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Abstract

We prove a general criterion of spectral stability of multi-site breathers in the
discrete Klein—Gordon equation with a small coupling constant. In the anti-
continuum limit, multi-site breathers represent excited oscillations at different
sites of the lattice separated by a number of ‘holes’ (sites at rest). The criterion
describes how the stability or instability of a multi-site breather depends on
the phase difference and distance between the excited oscillators. Previously,
only multi-site breathers with adjacent excited sites were considered within the
first-order perturbation theory. We show that the stability of multi-site breathers
with one-site holes changes for large-amplitude oscillations in soft nonlinear
potentials. We also discover and study a symmetry-breaking (pitchfork)
bifurcation of one-site and multi-site breathers in soft quartic potentials near
the points of 1 : 3 resonance.
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1. Introduction

Space-localized and time-periodic breathers in nonlinear Hamiltonian lattices have been
studied extensively in the past 20 years. These breathers model the oscillatory dynamics
of particles due to the external forces and the interaction with other particles. A particularly
simple model is the Klein—-Gordon lattice, which is expressed by the discrete Klein—Gordon
equation,

iin + V/(un) = e(un+1 - 2Mn + unfl)» ne Z, (l)

wheret € Risthe evolution time, u,, (t) € Ris the displacement of the nth particle, V : R — R
is a smooth on-site potential for the external forces, and € € R is the coupling constant of the
linear interaction between neighboring particles. For the sake of clarity, we will assume that the
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potential V is symmetric, but a generalization can be formulated for non-symmetric potentials
V. We will also assume that V’(u) can be expanded in the power series near u = 0 by

V') =u+tu’+0®w) as u — 0. )

The plus and minus signs are referred to as the hard and soft potentials, respectively.

A simplification of analysis of the Klein—Gordon lattice was proposed by MacKay and
Aubry [14] in the anti-continuum limit of small coupling constant € — 0. This limit inspired
many researchers to study existence, stability and global dynamics of space-localized and
time-periodic breathers [3]. Since all oscillators are uncoupled at € = 0, one can construct
time-periodic breathers localized at different sites of the lattice. Such time-periodic space-
localized solutions supported on a finite number of lattice sites at the anti-continuum limit
are called the multi-site breathers. All these multi-site breathers are uniquely continued with
respect to the (small) coupling constant € if the period of oscillations at different lattice sites
is identical and the oscillations are synchronized either in-phase or anti-phase.

Spectral stability of multi-site breathers, which are continued from the anti-continuum
limit € = 0, was considered by Morgante et al [15] with the help of numerical computations.
These numerical computations suggested that spectral stability of small-amplitude multi-site
breathers in the discrete Klein—Gordon equation (1) is similar to the spectral stability of multi-
site solitons in the discrete nonlinear Schrodinger (DNLS) equation.

The DNLS approximation for small-amplitude and slowly varying oscillations relies on
the asymptotic solution,

un(t) = €' [ay(et)e” + @y (et)e ™| + O (€72), A3)

where € > 0 is assumed to be small, 7 = € is the slow time, and a,(t) € C is an envelope
amplitude of nearly harmonic oscillations with the linear frequency w = 1. Substitution of (3)
to (1) yields the DNLS equation to the leading order in €,

2ia, = ay — 2a, +a,_1 F 3|an|2an, n e 7. )

The hard and soft potentials (2) result in the defocusing and focusing cubic nonlinearities
of the DNLS equation (4), respectively. Existence and continuous approximations of small-
amplitude breathers in the discrete Klein—Gordon and DNLS equations were justified recently
by Bambusi et al [4,5]. The problem of bifurcation of small-amplitude breathers in Klein—
Gordon lattices in connection to homoclinic bifurcations in the DNLS equations was also
studied by James et al [9].

Multi-site solitons of the DNLS equation (4) can be constructed similarly to the multi-site
breathers in the discrete Klein—Gordon equation (1). The time-periodic solutions are given by
a,(t) = A,e 7, where w € R is a frequency of oscillations and {A,},cz is a real-valued
sequence of amplitudes decaying at infinity as |n| — oo. In the anti-continuum limit (which
corresponds here to the limit |w| — oo [16]), the multi-site solitons are supported on a finite
number of lattice sites. The oscillations are in-phase or anti-phase, depending on the sign
difference between the amplitudes {A, },<z on the excited sites of the lattice.

Numerical results of [15] can be summarized as follows. In the case of the focusing
nonlinearity, the only stable multi-site solitons of the DNLS equation (4) near the anti-
continuum limit correspond to the anti-phase oscillations on the excited sites of the lattice.
This conclusion does not depend on the number of ‘holes’ (oscillators at rest) between the
excited sites at the anti-continuum limit. The stable oscillations in the case of the defocusing
nonlinearity can be recovered from the stable anti-phase oscillations in the focusing case using
the staggering transformation,

an(7) = (—=1)"b,(v)e™", 5
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which changes the DNLS equation (4) to the form,
2ib, = bys1 — 2by + by_1 £ 3|b, by, nez. (6)

Consequently, we have the following statement. In the case of the defocusing nonlinearity, the
only stable multi-site solitons of the DNLS equation (4) with adjacent excited sites near the
anti-continuum limit correspond to the in-phase oscillations on the excited sites of the lattice.

The numerical observations of [15] were rigorously proved for the DNLS equation (4) by
Pelinovsky et al [17]. Further details on the spectrum of a linearized operator associated with
the multi-site solitons near the anti-continuum limit of the DNLS equation are obtained in our
previous work [18].

Similar conclusions on the spectral stability of breathers in the discrete Klein—-Gordon
equation (1) were reported in the literature under some simplifying assumptions. Archilla
et al [2] used the perturbation theory for spectral bands to consider two-site, three-site, and
generally multi-site breathers. Theorem 6 in [2] states that in-phase multi-site breathers are
stable for hard potentials and anti-phase breathers are stable for soft potentials for e > 0. The
statement of this result misses however that the corresponding computations are justified for
multi-site breathers with adjacent excited sites: no ‘holes’ (oscillators at rest) in the limiting
configuration at ¢ = 0 are allowed. More recently, Koukouloyannis and Kevrekidis [12]
recovered exactly the same conclusion using the averaging theory for Hamiltonian systems
in action-angle variables developed earlier by MacKay er al [1, 13]. To justify the use of
the first-order perturbation theory, the multi-site breathers were considered to have adjacent
excited sites and no holes. The equivalence between these two approaches was addressed by
Cuevas et al [8].

It is the goal of our paper to rigorously prove the stability criterion for all multi-site
breathers, including breathers with holes between excited sites in the anti-continuum limit.
We will use perturbative arguments for characteristic exponents of the Floquet monodromy
matrices. To be able to work with the higher-order perturbation theory, we will combine these
perturbative arguments with the theory of tail-to-tail interactions of individual breathers in
lattice differential equations. Although the tail-to-tail interaction theory is well-known for
continuous partial differential equations [20], it is the first time to our knowledge when this
theory is extended to nonlinear lattices.

Multi-site breathers with holes have been recently considered by Yoshimura [25] in the
context of the diatomic Fermi—Pasta—Ulam lattice near the anti-continuum limit. In order
to separate variables n and ¢ and to perform computations using the discrete Sturm theorem
(similar to the one used in the context of NLS lattices in [17]), the interaction potential was
assumed to be nearly homogeneous of degree four and higher. Similar work was performed
for the Klein—Gordon lattices with a purely anharmonic interaction potential [26]. Compared
to this work, our treatment is valid for a non-homogeneous on-site potential V satisfying
expansion (2) and for the quadratic interaction potential.

Within our work, we have discovered new important details on the spectral stability of
multi-site breathers, which were missed in the previous works [2, 12, 15]. In the case of soft
potentials, breathers of the discrete Klein—-Gordon equation (1) cannot be continued far away
from the small-amplitude limit described by the DNLS equation (4) because of the resonances
between the nonlinear oscillators at the excited sites and the linear oscillators at the sites at
rest. Branches of breather solutions continued from the anti-continuum limit above and below
the resonance are disconnected. In addition, these resonances change the stability conclusion.
In particular, the anti-phase oscillations may become unstable in soft nonlinear potentials even
if the coupling constant is sufficiently small.



3426 D Pelinovsky and A Sakovich

Another interesting feature of soft potentials is the symmetry-breaking (pitchfork)
bifurcation of one-site and multi-site breathers that occur near the point of resonances. In
symmetric potentials, the first non-trivial resonance occurs at 1:3 resonance. We analyse
this bifurcation by using asymptotic expansions and reduction of the discrete Klein—Gordon
equation (1) to a normal form, which coincides with the nonlinear Duffing oscillator perturbed
by a small harmonic forcing. It is interesting that the normal form equation for 1 : 3 resonance
which we analyse here is different from the normal form equations considered in the previous
studies of 1 : 3 resonance [7, 21, 22]. The difference is explained by the fact that we are looking
at bifurcations of periodic solutions far from the equilibrium points, whereas the standard
normal form equations for 1 : 3 resonance are derived in a neighborhood of equilibrium points.
Note that an analytical study of bifurcations of small breather solutions close to a point of 1:3
resonance for a diatomic Fermi—Pasta—Ulam lattice was performed by James and Kastner [10].

