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A higher-order nonlocal evolution equation describing internal waves in a deep
fluid is shown to be asymptotically integrable only if the coefficients of the higher-
order terms satisfy certain constraints. In this case, the nonlocal equation can be
transformed to the integrable Benjamin—Ono equation. The asymptotic integrability
of the reductions of the higher-order evolution equation to a complex Burgers
equation, to an envelope-wave equation, and to a finite-dimensional dynamical
system is also considered. €996 American Institute of Physics.
[S0022-248806)03206-9

I. INTRODUCTION

The evolution of small amplitude waves of certain nonlinear dispersive systems can be studied
asymptotically using the so-called multiscale expansion metked, e.g., Ref.)1 This method
yields a basic evolution equation which is formally valid at the leading asymptotic order, as well
as a sequence of evolution equations at higher asymptotic orders. It turns out that for many
important physical systems the basic evolution equation imi@grableequation(see Ref. 2 for
a discussion of this remarkable facEach integrable evolution equation is a member of a hier-
archy of infinitely many integrable equations. It is interesting that the evolution equation valid at
the next asymptotic order, differs from the next member of the associated integrable hierarchy,
only in the value of the numerical coefficients of the nonlinear terms. For example, idealized
unidirectional water waves of small amplitude and large wave length shtfsfyequation

Nt Moo BNt €( @1 Nyt @2 Mxxxt A3 Mt @4 772 77x) + O( 52) =0, (1.1

wherea,, ..., are certain numbers. As-0, this equation becomes the Korteweg—deV(i&dV)
equation, which is an integrable equation. Furthermore;#10«; , a3=20¢,, @,=30¢, then the
O(e) term of Eq.(1.1) becomes the right-hand side of the next member of the hierarchy of
integrable equations associated with the KdV equation.

If the basic evolution equation is integrable, we say that the underlying physical system is
asymptotically integrabléo O(e). It turns out that in certain cases it is possible to formally extend
the asymptotic integrability of the system @(e?). For example, in the case of water waves
Kodama foundl an explicit transformation which maps E€}..1) to the integrable equation ob-
tained by Eq.(1.1) when &,=10a;, a3=20qa,, and «,=30a;. A generalization of Kodama’s
transformation which actually maps E@L.1) to KdV equation itself, and an extension of this
result to the case of water waves without the unidirectionalization assumption, are given in Ref. 5.
It is also shown in Ref. 5 that the concept of the mastersymmedisixs Ref. 6 and references
therein provides an algorithmic approach to finding the transformations which map the physical
equations to the integrable ones. Similar results are valid for the case that the basic evolution
equation is the nonlinear Schiinger (NLS) equation.

In this paper we study the asymptotic integrability of the systems whose basic equation is the
Benjamin—OnaBO) equation, i.e., we study the equation
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U= 2UUy+ HUyy+ €] alyyyt B1(UHU )+ BouH U+ BsH (U )+ yuu, ]+ O(€?), (1.2
wheree is the small parameter of the multiscale expanstérs the Hilbert transform,

1= f
(HE)(0=— wgdg, (1.3

and [ denotes the principal value integral.

Equation(1.2) occurs in the modeling of long internal waves in a deep continuously stratified
fluid, and was recently derived in Ref. 7. In this casdenotes the horizontal velocity of the fluid
and the coefficients,...,y can be expressed through the parameters of the fluid stratification. The
particular case that the stratification profile can be approximated by a two-layer model with
densityp, in the upper(shallow) layer andp, in the lower(deep layer, was studied in Ref. 8 and
is described by Eq(1.2) with

27 (46° 3
a=7 |9 "1, B1=6 B2=35, Bs=%. y=-3 (1.9
where 6= p,/p,<1.

