We note that the constraint~3.4! does not coincide with either Eq.~1.5! or ~1.6!. Moreover,
Eq. ~3.3! contains a nonlocal term, which is absent in Eq.~2.2!. However, if the coefficients of Eq.
~1.2! satisfy Eqs.~1.5! and ~1.6!, then bothn250 andn50 are valid.

Reduction 3.2:Let u be expanded in the asymptotic form

u5Ae@C~X,T!exp@ i ~x2t !#1c.c.#1O~e!, X5e~x22t !, T5e2t, ~3.5!

where c.c. denotes complex conjugation. Then, it can be shown7 that the functionC(X,T) satisfies
the equation

iCT1CXX1C@ i1H#~ uCu2!X1xuCu2C50, ~3.6!

where

x53a12b11b212b32g. ~3.7!

It was shown in Ref. 10 that ifx50 then Eq.~3.6! is integrable.@If one applies the ansatz~3.5!
to the BO equation instead of Eq.~1.2!, one finds Eq.~3.6! with x50.# We note that if Eqs.~1.5!
and ~1.6! are valid, thenx50. Furthermore, Eqs.~3.4! and ~3.7! are equivalent to Eqs.~1.5! and
~1.6!.

Reduction 3.3:Let the functionu be represented asymptotically ast→6` by

u5u0~u1
6 ;a1!1u0~u2

6 ;a2!1O~e!, u j
65aj~x1v j t1eXj

6!, j51,2, ~3.8!

whereu0(u j
6 ;aj ) is the profile of the BO~algebraic! soliton solution. The parametersaj , v j , and

Xj
6 describe the amplitude, the velocity, and the phase shift of thej soliton, respectively. Assume

that a1,a2 , which impliesv1,v2 . Then, the velocities of the individual BO solitons are ex-
pressed through their amplitudes by the equations

v j5aj2
eaj

2

4
~6a17b116b215b325g!1O~e2!. ~3.9!

Furthermore, the total phase shifts of the BO soliton interactions,DXj5Xj
12Xj

2, are given by
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DX152
p

~a11a2!
2 @~3a1b11b21b3!~2a1

214a1a222a2
2!

1~b11b22g!~3a1
216a1a22a2

2!#, ~3.10!

DX252
p

~a11a2!
2 @~3a1b11b21b3!~22a1

214a1a212a2
2!

1~b11b22g!~2a1
216a1a213a2

2!#. ~3.11!

When the coefficients of Eq.~1.2! are given by Eqs.~1.4!, the total phase shifts~3.10! and
~3.11! reduce to those found by Matsuno.9 Here we have generalized his result to show that the
total phase shifts exactly vanish only if the coefficients in~1.2! satisfy Eqs.~1.5! and ~1.6!. This
is consistent with the fact that in this case, the interaction of the BO~algebraic! solitons is
described by the integrable Calogero–Moser system~2.23! which does not produce any phase
shifts of the algebraic soliton interactions.
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