The paper is organized as follows. Existence of space-localized and time-periodic
breathers near the anti-continuum limit is reviewed in section 2. Besides the persistence results
based on the implicit function arguments as in [14], we also develop a new version of the tail-
to-tail interaction theory for multi-site breathers in the discrete Klein-Gordon equation (1).
The main result on spectral stability of multi-site breathers for small coupling constants is
formulated and proved in section 3. Section 4 illustrates the existence and spectral stability
of multi-site breathers in soft potentials numerically. Section 5 is devoted to studies of the
symmetry-breaking (pitchfork) bifurcation using asymptotic expansions and normal forms
for 1:3 resonance. Section 6 summarizes our findings. The appendix compares Floquet
theory with the spectral band theory and Hamiltonian averaging to show equivalence of our
conclusions with those reported earlier in [2, 12].

2. Existence of multi-site breathers near the anti-continuum limit

In what follows, we will use bold-faced notations for vectors in discrete space [”(Z) defined
by their norms

1/p
lllyr := (Zwm) : p>1.

nez

Components of u are denoted by u, for n € Z. These components can be functions of ¢, in
which case they are considered in Hilbert—Sobolev spaces Hy,.(0, T') of T-periodic functions
equipped with the norm,

1/2
I, = (Z(l +m2>S|cm|2) : s >0,

mez

where the set of coefficients {c,, },cz defines the Fourier series of a T-periodic function f,

fo) = ZcmeXp<2n;mt), 1[0, T].

mez

We consider space-localized and time-periodic breathers u € 1*(Z, ngr(O, T)) of the
discrete Klein—Gordon equation (1) with smooth even V and € > 0. Parameter 7 > 0
represents the fundamental period of the time-periodic breathers. Accounting for symmetries,

we shall work in the restriction of Hj.(0, T') to the space of even T'-periodic functions,

HY0,T) = {f € HL(O,T): f(-D)=f1), 1€ R}, s3>0
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At € = 0, we have an arbitrary family of multi-site breathers,
u @) = Zokw(t)ek, @)
keS

where e, is the unit vector in 1>(Z), S C Z is a finite set of excited sites of the lattice,
or € {+1, —1} encodes the phase factor of the kth oscillator, and ¢ € szer (0, T) is an even
solution of the nonlinear oscillator equation at the energy level E,

1
g+Vip=0 = E=3¢"+V(p). ®)
The unique even solution ¢(¢) satisfies the initial condition,
¢0) =a, ¢(0) =0, ©

where a is the smallest positive root of V (a) = E for a fixed value of E. Period of oscillations
T is uniquely defined by the energy level E,

a d(p
T =+2 _—. 10
—a vV E - V((/)) ( )

Because ¢(¢) is T-periodic, we have
0pp(T) =d'(E) = m, 1D
Iep(T) = —¢(T)T'(E) = V' (@)T'(E). (12)

Our main example of the nonlinear potential V is the truncation of the expansion (2) at
the first two terms:

V') =u+u’. (13)

The dependence T versus E is computed numerically from (10) and is shown in figure 1
together with the phase portraits of the system (8). For the hard potential with the plus sign,
the period T is a decreasing function of E in (0, 27), whereas for the soft potential with the
minus sign, the period 7 is an increasing function of E with T > 2.

Remark 1. All nonlinear oscillators at the excited sites of S C Z in the limiting configuration
(7) have the same period T. Two oscillators at the jth and kth sites are said to be in-phase if
ojor = 1 and anti-phase if 00, = —1.

Persistence of the limiting configuration (7) as a space-localized and time-periodic breather
of the discrete Klein—Gordon equation (1) for small values of ¢ is established by MacKay and
Aubry [14]. The following theorem gives the relevant details of the theory that are useful in
our analysis.

Theorem 1. Fix the period T and the solution ¢ € HZ2(0,T) of the nonlinear oscillator
equation (8) with an even V € C*°(R) satisfying (2) and assume that T # 2wn, n € N and
T'(E) # 0. Define u© by the representation (7) with fixed S C 7Z and {o}}xes- There
are ¢g > 0 and C > 0 such that for all ¢ € (—e€y, €y), there exists a unique solution
u® el*(Z, H 62 (0, T)) of the discrete Klein—-Gordon equation (1) satisfying

14 — w2z, 2,01 < Clel. (14)

per

Moreover, the map R 3 € — u© e I*(Z, Hez(O, T)) is C*™ for all € € (—¢y, €).
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Figure 1. Top: the phase plane (¢, ¢) for the hard (left) and soft (right) potentials (13). Bottom:
the period T versus energy E for the hard (solid) and soft (dashed) potentials.

Proof. Thanks to the translational invariance of the nonlinear oscillator equation (8), we fix an
even ¢ according to the initial condition (9) and consider H; (0, T'), the restriction of H;..(0,T)
to even functions. Under the condition T'(E) # 0, operator

L,=3+V"(p@®): H*(0,T) — L*0,T)

is invertible, because the only eigenvector ¢ of L = 83 + V" (p(1)) : szer(O, T) —> Lf)er 0, T)
is odd in ¢. Similarly, operator

Loy=93*+1:H2.(0,T) — L2,.(0,T)

per per
is invertible if T # 27wn, n € N.

Substituting u = u® + w, where «© is the limiting breather (7) to the discrete Klein—
Gordon equation (1), we obtain the coupled system of differential-difference equations

Low, = e, = 2u® +u® ) + N, (w, €), nes (15)
and

Low, = €@, —2u® +u® ) + N, (w, ), n€Z\S, (16)
where

Nn(wv E) = 6(wn+1 — 2w, + wnfl) + Qn(wn)
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and
0,(w,) = V') + V" @ww, — V'@® +w,).

Since V. e C*®(R), the nonlinear function Q,(w,) is C* for all w, € R. Because
the discrete Laplacian is a bounded operator from /%(Z) to [>(Z) and szer(O, T) forms a
Banach algebra with respect to pointwise multiplication, we conclude that the vector field
N(w,€) : I*(Z, szer(O, ) xR - I2(Z, szer(O, T)) is a C™ map. Moreover, for any w
in a ball in I>(Z, szer(O, T)) centred at O with radius § > 0, there are constants Cs, Ds > 0
such that

2
IN(w, e)llpz m2. 0.1y < Cs (€||’w||12(Z,H2 0,1+ ”w”zz(Z,sze,(o,T)))

per per

and

N (wy, €) — N (w2, )2z H2 0,1) < Ds (6 + lwillz@z, B2 0,1 + lwall2z, B2 (O,T)))

per per per

X |[wy — wa 2@z, 12,0,7)-

Thanks to the invertibility of the linearized operators L, and L, on Lg, the result of the
theorem follows from the implicit function theorem (theorem 4.E in [27]) and the map
R3¢ u® el?*Z, HZ(O, T)) is C* for all small €. O

Remark 2. Although persistence of other breather configurations, where oscillators are neither
in-phase nor anti-phase, can not be a priori excluded, we restrict our studies to the most
important and physically relevant breather configurations covered by theorem 1.

We shall now introduce the concept of the fundamental breather for the set S = {0}.
Multi-site breathers for small € > 0 can be approximated by the superposition of fundamental
breathers at a generic set S of excited sites up to and including the order, at which the tail-to-tail
interactions of these breathers occur.

Definition 1. Letu'© € I*(Z, H*(0, T)) be the solution of the discrete Klein-Gordon equation
(1) for small € > 0 defined by theorem 1 for a given u®(t) = @(t)ey. This solution is called
the fundamental breather and we denote it by ¢© .

By theorem 1, we can use the Taylor series expansion,
N

N N+1 N
¢ =N + Opmz, 0.0 (€™, N =3"
k=0

ek gk

, 17
k! de* {17)

¢(6)
e=0

up to any integer N > 0. Thanks to the discrete translational invariance of the lattice, the
fundamental breather can be centred at any site j € Z. Let 7; : 12(Z) — I*(Z) be the shift
operator defined by

(Tjw), = u,_j, n € Z.
If ¢'©) is centred at site 0, then T jqﬁ(e) is centred at site j € Z. The simplest multi-site breather
is given by the two excited nodes at j € Z and k € Z with j # k.

