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A new approach to the construction of the rational solutions to the hierarchy of the 
Kadomtsev-Petviashvili equation is presented. The generalization of the “superpo- 
sition formula’* is found to permit the construction of a new general solution from 
some partial ones. The features of the general polynomial factorization and the 
types of scattering in the many-body Calogero-Moser problem are investigated. 

1. INTRODUCTION 
In the past twenty years, rational solutions were found in the majority of the equations of 

mathematical physics that possess a rich algebraic structure: an infinite set of symmetries and 
related commuting flows.“* It was ascertained that the rational solutions of such equations are 
special limiting forms of exponential (“multisoliton”) solutions and can be obtained from the 
latter ones by long-wave degeneration.3-7 This approach is productive for some simple problems, 
for example, finding solutions describing the scattering of algebraic solitons (“lumps”) in the 
Kadomtsev-Petviashvili (KP)3-5 and Benjamin-Ono6 equations or the investigation of the unique 
family of the polynomial T function in the Korteweg-de Vries equation? However, for other, more 
complicated cases this approach does not give explicit rational solutions. 

Therefore, direct methods for the construction of rational solutions have great importance in 
mathematical physics. For instance, such methods are based on the transformation of various 
forms of the T function to the equation of interest,8-‘0 or on the group theory,1’-‘3 or on the 
analytical properties of the Baker-Akhiezer function in the framework of a linear system related 
to the nonlinear equation.‘*14.‘5 In spite of certain successes in this field, the structure and the 
features of a general rational solution even for the best investigated hierarchy of the KP equation 
have not been studied deep enough until now. For instance, recent works’6-‘8 revealed new classes 
of rational solutions and new types of related dynamic phenomena in the classical KP equation. 

In the series of articles the rational solutions to the KP hierarchy are considered in the context 
of dynamics of particles in the Hamiltonian many-body problem which is described by the poles 
of the rational solutions (zeros of the corresponding ~-function). As is well known,t9-** for the KP 
hierarchy, such a problem is generated by the flows of the complete integrable Calogero-Moser 
(CM) system. The investigation of the general rational solution allows us to classify the features 
of particle scattering in the CM system. 

This article is devoted to the construction and investigation of the new form of a general 
solution to the KP hierarchy. It is obtained from the Wronskian form of the T function in Sec. II 
and is a tensor of N rank that is generated by a characteristic function. The features of the general 
polynomial factorization are found in Sec. III. The various types of particle dynamics in the CM 
system are considered in Sec. IV. They are also compared with the known classes of the rational 
solutions to the KP hierarchy. The consequences of the new approach are discussed in Sec. V. The 
formula of the relationship between different rational solutions is proven in the Appendix. 

II. THE CHARACTERISTIC FUNCTION FOR RATIONAL SOLUTIONS 
Let us consider the function w( t i , t2, t3 , . . . ) that depends on infinite sequences of the variables 

t n , n 2 1 and satisfies the hierarchy of the equations (the KP hierarchy) 
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(2.1) 

. . . 

The procedure for finding all members of the KP hierarchy in the bilinear form was considered, for 
example, in Refs. 1 1 - 13. A bilinear form appears as a result of replacing the dependent variable 

w(t,,t2.t3,...)=4, In tit1,12,t3 ,... 1. (2.2) 

For broad classes of partial solutions to Eqs. (2. l), the T function (2.2) can be expressed by the 
Wronskian8*‘3 

7=detlJ,kI~WW[~1,(62,...,~Nlr (2.3) 

where Jnk = df,- ’ c$, , l<n, k<N, and the functions (6, are arbitrary solutions of the system of 
linear partial differential equations with constant coefficients 

iQ,,=d:,A,, k31. (2.4) 

The rational solutions to the Kp hierarchy for which the T function is a polynomial (it is 
possible to multiply this polynomial to an arbitrary exponential factor depending linearly on tt), 
are generated by the following partial solutions of the system (2.4): 

A=ap”,” exp[~,(p,)l~:P,n(p,).exPC~.(Pn)l, (2.5) 

where @(p,) = ET= t p~(tj+ i,j>, pn is a spectral parameter, and f;tj are arbitrary phase constants. 
The polynomials P,,, which are defined by the formula (2.9, generalize the Schur 
polynomials’1-‘3 and can be written in an explicit form (see, for example, Refs. 8 and 13) 

