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Abstract—We study a dynamical system for Gaussian dispersion-managed pulses in the limit
of large pulse energy and map strength. We show numerically and asymptotically that the
pulse energy E grows with the map strength S as E ∼ D+

√
S, where D+ is the effective

dispersion coefficient of the focusing fiber. We also inspect leading-order asymptotic solutions
that describe variations of the pulse parameters along the optical fiber.

1. INTRODUCTION

Return-to-zero pulses and dispersion-managed solitons are two elements in the endeavor to
achieve higher bit rates for long-haul data transmission in dispersion-compensated optical fibers
[4]. Dispersion-managed solitons can be modeled by special solutions of the periodic nonlinear
Schrödinger equation [7]. An accurate approximation of dispersion-managed solitons is achieved
with Gaussian pulses that are localized in time and vary periodically in distance along the optical
fiber [3]. The Gaussian pulses are parametrized by the pulse energy, or, equivalently, by the map
strength of the dispersion variations [8].

We have recently studied Gaussian pulses that approximate dispersion-managed solitons in the
limit of short dispersion maps, when normal-form transformations can be applied for averaging the
periodic nonlinear Schrödinger equation [6]. Here we study properties of the Gaussian pulses in
the limit of large pulse energy and map strength, which is the opposite limit to the one in [6]. In
optical communications, pulses of large energy are preferred because of a favorable signal-to-noise
ratio, while strongly dispersion-managed maps reduce the four-wave mixing and improve the bit
rates of communication channels in the fiber bandwidth. In this context, we show that the pulse
energy E grows with larger map strength S as E ∼ D+

√
S, where D+ is the effective dispersion

coefficient of the focusing fiber. This main result is derived by means of asymptotic analysis and
is confirmed by direct numerical simulations.

2. MODEL

Transmission of optical pulses in a dispersion-managed optical fiber is modeled by the periodic
nonlinear Schrödinger (NLS) equation,

iuz + d(z)utt + γ(z) |u|2 u = 0, (2.1)
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where d(z) is a periodic dispersion coefficient and γ(z) is a nonlinearity coefficient, modified due
to fiber loss and amplification [8]. The dispersion map period and variance can be normalized by
a simple scaling transformation [6], such that the dispersion map d(z) takes the form

d(z) = d0 + d+, n < z < n+ l,

d(z) = d0 + d−, n+ l < z < n+ 1, n ∈ Z, (2.2)

where l is the length of the focusing fiber such that 0 < l < 1, d0 is the average dispersion, and
d+ = 2/l and d− = −2/(1− l) are zero-mean variations of the dispersion coefficients in the focusing
and defocusing fibers. In the same normalization, the nonlinearity coefficient γ(z) takes the form

γ(z) = Ke−2α(z−n−1), n+ za ≤ z ≤ n+ 1 + za, n ∈ Z, (2.3)

where α > 0 is the decay rate due to fiber losses, za is a position of an amplifier in the dispersion
map such that 0 ≤ za ≤ 1, and K is a constant that normalizes the mean of the coefficient γ(z) to
one,

K =
2αe2αza

e2α − 1
.

Dispersion-managed solitons are approximated by the Gaussian pulses in the following form:

u(z, t) = c exp
(
− t2

a− ib + iφ
)
, (2.4)

where a(z), b(z), c(z), and φ(z) are parameters of the Gaussian pulses varying with the distance
along the fiber. The amplitude c(z) follows from the power balance equation as

c =
Ea1/2

√
2(a+ ib)

,

whereE is the energy of the Gaussian pulse. The width a(z) and the chirp b(z) satisfy the dynamical
system 



da

dz
=

Eγ(z)a5/2b

(a2 + b2)3/2
,

db

dz
= d(z)− Eγ(z)a3/2(a2 − b2)

2(a2 + b2)3/2
,

(2.5)

and the phase shift parameter φ(z) is decoupled from the system with the separate equation

dφ

dz
=
Eγ(z)a1/2(3a2 + 5b2)

8(a2 + b2)3/2
. (2.6)

The map strength S of the dispersion map is defined by the minimal values of a(z) on a period
0 ≤ z ≤ 1:

S =
1

min
0≤z≤1

a(z)
. (2.7)

From (2.4) and (2.5) it is clear that b(z0) = 0 if z0 is a minimum of a(z) and that the map strength
S is inverse proportional to the minimal pulse width [6].

