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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION\ast 

LUKAS BENGEL\dagger , DMITRY PELINOVSKY\ddagger , AND WOLFGANG REICHEL\dagger 

Abstract. We consider a variant of the Lugiato--Lefever equation (LLE), which is a nonlinear
Schr\"odinger equation on a one-dimensional torus with forcing and damping, to which we add a first-
order derivative term with a potential \varepsilon V (x). The potential breaks the translation invariance of LLE.
Depending on the existence of zeroes of the effective potential V\mathrm{e}ff, which is a suitably weighted and
integrated version of V , we show that stationary solutions from \varepsilon = 0 can be continued locally into
the range \varepsilon \not = 0. Moreover, the extremal points of the \varepsilon -continued solutions are located near zeros of
V\mathrm{e}ff. We therefore call this phenomenon pinning of stationary solutions. If we assume additionally
that the starting stationary solution at \varepsilon = 0 is spectrally stable with the simple zero eigenvalue due
to translation invariance being the only eigenvalue on the imaginary axis, we can prove asymptotic
stability or instability of its \varepsilon -continuation depending on the sign of V \prime 

\mathrm{e}ff at the zero of V\mathrm{e}ff and the
sign of \varepsilon . The variant of the LLE arises in the description of optical frequency combs in a Kerr
nonlinear ring-shaped microresonator which is pumped by two different continuous monochromatic
light sources of different frequencies and different powers. Our analytical findings are illustrated by
numerical simulations.

Key words. nonlinear Schr\"odinger equation, bifurcation theory, continuation method
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1. Introduction. The Lugiato--Lefever equation [22] is the most commonly used
model to describe electromagnetic fields inside a resonant cavity that is pumped by a
strong continuous laser source. Inside the cavity, the electromagnetic field propagates
and suffers losses due to curvature and/or material imperfections. Most importantly,
the cavity consists of a Kerr-nonlinear material so that, triggered by modulation insta-
bility, the field may experience a nonlinear interaction of the pumped and resonantly
enhanced modes of the cavity. Under appropriate driving conditions of the resonant
cavity and the laser, a stable Kerr-frequency comb may form in the cavity, which is a
spatially localized and spectrally broad waveform.

Since their discovery by the 2005 Noble prize laureate Theodor H\"ansch, frequency
combs have seen an enormously wide field of applications, e.g., in high capacity op-
tical communications [25], ultrafast optical ranging [38], optical frequency metrology
[39], or spectroscopy [32, 35]. The Lugiato--Lefever equation (LLE) is an amplitude
equation for the electromagnetic field inside the cavity derived by means of the slowly
varying envelope approximation.

In the following we assume that the cavity is a ring-shaped microresonator with
normalized perimeter 2\pi . Using dimensionless quantities and writing u(x, t) =\sum 

k\in \BbbZ uk(t)e
ikx for the slowly varying and 2\pi -periodic amplitude of the electromag-

netic field, the LLE in its original form [22] reads as
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3680 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

i\partial tu= - d\partial 2
xu+ (\zeta  - i\mu )u - | u| 2u+ if0, (x, t)\in \BbbT \times \BbbR ,(1.1)

where \BbbT is a circle of length 2\pi . Here d > 0 is the case of anomalous dispersion,
whereas d < 0 refers to normal dispersion. The laser pump with frequency \omega p0

has
the power | f0| 2, and the detuning value \zeta represents the offset between the pump
frequency \omega p0

and the closest resonance frequency \omega 0 of the resonator. Finally, the
value \mu > 0 quantifies the damping coefficient.

More recently, novel pumping schemes have been discussed [36], where, instead
of one monochromatic laser pump, one uses a dual laser pump with two different fre-
quencies as a source term. Using again dimensionless quantities the resulting equation
is given by

i\partial tu= - d\partial 2
xu+ (\zeta  - i\mu )u - | u| 2u+ if0 + if1e

i(k1x - \nu 1t), (x, t)\in \BbbT \times \BbbR ,(1.2)

cf. [13, 14, 36] for a detailed derivation. In contrast to (1.1), there is now a second
source term with pump strength f1, and k1 stands for the second pumped mode
(the first pumped mode is again k0 = 0). This gives rise to two detuning variables
\zeta = 2

\kappa (\omega 0 - \omega p0), \zeta 1 =
2
\kappa (\omega k1  - \omega p1), and they define \nu 1 = \zeta  - \zeta 1+dk21. One of the main

outcomes of [14] is that the stationary states of (1.2) are far more localized than the
stationary states of (1.1), and the best results can be achieved when f0 = f1 among
all power distributions such that f2

0 + f2
1 is kept constant.

However, there are cases where a power distribution | f0| \gg | f1| is more adequate
in physical experiments. In this case, it is shown in Appendix A that one can derive
from (1.2) the perturbed LLE in the form

i\partial tu= - d\partial 2
xu+ i\varepsilon V (x)\partial xu+ (\zeta  - i\mu )u - | u| 2u+ if0, (x, t)\in \BbbT \times \BbbR ,(1.3)

where, in the physical context, V (x) = \nu 1  - 2dk21
f1
f0

cos(x) and \varepsilon = 1. However, if \nu 1
and k21f1/f0 are small, we will consider (1.3) as the perturbed LLE, with \varepsilon \in \BbbR being
small and V \in C1([ - \pi ,\pi ],\BbbR ) being a generic periodic potential. Recall that (1.3) is
already set in a moving coordinate frame. In its stationary form the equation becomes

 - du\prime \prime + i\varepsilon V (x)u\prime + (\zeta  - i\mu )u - | u| 2u+ if0 = 0, x\in \BbbT .(1.4)

The main questions addressed in this paper are the existence and stability of the
stationary solution of (1.3). Our main results, which are stated in detail in section 2,
can be summarized as follows:

\bullet In Theorem 3 we prove existence of solutions of (1.4) for small \varepsilon provided
the effective potential Veff changes sign, where Veff is a weighted integrated
version of the coefficient function V .

\bullet In Theorems 8 and 9 we prove stability/instability properties of the solution
obtained from Theorem 3 with the time evolution of (1.3).

\bullet In section 3 we illustrate the findings of our theorems by numerical simu-
lations. The numerical simulations show that the location of the intensity
extremum of the \varepsilon -continued solutions does not change significantly for small
\varepsilon . Therefore, we call this phenomenon pinning of solutions at zeroes of the
effective potential Veff.

Existence and bifurcation behavior of solutions of (1.1) have been studied quite well,
cf. [11, 12, 15, 16, 24, 26, 27, 28, 29], and their stability properties have been inves-
tigated in [2, 6, 7, 17, 18, 19, 31, 34, 37]. Analytical and numerical investigations of
(1.2) have been reported in [3, 13, 14]. In contrast, we are not aware of any treatment
of (1.3). However, a related problem, where instead of i\varepsilon V (x)u\prime a term of the form
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3681

\varepsilon V (x)u appears in the nonlinear Schr\"odinger equation, has been quite well studied;
cf. [1, 10, 30]. In this case, solutions are pinned near nondegenerate critical points
of Veff instead of the zeroes of Veff as in our case. A different kind of pinning at the
intensity maximum of an external forcing term occurs in [33].

2. Main results. In this section we present our main results regarding existence
and stability of stationary solutions of (1.3). For \varepsilon = 0 there is a plethora of nontrivial
(nonconstant) stationary solutions; cf. [12, 24]. We start with such a solution under
the assumption of its nondegeneracy according to the following definition.