(2.6) 

Here the sum consists of all possible combinations of integer non-negative numbers 
(il ,i2,...,imn ) which satisfy the condition il + 2i2 + *** + mnim, = m, and the new variables are 
introduced 

(jk(pn)= & &J~n@(p,)=~ (i) *phek*tj+ ank f 
j=k 

where &=xim_k (j/k>‘P~-k’t”,j and (j/k)=j!/(k!(j-k)!). 
For further analysis, the key property of the polynomials P,n is the relationship between the 

polynomials of different degrees 

I 
bkpmn= aQmn= 

m,. 
(m,-k)! ‘Pmn-k (2.7) 

that follows from the explicit expression (2.6). 
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First, let there be no identical values in the set {p,}:= t so that pn # pm for n # m. We shall 
call such solutions (2.3) with functions +J,, (2.5) nondegenerate rational solutions. Since the op- 
erators d,, and JP, commute, the formal transformation of the nondegenerate solution is correct 

where UP 1 ,p2 ,*-*,PN]=n&, an>kal(pn-pk) is the Vandermond determinant. 
Let us introduce the characteristic function 

N 

fcexp c @tPn)+N~,~ 1 ln(p,-pk) ~ex~~~~p~~p2t~~~~pN)l~ (2.8) 
n=l P P 

Then an arbitrary nondegenerate rational solution is a tensor of N rank which is generated by the 
characteristic function (2.8) 

(2.9) 

The tensor of N rank (2.9) is well known in the mathematical methods of the probability 
theory23 as the tensor of mixed moments of the degree (ml ,m2 ,...,m,) for some vector of 
probable values. As was found earlier,23 the expression (2.9) can be rewritten in an explicit form 
over the derivatives of the function 1v(p, ,p *, . . .,pN), which are referred to in the theory as the 
semi-invariants of the vector of probable values 

“‘lm2”.“‘N= 
‘1 2 “‘N ml!m2!“‘mN!- (2.10) 

where the sum consists of all possible nonordered combinations of different integer non-negative 
numbers bk,,p k2,. ..,p.,,}E r and of all ordered combinations of integer positive numbers 
(iI , . . . , iM) which satisfy the condition i , p t,, + i2,u2, + . . * + iMpw,, = m, for 1 s n SN, and 

sPklPkI “‘PkN, 
1 

1 2 “‘N 
#+l+. . . 

&,!&2!“‘&N! PI p2 
a;fqtpl $2r...,PN)* (2.11) 

At N= 1, the tensor (2.10) is a sequence of the polynomials P,,(p r) (2.6), and the semi-invariants 

p= $k,(P1). 
Now, let all the values of the spectral parameter in the set {p,}:= , be identical so that p,, =pm 

for all n,m. Such a rational solution can be referred to as a degenerate one. The operator repre- 
sentation (2.8), (2.9) is no longer correct for this solution. However, using the features of a 
determinant it is readily found that the degenerate polynomials can be written in a Wronskian form 

My=exp(-N@bl))~W[41 ,4 71 2t~..r~N1=W[Pm,(pl),Pm2(pl),...,PmN(p~)], (2.12) 

where the vector My= (m, ,m2 ,...) mN). 
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MS+. . .MKN 
A general rational solution r1 I 2 2 .,vN combines the forms (2.9) and (2.12) and is ex- 

pressed by the determinant (2.3) of order K= Xz= t K, with the functions (2.5) depending only on 
N< K values of the spectral parameter. Such a solution can be classified as a partially degenerate 
polynomial. 

Further investigation of the rational solutions to the KP hierarchy is based on the remarkable 
fact that mixed second-order semi-invariants (2.11) do not depend on the variables tk and all 
mixed higher-order semi-invariants are identically equal to zero. As a result, it is not difficult to 
prove from the formula (2.10) that a nondegenerate rational solution as a whole preserves the 
property of the polynomials Pmn 

a;, a:* . . ./33y43= (2.13) 

where vn= 8t(p,). 
The expression (2.13) means that there exists some differential operator F mapping the set of 

N polynomials 7:” = P,,(p,) into the tensor of N rank (2.9) 

mlm2 
‘1 2 “‘N 

mN=~*rmlxrm2x...xrmN 
1 2 N ’ 

We shall call the relations similar to (2.14) factorizing relations of the polynomial solutions. 
The explicit forms of the operator F for nondegenerate and partially degenerate solutions are 
found in the next section. 