Dispersion-managed solitons are described by the Gaussian pulses (2.4), computed at a periodic
solution of the system (2.5) such that a(z+1) = a(z), b(z+1) = b(z), and φ(z+1) = φ(z)+M , where
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M depends on E and S [6]. The existence of periodic solutions in the system (2.5) is rigorously
proved in [2, 1]. Numerical simulations in [3, 7] confirm that the Gaussian pulses accurately
approximate dispersion-managed solitons in the periodic NLS equation. It is shown in [5] that,
for a positive average dispersion d0 > 0, the system (2.5) has a stable elliptic fixed point in the
Poincaré section of the periodic solutions (a, b), whereas for a negative average dispersion d0 < 0,
the system has a stable elliptic and an unstable hyperbolic fixed point. The averaging method is
developed in [6] with a rigorous proof of stability–instability and bifurcations of different periodic
solutions of the system (2.5). Here we study asymptotic properties of the system (2.5) in the limit
of large E and S for either sign of d0.

3. ASYMPTOTIC AND NUMERICAL RESULTS

We first find a numerical approximation of periodic solutions of system (2.5). We use a two-
dimensional shooting method, where the Jacobian matrix is approximated by a first-order finite-
difference operator at each time step. This algorithm does not always converge, but satisfactory
convergence is found in most cases. Iterations are started with a reasonable initial approximation
for a(0) and b(0), most often stemming from the approximation obtained for slightly different
parameters E and S. To integrate the system (2.5) with given initial data, a four-step Runge-
Kutta method is employed. Figure 1 shows the numerical approximation of the periodic solutions
a(z) and b(z), the dispersion map d(z) on 0 < z < 1, and the phase plane (a, b) in the case when
l = 0.1, d0 = 0.04, α = 0, and E = 100.
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Fig. 1. Numerical approximation of the periodic solution a(z) and b(z) on 0 < z < 1 with the parameters
l = 0.1, d0 = 0.04, α = 0, and E = 100. Left: a(z), b(z) and the dispersion map d(z). Right: Phase plane
(a, b).

We now analyze the asymptotic solutions of system (2.5) in the limit of large pulse energy
E. We shall work independently in two separate regions: 0 < z < l and l < z < 1, where
d(z) = d0 + d+ > 0 and d(z) = d0 + d− < 0, respectively. Let ε = 1/E be a small parameter. We
define new variables ζ± in the two regions as

εζ± =
z∫

z±

γ(z′)dz′, (3.1)
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where the values z± are defined to be the points on the focusing and defocusing fibers, where
b(z±) = 0. It follows from (2.5) that a(z±) has an extremum if b(z±) has a simple zero (cf.
Figure 1). The transformation (3.1) is invertible since γ(z) > 0, i.e., the function ζ± = ε−1g±(z)
is one-to-one with the inverse function z = f±(εζ±). It is also clear from (3.1) that ζ± = 0 at the
points, where z = z±.

In new variables ζ±, the system (2.5) takes the form


da

dζ±
=

a5/2b

(a2 + b2)3/2
,

db

dζ±
= εD(εζ±)− a3/2(a2 − b2)

2(a2 + b2)3/2
,

(3.2)

where

D(εζ±) =
d(z)
γ(z)

∣∣∣∣
z=f±(εζ±)

.

The system (3.2) can be reduced to the Hamiltonian form [6] with the ζ±-dependent Hamiltonians,

H(ζ±) =
a1/2

(a2 + b2)1/2
− εD(εζ±)

a
. (3.3)

We conclude from Figure 1 that the periodic solution a(z) is centered and localized at the points
z = z±, where ζ± = 0. In the asymptotic region where ζ± ∼ O(1) in the limit ε → 0, we expand
D(εζ±) in a power series in ε at ε = 0. Each partial system (3.2) becomes autonomous in the first
order of ε with the following relation between a and b:

b2 =
a−

(
H±a+ εD±

)2
(
H±a+ εD±

)2 a2, (3.4)

where H± = H(0) and D± = D(0) are defined separately for the two regions of ζ±. The solution
is defined in the domain a±min ≤ a(ζ±) ≤ a±max, where a±min and a±max are two roots of the quadratic
equation

a =
(
H±a+ εD±

)2
. (3.5)