Definition 1. A nonconstant solution u \in H2
per([ - \pi ,\pi ],\BbbC ) of (1.4) for \varepsilon = 0 is

called nondegenerate if the kernel of the linearized operator

Lu\varphi := - d\varphi \prime \prime + (\zeta  - i\mu  - 2| u| 2)\varphi  - u2 \=\varphi , \varphi \in H2
per([ - \pi ,\pi ],\BbbC )

consists only of span\{ u\prime \} .
Remark 2. Note that Lu :H2

per([ - \pi ,\pi ],\BbbC )\rightarrow L2([ - \pi ,\pi ],\BbbC ) is a relatively compact
perturbation of the isomorphism  - d\partial 2

x + sign(d) : H2
per([ - \pi ,\pi ],\BbbC ) \rightarrow L2([ - \pi ,\pi ],\BbbC )

and hence a Fredholm operator. Notice also that span\{ u\prime \} always belongs to the
kernel of Lu due to translation invariance in x for \varepsilon = 0. Nondegeneracy means that
except for the obvious candidate u\prime (and its real multiples), there is no other element
in the kernel of Lu.

One can ask whether nonconstant nondegenerate solutions at \varepsilon = 0 in Definition 1
may be continued into the regime of \varepsilon \not = 0. In order to describe the continuation, we
denote such a solution by u0 and its spatial translations by u\sigma (x) := u0(x  - \sigma ).
The nondegeneracy assumption implies that kerLu\sigma = span\{ u\prime 

\sigma \} . Since the adjoint
operator L\ast 

u0
also has a one-dimensional kernel, there exists \phi \ast 

0 \in H2
per([ - \pi ,\pi ],\BbbC )

such that kerL\ast 
u0

= span\{ \phi \ast 
0\} . Notice that with \phi \ast 

\sigma (x) = \phi \ast 
0(x - \sigma ) we find kerL\ast 

u\sigma 
=

span\{ \phi \ast 
\sigma \} .

Before stating our existence result, let us clarify the assumption on the
potential V .

(A1) The potential V : [ - \pi ,\pi ]\rightarrow \BbbR , x \mapsto \rightarrow V (x) is a 2\pi -periodic, continuously differ-
entiable function.

The existence result is given by the following theorem.

Theorem 3. Let d\in \BbbR \setminus \{ 0\} , f0, \zeta \in \BbbR , \mu > 0 be fixed, and assume that (A1) holds.
Furthermore, let u0 \in H2

per([ - \pi ,\pi ],\BbbC ) be a nonconstant, nondegenerate solution of
(1.4) for \varepsilon = 0. If \sigma 0 is a simple zero of the function

\sigma \mapsto \rightarrow Veff(\sigma ) := Re

\int \pi 

 - \pi 

iV (x+ \sigma )u\prime 
0
\=\phi \ast 
0 dx,(2.1)

then there exists a continuous curve ( - \varepsilon \ast , \varepsilon \ast )\ni \varepsilon \rightarrow u(\varepsilon )\in H2
per([ - \pi ,\pi ],\BbbC ) consisting

of solutions of (1.4) with \| u(\varepsilon ) - u0(\cdot  - \sigma 0)\| H2 \leq C| \varepsilon | for some constant C > 0.

Remark 4. The value of \sigma 0 is determined from the existence of a unique solution
v \in H2

per([ - \pi ,\pi ],\BbbC ) of the linear inhomogeneous equation

Lu\sigma 0
v= - iV (x)u\prime 

\sigma 0

with the property that v\bot L2 u\prime 
\sigma 0
. Fredholm's condition shows that \sigma 0 is a zero of Veff

if and only if this equation is uniquely solvable. Simplicity of the zero of Veff yields
the result of Theorem 3.
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3682 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

Remark 5. The observation that Veff having a zero is a necessary condition for
continuability of solutions in the case where V (x) \equiv V0 is constant occurred in [4],
where traveling solitons with speed V0 were considered.

To investigate the stability of a stationary solution u, we introduce the expansion

u(x) + v(x, t) = u1(x) + iu2(x) + v1(x, t) + iv2(x, t)

and substitute this into the perturbed LLE (1.3). After neglecting the quadratic and
cubic terms in v and separating real and imaginary parts, we obtain the linearized
system for \bfitv = (v1, v2), which reads as

\partial t\bfitv = \widetilde Lu,\varepsilon \bfitv ,

and the linearization has the form\widetilde Lu,\varepsilon = JAu  - I(\mu  - \varepsilon V (x)\partial x)(2.2)

with

J :=

\biggl( 
0 1
 - 1 0

\biggr) 
, I :=

\biggl( 
1 0
0 1

\biggr) 
,

Au :=

\biggl( 
 - d\partial 2

x + \zeta  - (3u2
1 + u2

2)  - 2u1u2

 - 2u1u2  - d\partial 2
x + \zeta  - (u2

1 + 3u2
2)

\biggr) 
.

In the following, we will often identify functions in \BbbC as vector-valued functions in
\BbbR \times \BbbR and use the notation

u= u1 + iu2 \in \BbbC \updownarrow \bfitu =

\biggl( 
u1

u2

\biggr) 
\in \BbbR 2.

We denote the spectrum of \widetilde Lu,\varepsilon in L2([ - \pi ,\pi ]) \times L2([ - \pi ,\pi ]) by \sigma (\widetilde Lu,\varepsilon ) and the

resolvent set of \widetilde Lu,\varepsilon by \rho (\widetilde Lu,\varepsilon ).
For our stability results, we require one additional spectral assumption on the

nondegenerate solution u0 regarding the spectrum of \widetilde Lu0,0.
(A2) The eigenvalue 0 \in \sigma (\widetilde Lu0,0) is algebraically simple, and there exists \xi > 0

such that

\sigma (\widetilde Lu0,0)\subset \{ z \in \BbbC : Rez \leq  - \xi \} \cup \{ 0\} .

Remark 6. By Fredholm's theory, the assumption of simplicity of the zero eigen-
value of \widetilde Lu0,0 is equivalent to \bfitu \prime 

0 \not \in range\widetilde Lu0,0 = span\{ J\bfitphi \ast 
0\} \bot . It will be convenient

to use the normalization \langle \bfitu \prime 
0, J\bfitphi 

\ast 
0\rangle L2 =

\int \pi 

 - \pi 
\bfitu \prime 
0 \cdot J\bfitphi 

\ast 
0 dx= 1. We also note that\int \pi 

 - \pi 

\bfitu \prime 
0 \cdot J\bfitphi 

\ast 
0 dx=Re

\int \pi 

 - \pi 

iu\prime 
0
\=\phi \ast 
0 dx.

Before stating the stability results, let us clarify that u\prime 
0 and \phi \ast 

0 are linearly
independent if \mu \not = 0, and the integrand of Veff is generically nonzero. We also clarify
the parity of eigenfunctions in kerL\ast 

u and kerLu if u0 is even in x. This is used for
many practical computations.

Lemma 7. Let u0 \in H2
per([ - \pi ,\pi ],\BbbC ) be a nonconstant, nondegenerate solution of

(1.4) for \varepsilon = 0 and \mu \not = 0. Then the following hold:
(i) u\prime 

0 and \phi \ast 
0 are linearly independent, and Re iu\prime 

0
\=\phi \ast 
0 \not \equiv 0;

(ii) if u0 is even, then \phi \ast 
0 is odd.
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3683

Proof. Part (i): By using the decomposition (2.2) with u = u0 and \varepsilon = 0, the
eigenvalue problems Lu0u

\prime 
0 = 0 and L\ast 

u0
\phi \ast 
0 = 0 are equivalent to

JAu0

\biggl( 
u\prime 
01

u\prime 
02

\biggr) 
= \mu 

\biggl( 
u\prime 
01

u\prime 
02

\biggr) 
, JAu0

\biggl( 
\phi \ast 
01

\phi \ast 
02

\biggr) 
= - \mu 

\biggl( 
\phi \ast 
01

\phi \ast 
02

\biggr) 
.