III. FACTORIZATION OF THE POLYNOMIALS 

In order to investigate the features of factorization of the nondegenerate polynomials (2.9) 
which are generated by the characteristic function (2.8), we shall derive the formula for the 
relationship between the polynomials r~‘~*:::~, r;“+r’, and r~‘~*:::~~N+~‘. 

First, we set mN+t =O. Then it is obvious from Eqs. (2.8) and (2.9) that the solution 
mlm2...mfl 

71 2 ...N N+l differs from the solution ry’y”:::i only by a shift of all the variables 6k(Pn) 

1 
@k(h) -+ okha)- k.(PN+1-p,)f9 lsn==Ns 

Let us introduce the vertex operator making the shift of 8&,) 

S(h,,,)=exp 
1 

’ hm’n=p Pm-P?2 . 
(3.1) 

Using this operator, the relationship between the polynomials can be written in a compact form 

lV,t?Q...mNO 
‘1 2 “‘N N+l = ( 6, s(kN+ I,,,)) *r~‘~‘:::~- (3.2a) 

On the other hand, similar calculations lead to the formula 

(3.2b) 
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In a general case, when mN+’ f 0, the polynomial r~‘~2:::~N~” is related to the polyno- 
mials (3.2a) and (3.2b) as follows: 

N 
m'm2"'mNmN+,- m'm2...mN'J 1 

71 2 “‘N N+l -r, 2 “‘N N+l”12...NN+l OO”‘omN+‘+ c 
n=l tPn-PN+1)2 * dXN+l,n 

dNr*i*2~~~*f40 
, 2 “‘N N+l 

dNrOO.‘.OmN+, 
lZ...NN+ 1 

~~N+l,,l~XN+1,,2”‘~XN+l,,N . ~Xnl,N+l~Xn2,N+l~~~d~~N.Nfl * 

(3.3) 

The proof of this equality is presented in the Appendix. 
The formula (3.3), together with (3.2a) and (3.2b), represents the “superposition formula” for 

the nondegenerate rational solutions to the Kp hierarchy since it permits to construct a new, more 
general solution rm’m2”‘mNmN+’ ’ 2 ...N N+’ from two known solutions r~‘~‘:::~ and rG”+t’. On the other 
hand, taking into account the leading term of the equality, we reveal the factorizing relationship 
between the KP polynomials. Moreover, the formula (3.3) allows us to write a nondegenerate 
rational solution in the form (2.14). 

We shall express (3.3) in a compact operator form. For this purpose we note that the terms in 
the right-hand side of Eq. (3.3) correspond to the first N terms in the Taylor expansion of the 
following operator exponent: 

N N 

n Q(P~,PN+I)=II 
n=l IL=1 

[)z . (3.4) 
+ 

Here the operator Q(p, #N+ ‘) influences only the operator S(XN+ l,n) in the expression (3.2a) for 

71 2 m’m2: 1 :yi+ ’ and the operator S(h,,N+ ‘) in the expression (3.2b) for ryi:: :pNy,‘. Since the vertex 
operators S(X,,,) are linear on the variables A,,, for the nondegenerate polynomials [see the 
formula (A3) in Appendix], the higher-order terms in the Taylor expansion of the operator (3.4), 
which differ from the terms in the right-hand side of (3.3), are identically equal to zero. So, the 
equality (3.3) is equivalent to the compact formula 

r*i*2 , 2 ::I~~“+~‘= h Q(p, ,PN+~)S(AN+~,~)S(A~,N+~) *r~‘~‘:::~X r;Ti’. (3.5) 
n=l 

Using subsequently N- 1 transformations (3.5) from the solution ry’ to the solution 
r~‘~2:::~, we obtain the factorizing relation (2.14) for a nondegenerate polynomial of the KP 
hierarchy in an explicit form 

r~‘~*:::~= n n Q( pn ~P,)~(LJW~,,,J (3.6) 
lS?t<lilSN 

The factorizing relation depends nonsmoothly on tire spectral parameters pn and becomes 
incorrect when pm =p,, for some m # n since A,,,,=00 in this case. 
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Flevertheless, we succeed in generalizing the relation (3.6) to partially degenerate polynomials 
if we rearrange the factor by combining the subsets of the polynomials 7:” = P,,(p,) with iden- 