Lemma 1. Letr u @) = ojp(t)e; + orp(t)ey with j # k and N = |j — k| > 1
Let u'© e 1*(Z, HEZ(O, T)) be the corresponding solution of the discrete Klein—Gordon
equation (1) for small € > 0 defined by theorem 1. Let {(,om}%:1 € HZ*0,T) be defined
recursively by

Lo@m := 3 + D = @1, m=1,2,...,N, (18)
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starting with ¢o = ¢, and let ¥y € H2(0, T) be defined by

LYy = (3] + V" (@) ¥n = ¢n-1. (19)
Then, we have
w9 = 0,7, + 0, p " + €V (0jex + ore;) Wy — on) + Opzaz,0.rn (€. (20)

per

Proof. By theorem 1, the limiting configuration u ¥ (1) = o;¢(t)e; + orp(t)e; with two
excited sites generates a C*° map, which can be expanded up to the N + 1-order,
N

per

+Op@z, m2 (0,T))(€N+l)~ (21)
=0

Substituting (21) into (1) generates a sequence of equations at each order of €, which we
consider up to and including the terms of order N.

The central excited site at n = 0 in the fundamental breather ¢z(5) generates fluxes,
which reach sites n = Zm at the m-th order. Because ¢“™ is compactly supported on
{—m, —m +1, ..., m} and all sites with n ## 0 contain no oscillations at the Oth order, we have

¢ = €" P, (22)
where {(,om},’Z:1 € Hez(O, T) are computed from the linear inhomogeneous equations (18)
starting with ¢9 = ¢. Note that equations (18) are uniquely solvable because T # 2mn,
neN.

For definiteness, let us assume that j = 0 and k = N > 1. The fluxes from the excited
sites n = 0 and n = N meet at the N /2th order at the middle site n = N/2 if N is even or
they overlap at the (N + 1)/2th order at the two sitesn = (N — 1)/2and n = (N + 1)/2 if
N is odd. In either case, because of the expansion (2), the nonlinear superposition of these
fluxes affects terms at the order 3N /2th or 3(N + 1) /2th orders, that is, beyond the N-th order
of the expansion (20). Therefore, the nonlinear superposition of fluxes in higher orders of €
will definitely be beyond the N-th order of the expansion (20).

Up to the Nth order, all correction terms are combined together as a sum of correction
terms from the decomposition (17) centred at the jth and kth sites, that is, we have

u(e) = 0,10 " (€) + ok NV (€) + Orz iz, 0.1 (€M) (23)

At the Nth order, the flux from jth site arrives to the kth site and vice versa. Therefore,
besides the Nth order correction terms from the decomposition (17), we have additional terms
eV (ojek + ore j) Yy at the sites n = j and n = k. Thanks to the linear superposition
principle, these additional terms are given by solutions of the inhomogeneous equations (19),
which are uniquely solvable in Hez(O, T) because T'(E) # 0. We also have to subtract
" (0;ex + ove;) gy from the Nth order of 0;7;¢“N) + 0374 ™), because these terms were
computed under the assumption that the k-th site contained no oscillations at the order O for
o;iTj ¢“™) and vice versa. Combined all together, the expansion (20) is justified up to terms
of the N'th order. O

3. Stability of multi-site breathers near the anti-continuum limit

Let u € [2(Z, Hf(O, T)) be a multi-site breather in theorem 1 and ¢ > 0 be a small
parameter of the discrete Klein—Gordon equation (1). When we study stability of breathers,
we understand the spectral stability, which is associated with the linearization of the discrete
Klein—Gordon equation (1) by using a perturbation w(¢) in the decomposition w(?) + w(?).
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Neglecting quadratic and higher-order terms in w, we obtain the linearized discrete Klein—
Gordon equation,

l'j)n + V”(un)wn = E(wn+l - 2wn + wn—l)a n € 2. (24)

Because u(r+7T) = wu(¢), an infinite-dimensional analogue of the Floquet theorem applies and
the Floquet monodromy matrix M is defined by w(7T) = Mw(0). We say that the breather is
stable if all eigenvalues of M, called Floquet multipliers, are located on the unit circle and it is
unstable if there is at least one Floquet multiplier outside the unit disc. Because the linearized
system (24) is Hamiltonian, Floquet multipliers come in pairs p; and p, with piu, = 1.

For € = 0, Floquet multipliers can be computed explicitly because M is decoupled into a
diagonal combination of 2-by-2 matrices {M,, }, <z, which are computed from solutions of the
linearized equations

w, +w, =0, n € Z\S (25)
and
W, + V' (@)w, =0, nes. (26)
The first problem (25) admits the exact solution,

cos(T) sin(T)

wy (1) = w,(0) cos(t) + w, (0)sin(t) = M, = |:_ sin(T)  cos(T)

} , n€Z\S. 27
Each M, for n € Z\S has two Floquet multipliers at | = e and p, = e™'7. If T # 27n,
n € N, the Floquet multipliers ©; and u, are located on the unit circle bounded away from the
point = 1.
The second problem (26) also admits the exact solution,
wy, (0) . w, (0)

50 500

where ¢(¢) is a solution of the nonlinear oscillator equation (8) with the initial condition (9).
Using identities (11) and (12), we obtain,

1 0
My :[ TEWV@F 1 } nes.

Note that V'(a) # 0 (or T is infinite). If T'(E) # 0, each M, for n € S has the Floquet
multiplier © = 1 of geometric multiplicity one and algebraic multiplicity two.

We conclude that if T # 27n, n € N and T'(E) # 0, the limiting multi-site breather (7)
at the anti-continuum limit € = 0 has an infinite number of semi-simple Floquet multipliers
at u; = e and u, = e’ bounded away from the Floquet multiplier & = 1 of algebraic
multiplicity 2|S| and geometric multiplicity |S].

Semi-simple multipliers on the unit circle are structurally stable in Hamiltonian dynamical
systems (chapter III in [24]). Under perturbations in the Hamiltonian, Floquet multipliers of
the same Krein signature do not move off the unit circle unless they coalesce with Floquet
multipliers of the opposite Krein signature [6]. Therefore, the instability of the multi-site
breather may only arise from the splitting of the Floquet multiplier ©# = 1 of algebraic
multiplicity 2|S| for € # 0.

To consider Floquet multipliers, we can introduce the characteristic exponent A in the
decomposition w(t) = W(t)e*. If u = e*T is the Floquet multiplier of the monodromy
operator M, then W € [ 2(Z, H2_(0, T)) is a solution of the eigenvalue problem,

per

w,(t) = App(1), nes, (28)

W+ V" (uy) Wy, + 2AW, + A2W,, = € Wy —2W, + Woy), neZ. (29)
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In particular, Floquet multiplier ;© = 1 corresponds to the characteristic exponent A = 0. The
generalized eigenvector Z € 12(Z, szer(O, T)) of the eigenvalue problem (29) for A = 0 solves
the inhomogeneous problem,

Zy+ V' U)Zy = €(Zys1 — 22y + Zy—1) — 2W,, nez, (30)

where W is the eigenvector of (29) for A = 0. To normalize Z uniquely, we add a constraint
that Z is orthogonal to W with respect to the inner product

T
W, Z)p@,12,0,71) = Z/ Wa () Z,, (1) dr.
0

per
nez

At e = 0, the eigenvector W of the eigenvalue problem (29) for A = 0 is spanned by the
linear combination of |S| fundamental solutions,

W) =) aper. (31)

keS

The generalized eigenvector Z is spanned by the linear combination of | S| solutions,

z201) ==Y e, vi=2L7"'9, (32)
keS
where L, = 87 + V" (¢(t)) : H>(0,T) — L2(0, T) is invertible and ¢ € L2(0, T) (see the
proof of theorem 1). Note that (¢, v) 12,0.1) = 0 because ¢ is odd and v is even in 7.
Because of the translational invariance in ¢, we note that if u = ¢>(€) is the fundamental
breather in Definition 1, then W = 3,¢© = 08© € [*(Z, H2, (0, T)) is the eigenvector of the

per
eigenvalue problem (29) for A = 0 and small € > 0 and there exists a generalized eigenvector

Z =pu® e l*(Z, szer (0, T)) of the inhomogeneous problem (30), which exists because 9,0’

has the opposite parity in t compared to 8.
By Taylor series expansions (17), for any integer N > 0, we have

N N+ N N+l
69 =0 + Oz 2, 0.1 (€™, p = pN + Oz, 01 (€N, 33)

per per

where 8™ and p©™) are polynomials in € of degree N. It follows from equations (31) and
(32) that

09 = ¢(t)e, p® = —v(r)ep. (34)

This formalism sets up the scene for the perturbation theory, which is used to prove the
main result on spectral stability of multi-site breathers. We start with a simple multi-site
breather configuration with equal distances between excited sites and then upgrade this result
to multi-site breathers with non-equal distances between excited sites.