The structure of our paper is as follows. In Sec. Il we present two main results f@i 2y.
(8) We show that if the coefficients satisfy the numerical constraints

3a+ B+ B2t B3=0, 1.9

and

B1t+Bs—y=0, (1.6

then Eq.(1.2) is asymptotically integrable t®(€®) (see Propositions 2.1 and 2.2

(b) We study the pole-decomposition solution of Ef1.2) and establish that if Eq$1.5) and
(1.6) are satisfied, then the system describing these solutions is asymptotically integraiid)to
(see Proposition 2)3This implies that in this case the algebraic solitary waves interact without a
phase shift taO(é).

Unfortunately, in the physically important case that the coefficients of EQ) are given by
Eq. (1.4), the constraint§l.5) and(1.6) are not satisfied. This is consistent with the fact that in this
case the interaction of the algebraic solitary waves exhibits phase shift&tn®

Although we have only shown that the validity of E¢%.5 and(1.6) is a sufficient condition
for asymptotic integrability, we conjecture that it is also a necessary condition. This conjecture is
supported by the following arguments. There exists an exact reduction fro(t.Bto a complex
perturbed Burgers equation. In this case, if the coefficients of Ef). satisfy a single constraint,
denoted here bw=0, then the perturbed Burgers equation can be mapped to the integrable
Burgers equation. Furthermore, it was shown in Ref. 7 that there exists an asymptotic limit from
Eqg. (1.2) to a certain modulation equation for envelope waves. This equation contains a free
parameter, denoted hyand is an integrable equationyf=0.2° It is remarkable that the equations
v=0 and y=0 are equivalent to Eqg1.5 and (1.6). The reductions related to E¢4l.2) are
discussed in Sec. lll.

Il. MAIN RESULTS
Proposition 2.1:Let v(x,t) satisfy the BO equation,

vi=2vvy,+Huyy. (2.1
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Let u(x,t) be defined by
€ 2
u=v+§()\10 +NoHvy A 3X[2vv+Hoyyl). (2.2

Then,u solves Eq.(1.2) where the coefficients of Eql.2) satisfy the constraints given by Egs.
(1.5 and(1.6). Actually, these coefficients can be parametrized\by\,, A5 through the equa-
tions

a=\3, B1=—Nz, Br=N1—A3, Bz=—NtA;—2\;3, y=—-A—2\;. (2.3

Proof: This result can be verified by a direct calculation. However, we choose to derive a
more general result which contains the above as a particular case.

Let.7(v) denote the ring consisting of smooth functions¢X,t), of its x derivatives, of the
action ofH on these functions, and of the multiplication kyn these functions. Let solve the
equation,

vi=K(v)+eK(v), (2.4
whereK,K e.7. Defineu by the transformation,
u=v+er(v), (2.5
where7e. 7. Then by direct substitution it follows that solves the equation,
u=K(u)+ e(K(u)+[7(u),K(u)]) +O(€). (2.6
Here [A,B], denotes the Lie bracket @&,B .7, defined by
[A(u),B(w)] . =A"[B](u)—-B'TA](u), (2.7)

and where prime denotes Frechet differentiation, i.e.,

A’[B](u)=% Alu+eB(u)] ) (2.8
e=0

In the particular case whek=0, 7 is given by theO(e) terms of Eq.(2.2), andK is the
right-hand side of the BO equation, i.e.,

K(v)=2vvy+Huvyy, (2.9
then Eq.(2.6) becomes Eq(1.2) with its parameters given by E@.3). Eliminating the\’'s from
(2.3) we obtain Eqs(1.5 and(1.6).

Proposition 2.2:Let v satisfy the integrable equation

vi=K(v)+eaK (v), (2.10

whereK(v) is given by Eq.(2.9), andK,(v) is defined by
K1(v)=[vyx— S(vHvx+Hov,) —v3]y. (2.11)

Defineu by

€
u=v+§(,ulvz+,u,2Hvx). (2.12
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Then, u solves Eq.(1.2), where the coefficients satisfy the constraints given by Ef%) and
(1.6). Actually, these coefficients can be parametrized by

Bi=—3a—py, PBo=pi, PBs=—sa—pitpa, y=—3a—p;. (2.13

Proof: This result is a particular case of the more general result presented in the proof of
Proposition 2.1.