But since (u\prime 
01, u

\prime 
02) and (\phi \ast 

01, \phi 
\ast 
02) are eigenvectors to the different eigenvalues \mu and

 - \mu of JAu0 , respectively, they are linearly independent. Moreover, the determinant
of the matrix with columns (u\prime 

01, u
\prime 
02)

T and (\phi \ast 
01, \phi 

\ast 
02)

T coincides with Re iu\prime 
0
\=\phi \ast 
0, and

is not identically zero.
Part (ii): By assumption we have that kerLu0

= span\{ u\prime 
0\} and u\prime 

0 is an odd
function. Let us define the restriction of Lu0

onto the odd functions

L\#
u0

:H2
per,odd \rightarrow L2

per,odd, \varphi \mapsto \rightarrow Lu0
\varphi .

Then L\#
u0

is again a Fredholm operator of index 0 with kerL\#
u0

= span\{ u\prime 
0\} . Further

we have (L\#
u0
)\ast = (L\ast 

u0
)\#, where

(L\ast 
u0
)\# :H2

per,odd \rightarrow L2
per,odd, \varphi \mapsto \rightarrow L\ast 

u0
\varphi 

is the restriction of the adjoint operator onto the odd functions. But since 1 =
dimker(L\ast 

u0
)\# = dimkerL\ast 

u0
, it follows that ker(L\ast 

u0
)\# = kerL\ast 

u0
, and hence \phi \ast 

0 \in 
H2

per,odd as claimed.

The stability results are given by the following two theorems. A stationary solu-
tion u of (1.4) is called spectrally stable if Re(\lambda )\leq 0 for all eigenvalues \lambda of \widetilde Lu,\varepsilon . It
is called spectrally unstable if there exists one eigenvalue \lambda with Re(\lambda )> 0.

Theorem 8. Let d \in \BbbR \setminus \{ 0\} , f0, \zeta \in \BbbR , \mu > 0 be fixed, let u0 \in H2
per([ - \pi ,\pi ],\BbbC ) be

as in Theorem 3, and assume that (A1) and (A2) hold. With \sigma 0 being a simple zero
of Veff as in Theorem 3, we have

V \prime 
eff(\sigma 0) =Re

\int \pi 

 - \pi 

iV \prime (x+ \sigma 0)u
\prime 
0
\=\phi \ast 
0 dx= \langle V \prime (\cdot + \sigma 0)\bfitu 

\prime 
0, J\bfitphi 

\ast 
0\rangle L2 \not = 0.

Then there exists \varepsilon 0 \in (0, \varepsilon \ast ] such that, on the solution branch ( - \varepsilon 0, \varepsilon 0) \ni \varepsilon \rightarrow u(\varepsilon ) \in 
H2

per([ - \pi ,\pi ],\BbbC ) of (1.4) with u(0) = u\sigma 0 , the solutions u(\varepsilon ) are spectrally stable for
V \prime 
eff(\sigma 0) \cdot \varepsilon > 0 and spectrally unstable for V \prime 

eff(\sigma 0) \cdot \varepsilon < 0.

In the next theorem we will show that spectral stability leads to nonlinear as-
ymptotic stability because \varepsilon \not = 0 breaks the translational symmetry. Thus, the zero
eigenvalue of the linearization disappears, and the asymptotic orbital stability result
from [34] can be adapted and leads to a slightly improved result.

Theorem 9. Let u(\varepsilon ) \in H2
per([ - \pi ,\pi ],\BbbC ) be a spectrally stable stationary solu-

tion of (1.3) for a small value of \varepsilon \not = 0 as in Theorem 8. Then u(\varepsilon ) is asymp-
totically stable; i.e., there exist \eta , \delta ,C > 0 with the following properties. If \varphi \in 
C([0, T ),H1

per([ - \pi ,\pi ],\BbbC )) is a solution of (1.3) with maximal existence time T and

\| \varphi (\cdot ,0) - u(\varepsilon )\| H1 < \delta ,

then T =\infty and

\| \varphi (\cdot , t) - u(\varepsilon )\| H1 \leq Ce - \eta t\| \varphi (\cdot ,0) - u(\varepsilon )\| H1 for all t\geq 0.
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3684 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

Remark 10. Due to periodicity of Veff on \BbbT , simple zeros of Veff come in pairs. By
Theorems 8 and 9, for any sign of \varepsilon , there is always one simple zero which provides a
solution branch consisting of asymptotically stable solutions. Moreover, at the bifur-
cation point \varepsilon = 0, there is an exchange of stability as in the transcritical bifurcation;
i.e., the zero eigenvalue crosses the imaginary axis with nonzero speed.

Remark 11. In [7, 17] the authors constructed spectrally stable stationary solu-
tions u of (1.3) for \varepsilon = 0 in the case of anomalous dispersion d > 0. These solutions
satisfy the spectral condition \sigma (\widetilde Lu,0) \subset \{  - 2\mu \} \cup \{ Rez =  - \mu \} \cup \{ 0\} and are there-
fore nondegenerate starting solutions for which our main results from Theorems 3, 8,
and 9 hold. Moreover, in section 3 we provide examples of numerically computed
solutions for which we checked (A2) numerically.

Remark 12. If u is a solution of (1.4), then the relation\int \pi 

 - \pi 

(u\prime \=u - \=u\prime u)dx= 0

holds. This constraint is satisfied by every even function u. In fact, the only solutions
of (1.4) for \varepsilon = 0 that we are aware of are even around x= 0 (up to a shift).

Remark 13. Using Fourier-series expansions of the potential V and the function
Re(iu\prime 

0
\=\phi \ast 
0), we can derive the Fourier expansion of the effective potential Veff. Assume

that u0 is a nonconstant, nondegenerate, even solution of (1.4) for \varepsilon = 0 and \mu \not = 0.
Then, according to Lemma 7, the function f := Re(iu\prime 

0
\=\phi \ast 
0) is a nonconstant, even,

real-valued, periodic function, and we can write f(x) =
\sum 

k\in \BbbZ 
\^fke

ikx with Fourier-

coefficients satisfying \^fk = \^f - k = \^fk for all k \in \BbbZ . Expanding V (x) =
\sum 

k\in \BbbZ 
\^Vke

ikx a
straightforward calculation shows

Veff(\sigma ) =Re

\int \pi 

 - \pi 

iV (x+ \sigma )u\prime 
0
\=\phi \ast 
0 dx=

\sum 
k\in \BbbZ 

\^Vk
\^fke

ik\sigma .

In particular, since not all \^fk, | k| \geq 1, vanish, we can choose V as an average-zero
trigonometric polynomial such that Veff is also an average-zero nontrivial trigonomet-
ric polynomial, and thus generally has simple zeroes.

Remark 14. In the limit where u0 is highly localized around 0 (e.g., the limit
d\rightarrow 0\pm ) and the potential V is wide, the effective potential Veff is well approximated
by the actual potential V . More precisely, we find the asymptotic

Veff(\sigma ) =Re

\int \pi 

 - \pi 

iV (x+ \sigma )u\prime 
0
\=\phi \ast 
0 dx\approx V (\sigma )Re

\int \pi 

 - \pi 

iu\prime 
0
\=\phi \ast 
0 dx= V (\sigma )

provided \langle iu\prime 
0, \phi 

\ast 
0\rangle L2 = 1. Thus, the asymptotically stable branch bifurcates from a

simple zero \sigma 0 of V with V \prime (\sigma 0)\varepsilon > 0.

Remark 15. The criterion for stability of stationary solutions in Theorem 8 can
be written in a more precise form for small \mu in the case of solitary waves. This limit
is considered in Appendix B.

To summarize, our main results show that nondegenerate solutions of (1.4) for
\varepsilon = 0 can be extended locally for small \varepsilon \not = 0 provided the effective potential Veff has a
sign-change. Depending on the derivative of Veff at a simple zero, we determined the
stability properties of these solutions. It remains an open problem to give a criterion
on V or Veff for the existence/stability of stationary solutions which applies when | \varepsilon | 
is large.
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3685

3. Numerical simulations. In the following we describe numerical simulations
of solutions to (1.4). We choose f0 = 2, \mu = 1, V (x) = 0.1 + 0.5cos(x), and d=\pm 0.1.
All computations are done with help of the MATLAB package pde2path (cf. [8, 40]),
which has been designed to numerically treat continuation and bifurcation in bound-
ary value problems for systems of PDEs.