Lemma 2. Under assumptions of Theorem 1, let u® () = ijzl ojp(t)ejn with fixed
M,N € Nand u'® € I*(Z, He2 (0, T)) be the corresponding solution of the discrete Klein—
Gordon equation (1) for small € > 0 defined by theorem 1. Let {¢p,, }rlx=o be defined by lemma 1
starting with ¢9 = ¢. Then the eigenvalue problem (29) for small € > 0 has 2M small
eigenvalues,

A= eV 4 0Ny
where A is an eigenvalue of the matrix eigenvalue problem

T*(E)

2 M
- T(E) A“c= KySec, ceC". (35)
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Here the numerical coefficient Ky is given by

T
Ky =/ YoN—1 dt
0

and the matrix S € MMM s given by

—0102 1 0 e 0 0
1 —oy (01 + 03) 1 0 0
0 1 —o3(0p+04) ... 0 0
S =
0 0 0 eo. —oy_1(oy_2+oum) 1
L 0 0 0 . 0 —OpMOM—1 i
Proof. At ¢ = 0, the eigenvalue problem (29) admits eigenvalue A = 0 of geometric

multiplicity M and algebraic multiplicity 2M, which is isolated from the rest of the spectrum.
Perturbation theory in € applies thanks to the smoothness of u(®) in € and V' in u. Perturbation
expansions (so-called Puiseux series, see chapter 2 in [11] and recent work [23]) are smooth
in powers of €!/2 thanks to the Jordan block decomposition at € = 0.

We need to find out how the eigenvalue A = 0 of algebraic multiplicity 2M split for
small € > 0. Therefore, we are looking for the eigenvectors of the eigenvalue problem (29) in
the subspace associated with the eigenvalue A = 0 using the substitution » = ¢"/2X and the
decomposition

M M
W = Z Cj (‘L'jNO(G’N) — EN(E(j_l)N + e(j+l)N)‘pN) + EN/ZX Z CjTjNM(G’N*) + ENW, (36)
j=1 j=1
where N, = N/2if Nisevenand N, = (N—1)/2if N is odd, whereas W is the remainder term
at the N-th order in €. The decomposition formula (36) follows from the superposition (20)
up to the Nth order in €. The terms eN Zjv[:l cjle—nn + e(j+1)N)1ﬁN from the superposition
(20) are to be accounted at the equation for W. Note that our convention in writing (36) is to
drop the boundary terms with ey and ey+1)n-

Substituting (36) to (29), all equations are satisfied up to the Nth order. At the N-th order,

we divide (29) by € and collect equations at the excited sites n = jN for j € {1,2, ..., M},

Win +V'(@Wn = (cja +¢j-D)gn—1 — 0(0js1 +0,-10¢; V" (@) Yng

+ A%c; (20 — @) + O(e'/?), (37)
where we admit another convention that oy = o341 = 0 and ¢y = cp41 = 0. In the derivation
of equations (37), we have used the fact that the term ¢y_; comes from the fluxes from
n= (j+1)Nandn = (j —1)N sites generated by the derivatives of the linear inhomogeneous
equations (18) and the term (0.1 + 7;—1)c; V" (¢)¥n¢ comes from the expansion (20) of
the nonlinear potential V" (uy).

Expanding 2 = A +O(e'/?) and projecting the system of linear inhomogeneous equations
(37)to ¢ € Hy. (0, T), the kernel of L = 87 + V" (¢) : Hy, (0, T) — L;..(0, T), we obtain
the system of difference equations,

T T
A2Cj/ (902 +2v¢) dr = (Cj+1 +Cj_1)/ ¢¢N—l dr — Uj(aj+l +O’j_1)Cj
0 0

T
X / V" (@) ¥ne* dt,
0
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where the integration by parts is used to simplify the left-hand side. Differentiating the linear
inhomogeneous equation (19) and projecting it to ¢, we infer that

T T
/ V" (@) yng” di Z/ pon—1dr = Ky.
0 0
The system of difference equations yields the matrix eigenvalue problem (35) if we can
verify that
g T*(E
f (¢* +2v¢) dr = — ")
0 T'(E)
To do so, we note that v = 2L;'¢ is even in 7 € R, so that it is given by the exact solution,
v(t) = t9(1) + Cope(1),
where C € R. From the condition of T -periodicity for v(¢) and v(¢), we obtain
v(0) = v(T) = Ca'(E), 0(0) =0 =0(T) = Tg(0) — CT'(E)$(0),
hence C = T(E)/T'(E) and

T T T
/ (9% +20§) dr = 2c/ Goppdt = —c/ (906 + V' (9)dpp) di
0 0 0

= C/T ' (Ltpvvi) ar=—crE) = (&)
= , oE \2¥ TV A= = TTE)
where equation (8) has been used. Finally, the matrix eigenvalue problem (35) defines 2M

small eigenvalues that bifurcate from A = 0 for small € > 0. The proof of the lemma is
complete. (|

We shall now count eigenvalues of the matrix eigenvalue problem (35) to classify stable
and unstable configurations of multi-site breathers near the anti-continuum limit.

Lemma 3. Let ny be the numbers of negative elements in the sequence {ojojﬂ}?/[:_ll. If
T'(E)Ky > 0, the matrix eigenvalue problem (35) has exactly ng pairs of purely imaginary
eigenvalues A and M — 1 — ng pairs of purely real eigenvalues |1 counting their multiplicities,
in addition to the double zero eigenvalue. If T'(E)Ky < 0, the conclusion changes to the
opposite.

Proof. We shall prove that the matrix S has exactly ng positive and M — 1 — n( negative
eigenvalues counting their multiplicities, in addition to the simple zero eigenvalue. If this is
the case, the assertion of the lemma follows from the correspondence A= — TT(f()EI;N y, where
y is an eigenvalue of S.

Setting c; = o;b;, we rewrite the eigenvalue problem Sc = y c as the difference equation,

6j6j+l(bj+] - b]) +O'j0j_1(bj_] — b]) = )/bj, J (S {1, 2, veey M}, (38)
subject to the conditions 09 = oy = 0. Therefore, y = 0 is always an eigenvalue with
the eigenvector b = [1, 1, ..., 1] € RM . The coefficient matrix in (38) coincides with the one

analysed by Sandstede in lemma 5.4 and appendix C [19]. This correspondence yields the
assertion on the number of eigenvalues of S. ]

Before generalizing the results of lemmas 2 and 3 to other multi-site breathers, we consider
two examples, which are related to the truncated potential (13). We shall use the Fourier cosine
series for the solution ¢ € Hf 0, 7),

9(0) = 3 cu(T) cos (2’;’”) , (39)

neN
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Table 1. Stable multi-site breathers in hard and soft potentials. The stability threshold Ty is found
from the zero of Ky for T € (2, 67).

N odd N even
Hard potential In-phase Anti-phase
V) =u+u’,0<T <27
Soft potential Anti-phase 2w < T < Ty Anti-phase
Vi) =u—u2n <T <61 Ty < T < 67 In-phase

for some square summable set {c,(T)},cn. Because of the symmetry of V, we have
¢(T/4) = 0, whichimply thatc,(T) = Oforallevenn € N. Solving the linear inhomogeneous
equations (18), we obtain

T ¢, (T 2
o= = —:;2;1)2)" cos ( i ) . kel (40)

n€Nodq
Using Parseval’s equality, we compute the constant Ky in lemma 2,
T2V =n2e, ()

(T2 — 4m2n2)" "

T
K= [ 60pnr0dr=an* Y @41
0

n€Noaa

For the hard potential with V(1) = u + u>, we know from figure 1 that the period T (E)
is a decreasing function of E from 7'(0) = 27 to limg_, o T(E) = 0. Since T'(E) < 0 and
T(E) < 2w, we conclude that T"(E)Ky < 0if N is odd and T'(E)Ky > 0 if N is even.
By lemma 3, if N is odd, the only stable configuration of the multi-site breathers is the one
with all equal {;}’_, (in-phase breathers), whereas if N is even, the only stable configuration
of the multi-site breathers is the one with all alternating {o; ?”zl (anti-phase breathers). This
conclusion is shown in the first line of table 1.

For the soft potential with V'(u) = u — u?, we know from figure 1 that the period T (E)
is an increasing function of E from 7 (0) = 2x to limg_, g, T(E) = oo, where Ey = }1. If
T (E) is close to 27, then the first positive term in the series (41) dominates and Ky > 0 for all
N € N. At the same time, 7'(E) > 0 and lemma 3 implies that the only stable configuration
of the multi-site breathers is the one with all alternating {o j}jV: | (anti-phase breathers). The
conclusion holds for any 7 > 27 if N is odd, because K > 0 in this case.

This precise conclusion is obtained in theorem 3.6 of [17] in the framework of the DNLS
equation (4). Itis also in agreement with perturbative arguments in [2, 12], which are valid for
N =1 (all excited sites are adjacent on the lattice). To elaborate this point further, we show
in the appendix the equivalence between the matrix eigenvalue problem (35) with N = 1 and
the criteria used in [2, 12].