We consider first the focusing fiber, where D+ > 0. As follows from (2.7), the minimal value
a+

min = min
0<z<l

a(z) is related to the map strength as S = 1
a+
min

. Under the condition that H+ = O(εp)

with p > −1 in the limit ε → 0, one can expand the smallest root of the quadratic equation (3.5)
in the power series of ε and find the leading-order expansion as

a+
min = ε2D2

+ (1 + O(εH+)) . (3.6)

We prove below that H+ = O(ε1/3) for α = 0 and H+ = O(1) for α �= 0, i.e., either p = 1/3 or
p = 0, and the condition of validity of the leading-order approximation (3.6) is thus satisfied. In this
case, the minimum of the peak of a(ζ+) in the focusing fiber is a+

min = ε2Amin, where Amin = O(1)
in the limit ε→ 0.

In the domain, where ζ+ = O(1) and a(ζ+) = ε2Amin +O(ε3), the system (3.2) has the leading-
order asymptotic solution:

a(ζ+) = ε2Amin + ε3A2
min


 1
εAmin

− 1(
ε2A2

min +D2
+ζ

2
+

)1/2


+R+

a (ζ+, ε), (3.7)
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and

b(ζ+) = εD+ζ+ +
1
2
ε2D′(0)ζ2

+

+
1
2
ε2Amin


log

D+ζ+ +
(
ε2A2

min +D2
+ζ

2
+

)1/2

εAmin
− 2D+ζ+

(ε2A2
min +D2

+ζ
2
+)1/2


+R+

b (ζ+, ε), (3.8)

where the remainder terms have the order R+
a (ζ+, ε) = O(ε4) and R+

b (ζ+, ε) = O(ε3) in the region,
where ζ+ = O(1). Comparison of the leading-order asymptotic solutions (3.7) and (3.8) (dashed
curve) with the numerical approximation (solid curve) is shown on Figure 2 for the same values of
parameters as on Figure 1.
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Fig. 2. Comparison of the numerical solution (solid curves) with the leading-order asymptotic solution (3.7)
and (3.8). Left: a(z). Right: b(z).

The function b(ζ+) grows secularly in the limits ζ+ → ±∞, where the “inner” asymptotic
approximation (3.8) breaks. It also follows from Figure 2 that the maximum of the function
a(ζ+) in the limits ζ+ → ±∞ appears beyond the “inner” asymptotic approximation (3.7), where
a(ζ+) = O(ε2). As a result, the asymptotic solutions a(ζ+) and b(ζ+) in (3.7)–(3.8) are not
uniformly valid in the limit ε → 0 on ζ+ ∈ R. The “inner” asymptotic solutions (3.7) and (3.8)
must be matched with the “outer” asymptotic solution in the limits ζ+ → ±∞ such that εζ+ ∼ O(1).
The scaling of the system (3.2) with b = O(1) and εζ+ = O(1) shows that the matching conditions
are

lim
ζ+→±∞
εζ+=Z±

a(ζ+) = ε2/3A(Z±), lim
ζ+→±∞
εζ+=Z±

b(ζ+) = B(Z±). (3.9)

The “outer” asymptotic solution A(Z±) and B(Z±) in the two limits satisfies the system of
equations, 



dA

dZ±
=

A5/2B

(B2 + ε4/3A2)3/2
,

dB

dZ±
= D(Z±) +

A3/2(B2 − ε4/3A2)
2(B2 + ε4/3A2)3/2

.

(3.10)
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We do not solve here the “outer” asymptotic system (3.10), but we exploit the scaling properties of
the “outer” asymptotic solution (3.9). Since D(Z±) is independent of ε, it is clear from (3.3) that
H(ζ+) has the following representation at the “outer” asymptotic scale εζ+ = O(1) in the limits
ζ+ → ±∞:

H(Z±) = ε1/3

(
A1/2

(B2 + ε4/3A2)1/2
− D(Z±)

A

)
, (3.11)

and therefore H(Z±) = O(ε1/3) as ε→ 0. Since H is the Hamiltonian for the system (3.2), we have

dH

dζ+
=
∂H

∂ζ+
= −ε

2D′(εζ+)
a(ζ+)

=
ε2

a(ζ+)
d(z)γ′(z)
γ3(z)

∣∣∣∣
z=f+(εζ+)

. (3.12)

If γ′(z) = 0 (i.e., α = 0) and d(z) = d0 + d+ > 0 in the focusing fiber 0 < z < l, then