We begin with the description of the stationary solutions of the LLE (1.1), which
are the same as the solutions of (1.4) for \varepsilon = 0. The corresponding results are mainly
taken from [12, 24]. There is a curve of trivial, spatially constant solutions, cf. black
line in Figure 1, and this is the same curve for anomalous dispersion (d = 0.1) and
normal dispersion (d= - 0.1). Next, one finds that there are finitely many bifurcation
points on the curve of trivial solutions (blue dots). Depending on the sign of the
dispersion parameter d, one can find now the branches of the single solitons on the
periodic domain \BbbT . In the following descriptions we always follow the path of trivial
solutions by starting from negative values of \zeta .

For d= 0.1 (left panel in Figure 1), along the trivial branch there is a last bifur-
cation point which gives rise to a single bright soliton branch (red line). This branch
has a turning point, at which the solutions change from unstable (dashed) to stable
(solid), and after the turning point it tends back toward the trivial branch. Thus,
the red line in the left panel of Figure 1 represents two different but almost identical
curves, which can be seen in the enlarged inset. We have chosen a solution at the point
BP on the stable branch as a starting point for the illustration of Theorems 3 and 8.

In the case where d =  - 0.1 (right panel in Figure 1), along the trivial branch
there is a first bifurcation point from which a single dark soliton branch (red line)
bifurcates. Near the second turning point of this branch the most localized single
solitons live, and we have chosen a stable dark soliton solution at the point BP as a
starting point for the illustration of Theorems 3 and 8.

Next we explain the global picture in Figure 2 of the continuation in \varepsilon of the
chosen points BP from the \varepsilon = 0 case in Figure 1. The local picture is covered by
Theorem 3. First we note the following symmetry: since V (x) is even around x= 0,
we find that (u(x), \varepsilon ) solves (1.4) if and only if (u( - x), - \varepsilon ) satisfies (1.4). Since
reflecting u does not affect the L2-norm, we see for \varepsilon > 0 an exact mirror image of
the one for \varepsilon < 0.

Next we observe that continuation curves in \varepsilon appear to be unbounded for d= 0.1
(upper left panel of Figure 2) and closed and bounded for d= - 0.1 (lower left panel

Fig. 1. Bifurcation diagram for the case \varepsilon = 0. Blue dots indicate bifurcation points on the line
of trivial solutions (black). The red curve denotes the single soliton solution branch. The point BP
is chosen as a starting point for Theorem 3. Further solutions on the same branch for the same
value of \zeta are denoted by C (left panel) and A, C (right panel). Left panel for d = 0.1, right panel
for d= - 0.1.
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3686 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

Fig. 2. Continuation diagrams w.r.t. \varepsilon with stability regions (solid = stable; dashed = unsta-
ble) and solutions at designated points. The two different zeroes of Veff give rise to two different
continuation curves (blue and green). Top panels: d= 0.1, \zeta = 3.7. Bottom panels: d= - 0.1, \zeta = 4.5
with zoom (middle panel) of the continuation curve near the starting point.

of Figure 2). In our example the map \sigma \mapsto \rightarrow Veff(\sigma ) := Re
\int \pi 

 - \pi 
iV (x+\sigma )u\prime 

0
\=\phi \ast 
0 dx has two

zeroes in the periodic domain \BbbT , denoted by \sigma 0 and \sigma 1. Since, moreover, u0 is even
and consequently u\prime 

0, \phi 
\ast 
0 are odd, we see that the effective potential Veff is also even,

and hence \sigma 0 = - \sigma 1. Thus, continuation in \varepsilon works for the starting point u0(\cdot  - \sigma 0)
(blue curve) and u0(\cdot + \sigma 0) (green curve) with \sigma 0 < 0. As predicted from Theorem 8,
locally on one side of \varepsilon = 0 we have stable solutions, and on the other side we have
unstable solutions. On the top and bottom right panels of Figure 2 we see the graph
of | u| 2 for several solutions on the continuation diagram. The top left panel and the
bottom middle panel indicate that the \varepsilon -continuation curves meet all other nontrivial
points (C for d= 0.1 and A, C for d= - 0.1) at \varepsilon = 0 from Figure 1.

In Figure 3 we show the starting solutions u0(x  - \sigma 0) and u0(x  - \sigma 1) together
with the potential V (x). Here the zeroes \sigma 0 < 0<\sigma 1 of the effective potential Veff are
shown as blue and green dots, and we already observed \sigma 0 = - \sigma 1 due to the evenness
of both V and Veff. Since u0 is sufficiently strongly localized, the zeroes of Veff are
well approximated by the zeroes of V , and the starting solutions are thus centered
near the zeroes of V . Therefore, by applying Remark 14, we see that slope of V at
the center of the soliton being positive in the blue bifurcation point indicates that the
\varepsilon -continuation will be stable for \varepsilon > 0 and unstable for \varepsilon < 0. The stability behavior
is exactly opposite for the green bifurcation point. The stability considerations are
valid both for d= 0.1 and d= - 0.1.

Finally, let us illustrate the spectral stability properties of the \varepsilon -continuations
in Figure 4. For \varepsilon = 0, in the left panel we see the spectrum of the linearization
around u0, with most of spectrum having real part  - 1 due to damping \mu = 1 and
the remaining part of the spectrum in the left half plane together with the zero
eigenvalue caused by shift-invariance. Now we consider how the critical eigenvalue
behaves when \varepsilon varies. We do this for the case where the starting soliton sits at a
zero of Veff with positive slope; cf. blue bifurcation point in Figure 3. As predicted,
the critical eigenvalue moves into the complex left half plane for \varepsilon > 0, rendering the
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3687

Fig. 3. Top row: d = 0.1, bottom row: d =  - 0.1. Left panels: starting solutions u0(x  - \sigma 0)
together with V (x) and negative zero \sigma 0 of Veff (blue dot). Stability for \varepsilon > 0, instability for \varepsilon < 0.
Right panels: starting solutions u0(x + \sigma 0) together with V (x) and positive zero \sigma 1 =  - \sigma 0 of Veff

(green dot). Stability for \varepsilon < 0, instability for \varepsilon > 0.

Fig. 4. Top: d = 0.1, bottom: d =  - 0.1. Left: spectrum for \varepsilon = 0. Right: critical eigenvalue
\lambda 0(\varepsilon ) together with  - V \prime (\sigma 0)\varepsilon as functions of \varepsilon .

\varepsilon -continuations stable. Since the starting solitons are sufficiently localized,  - V \prime (\sigma 0)
predicts well the slope of the critical eigenvalue; cf. Lemma 18 and Remark 14.

4. Proof of the existence result. Theorem 3 will be proved via Lyapunov--
Schmidt reduction and the implicit function theorem. Fix the values of d, \zeta ,\mu , and
f0. Let u0 \in H2

per([ - \pi ,\pi ],\BbbC ) be a nondegenerate solution of (1.4) for \varepsilon = 0, and recall
that, for \sigma \in \BbbR , its shifted copy u\sigma (x) := u0(x - \sigma ) is also a solution of (1.4) for \varepsilon = 0.
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3688 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

Proof of Theorem 3. We seek solutions u of (1.4) of the form

u= u\sigma + v, \langle v,u\prime 
\sigma \rangle L2 = 0, v \in H2

per([ - \pi ,\pi ],\BbbC ).

Inserting it into (1.4), we obtain the following equation for the correction term v:

Lu\sigma 
v+ i\varepsilon V (u\prime 

\sigma + v\prime ) - N(v,\sigma ) = 0, \langle v,u\prime 
\sigma \rangle L2 = 0,(4.1)

with nonlinearity given by

N(v,\sigma ) = \=u\sigma v
2 + 2u\sigma | v| 2 + | v| 2v.