For even N € N, we observe a new phenomenon, which arise for the soft potentials
with larger values of T(E) > 2m. To be specific, we restrict our consideration of multi-
site breathers with the period 7 in the interval (2w, 6;r). Similar results can be obtained
in the intervals (6, 1077), (107w, 147), and so on. For even N € N, there exists a period
Ty € (2m, 61) such that the constant Ky in (41) changes sign from Ky > Ofor T € (2x, Ty)
to Ky < O for T € (Ty,6m). When it happens, the conclusion on stability of the multi-
site breather change directly to the opposite: the only stable configuration of the multi-site
breathers is the one with all equal {0;}’_, (in-phase breathers). This conclusion is shown in
the second line of table 1.

We conclude this section with the stability theorem for general multi-site breathers. For
the sake of clarity, we formulate the theorem in the case when 7'(E) > 0 and all Ky > 0,
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which arises for the soft potential with odd N. Using lemma 3, the count can be adjusted to
the cases of T'(E) < 0 and/or Ky < O.

Theorem 2. Let {nj}j!’lzl C Z be an increasing sequence with M € N. Let u'® €
12(Z, Hez(O, T)) be a solution of the discrete Klein—-Gordon equation (1) in theorem I with
u Q@) = Ziwzl ojp(t)ey, for small € > 0. Let {pn},_, be defined by the linear equations
(18) starting with @y = .

Define {Nj};v:_l1 and {Kl\;j}i'flz_ll by Nj =njy —njand Ky, = fOT ©@N;—1 dt. Assume
T'(E) > 0and Ky, > 0 for all N;.

Let ny be the numbers of negative elements in the sequence {Ujojﬂ}?’l;ll. The eigenvalue
problem (29) at the discrete breather u'® has exactly ng pairs of purely imaginary eigenvalues
A and M — 1 — ng pairs of purely real eigenvalues ). counting their multiplicities, in addition
to the double zero eigenvalue.

Proof. The limiting configuration u ¥ (¢) = ij: 1 0j@(t)e,, defines clusters of excited sites
with equal distances N; between the adjacent excited sites.

According to lemma 2, splitting of M double Jordan blocks associated to the
decompositions (31) and (32) occurs into different orders of the perturbation theory, which
are determined by the set {N,} 7= _11. At each order of the perturbation theory, the splitting of
eigenvalues associated with one cluster with equal distance between the adjacent excited sites
obeys the matrix eigenvalue problem (35), which leaves exactly one double eigenvalue at zero
and yields symmetric pairs of purely real or purely imaginary eigenvalues, in accordance to
the count of lemma 3.

The double zero eigenvalue corresponds to the eigenvector W and the generalized
eigenvector Z generated by the translational symmetry of the multi-site breather bifurcating
from a particular cluster of excited sites in the limiting configuration u”’. The splitting of the
double zero eigenvalue associated with a particular cluster happens at the higher orders in €,
when the fluxes from adjacent clusters reach each others. Since the end-point fluxes from the
multi-site breathers are equivalent to the fluxes (22) generated from the fundamental breathers,
they still obey lemma 1 and the splitting of double zero eigenvalue associated with different
clusters still obeys lemma 2.

At the same time, the small pairs of real and imaginary eigenvalues arising at a particular
order in € remain at the real and imaginary axes in higher orders of the perturbation theory
because their geometric and algebraic multiplicity coincides, thanks to the fact that these
eigenvalues are related to the eigenvalues of the symmetric matrix S in the matrix eigenvalue
problem (35).

Avoiding lengthy algebraic proofs, these arguments yield the assertion of the theorem. [

4. Numerical results

We illustrate our analytical results on existence and stability of discrete breathers near the anti-
continuum limit by using numerical approximations. The discrete Klein—Gordon equation (1)
can be truncated at a finite system of differential equations by applying the Dirichlet conditions
at the ends.

4.1. Three-site model

The simplest model which allows gaps in the initial configuration u” is the one restricted
to three lattice sites, e.g. n € {—1,0, 1}. We choose the soft potential V'(u) = u — u> and
rewrite the truncated discrete Klein—-Gordon equation as a system of three Duffing oscillators
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with linear coupling terms,

{ i,io+u0—u(3)=e(u1 —2ug+u_1), 42)

.. 3
Ut tUr) — UL = e(ug — 2u+1).

A fast and accurate approach to construct T'-periodic solutions for this system is the
shooting method. The idea is to find a € R? such that the solution u(r) € C'(R,, R?)
with initial conditions u(0) = a, u(0) = O satisfy the conditions of T-periodicity, u(7) = a,
u(7T) = 0. However, these constraints would generate an over-determined system of equations
on a. To set up the square system of equations, we can use the symmetry r — —t of
system (42). If we add the constraint u(7'/2) = 0, then even solutions of system (42) satisfy
u(—=T7T/2) = u(T/2) and ua(—T/2) = —u(T/2) = 0, that is, these solutions are T -periodic.
Hence, the values of a € R3 become the roots of the vector F(a) = u(7/2) € R>.

We now construct a periodic solution u to system (42) that corresponds to the anti-
continuum limit u® as follows. Using the initial data u® (0) as an initial guess for the
shooting method for a fixed value of T, we continue the initial displacement u(0) with respect
to the coupling constant € > 0. After that, we fix a value of € and use the shooting method
again to continue the initial displacement u(0) with respect to period 7.

Let us apply this method to determine initial conditions for the fundamental breather,

ul) = ¢, ul) =0, (43)
and for a two-site breather with a hole,
uy’ =0, ul) = ¢. (44)

In both cases, we can use the symmetry u_; (f) = u;(¢) to reduce the dimension of the shooting
method to two unknowns ag and a;.

Figure 2 shows solution branches for these two breathers on the period—amplitude plane
by plotting T versus ap and a; for ¢ = 0.01. For 2m < T < 6m, solution branches are
close to the limiting solutions (dotted line), in agreement with theorem 1. However, a new
phenomenon emerges near T = 6r: both breather solutions experience a pitchfork bifurcation
and two more solution branches split off the main solution branch. The details of the pitchfork
bifurcation for the fundamental solution branch are shown on the insets of figure 2.

Let T be the period at the point of the pitchfork bifurcation. We may think intuitively that
Ts should approach to the point of 1 : 3 resonance for small €, that is, Ts — 67 ase — 0. We
have checked numerically that this conjecture is in fact false and the value of T gets larger as
€ gets smaller. This property of the pitchfork bifurcation is analysed in section 5 (see remark 5
and figure 12).

Figure 2 also shows two branches of solutions for 7 > 6m with negative values of a,
for positive values of ay and vice versa. One of the two branches is close to the breathers
at the anti-continuum limit, as prescribed by theorem 1. We note that the breather solutions
prescribed by theorem 1 for T < 6 and T > 67 belong to different solution branches. This
property is also analysed in section 5 (see remark 4 and figure 9).

Figure 3 shows the fundamental breather before (T = 5m) and after (T = 5.87) pitchfork
bifurcation. The symmetry conditionu(7'/4) = 0 for the solution at the main branch is violated
for two new solutions that bifurcate from the main branch. Note that the two new solutions
bifurcating for 7 > Ty look different on the graphs of ay and a; versus 7. Nevertheless,
these two solutions are related to each other by the symmetry of the system (42). If u(z) is
one solution of the system (42), then —u(z + T/2) is another solution of the same system. If
u(7/4) # 0, then these two solutions are different from each other.

Let us now illustrate the stability result of theorem 2 using the fundamental breather (43)
and the breather with a hole (44). We draw a conclusion on linearized stability of the breathers
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Figure 2. The initial displacements ag and a; for the T-periodic solutions to system (42) with
€ = 0.01. The solid and dashed lines correspond to the fundamental (43) and two-site (44) breathers
respectively. The dotted lines correspond to the T-periodic solutions to equation (8). The insets
show the pitchfork bifurcation of the fundamental breather.

T=5n T=5.8n

0.4 0.6
T

Figure 3. Fundamental breathers for system (42) before (left) and after (right) the symmetry-
breaking bifurcation at e = 0.01.

by testing whether their Floquet multipliers, found from the monodromy matrix associated
with the linearization of system (42), stay on the unit circle.

Figure 4 shows the real part of Floquet multipliers versus the breather’s period for
the fundamental breather (left) and the new solution branches (right) bifurcating from the
fundamental breather due to the pitchfork bifurcation. Because Floquet multipliers are on the
unit circle for all periods below the bifurcation value Ty, the fundamental breather remains
stable for these periods, in agreement with theorem 2. Once the bifurcation occurs, one of
the Floquet multiplier becomes real and unstable (outside the unit circle). Two new stable
solutions appear during the bifurcation and have the identical Floquet multipliers because of
the aforementioned symmetry between the new solutions. These solutions become unstable for
periods slightly larger than the bifurcation value T, because of the period-doubling bifurcation
associated with Floquet multipliers at —1.