Remark 2.1:(a) Equation(2.10 is integrable becausé; is the first commuting flow of the
BO equation, i.e.,

[K,K{].=0. (2.14
(b) Let 7(u) .7 be defined by
r=u?+ 2Hu,+ X[ 2uu,+ Huy]. (2.15
This function is themastersymmetrgf the BO equatiofi.It has the defining property that

Ky(u)=3[7.K]y. (2.19

The terms ofK;(u) differ from the O(e) terms of Eq.(1.2) only in their numerical coefficients.
Thus, in order to find the form of the transformatiatu) in (2.5 it is natural to replace the
numerical coefficients of(u) by arbitrary constants; in this wa{u) becomes th®(e) term of
Eq. (2.2.

(c) If the coefficients of Eq(1.2) are defined by Eq(1.4), the constraint$1.5) and(1.6) are
not satisfied. However, even in this case, &2 defines a three parameter group of infinitesimal
transformations which maps E@..2) to itself. Using this group of transformations it is possible to
show that the equations for the velocity amplitude, and for the fluid interface displacement,
derived in Refs. 7 and 8 respectively, are equivalent.

Proposition 2.3:Let a;(t) and X(t) be complex valued scalar functions 'Qfal*(t) and
XJ-*(t) denote their complex conjugation=1,... N, and assume that I1i;<0. Equation(1.2)
admits the pole-decomposition solution

iaj(t) iaf (1)

u=2,

X— x (- X—=X¥(1) |’ 217
if and only if: (&) The coefficients of Eq(1.2) satisfy Eqs(1.5 and(1.6);
(b) a; is given by
€B2 2
=1-—° X;+0(€?); (2.18
(0) X; satisfy the perturbed Calogero—Moser dynamical system,
X;=8 12¢a,’ X O(€? 2.1
> e 12 G O 219

where X;=dX;/dt, X;=d?X;/dt?, and the sigrE; denotes summation ovérfrom 1 toN ex-
cludingj.

Proof: Substituting the pole expansi@d.17) into (1.2) one finds a fourth-order polynomial in
terms of Q(—XJ-)’”. Equating the coefficients of the terms witl=4 andn=1 to zero it follows
that
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and
" , 1
[Bu+ Bt Ba= 71X =822, 15— 53 =0. (2.29

The O(1) term of Eq. (1.2 is the BO equation, thus to the leading order
X; = 82(X; — Xi) .M Substituting this expression into EQ.21), we find that Eqs(2.20 and
(2.2)) yield (1.5 and(1.6). Using these two equations, the coefficient of the texm X(J-)‘n with
n=3 implies Eq.(2.18), while that withn=2 implies

1

=23 Y 3“(?2 (X~ X (X —X))

kXXk kXX*

2

1 1

+2 2

X=X )(X=X[) K T (X=X (X—X)

+(Bs— B1— 3&)2 5| +O(€?); (2.22

1
(X —X§)?

the sign=, = denotes summation over &llandl from 1 toN which are not equal tp and to each
other. Equationg2.22 are different from those derived by Casérom the integrable equation
(2.10 where the lastO(e) term in Eq.(2.22 is absent. However, differentiatin@®.22 with
respect ta and using the pole-decomposition technique discussed in Ref. 12, it can be shown that
this term cancels out t®(¢%), and Eq.(2.22 reduces tq2.19.

Remark 2.2(a) Let Y, j=1,... N, satisfy the integrable Calogero—Moser dynamical system,

Y 8 2.2
Ek: (Y;=Yo? Yk) @223
Define X; by
€ -

Then, X; satisfy Eq.(2.19 to O(é). We note that the transformatig@.24) also follows from
Proposition 2.1. Indeed, sineesatisfies the BO equatidi2.1), it admits the pole decomposition,

i
=Yi() x=Y ()]

N
v=j21 < (2.25

Substituting this expansion and the corresponding ona feee(2.17)] into (2.2) with A\;=a+3,,
\,=—pB;, and\;=a we find that Eq(2.2) reduces tq2.24).