The nonlinearity is a sum of quadratic and cubic terms in v. Since H2
per is a Banach

algebra, it is clear that, for every R> 0, there exists CR > 0 such that

\| N(v,\sigma )\| L2 \leq CR\| v\| 2H2 for every v \in H2
per : \| v\| H2 \leq R.(4.2)

Moreover, since V \in L\infty , it follows that

\| i\varepsilon V (u\prime 
\sigma + v\prime )\| L2 \leq | \varepsilon | \| V \| L\infty \| u\sigma + v\| H2 .

Next we solve (4.1) according to the Lyapunov--Schmidt reduction method. Define
the orthogonal projections

P\sigma :L2 \rightarrow span\{ u\prime 
\sigma \} \subset L2, Q\sigma :L2 \rightarrow span\{ \phi \ast 

\sigma \} \bot \subset L2

onto kerLu\sigma 
and (kerL\ast 

u\sigma 
)\bot = span\{ \phi \ast 

\sigma \} \bot = rangeLu\sigma 
, respectively. Then (4.1) can

be decomposed into a nonsingular and singular equation

Q\sigma (Lu\sigma 
(I  - P\sigma )v+ i\varepsilon V (u\prime 

\sigma + v\prime ) - N(v,\sigma )) = 0,(4.3)

\langle i\varepsilon V u\prime 
\sigma , \phi 

\ast 
\sigma \rangle L2 + \langle i\varepsilon V v\prime  - N(v,\sigma ), \phi \ast 

\sigma \rangle L2 = 0,(4.4)

\langle v,u\prime 
\sigma \rangle L2 = 0.(4.5)

Notice that the linear part Q\sigma Lu\sigma 
(I  - P\sigma ) in (4.3) is invertible between the \sigma -

dependent subspaces (kerLu\sigma )
\bot and rangeLu\sigma . Therefore, the implicit function the-

orem cannot be applied directly to solve (4.3). However, (4.3) together with the
orthogonality condition (4.5) is equivalent to F (v, \varepsilon , \sigma ) = 0 with

F (v, \varepsilon , \sigma ) :=Q\sigma (Lu\sigma 
(I  - P\sigma )v+ i\varepsilon V (u\prime 

\sigma + v\prime ) - N(v,\sigma )) + \phi \ast 
\sigma \langle v,u\prime 

\sigma \rangle L2

and F :H2
per([ - \pi ,\pi ],\BbbC )\times \BbbR \times \BbbR \rightarrow L2([ - \pi ,\pi ],\BbbC ). Here the added term \phi \ast 

\sigma \langle v,u\prime 
\sigma \rangle L2

enforces v\bot u\prime 
\sigma . For any fixed \sigma 0 \in \BbbR , we have F (0,0, \sigma 0) = 0. Since

DvF (0,0, \sigma 0)\varphi =Lu\sigma 0
\varphi + \phi \ast 

\sigma 0
\langle \varphi ,u\prime 

\sigma 0
\rangle L2

is an isomorphism from H2
per to L2, we can apply the implicit function theorem,

which gives the existence of a smooth function v = v(\varepsilon ,\sigma ) solving the problem
F (v(\varepsilon ,\sigma ), \varepsilon , \sigma ) = 0 for (\varepsilon ,\sigma ) in a neighborhood of (0, \sigma 0). Moreover from the defi-
nition of F , we see that F (0,0, \sigma ) = 0 so that v(0, \sigma ) = 0, which implies the bound

\| v(\varepsilon ,\sigma )\| H2 \leq C| \varepsilon | (4.6)

for (\varepsilon ,\sigma ) close to (0, \sigma 0). As a consequence, \| v\prime (\varepsilon ,\sigma )\| L2 \leq C| \varepsilon | , where v\prime (\varepsilon ,\sigma ) denotes
the derivative of v with respect to x. Inserting v(\varepsilon ,\sigma ) into the singular equation (4.4),
we end up with the two-dimensional problem

f(\varepsilon ,\sigma ) := \langle i\varepsilon V u\prime 
\sigma , \phi 

\ast 
\sigma \rangle L2 + \langle i\varepsilon V v\prime (\varepsilon ,\sigma ) - N(v(\varepsilon ,\sigma ), \sigma ), \phi \ast 

\sigma \rangle L2 = 0.
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3689

To find nontrivial solutions, let us define the C1-function

\~f(\varepsilon ,\sigma ) :=

\Biggl\{ 
\varepsilon  - 1f(\varepsilon ,\sigma ), \varepsilon \not = 0,

\partial \varepsilon f(0, \sigma ), \varepsilon = 0.

By (4.2), (4.6), and our assumption on the effective potential Veff, there exists \sigma 0 \in \BbbR 
such that

\~f(0, \sigma 0) = \langle iV u\prime 
\sigma 0
, \phi \ast 

\sigma 0
\rangle L2 =Re

\int \pi 

 - \pi 

iV (x)u\prime 
\sigma 0

\=\phi \ast 
\sigma 0
dx= Veff(\sigma 0) = 0

and

\partial \sigma \~f(0, \sigma 0) = \partial \sigma \langle iV u\prime 
\sigma , \phi 

\ast 
\sigma \rangle L2 | \sigma =\sigma 0

= \partial \sigma Re

\int \pi 

 - \pi 

iV (x)u\prime 
\sigma 
\=\phi \ast 
\sigma dx

\bigm| \bigm| \bigm| \bigm| 
\sigma =\sigma 0

= V \prime 
eff(\sigma 0) \not = 0.

Hence the implicit function theorem can be applied to the problem \~f(\varepsilon ,\sigma ) = 0 and
yields a curve of unique nontrivial solutions \sigma = \sigma (\varepsilon ) to the singular equation f(\varepsilon ,\sigma ) =
0 such that \sigma (0) = \sigma 0. Finally we conclude that u(\varepsilon ) = u0(\cdot  - \sigma (\varepsilon ))+ v(\varepsilon ,\sigma (\varepsilon )) solves
(1.4) for small \varepsilon .

5. Proof of the stability result. In this section we will find the condition
when the stationary solutions obtained in Theorem 3 as a continuation of a stable
solution u0 of the LLE (1.1) are spectrally stable against co-periodic perturbations in
the perturbed LLE (1.3). Moreover, we prove the nonlinear asymptotic stability of
stationary spectrally stable solutions.

5.1. Preliminary notes. For our stability analysis we consider (1.3) as a 2-
dimensional system by decomposing the function u= u1+iu2 into a real and imaginary
part. This leads us to the system of dynamical equations\biggl\{ 

\partial tu1 = - d\partial 2
xu2 + \varepsilon V (x)\partial xu1 + \zeta u2  - \mu u1  - (u2

1 + u2
2)u2 + f0,

\partial tu2 = d\partial 2
xu1 + \varepsilon V (x)\partial xu2  - \zeta u1  - \mu u2 + (u2

1 + u2
2)u1,

(5.1)

equipped with the 2\pi -periodic boundary condition on \BbbR . The spectral problem asso-
ciated to the nonlinear system (5.1) can be written as