We perform similar computations for the two-site breather with the central hole (44).
Figure 5 (left) shows that at the coupling ¢ = 0.01 the breather is unstable for periods
21 < T < T'© and stable for periods T 2, 7.9 with T© ~ 5.4257 for € = 0.01. This can
be compared using the change of stability predicted by theorem 2. According to equation (41),
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Figure 4. Real parts of Floquet multipliers p for the fundamental breather at ¢ = 0.01 near the
bifurcation for the main branch (left) and side branches (right).
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Figure 5. Real parts of Floquet multipliers p for the two-site breather with a hole at € = 0.01 near
the bifurcation for the main branch (left) and side branches (right).

K, changes sign from positive to negative at Ty—, ~ 5.4767. Since T’'(E) is positive for
the soft potential, theorem 2 predicts that in the anti-continuum limit the two-site breather is
unstable for 2mr < T < Ty—, and stable for Ty_, < T < 6. This change of stability agrees
with figure 5 where we note that |T*(€) — Tn=2| = 0.057 ate = 0.01.

At T ~ 5.6r and T =~ 5.7m7, two bifurcations occur for the two-site breather with the
central hole and unstable multipliers bifurcate from the unit multiplier for larger values of T.
The behaviour of Floquet multipliers is similar to the one in figure 4 (left) and it marks two
consequent pitchfork bifurcations for the two-site breather with the hole. The first bifurcation
is visible in figure 2 in the space of symmetric two-site breathers with u_;(¢) = u;(¢). The
Floquet multipliers for the side branches of these symmetric two-site breathers is shown in
figure 5 (right), where we can see two consequent period-doubling bifurcations in comparison
with one such bifurcation in figure 4 (right). The second bifurcation is observed in the space
of asymmetric two-site breathers with u_; () # u(¢).

We display the two pitchfork bifurcations on the top panel of figure 6. One can see for
the second bifurcation that the value of ay is the same for both breathers splitting of the main
solution branch. Although the values of a_; and a; look same for the second bifurcation,
dashed and dotted lines indicate that a; is greater than a_; at one asymmetric branch and vice
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Figure 6. Top: the initial displacements a_, ag, and a; for the T-periodic breather with a hole on
the three-site lattice with € = 0.01. Bottom: asymmetric breathers with period 7 = 5.757 on the
three-site lattice with € = 0.01.

versa for the other one. The bottom panels of figure 6 show the asymmetric breathers with
period T = 5.75m that appear as a result of the second pitchfork bifurcation.

4.2. Five-site model

We can now truncate the discrete Klein—Gordon equation (1) at five lattice sites, e.g. at
n € {—2,—1,0, 1, 2}. The fundamental breather (43) and the breather with a central hole (44)
are continued in the five-site lattice subject to the symmetry conditions u, () = u_,(t) for
n = 1, 2. We would like to illustrate that increasing the size of the lattice does not qualitatively
change the previous existence and stability results, in particular, the properties of the pitchfork
bifurcations.

Figure 7 gives analogues of figure 2 for the fundamental breather and the breather with a
hole. The associated Floquet multipliers are shown in figure 8, in full analogy with figures 4
and 5. We can see that both existence and stability results are analogous between the three-site
and five-site lattices.

5. Pitchfork bifurcation near 1 : 3 resonance

We study here the symmetry-breaking (pitchfork) bifurcation of the fundamental breather. This
bifurcation illustrated in figure 3 occurs for soft potentials near the point of 1:3 resonance,
when the period T is close to 6r. We point out that the period T of the pitchfork bifurcation
is close to 6z for small but finite values of €. As we have discovered numerically, 75 gets
larger as € gets smaller. This property indicates that the asymptotic analysis of this bifurcation
is not uniform with respect to two small parameters € and T — 67, which we explain below in
more details.

When u = ¢'© is the fundamental breather and T # 27 n is fixed, theorem 1 and lemma 1
imply that

up(t) = @(t) = 2ey1(1) + Oz 0.1(€?),
ug(t) = €pi(t) + OH}}H(O,T)(GZ)a (45)
Uin(1) = + Oz, 0.1 (€7), n

WV
N
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Figure 7. Top: the initial displacements ag, @1, and a; for the T -periodic fundamental breather of
the five-site lattice with ¢ = 0.01. Bottom: the same for the two-site breather with a hole. The
dotted lines correspond to the 7'-periodic solutions to equation (8).

where ¢ can be expanded in the Fourier series,

o)=Y cu(T)cos (2”T’”) , (46)

ne Nodd

and the Fourier coefficients {c,(T)},en,,, are uniquely determined by the period 7. The
correction terms ¢; and ¥, are determined by the solution of the linear inhomogeneous
equations (18) and (19), in particular, we have

2
o1(t) = Z e cos (Znnt) . 47)

2 _ 4722
e T? —4n*n T
In what follows, we restrict our consideration of soft potentials to the case of the quartic
potential V'(u) = u —u*. We shall assume that c3(67r) # 0 and the numerical approximations
suggest that c3(6r) < O for the quartic potential.
Expansion (45) and solution (47) imply thatif T is fixed in (27, 677), then ||u+ || g2_0.7) =

per
O(e) and the cubic term uil is neglected at the order O(¢), where the linear inhomogeneous

equation (18) is valid. Near the resonant period 7 = 67, the norm ||u4 ||H§C,<0,r) is much

larger than O(e) if ¢3(6) # 0. As a result, the cubic term uil must be incorporated at the
leading order of the asymptotic approximation.

We shall reduce the discrete Klein—Gordon equation (1) for the fundamental breather
near 1:3 resonance to a normal form equation, which coincides with the nonlinear Duffing
oscillator perturbed by a small harmonic forcing (equation (66)). The normal form equation
features the same properties of the pitchfork bifurcation of 7-periodic solutions as the discrete
Klein—Gordon equation (1). To prepare for the reduction to the normal form equation, we
introduce the scaling transformation,

6

T = Tsan = (1 +8€*>t,  u,(t) = (1 +8€**)U, (1), (48)
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Figure 8. Top: real parts of Floquet multipliers u for the fundamental breather near the bifurcation
for the main branch (left) and side branches (right). Bottom: the same for the two-site breather
with a hole.

where § is a new parameter, which is assumed to be e-independent. The discrete Klein—-Gordon
equation (1) with V/(u) = u — u> can be rewritten in new variables (48) as follows,

Uy + Uy — Uy = BU, +y Upsr + Uy ), nez, (49)
where

| 1+2¢ €

h= (1+8€2/3)2’ V= Uvseny
T -periodic solutions of the discrete Klein—-Gordon equation (1) in variables {u,, (¢)},cz become
now 67 -periodic solutions of the rescaled Klein—Gordon equation (49) in variables {U, (7) },,ez.
To reduce the system of Klein—Gordon equation (49) to the Duffing oscillator perturbed by a
small harmonic forcing near 1 : 3 resonance, we consider the fundamental breather, for which

U, = U_, for all n € N. Using this reduction, we write equations (49) separately at n = 0,
n=1andn > 2:

(50)

Uo+ Uy — U3 = BUy+2y Uy, (51)
Uy +U, — U =BU +yU, +yU, (52)
Uy + U, = U} = BUy +y(Ups1 + Up_1), n>2. (53)

Let us represent a 67 -periodic function U, with the symmetries
Uo(=7) = Up(r) = Uo7 — 1), T €R, (54)
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by the Fourier series,
nt
Us(@) = 3 b,cos (?) (55)
n€Nogq

where {b, }nen,,, are some Fourier coefficients. If Uy converges to ¢ in H>-norm as € — 0
(when 8, y — 0),then b, — ¢, (6) ase — 0forall n € Nygq, where the Fourier coefficients
{ca(67)},en,,, are uniquely defined by the Fourier series (46) for T = 6. We assume again
that ¢3(67) # 0 and § is fixed independently of small € > 0.