H(Z±) = lim
ζ+→±∞
εζ+=Z±

H(ζ+) = H(0) = H+, (3.13)

and H+ = O(ε1/3) for α = 0, as we claimed. If γ′(z) �= 0 (i.e., α �= 0), then

H(Z±) = H+ + ε2
C±∫
0

dζ+
a(ζ+)

d(z)γ′(z)
γ3(z)

∣∣∣∣
z=f+(εζ+)

+ ε2 lim
ζ+→±∞
εζ+=Z±

ζ+∫
C±

dζ+
a(ζ+)

d(z)γ′(z)
γ3(z)

∣∣∣∣
z=f+(εζ+)

, (3.14)

where C± = O(1) as ε → 0. The first integral in (3.14) is estimated with the “inner” asymptotic
solution (3.7), where a(ζ+) = O(ε2), and the second summand in (3.14) is of order O(1) as ε →
0. The second integral in (3.14) is estimated with the “outer” asymptotic solution (3.9), where
a(ζ+) = O(ε2/3), and the third summand in (3.14) is of order O(ε1/3) as ε → 0. As a result,
H+ = O(1) for α �= 0, as we claimed.

We consider next the defocusing fiber, where D− < 0. Under the condition that H− = O(εq)
for q > −1 in the limit ε → 0, one can expand the largest root of the quadratic equation (3.5) in
the power series of ε and find the leading-order expansion as:

a−max =
1
H2

−
(1 + O(εH−)) . (3.15)

We show below thatH− = O(ε1/3) for any value of α ≥ 0. In this case, the asymptotic expansion for
the maximum of the peak of a(ζ−) in the defocusing fiber is a−max = ε−2/3Amax, where Amax = O(1)
in the limit ε→ 0. The scaling of system (3.2) with a = O(ε−2/3) shows that the “inner” asymptotic
solution on the defocusing fiber takes the form: a(ζ−) = ε−2/3a(η−, ε), b(ζ−) = ε−2/3b(η−, ε), where
η− = ε1/3ζ−. The leading-order “inner” asymptotic solution for a(ζ−) and b(ζ−) takes the explicit
form:

a(ζ−) =
4A2

max

ε2/3
(
4Amax + η2

−
) +R−

a (η−, ε), (3.16)

and

b(ζ−) = − 2η−A
3/2
max

ε2/3(4Amax + η2
−)

+R−
b (η−, ε), (3.17)

where the remainder terms have the order R−
a (η−, ε) = O(ε2/3) and R−

b (η−, ε) = O(ε2/3) in the
region, where η− = O(1). The leading-order asymptotic solutions (3.16) and (3.17) (dashed curve)
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Fig. 3. Comparison of the numerical solution (solid curves) with the leading-order asymptotic solution (3.16)
and (3.17). Left: a(z). Right: b(z).

are compared with the numerical approximation (solid curve) on Figure 3 for the same values of
parameters as on Figure 1.

The asymptotic solutions a(ζ−) and b(ζ−) in (3.16)–(3.17) are not uniformly valid in the limit
ε → 0 on ζ− ∈ R. The “inner” asymptotic solutions (3.16) and (3.17) must be matched with
the “outer” asymptotic solution in the limits ζ− → ±∞, such that εζ− = O(1). The matching
conditions take the form

lim
ζ−→∓∞
εζ−=Z±

a(ζ−) = ε2/3A(Z±), lim
ζ−→∓∞
εζ−=Z±

b(ζ−) = B(Z±), (3.18)

where the functions A(Z±) and B(Z±) are the same as in (3.9). The functions A(Z±) and B(Z±)
solve the same problem (3.10), which is valid at the interface layer between the focusing and
defocusing fiber, where D(Z±) changes sign. Since D(Z±) is independent of ε, the Hamiltonian
H(ζ−) has the same representation (3.11) with D(Z±) < 0, and therefore H(Z±) = O(ε1/3) as
ε→ 0. Similarly to the focusing case, we find from (3.2) and (3.3) that

H(Z±) = H− + ε2 lim
ζ−→∓∞
εζ−=Z±

ζ−∫
0

dζ−
a(ζ−)

d(z)γ′(z)
γ3(z)

∣∣∣∣
z=f−(εζ−)

, (3.19)

where d(z) = d0 + d− < 0 in the defocusing fiber l < z < 1. Since ε2/3A(Z±) ≤ a(ζ−) ≤ ε−2/3Amax,
the second term in (3.19) always has the order O(ε1/3), such that H− = O(ε1/3) in the limit
ε → 0, as we claimed. Thus, the asymptotic solution for a(z) and b(z) on a period 0 ≤ z ≤ 1
is constructed with the help of the “inner” asymptotic solutions (3.7) and (3.8) in the focusing
fiber, the “inner” asymptotic solutions (3.16) and (3.17) in the defocusing fiber, and the “outer”
asymptotic solutions A(Z±) and B(Z±) of the interface problem (3.10) that match the “inner”
solutions with the matching conditions (3.9).