\widetilde Lu,\varepsilon \bfitv = \lambda \bfitv , \lambda \in \BbbC , \bfitv \in H2
per([ - \pi ,\pi ],\BbbC )\times H2

per([ - \pi ,\pi ],\BbbC ),

and the linearized operator \widetilde Lu,\varepsilon is given by (2.2). Note that the operator Au in the

decomposition (2.2) is self-adjoint on L2([ - \pi ,\pi ],\BbbC ) \times L2([ - \pi ,\pi ],\BbbC ), and \widetilde Lu,\varepsilon is a
Fredholm operator of index 0. Moreover we see that if u0 is a nondegenerate solution
of (1.4) for \varepsilon = 0, then the following relations for the linearized operators are true:

ker \widetilde Lu0,0 = span\{ \bfitu \prime 
0\} , ker \widetilde L\ast 

u0,0 = span\{ J\bfitphi \ast 
0\} ,

where the vectors \bfitu \prime 
0 = (u\prime 

01, u
\prime 
02) and \bfitphi \ast 

0 = (\phi \ast 
01, \phi 

\ast 
02) are obtained from u\prime 

0 = u\prime 
01 +

iu\prime 
02 and \phi \ast 

0 = \phi \ast 
01 + i\phi \ast 

02. We recall that \langle \bfitu \prime 
0, J\bfitphi 

\ast 
0\rangle L2 = 1 due to normalization;

cf. Remark 6.
Finally we observe that since the embedding

H2
per([ - \pi ,\pi ],\BbbC )\times H2

per([ - \pi ,\pi ],\BbbC ) \lhook \rightarrow L2([ - \pi ,\pi ],\BbbC )\times L2([ - \pi ,\pi ],\BbbC )
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3690 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

is compact, the linearization has compact resolvents, and thus the spectrum of \widetilde Lu,\varepsilon 

consists of isolated eigenvalues with finite multiplicity where the only possible accu-
mulation point is at \infty . In the following we will use the spaces

H2
per([ - \pi ,\pi ],\BbbC ) =:X, H1

per([ - \pi ,\pi ],\BbbC ) =: Y, L2([ - \pi ,\pi ],\BbbC ) =:Z.

The proofs of both Theorem 8 and Theorem 9 rely on the next lemma for the lin-
earized operator \widetilde Lu(\varepsilon ),\varepsilon , where u(\varepsilon ) lies on the solution branch of Theorem 3, and | \varepsilon | 
is small. The lemma gives spectral bounds for eigenvalues with large imaginary parts
together with a uniform resolvent estimate. The proof is presented in section 5.4.

Lemma 16. Denote \Lambda \lambda \ast := \{ \lambda \in \BbbC : Re(\lambda ) \geq 0, | Im(\lambda )| \geq \lambda \ast \} . Given \varepsilon 1 > 0
sufficiently small, there exists \lambda \ast > 0 such that we have the uniform resolvent bound

sup
\lambda \in \Lambda \lambda \ast 

\| (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )
 - 1\| L2\rightarrow L2 <\infty 

for all \varepsilon \in [ - \varepsilon 1, \varepsilon 1].

Remark 17. The uniformity of the resolvent estimate on the imaginary axis allows
us to sharpen the above result as follows. If we define S as the supremum from
Lemma 16 and let 0< \delta < 1/S, then the estimate

sup
\lambda \in \Lambda \lambda \ast  - \delta 

\| (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )
 - 1\| L2\rightarrow L2 <\infty 

holds. This follows from taking inverses in the identity

((\lambda  - \delta )I  - \widetilde Lu(\varepsilon ),\varepsilon ) = (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )(I  - \delta (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )
 - 1).

5.2. Proof of Theorem 8. For \lambda \in \BbbC we study the spectral problem\widetilde Lu,\varepsilon \bfitv = \lambda \bfitv .(5.2)

Since (1.4) has the translational symmetry in the case that \varepsilon = 0, we find\widetilde Lu,0\bfitu 
\prime = 0.

For \varepsilon \not = 0, this symmetry is broken, and the zero eigenvalue is expected to move
into either the stable or unstable half plane. In our stability analysis, it is therefore
important to understand how the critical zero eigenvalue behaves along the bifurcating
solution branch given by ( - \varepsilon \ast , \varepsilon \ast ) \ni \varepsilon \mapsto \rightarrow u(\varepsilon ) \in X with u(0) = u\sigma 0 , where \sigma 0 is a
simple zero of Veff as in Theorem 3. For the following calculations we will identify the
\BbbC -valued function u(\varepsilon ) :\BbbT \rightarrow \BbbC with the \BbbR 2 vector-valued function \bfitu (\varepsilon ) :\BbbT \rightarrow \BbbR 2 and,
understanding that the set of \BbbR 2 valued functions is a subset of the set of \BbbC 2 valued
functions, write this as \bfitu (\varepsilon )\in X \times X.

We start with the tracking of the simple critical zero eigenvalue and set up the
equation for the perturbed eigenvalue \lambda 0 = \lambda 0(\varepsilon ) which reads\widetilde Lu(\varepsilon ),\varepsilon \bfitv (\varepsilon ) = \lambda 0(\varepsilon )\bfitv (\varepsilon ).

After a possible rescaling we find that \bfitv (0) = \bfitu \prime 
\sigma 0
, and using regular perturbation

theory for simple eigenvalues, cf. [21, Proposition I.7.2], the mapping ( - \varepsilon \ast , \varepsilon \ast )\ni \varepsilon \mapsto \rightarrow 
\lambda 0(\varepsilon )\in \BbbR is continuously differentiable. Our first goal is to derive a formula for \lambda \prime 

0(0).
If \lambda \prime 

0(0) > 0, this means that the solutions u(\varepsilon ) for \varepsilon > 0 are spectrally unstable. In
contrast, if \lambda \prime 

0(0)< 0, the solutions u(\varepsilon ) for \varepsilon > 0 are spectrally stable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

5/
24

 to
 1

30
.1

13
.1

09
.1

10
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3691

Lemma 18. Let \varepsilon \mapsto \rightarrow \lambda 0(\varepsilon ) be the C1 parametrization of the perturbed zero eigen-
value. Then the following formula holds true:

\lambda \prime 
0(0) = - 

\int \pi 

 - \pi 

V \prime (x)\bfitu \prime 
\sigma 0

\cdot J\bfitphi \ast 
\sigma 0
dx.

Proof. On the one hand, if we differentiate the equation\widetilde Lu(\varepsilon ),\varepsilon \bfitv (\varepsilon ) = \lambda 0(\varepsilon )\bfitv (\varepsilon )

with respect to \varepsilon and evaluate at \varepsilon = 0, we find\widetilde Lu\sigma 0 ,0
\partial \varepsilon \bfitv (0) - JNu\bfitu 

\prime 
\sigma 0

+ V (x)\bfitu \prime \prime 
\sigma 0

= \lambda \prime 
0(0)\bfitu 

\prime 
\sigma 0
,(5.3)

where Nu is given by

Nu = 2

\biggl( 
3u\sigma 01\partial \varepsilon u1(0) + u\sigma 02\partial \varepsilon u2(0) u\sigma 01\partial \varepsilon u2(0) + u\sigma 02\partial \varepsilon u1(0)
u\sigma 01\partial \varepsilon u2(0) + u\sigma 02\partial \varepsilon u1(0) u\sigma 01\partial \varepsilon u1(0) + 3u\sigma 02\partial \varepsilon u2(0)

\biggr) 
.

On the other hand, if we differentiate (1.4) with respect to \varepsilon at \varepsilon = 0, then we obtain\widetilde Lu\sigma 0
,0\partial \varepsilon \bfitu (0) + V (x)\bfitu \prime 

\sigma 0
= 0.

If we differentiate this equation with respect to x, we find\widetilde Lu\sigma 0
,0\partial \varepsilon \bfitu 

\prime (0) + V (x)\bfitu \prime \prime 
\sigma 0

+ V \prime (x)\bfitu \prime 
\sigma 0

 - JNu\bfitu 
\prime 
\sigma 0

= 0.(5.4)

Combining (5.3) and (5.4) yields\widetilde Lu\sigma 0 ,0
[\partial \varepsilon \bfitv (0) - \partial \varepsilon \bfitu 

\prime (0)] - V \prime (x)\bfitu \prime 
\sigma 0

= \lambda \prime 
0(0)\bfitu 

\prime 
\sigma 0
,

and testing this equation with J\bfitphi \ast 
\sigma 0

\in ker \widetilde L\ast 
u\sigma 0

,0, we obtain

 - 
\int \pi 

 - \pi 

V \prime (x)\bfitu \prime 
\sigma 0

\cdot J\bfitphi \ast 
\sigma 0
dx= - \langle V \prime (x)\bfitu \prime 

\sigma 0
, J\bfitphi \ast 

\sigma 0
\rangle L2 = \lambda \prime 

0(0)\langle \bfitu \prime 
\sigma 0
, J\bfitphi \ast 

\sigma 0
\rangle L2 = \lambda \prime 

0(0),

which finishes the proof.