We shall now use a Lyapunov—Schmidt reduction method to show that the components
{U,}»en are uniquely determined from the system (52) and (53) for small € > 0 if Uj is
represented by the Fourier series (55). To do so, we decompose the solution into two parts:

U,(t) = A, cos(t) + V, (1), neN, (56)

where V,(7) is orthogonal to cos(t) in the sense (V,, COS('))L?ﬁer(O,6n) = 0. Projecting the
system (52) and (53) to cos(t), we obtain a difference equation for {A,},cn:

1 (%4
AL+ yAs+yby =1 / cos(7) (A, cos(t) + Vi (1)) dr, (57)
T Jo

6
BA, +yY(Ap + Apy) = —% / cos(t)(A,, cos(t) + Vn(r))3 dr, n>2. (58)
0

Projecting the system (52) and (53) to the orthogonal complement of cos(t), we obtain a lattice
differential equation for {V,,(7)},en:

.. k
Vi+Vi=Vi+yVo+y Z bkcos<?r>

keNoaa \{3}

(cos(), (A1 cos(-) + V1)) 12, (0.6m)

+ (A; cos(t) + V;)? — cos(1) , (59)
(cos(-), cos(-)) 2, 0.67)
Vn +V, = IBVn + V(Vn+1 + anl)
3 (cos(-), (A, cos(-) + Vn)3)L§er(0,6n)
+ (A, cos(t)+V,)” —cos(1) , n>2.
(cos(-), cos()) 12, 0.6m)
(60)

Recall that 8 = O(¢??) and y = O(e) as € — 0 if § is fixed independently of small
€ > 0. Provided that the sequence {A, },cn is bounded and || A|[;~y) is small as € — O, the
implicit function theorem applied to the system (59) and (60) yields a unique even solution
for Ve I>(N, H?(0, 6rr)) such that (V, cos()) 2, 0.6r) = 0 in the neighbourhood of zero
solution for small € > 0 and A € [*°(N). Moreover, for all small ¢ > 0 and A € [*°(N), there
is a positive constant C > 0 such that

IV Ilzan a2, 0.6m) < C€+ 1Al q)- (61)

e
The balance occurs if | A[|=q) = O(e'/?) as € — 0.

Recall now that 8 = 28?3 — 2¢ + O(e*?) and y = € + O(€’/?) as € — 0. Substituting
the solution of the system (59) and (60) satisfying (61) to the system (57) and (58) and using
the scaling transformation A, = €'3a,, n € N, we obtain the perturbed difference equation
for {an}nen:

3

28a; + Zaf +by =€ PQa; — ar) + O3, (62)
3

28a, + ~a’ = €'*(2a, — ap1 — a,_1) + O(*7), n>2. (63)

4
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-2 -1 0 1 2
)

Figure 9. Roots of the cubic equation (64).

At e = 0, the system (62) and (63) is decoupled. Let a(5) be a root of the cubic equation:
3
28a(8) + Za3(8) +c3(6m) =0, (64)

where c3(6r) # 0 is given. Roots of the cubic equation (64) are shown in figure 9 for
c3(6m) < 0. A positive root continues across § = 0 and the two negative roots bifurcate for
8 < 0 by means of a saddle-node bifurcation.

Let a(8) denote any root of cubic equation (64) such that 85 +9a%(8) # 0. Assuming that
by = c3(6m) + O(*3) as € — 0 (this assumption is proved later in lemma 5), the implicit
function theorem yields a unique continuation of this root in the system (62) and (63) for small
€ > 0 and any fixed § # 0:

8
ar = a(d) + €' Plsls + O,
— 1/3a(é) 2/3
;= —€PE 0@, (65)

a, = + (9(62/3), n > 3.
Again, these expansions are valid for any fixed § # 0 such that 85 + 9a>(8) # 0.

Remark 3. The condition 85 + 9a2(8) = 0 implies bifurcations among the roots of the cubic
equation (64), e.g. the fold bifurcation, when two roots coalesce and disappear after § crosses
a bifurcation value. The condition § = 0 does not lead to new bifurcations but implies that
the value of a, is no longer as small as O(e!/?). Refined scaling shows that if § = 0, then
a; = a(0) + O(e'?), ay = O('?), and a, = O(e*?7), n > 3, where a(0) is a unique real
root of the cubic equation (64) for § = 0.

We can now focus on the last remaining equation (51) of the rescaled discrete Klein—
Gordon equation (49). Substituting U; = €'/3a(8) cos(r) + Oszﬂ(oﬁ,,)(ez/ 3) into equation
(51), we obtain the perturbed normal form for 1 : 3 resonance,

Uy + Uy — Ui = BUp + v c0s(t) + Opz_0.67) (€, (66)

per
where v = 2y61/3a(8) = O(e*?) as € — 0. Because a(8) # 0, we know that v #£ 0if e # 0.
The perturbed normal form (66) coincides with the nonlinear Duffing oscillator perturbed by
a small harmonic forcing. The following lemma summarizes the reduction of the discrete
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Klein—Gordon equation to the perturbed Duffing equation, which was proved above with the
Lyapunov—Schmidt reduction arguments.

Lemma 4. Let § # 0 be fixed independently of small ¢ > 0. Let a(8) be a root of the
cubic equation (64) such that 85 + 9a%(8) # 0. Assume that c3(6m) # 0 among the Fourier
coefficients (46). For any 6m-periodic solution Uy of the perturbed Duffing equation (66)
satisfying symmetries (54) such that

Up(t) = 9(0) + Oz 0.6m)(€77) as €0, (67)
there exists a solution of the discrete Klein—Gordon equation (49) such that
Ui (1) = €'Pa(8) cos(t) + €3 85%282)(5) c0s(7) + Opz, (0.6m) (€),
Usa(7) = — 38 cos(t)  + Oz, 0.6m (€), (68)

Uin(7) = + Oz (0,67 (€), n 2z 3.

per

Remark 4. Figure 9 shows that two negative roots of the cubic equation (64) bifurcate at
84 < 0viathe saddle-node bifurcation and exist for § < §,. Negative values of § correspond to
T > 6m. As € is small, this saddle-node bifurcation gives a birth of two periodic solutions with

u1(0) = €'3a(d) + 0?3 < 0.

This bifurcation is observed in figure 2 (right), one of the two new solutions still satisfies the
asymptotic representation (45) as € — 0 for fixed T > 6.

In what follows, we shall consider the positive root of the cubic equation (64) that continues
across § = 0. We are interested in 677 -periodic solutions of the perturbed normal form (66) in
the limit of small € > 0 (when 8 = O(€*3) and v = O(¢*/?) are small). Since the remainder
term is small as ¢ — 0 and the persistence analysis is rather straightforward, we obtain main
results by studying the truncated Duffing equation with a small harmonic forcing:

U+U—U?=BU +vcos(t). (69)

The following lemma guarantees the persistence of 67 -periodic solutions with even symmetry
in the Duffing equation (69) for small values of 8 and v. Note that this persistence is assumed
in equation (67) of the statement of lemma 4.

Lemma 5. There are positive constants Py, vo, and C such that for all B € (—Bo, Bo)
and v € (—vy, V), the normal form equation (69) admits a unique 6m-periodic solution
Ug,, € HZ(0, 67) satisfying symmetries

Ug,(—1) = U, (1) = —Up,,Bm — 1), T e R, (70)
and bound
1Ugv — @llpz. < CUBI+[V]). (71)

per

Moreover, the map R x R 3 (B,v) + Ug, € H*(0,6m) is C* for all B € (—Bo, Po) and
v € (—vg, Vo).

Proof. The proof follows by the Lyapunov—Schmidt reduction arguments. For v = 0 and
small 8 € (—Bo, Bo), there exists a unique 67 -periodic solution Ug  satisfying the symmetry
(70), which is O(B)-close to ¢ in the szer(O, 67) norm. Because the Duffing oscillator is
non-degenerate, the Jacobian operator Lg o has a one-dimensional kernel spanned by the odd

function Upg o, where

Lgy =0 +1—8—3U;,@). (72)
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Figure 10. Left: Floquet multipliers u of equation Lg , W = 0. Right: parameter v versus f at
the symmetry-breaking bifurcation.
Therefore, (U,g,o, cos(+)) 12,06m) = 0, and the unique even solution persists for small
v € (—Vp, v9). The symmetry (70) persists for all v € (—vyp, vg) because both the Duffing
oscillator and the forcing term cos(t) satisfy this symmetry. |

Remark 5. Lemma 5 excludes the pitchfork bifurcation in the limit € — O for fixed § # O.
This result implies that the period of the pitchfork bifurcation T does not converge to 67 as
€ — 0. Indeed, we mentioned in the context of figure 2 that T gets larger as € gets smaller.

By the perturbation theory arguments, the kernel of the Jacobian operator Lg , is empty
for small 8 and v provided that v ## 0. Indeed, expanding the solution of lemma 5 in power
series in 8 and v, we obtain

Ugy=¢+BL "¢+ VL, cos(-) + Opz_0.60) (B, V), (73)

per
where L, is the operator in (19). Although L, has a one-dimensional kernel spanned by ¢,
this eigenfunction is odd in t, whereas ¢ and cos(-) are defined in the space of even functions.
Expanding potentials of the operator Lg ,, we obtain

Lg Ug, = vsin(:) + Oz 0.6m (B2 V7). (74)

per

‘We note that
(@, sin(-))2_(0,6x) = —{®, cO8())12_(0,6x) 7 O

per per
if c3(6r) # 0, where ¢3(T) is defined by the Fourier series (46). By the perturbation theory,
the kernel of Lg , is empty for small v € (—vy, vp).