The main result of the paper is the expansion (3.6), which gives the leading-order relation
between the energy E and the map strength S as

E ∼ D+

√
S. (3.20)

We confirm this result with numerical approximations of the periodic solutions of system (2.5) for
the case l = 0.8, d0 = 0.04, and α = 0. We first compute an approximate periodic solution for
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small values of E, such as E = 1. The calculation is then repeated with increasing values for
the pulse energy E and the map strength S. The numerical approximation of the curve E versus
S is shown in Figure 4 (dashed curve), together with the asymptotic approximation (3.20) with
D+ = d(l/2) = 2.54 (solid curve).
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Fig. 4. Pulse energy E versus map strength S for l = 0.8, d0 = 0.04, and α = 0. Solid curve: numerical
approximation, dashed curve: asymptotic approximation E = D+S
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Fig. 5. Numerical approximations of parameters of the power regression fit E = CSβ. Left: β. Right: C.
The center of the fit is taken at different values of S. The parameters are l = 0.8, d0 = 0.04, and α = 0, and
the data are computed for 100 < E < 500. Dashed lines show asymptotic results: β = 0.5 and C = D+.

We apply the curve fitting algorithm for the power approximation E = CSβ to 100 data points
of the plot of E versus S, centered at a certain value of S. The power regression fit is shown in
Figure 5 for different values of the center of the power fit in S. As the center of the power fit
becomes larger, the computed value of constant C approaches D+ = d(l/2) = 2.54 and the power
β tends to 0.5. This confirms the leading-order asymptotic result (3.20). The computations are
repeated with different values of the parameter l, with similar results.
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The numerical approximations of the periodic solutions of system (2.5) are also obtained in
the presence of loss and amplifications. Figure 6 shows the periodic solutions for the case l = 0.1,
d0 = 0.04, α = 0.75, za = 0.15, and E = 100. Note that the minimum of a(z) on the focusing
fiber and the maximum of a(z) in the defocusing fiber do not occur at the centers of the respective
fibers. The locations of these points are denoted by z±.
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Fig. 6. Numerical approximation of the periodic solution a(z) and b(z) on 0 < z < 1 in the presence of loss
and amplification. The parameters are l = 0.1, d0 = 0.04, E = 100, za = 0.15, and α = 0.75. Left: a(z),
b(z), dispersion map d(z), and nonlinearity coefficient γ(z). Right: Phase plane (a, b).
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Fig. 7. Numerical approximations of parameters of the power regression fit E = CSβ in the presence of loss
and amplification. Left: β. Right: C. The center of the fit is taken at different values of S. The parameters
are l = 0.8, d0 = 0.04, α = 0.75, and za = 0.15, and the data are computed for 100 < E < 500. Dashed lines
show asymptotic results: β = 0.5 and C = D+.

The parameters β and C of the power fit E = CSβ centered at different values of S are shown
on Figure 7 for the case l = 0.8, d0 = 0.04, α = 0.75, and za = 0.15. As the center of the power
fit becomes larger, the computed value of constant C approaches D+ = d(z+)/γ(z+) ≈ 1.916 and
the power β tends to 0.5. This confirms the leading-order asymptotic result (3.20) in the case
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when α �= 0.

4. SUMMARY

We have studied the relation between the energy E of dispersion-managed solitons and the map
strength S of the dispersion map in the limit of large pulse energy. Using a matched asymptotic
expansion, we have given leading-order expressions for the relation between E and S as well as for
the functions a and b appearing in the dynamical system (2.5). The agreement between asymptotic
and numerical results confirms our main claim that the pulse energy grows like E ∼ D+

√
S with

large map strength, where D+ is the effective dispersion coefficient in the focusing fiber. The
leading-order asymptotic solutions describe variations of the pulse parameters along the optical
fiber. The delicate problems concerning the range of applicability of the asymptotic expansions
and bounds on the error terms are relegated to future work.
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