By Lemma 18 we can control the critical part of the spectrum close to the origin
along the bifurcating solution branch. In fact, using standard perturbation theory,
cf. [20], we know that all the eigenvalues of \widetilde Lu(\varepsilon ),\varepsilon depend continuously on the pa-
rameter \varepsilon . However, this dependence is in general not uniform w.r.t. all eigenvalues,
so we have to make sure that no unstable spectrum occurs far from the origin. At
this point, it is worth mentioning that we have an a priori bound on the spectrum of
the form

\exists \lambda \ast = \lambda \ast (u(\varepsilon ), \varepsilon )> 0 : \lambda \in \sigma (\widetilde Lu(\varepsilon ),\varepsilon ) =\Rightarrow Re(\lambda )\leq \lambda \ast .

This bound follows from the Hille--Yosida Theorem since \widetilde Lu(\varepsilon ),\varepsilon generates a C0-
semigroup on Z\times Z; cf. Lemma 19 below. It can also be shown directly by testing the
eigenvalue problem with the corresponding eigenfunction and integration by parts. As
a conclusion, spectral stability holds if we can prove that there exists \lambda \ast > 0 such that

\{ \lambda \in \BbbC : 0\leq Re(\lambda )\leq \lambda \ast , | Im(\lambda )| \geq \lambda \ast \} \subset \rho (\widetilde Lu(\varepsilon ),\varepsilon ).

This relation is shown as part of Lemma 16, and it is extended to the left of the
origin by the subsequent Remark 17. Since in any rectangle \{ \lambda \in \BbbC : - M \leq Re(\lambda )\leq 
\lambda \ast , | Im(\lambda )| \leq \lambda \ast \} there are only finitely many eigenvalues of \widetilde Lu(\varepsilon ),\varepsilon , and they depend

(uniformly) continuously on \varepsilon , our assumption (A2) on \widetilde Lu0,0 shows that none of these
eigenvalues (except possibly the critical one) can move into the right half plane if | \varepsilon | is
small. Therefore, only the movement of the critical eigenvalue determines the spectral
stability, and therefore Theorem 8 is true.
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3692 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

5.3. Proof of Theorem 9. In order to prove nonlinear asymptotic stability of
stationary solutions of (5.1), it is enough to show exponential stability of the semi-
group of the linearization in Y \times Y ; see, e.g., [5]. For the proof of Theorem 9 we will
show the following three steps:

(i) Prove that \widetilde Lu(\varepsilon ),\varepsilon is the generator of a C0-semigroup on Z \times Z.

(ii) Show exponential decay of (e
\widetilde Lu(\varepsilon ),\varepsilon t)t\geq 0 in Z \times Z.

(iii) Show exponential decay of (e
\widetilde Lu(\varepsilon ),\varepsilon t)t\geq 0 in Y \times Y .

For step (i), we establish the generator properties of the linearization in Z \times Z.

Lemma 19. The operator \widetilde Lu(\varepsilon ),\varepsilon generates a C0-semigroup on Z \times Z.

Proof. We split the operator into\widetilde Lu(\varepsilon ),\varepsilon =L1 +L2 +L3,

where L1 : X \times X \rightarrow Z \times Z, L2 : Y \times Y \rightarrow Z \times Z, and L3 : Z \times Z \rightarrow Z \times Z are
defined by

L1

\biggl( 
\varphi 1

\varphi 2

\biggr) 
:=

\biggl( 
 - d\varphi \prime \prime 

2  - \mu \varphi 1

d\varphi \prime \prime 
1  - \mu \varphi 2

\biggr) 
,

L2\bfitvarphi := \varepsilon V (x)\bfitvarphi \prime  - | \varepsilon | 
2
\| V \prime \| L\infty \bfitvarphi ,

and

L3

\biggl( 
\varphi 1

\varphi 2

\biggr) 
:=

\Biggl( 
| \varepsilon | 
2 \| V \prime \| L\infty  - 2u1u2 \zeta  - (u2

1 + 3u2
2)

 - \zeta + 3u2
1 + u2

2
| \varepsilon | 
2 \| V \prime \| L\infty + 2u1u2

\Biggr) \biggl( 
\varphi 1

\varphi 2

\biggr) 
.

We will show that
(i) L1 generates a contraction semigroup.
(ii) L2 is dissipative and bounded relative to L1.
(iii) L3 is a bounded operator on Z \times Z.

By using the semigroup theory, this will prove that the sum L1 + L2 + L3 is the
generator of a C0-semigroup on Z \times Z.

Part (i): It follows that Re\langle L1\bfitvarphi ,\bfitvarphi \rangle L2 = - \mu \| \bfitvarphi \| 2L2 \leq 0 for every \bfitvarphi \in X \times X, and
\lambda I  - L1 is invertible for every \lambda > 0, which can be seen using Fourier transform. By
the Lumer--Phillips Theorem we find that L1 generates a contraction semigroup on
Z \times Z.

Part (ii): We have to show that

\forall \bfitvarphi \in Y \times Y : Re\langle L2\bfitvarphi ,\bfitvarphi \rangle L2 \leq 0

and

\forall a> 0, \exists b > 0 : \| L2\bfitvarphi \| L2 \leq a\| L1\bfitvarphi \| L2 + b\| \bfitvarphi \| L2 \forall \bfitvarphi \in X \times X.

Let \bfitvarphi = (\varphi 1,\varphi 2)\in Y \times Y , and observe that integration by parts yields

Re

\int \pi 

 - \pi 

\varepsilon V (x)(\varphi \prime 
1 \=\varphi 1 +\varphi \prime 

2 \=\varphi 2) - 
| \varepsilon | 
2
\| V \prime \| L\infty | \bfitvarphi | 2dx

=

\int \pi 

 - \pi 

 - \varepsilon 

2
V \prime (x)| \bfitvarphi | 2  - | \varepsilon | 

2
\| V \prime \| L\infty | \bfitvarphi | 2dx\leq 0,
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3693

which shows that L2 is dissipative. Further, if \bfitvarphi \in X \times X, then for every a > 0
we have

\| \varepsilon V\bfitvarphi \prime  - | \varepsilon | 
2
\| V \prime \| L\infty \bfitvarphi \| L2

\leq | \varepsilon | \| V \| L\infty \| \bfitvarphi \prime \| L2 +
| \varepsilon | 
2
\| V \prime \| L\infty \| \bfitvarphi \| L2

\leq | \varepsilon | a\| V \| L\infty \| \bfitvarphi \prime \prime \| L2 +
| \varepsilon | 
4a

\| V \| L\infty \| \bfitvarphi \| L2 +
| \varepsilon | 
2
\| V \prime \| L\infty \| \bfitvarphi \| L2

\leq | \varepsilon | a
| d| 

\| V \| L\infty \| L1\bfitvarphi \| L2 + | \varepsilon | 
\biggl( \biggl( 

a\mu 

| d| 
+

1

4a

\biggr) 
\| V \| L\infty +

1

2
\| V \prime \| L\infty 

\biggr) 
\| \bfitvarphi \| L2 ,

where we used the inequality

\forall \bfitvarphi \in X \times X, \forall a> 0 : \| \bfitvarphi \prime \| L2 \leq a\| \bfitvarphi \prime \prime \| L2 +
1

4a
\| \bfitvarphi \| L2 .

Hence, by the dissipative perturbation theorem, cf. Chapter III, Theorem 2.7 in [9], for
generators, the operator L1+L2 :X\times X \rightarrow Z\times Z generates a contraction semigroup.