MK” 
tical values of the spectral parameter pn into the generate polynomials r, n which have the form 
(2.12). The result of the corresponding calculations is presented by the expression 

lG~c~cN QtPn ~Pm)~Km(~m,~)~Knt~~,m~ (3.7) 

Here the operator Q(p, ,p,) must be written in the following form: 

1 
(P,-Pm)~ .S-‘(Arn,n)S-‘(Xn,rn) - (3.8) 

which is equivalent to IQ. (3.4) for the nondegenerate polynomials 7:“. 
So, the polynomial r function for the ISP hierarchy can be presented in a factorizing form by 

tin 
an arbitrary set of the degenerate polynomials r n of lower degrees which can be regarded as 
structural elements of a general rational solution.nWe shall show in the next section that the main 
features of particle dynamics in the many-body CM problem are related to this property of the 
polynomial solutions. As a result, an arbitrary ensemble of particles decays after some collision 
process into individual partial ensembles that weakly interact with each other. 

IV. GENERAL FEATURES OF THE PARTICLE DYNAMICS RELATED TO THE RATIONAL 
SOLUTIONS 

It is known that the motion of zeros X,(t,, t3 ,... ) of the polynomial r function of the KP 
hierarchy with respect to the variable t, in a complex plane is related to the integrable many-body 
CM problem 

and to its higher commuting Hamiltonian flo~s’~-~~ 

&,-?I = av,,Hk 9 d,,v,= -dj$k, k>2, 

(4.1) 

(4.2) 

where 

k 

Hk=$&$ sp Lk, Li,j” V[Si,j+ 
2( 1- si,j> 

Xi-Xi ’ 
l<i,jSR, 

and R is a degree of the KP polynomial. 
The scattering of the particles having different asymptotic velocities was investigated for the 

CM system by Calogero.” The main feature of the dynamics is the absence of any tracks of 
interaction between the particles after their scattering (even the phase shift along the trajectory is 
equal to zero). If we designate the particle coordinates and velocities at t2 + --03 by X,,, and Vno, 
where all V,, are different, and at t2 --+ +m by XA, and VA,, respectively, then the sets 
{XnO, V,,}f= , and {XA, , VA,}fl= t are identical. However, it was discovered a little later by Airault 
et al.‘* that stationary manifolds exist in the phase space of the CM system containing a certain 
amount of particles R = M(M + 1)/2, where h4 is a natural number. On these manifolds, all the 
particles are in equilibrium states: V,=O for 1-n. < <R. Still later, Matveevs constructed the solu- 

J. Math. Phys., Vol. 35, No. 11, November 1994 

Downloaded 14 Feb 2001 to 130.113.234.50. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html



5826 Dmitry Pelinovsky: Rational solutions of the KP hierarchy 

tions describing the particle motion in the CM system which is related to the reduction of the 
system (4.1) to the subsystem of first-order equations. Only recently it was pointed out by 
Gorshkov et aZ.17 that this reduction produces new features of particle scattering in the CM 
system. These features are characterized by an appearance of an infinite phase shift of the particles 
as a result of the scattering and anomalously slow dynamics of their interaction. 

The aim of this section is to use the general formula (3.7) for the description of the main 
features of the particle dynamics in the CM system and its higher commuting flows (4.2). 

A. Normal scattering of particles 

The best known feature of the CM system is the absence of any tracks of interaction between 
the particles having different asymptotic velocities on their scattering. The corresponding solutions 
follow from the general formula (3.7) at K, = 1 and m, = 1 for any n. Designating 

and expanding the exponential operators Q(p, ,p,) in the Taylor series, we obtain the well-known 
formula describing the scattering of the particles having different asymptotic velocities5 

N 

ri::::h= rI ?In+ i(g) (pklpl)' rI %+"'+ &ST 
n=l n#k,l 

XCkT ) ;; (Pk :,, )f II %I+--- . 
m** m-l m m n+k, J, 

(4.3) 

The summation is performed over all possible combinations of k, ,I, ;k, ,I, ;. . . ;k, ,l, ;... from 
integer numbers 1,2,...,N, all numbers being different. A simple analysis shows that the expansion 
(4.3) contains nonvanishing terms for each polynomial of N degree up to the M = [N/2] term. 