(b) The pole decomposition of Eq1.2) yields an integrable dynamical systems if the coef-
ficients satisfy the constraints given by H@4.5 and(1.6). This provides further evidence that
these constraints are necessary and sufficient conditions for the asymptotic integrability of Eq.
(1.2). Furthermore, explicit soliton and periodic wave solutions of this equation can be found in
the integrable case by means of the pole-decomposition represeratidn(see Ref. 11
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Ill. RELATED REDUCTIONS

In this section we discuss the integrability of certain equations related tG1E).
Reduction 3.1Let u be analytic in the upper half plane of the complex extensiox. dthen
Hu=iu, and Eq.(1.2) reduces to the complex perturbed Burgers equation

Ug=2UUy+ iU+ € alyy,+i( B+ B3)u>2<+ i(B1+ B2t Bz)ulyy+ 7uzux] + 0(62)- (3.0
It can be shown that it satisfies the complex Burgers equation
V=20V Uy, (3.2

and if u is defined by
€
u=v+§(vlv2+ Vo0 0+ VX[ 2004+ U y]), (3.3

thenu satisfies Eq(3.1), where the coefficients of E@3.1) satisfy the single constraint

We note that the constraiii8.4) does not coincide with either EL.5) or (1.6). Moreover,
Eqg. (3.3 contains a nonlocal term, which is absent in Ej2). However, if the coefficients of Eq.
(1.2) satisfy Egs.(1.5 and(1.6), then both»,=0 andv=0 are valid.

Reduction 3.21et u be expanded in the asymptotic form

u= Ve[ P (X, T)exgi(x—t)]+c.c]+0(e), X=e(x—2t), T=éx, (3.5

where c.c. denotes complex conjugation. Then, it can be shihanthe function¥’(X, T) satisfies
the equation

where

It was shown in Ref. 10 that j{=0 then Eq/(3.6) is integrable[If one applies the ansat3.5)
to the BO equation instead of E(].2), one finds Eq(3.6) with y=0.] We note that if Eqs(1.5
and(1.6) are valid, theny=0. Furthermore, Eq€3.4) and(3.7) are equivalent to Eqg1.5 and
(1.6.

Reduction 3.3Let the functionu be represented asymptotically tas + by

U=Ug(67 ;a1) +Uo( 63 ;@) +0(e), 6 =aj(x+vjt+eX?), j=1.2, (3.9

Whereuo(ef ;a;) is the profile of the BQlalgebraig soliton solution. The parametess, v; , and
XJ-: describe the amplitude, the velocity, and the phase shift of #@diton, respectively. Assume
that a;<<a,, which impliesv,;<wv,. Then, the velocities of the individual BO solitons are ex-
pressed through their amplitudes by the equations

2
€ea;
uj:aj—T' (6a+7B1+6B,+583—57)+0(ed). (3.9

Furthermore, the total phase shifts of the BO soliton interactiai§= XJ-*—XJ-’, are given by
J. Math. Phys., Vol. 37, No. 7, July 1996
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v

AXy=— ———— [(3a+ B+ B2+ B3)(2a%+ 4a,a,— 2a)
(a;+ap)

+(B1+ By~ y)(3ai+6a,a,—a))], (3.10

a
AXZZ —az)z[(3C¥+Bl+ﬁz+ﬁ3)(_2ai+4a1a2+2ag)

a (a;+
+(B1+ By~ y)(—al+6aa,+3a3)]. (3.11

When the coefficients of Eq1.2) are given by Eqs(1.4), the total phase shift€3.10 and
(3.11) reduce to those found by Matsufdiere we have generalized his result to show that the
total phase shifts exactly vanish only if the coefficientgir?) satisfy Eqs(1.5 and(1.6). This
is consistent with the fact that in this case, the interaction of the (Bi@ebraig solitons is
described by the integrable Calogero—Moser syste@3 which does not produce any phase
shifts of the algebraic soliton interactions.
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