If the linearization operator Lg, becomes non-invertible along the curve v = vg(8)
of the codimension one bifurcation, the symmetry-breaking (pitchfork) bifurcation occurs at
v = vg(B). This property gives us a criterion to find the pitchfork bifurcation numerically,
in the context of the Duffing equation (69). Figure 10 (left) shows the behaviour of Floquet
multipliers of equation Lg, W = 0 with respect to parameter v at 8 = 0. We can see from
this picture that the pitchfork bifurcation occurs at v & 0.00015.

The right panel of figure 10 gives the dependence of the bifurcation value vg on 8, for
which the operator Lg ,(g) in not invertible on L2(0, 677). Using the formula for 8 in (50), we
obtain
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Figure 11. Solutions with period T = 67 to equation (69) at § = 0 before (left) and after (right)
the symmetry-breaking bifurcation.
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Figure 12. Left: period Ts versus € at the symmetry—breaking bifurcation of the fundamental
breather modelled by equation (69) (solid line) and system (42) (dashed line). Right: bifurcation
diagram for the initial displacement ¢ (0) = ap and period T in variables (48) computed from the
67 -periodic solution to equation (69).

As the coupling constant € goes to zero, so does parameter v. As shown in figure 10 (right),
parameter S at the bifurcation curve goes to negative infinity as v — 0. This means that
the closer we get to the anti-continuum limit, the further away from 6 moves the pitchfork
bifurcation period Ts. This confirms the early observation that T gets larger as € gets smaller
(see remark 5).

Figure 11 shows one solution of lemma 5 for 0 < v < vg(B) and three solutions for
v > vg(B), where B = 0. The new solution branches are still given by even functions but
the symmetry U(t) = —U (3w — 1) is now broken. This behaviour resembles the pitchfork
bifurcation shown in figure 3.

Figure 12 transfers the behaviour of figures 10 and 11 to parameters 7', €, and ag = u((0).
The dashed line on the left panel shows the dependence of period T at the pitchfork bifurcation
versus € for the full system (42). The right panel of figure 12 can be compared with the inset
on the left panel of figure 2.

Remark 6. Numerical results in figures 11 and 12 indicate that the Duffing equation with a
small harmonic forcing (69) allows us to capture the main features of the symmetry-breaking
bifurcations in the discrete Klein—Gordon equation (42). Nevertheless, we point out that the
rigorous results of lemmas 4 and 5 are obtained far from the pitchfork bifurcation, because
parameter § is assumed to be fixed independently of € in these lemmas. To observe the pitchfork
bifurcation in figures 11 and 12, parameter § must be sent to —o0 as € reduces to zero.
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Table 2. Stable two-site breathers in soft and hard potentials from [26].

N odd N even

Hard potential V/(u) = u +u>  In-phase Anti-phase

Soft potential V/(u) =u —u>  Anti-phase In-phase  Anti-phase

6. Conclusion

We have considered existence and stability of multi-site breathers in the Klein—-Gordon lattices
with linear couplings between neighboring particles. We have described explicitly how the
stability or instability of a multi-site breather depends on the phase difference and distance
between the excited oscillators.

It is instructive to compare our results to those obtained by Yoshimura [26] for the lattices
with purely anharmonic coupling:

iin +u, + I/tﬁ = 6(”n+1 - un)k - G(l/t,, - unfl)kv (75)

where k > 3 is an odd integer. Table 2 summarizes the result of [26] for stable configurations
of two-site breathers from the configuration

u® (1) = oj0(t)e; +orp(t)ey,
where N = |j — k| > 1.

Note that the original results of [26] were obtained for finite lattices with open boundary
conditions but can be extrapolated to infinite lattices, which preserve the symmetry of the
multi-site breathers.

Table 2 is to be compared with table 1 summarizing our results. Note that Table I actually
covers M-site breathers with equal distance N between the excited sites, whereas table 2 only
gives the results in the case M = 2. We have identical results for hard potentials and different
results for soft potentials. First, spectral stability of a two-site breather in the anharmonic
potentials is independent of its period of oscillations and is solely determined by its initial
configuration (table 2). This is different from the transition from stable anti-phase to stable
in-phase breathers for even N in soft potentials (table 1). Second, both anti-phase and in-phase
two-site breathers with odd N are stable in the anharmonic lattice. The surprising stability of
in-phase breathers is explained by additional symmetries in the anharmonic potentials. The
symmetries trap the unstable Floquet multipliers p associated with in-phase breathers for
odd N at the point £ = 1. Once the symmetries are broken (e.g. for even N), the Floquet
multipliers w split along the real axis and the in-phase two-site breather becomes unstable in
soft potentials.

We have also illustrated bifurcations of breathers near the point of 1:3 resonance. It is
important to note that a similar behaviour is observed near points of 1:k resonance, with k
being an odd natural number. For the non-resonant periods, a breather has large amplitudes
on excited sites and small amplitudes on the other sites. As we increase the breather’s period
approaching a resonant point 7 = 2mk for odd &, the amplitudes at all sites become large,
a cascade of pitchfork bifurcations occurs for these breathers, and families of these breathers
deviate from the one prescribed by the anti-continuum limit. However, due to the saddle-node
bifurcation, another family of breathers satisfying theorem 1 emerges for periods just above
the resonance value. The period—amplitude curves, similar to those in figure 2, start to look
like trees with branches at all resonant points 7 = 27k for odd k. In the anti-continuum limit,
the gaps at the period—amplitude curves vanish while the points of the pitchfork bifurcations go
to infinity. The period—amplitude curves turn into those for the set of uncoupled anharmonic
oscillators.
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Appendix. Comparison of Floquet theory with spectral band theory and Hamiltonian
averaging

We will show here that the reduction of lemma 2 for N = 1 agrees exactly with the main
conclusions of the previous studies [2, 12] (see also [8]).

The matrix eigenvalue problem (35) for N = 1 can be written in the form

A(E)A%c = Se, ceCM, (76)

where

T*(E)
T/(E) [ ¢*dt
We will show that the quantity A(E) arises both in the spectral band theory used in [2] and in

the Hamiltonian averaging used in [12].
For the spectral band theory [2], we consider solutions of the spectral problem

Lu = hu, L=23>+V"(e): H..(0,T) — L?..(0, T). (78)

per per

A(E) = — (77)

Let M = ®(T) be the monodromy matrix computed from the fundamental matrix solution
® (1) of the system

icb(r)—[ 0 l]cb(r) (79)
a W= 2 vier) o ’

subject to the initial condition ®(0) = I € M?*?. Since det(M) = 1, the Floquet multipliers
w1 and w, satisfy

mip =1, n1+ g = tr(M) = F(A).
Inparticular, u; = up = liftr(M) = 2, whichis true at . = 0 thanks to the exact solution (28),
|:35<p(t)) % 1 0
¢@) = all,fift) z(t)) = o) = |: / (N2 ] .
5 50 T'E)Vil” 1

Hence, we have F(0) = 2. We will show that A(E) in (77) determines the sign of F’(0).
Denote elements of M = ®&(T) by M; ; for 1 < i, j < 2. Since det(M) = 1 for all A, we
obtain

F'(0) = 8, (M11 + M) im0 = M213; Mi2ls—0 = T'(E)[V'(@)1*8, M12]5=0-
Let U (¢) be a solution of
U@+ V(@)U @) = ¢(1), (80)

subject to the initial condition U (0) = U(0) = 0. Then, U(T) = 0, M12],=0¢(0). Solving
the second-order equation (80), we obtain an explicit solution

U@) = o) (1 —/ ¢)(S)BE¢(S)dS> +3Es0(t)/ ¢*(s)ds,
0 0
from which we find that

T 2
F'(0) = ~T'(E) / 2ydr = =8
0

AE)
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If T'(E) < O (for the hard potentials), we have F’(0) > 0, which implies that the spectral
band of the purely continuous spectrum of operator L in L?(R) is located to the left of A = 0.
If T'(E) > 0 (for the soft potentials), we have F’(0) < 0, which implies that the spectral band
of L in L*(R) is located to the right of A = 0. If A = w(k) is the dispersion relation of the

spectral band for k € [—%E) %], then near A = 0, we have
T*(E
wk) = — ( )k2+(9(k4) as k-0 = " 0)=—-24A(F).
F(0)
The identity »”(0) = —2A(E) establishes the equivalence of the matrix eigenvalue problem

(76) with the spectral band theory used in [2].
For the Hamiltonian averaging [12], we consider the action variable for the nonlinear
oscillator (8),
a(E)

J=4 V2(E — V(p))de.
0

Explicit computation shows that

dJ a(B) de
5= 22 L vt T(E).
Ifw= ﬁ is the frequency of oscillations, then
dE E  do T'(E) 1
o= T ETUTTT® T reae JTgrar

Therefore, the signs of A(E) and E”(J) coincide and this establishes the equivalence of the
matrix eigenvalue problem (76) with the Hamiltonian averaging used in [12].
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