Since at tk + 00 for ka2; vn -+ a for l+zcN, the factorization of the leading term of the 
expansion (4.3) accounts for the fact that all N particles move rectilinearly after interaction and 
have the same asymptotic velocity VA0 = Vno = 2p, and the same phase XA, = XnO = 8,,, 
+Jz ( mfn Pn - Pm)-‘* as before interaction. Obviously, the trajectories described by this class of 
solutions completely fill the 2N-dimensional phase space of the system (4.1), (4.2) of N particles, 
except possible manifolds of lower dimension. In Ref. 17 the dynamics of N particles with 
different asymptotic velocities is referred to as normal scattering. 

For the case pk=PI at k # I, the formula (4.3) is no longer valid. It is known that the 
interaction of certain particles (or solitons) may not occur when they move with identical asymp- 
totic velocities at infinite distances from each other (for example, see Ref. 6 for the Benjamin- 
Ono equation). Therefore, such equations have no rational solutions other than Eq. (4.3). However, 
for the KP equation it was ascertained in Ref. 17 that the limit transition pk + pr leads to a new 
class of the rational solutions at certain renormalization of the phase constants X,,. These solu- 
tions describe dynamics of the particles having identical asymptotic velocities. The Wronskian 
form used in this article is convenient because the necessary phase renormalization has already 
been produced by the action of the vertex operator (3.1). So, it directly follows from the solution 
(4.3) that 

5-f::::: - pNt -PN)r 
PI-+PZ+“‘+PN 
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where the polynomials F,(p,) can be obtained from the polynomials P,(p,) by replacing 
tzk + - tzk for any k which is admitted by the system (4.1) and its even flows (4:2). 

The polynomial PN(pN) of R = N degree is parametrized by N phase constants ON,, lsk< N, 
and the unique spectral parameter PN. Therefore, the motion described by the zeros of this 
polynomial is contained in the (N+ 1)-dimensional manifold of a common 2N-dimensional phase 
space. Moreover, the motion of the particles on this manifold corresponds to the first-order system 
that is a reduction of the system (4.1) (see, for example, Refs. 8 and 22) 

1 
a,2X,=2pj,,+2 c - 

m+n xm-xn’ 
l<nsN. 

It is obvious from this system that, first, all particles move with the same average velocity 
VN=2pN and, second, their relative motion in the reference frame propagating with the velocity 
VN and described by the coordinate AX,=X,- VNt2 occurs by a slower law: AX,-ti” at 
tz --+ +T and AXnlt2-‘+m -+ + iAX,+2-)-m. Such a slow interaction gives rise to an infinite 
phase shift along the trajectories of the particles. Following Ref. 17, we call the scattering of N 
particles with identical asymptotic velocities anomalous scattering. 

B. Anomalous scattering of particles 

There exist two groups of the solutions corresponding to anomalous interactions of R particles 
in the framework of the CM system. The first group is described by the solution (3.7) for all K, = 1 
but with m,>l for some n. The main structural elements of these solutions are the polynomials 
P,,(p,), 1 sn s N. As it follows from the factorization properties, after some collision processes 
the common ensemble of R = xfZ1 m, particles decays into N partial ensembles of ml ,m2,. . . ,mN 
particles which move, as a whole, along the same trajectories as before interaction. However, 
inside each partial ensemble, the particles interact in the manner described above and the result of 
such an interaction is the irreversible shift of their trajectories. 

Another type of particle dynamics is described by zeros of the polynomials (3.7) at the 
degeneration of the spectral parameter values: K,> 1 for some n. In this case the structural 

elements of the solution are the degenerate polynomials r n , l<n < N. We designate their 
degrees through rn . From the same factorization properties, itnfollows that a common ensemble of 
R particles (R = Zf= t r,) also decays into N partial weakly interacting ensembles. However, the 
motion of the particles inside each partial ensemble concentrates near stationary manifolds of 
some commuting flows (4.2) of the CM system.‘7*18 Unlike the first group of anomalous processes, 
stationary manifolds and the related slow scattering of the particles have a dimension lower than 
(R + 1) and exist only for a certain amount of interacting particles. On the other hand, no phase 
shift of the particle trajectories occurs. A more detailed investigation of the degenerate polynomi- 
als of the KP hierarchy and the second type of anomalous scattering in the CM system is carried 
out in the next article. 

V. CONCLUSION 

The new form of rational solutions to the KP hierarchy presented in this article generalizes the 
formula (4.3) found earlier and allows us to obtain any rational solution in an explicit form for a 
given set of spectral parameter values (p,}i=, without additional degeneration. The construction 
and investigation of a general rational solution reduce, within this approach, to the analysis of a 
certain set of polynomials of lower degrees which factorize the general solution in the operator 
form (3.7). 

The factorization properties of the rational solution determine the characteristic features of the 
dynamics of particle scattering in the many-body CM problem. In a general case, the scattering of 
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particles consists of two phases, a fast and a slow one. In the first phase which is referred to as the 
normal one, the ensemble of particles decays into partial weakly interacting ensembles containing 
a smaller amount of particles. Moreover, each partial ensemble moves along the same trajectory 
along which it would move without interaction with other ensembles. In the second anomalous 
phase which proceeds by slower laws, particle interaction and scattering are observed inside each 
partial ensemble. We revealed that there are two different types of anomalous phases of scattering. 
The first type is accompanied by changing trajectories of the particles and the appearance of an 
infinite phase shift. The other type is related to stationary manifolds of some flows of the CM 
system. 
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APPENDIX: PROOF OF THE FORMULA (33) 

We shall prove that the polynomial ry’y”: :1x$’ can be expressed through two polynomials 
rn,rn~...rn~ 

71 2 ...N N+, and $:::$‘2t1 by the formula (3.3). 
Using the Leibniz differentiation formula to an arbitrary rational solution of (N+ 1) rank (2.9) 

we obtain 

where l;l,,= B,(p,). 
The last equality in the expression (Al) follows directly from the formula (2.13). The sum- 

mation over k, can be extended from zero to infinity because all derivatives of r~‘~*: 1 :G”ON+ t with 
respect to vn that are higher than the (m, + 1)th one are identically equal to zero. We rearrange the 
expansion (Al) extracting the terms with an equal number of the variables p,, with respect to 
which the differentiation is performed 

pm2 
1 2 “‘N N+l 

(A2) 
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Here the summation over n1,n2,..., nN is performed from 1 to N. Using the expression (3.2b) for 
the solution through the operators S(&N+r ) and the following property of the vertex operator 
acting on the class of the polynomials Pm,(~n)13,18 

S( h,,,)Pmn(p,) = ( 1 - L,,~,)~mn(Pn> (A31 

it is not difficult to calculate the derivatives of the solution (3.2b) on pn 

N oo~~.omN+, 

. ..$( rOO”‘OmN+‘= n $1 A~,,~+, 
#‘12-.NN+l 

N 12...NN+ 1 
m=l Ifs n,,N+ldXn~.N+l~~~~XnN,N+l (A4) 

d;nhn,N+ 1= - 
k! 

k 1 
(PN+I-Pn) + * 

(A51 

Substituting Eqs. (A4) and (A5) into the formula (A2) we find 

N 
mlm2...mNmNfl _ m,m2...mfl OO-.OmN+,+ 

z, (p 

1 drOO~‘.OmN+’ 12*..NN+ 1 
71 2 “‘N N+, --‘I 2 “‘N N+1’r,2...NN+, 

N+ 1 -Pn )’ -“’ aXn.N+l +‘.’ 

+?h ’ = kil (p.k-~N+l~2 
“, .9.“’ .“,%, 

$,ro@-om,t,+, 

. L,n2 
12...NN+l 

*““N’ ~~,,,N+l~~nZ,N+l”‘~~~N,N+l’ 

where we designate 

0-w 

T “,l12”‘IlN s(-l)N cc i (~N+l,n,)km’~~~+‘~~1’.‘d~~1r~1~2:::~~+l. 
k, 42,“. .kN m=l I 2 

Then, using the formula (3.2a), the property of the vertex operator (A3) and the expression 

rn,rn~...rn~ 
s-l(~N+l,n)r, 2 “‘N N+l 

we have the identity 

T n,n2”‘“N =(- l)Na,“,dvn * .$, s-l(xN+ l+,,)r~‘~?::~““,+, 

flrmlm2..+vo 
, 2 “‘N N+l 

=A N+l,n,~hN+l,n~~~~~XN+l,nN’ 

The formulas (A6) and (A8) prove the validity of the formula (3.3). 

647) 

648) 
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