Part (iii): It follows that L3 is bounded on Z\times Z. Then the bounded perturbation
theorem for generators, cf. Chapter III, Theorem 1.3 in [9], yields that \widetilde Lu(\varepsilon ),\varepsilon =
L1 +L2 +L3 generates a C0-semigroup on Z \times Z as desired.

Remark 20. Using similar arguments, one can show that \widetilde Lu(\varepsilon ),\varepsilon is the generator
of a C0-semigroup on Y \times Y .

For step (ii), we use a characterization of exponential decay of semigroups in
Hilbert spaces known as the Gearhart--Greiner--Pr\"uss Theorem; cf. Chapter V, The-
orem 1.11 in [9].

Theorem 21 (Gearhart--Greiner--Pr\"uss Theorem). Let L be the generator of a
C0-semigroup (eLt)t\geq 0 on a complex Hilbert space H. Then (eLt)t\geq 0 is exponentially
stable in H if and only if

\{ \lambda \in \BbbC : Re(\lambda )\geq 0\} \subset \rho (L) and sup
Re\lambda \geq 0

\| (\lambda I  - L) - 1\| H\rightarrow H <\infty .

By the assumption of Theorem 9, spectral stability of the solution u(\varepsilon ) is guar-
anteed, and we are left with the proof of the uniform resolvent estimate on \{ \lambda \in 
\BbbC : Re(\lambda ) \geq 0\} . Using Lemma 16, we find \lambda \ast \gg 1 such that (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )

 - 1 is

uniformly bounded on the set \Lambda \lambda \ast for sufficiently small \varepsilon . Moreover, since \widetilde Lu(\varepsilon ),\varepsilon is
the generator of a C0-semigroup on the state-space Z\times Z, the Hille--Yosida Theorem
ensures a uniform bound of the resolvent on \{ \lambda \in \BbbC : Re(\lambda ) > \lambda \ast \} for some constant
\lambda \ast > 0. From the fact that \lambda \mapsto \rightarrow (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )

 - 1 is a meromorphic function with
no poles in \{ \lambda \in \BbbC : Re(\lambda ) \geq 0\} , the resolvent is uniformly bounded on compact
subsets of \BbbC in \{ \lambda \in \BbbC : Re(\lambda )\geq 0\} . Thus, we can conclude that \widetilde Lu(\varepsilon ),\varepsilon satisfies the
Gearhart--Greiner--Pr\"uss resolvent bound, and exponential stability in Z \times Z follows.

Finally, for step (iii), we will interpolate the decay estimate between the spaces
Z \times Z and X \times X. To do so, we have to establish bounds in X \times X, which is done
in the next lemma. The interpolation argument is then in the spirit of Lemma 5 in
[34] and will also lead to decay estimates in the more general interpolation spaces
Hs

per \times Hs
per for s\in [0,2].

Lemma 22. For any s\in [0,2] and sufficiently small \varepsilon , the semigroup (e
\widetilde Lu(\varepsilon ),\varepsilon t)t\geq 0

has exponential decay in Hs
per([ - \pi ,\pi ],\BbbC ) \times Hs

per([ - \pi ,\pi ],\BbbC ); i.e., there exist Cs > 0
such that
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3694 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

\| e\widetilde Lu(\varepsilon ),\varepsilon t\| Hs\rightarrow Hs \leq Cse
 - \eta t for t\geq 0,

where  - \eta < 0 is the previously established growth bound of the semigroup in Z \times Z.

Proof. We consider only the case d > 0, since the other case can be shown by
rewriting JAu as  - J( - Au) and using the same arguments as presented below. If
d> 0, the operator Au(\varepsilon )+\gamma I is positive and self-adjoint provided \gamma > 0 is sufficiently
large. Hence, for z \in \BbbC , we can define the complex powers by

(Au(\varepsilon ) + \gamma I)z\bfitv =

\int \infty 

0

\lambda zdE\lambda \bfitv , for \bfitv \in dom(Auu(\varepsilon ) + \gamma I)z,

with domain given by

dom(Au(\varepsilon ) + \gamma I)z =

\biggl\{ 
\bfitv \in Z \times Z : \| (Au(\varepsilon ) + \gamma I)z\bfitv \| 2L2 =

\int \infty 

0

\lambda 2Rezd\| E\lambda \bfitv \| 2L2 <\infty 
\biggr\} 

and where E\lambda for \lambda \in \BbbR is the family of self-adjoint spectral projections associated to
Au(\varepsilon ) + \gamma I. Note that for \theta \in [0,1], the relation

dom(Au(\varepsilon ) + \gamma I)\theta =H2\theta 
per([ - \pi ,\pi ],\BbbC )\times H2\theta 

per([ - \pi ,\pi ],\BbbC )

is true, cf. [23] Theorem 4.36, and further, for any r \in \BbbR , the operator (Au(\varepsilon ) + \gamma I)ir

is unitary on Z \times Z. If \theta = 0,1, we will show that there exists C\theta > 0 such that

\forall r \in \BbbR , \forall t\geq 0, \forall \bfitv \in X \times X, : \| (Au(\varepsilon ) + \gamma I)\theta +ire
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2 \leq C\theta e

 - \eta t\| \bfitv \| H2\theta ,

which implies

\forall r\in \BbbR ,\forall t\geq 0,\forall \theta \in (0,1),\forall \bfitv \in X\times X :\| (Au(\varepsilon )+\gamma I)\theta +ire
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2\leq C1 - \theta 

0 C\theta 
1e

 - \eta t\| \bfitv \| H2\theta ,

by complex interpolation; cf. [23] Theorem 2.7. In particular, we see that

\| e\widetilde Lu(\varepsilon ),\varepsilon t\| Hs\rightarrow Hs \leq C1 - s
0 Cs

1e
 - \eta t,

which is precisely our claim. The estimate for \theta = 0 has already been shown in
the preceding discussion, so it remains for us to check the estimate for \theta = 1. Let
\bfitv \in X \times X and observe that

\| (Au(\varepsilon ) + \gamma I)1+ire
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2 = \| (Au(\varepsilon ) + \gamma I)e

\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2

= \| (\widetilde Lu(\varepsilon ),\varepsilon + J\gamma + I(\mu  - \varepsilon V (x)\partial x))e
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2

\leq \| e\widetilde Lu(\varepsilon ),\varepsilon t\widetilde Lu(\varepsilon ),\varepsilon \bfitv \| L2 +C\| e\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2

+ | \varepsilon | \| V \| L\infty \| \partial xe
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2

\leq Ce - \eta t\| \widetilde Lu(\varepsilon ),\varepsilon \bfitv \| L2 +Ce - \eta t\| \bfitv \| L2

+ | \varepsilon | \| V \| L\infty \| e\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| H1

\leq Ce - \eta t\| \bfitv \| H2 + | \varepsilon | C\| e\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| H2 ,

which yields \| (Au(\varepsilon ) + \gamma I)1+ire
\widetilde Lu(\varepsilon ),\varepsilon t\bfitv \| L2 \leq Ce - \eta t\| \bfitv \| H2 if \varepsilon is sufficiently small

because of the norm equivalence \| \bfitv \| H2 \sim \| (Au(\varepsilon ) + \gamma I)\bfitv \| L2 .

In particular Lemma 22 establishes exponential stability of the linearization in
Y \times Y ; thus we have proved Theorem 9.
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3695

5.4. Proof of Lemma 16. The uniform resolvent estimate is proved if we can
find a constant C > 0 independent of \lambda \in \Lambda \lambda \ast such that

\forall \bfitvarphi \in X \times X : \| (\lambda I  - \widetilde Lu(\varepsilon ),\varepsilon )\bfitvarphi \| L2 \geq C\| \bfitvarphi \| L2 .(5.5)

In order to simplify the situation, let us introduce the rotation on Z \times Z as follows:

R

\biggl( 
\varphi 1

\varphi 2

\biggr) 
:=

\biggl( 
cos\theta sin\theta 
 - sin\theta cos\theta 

\biggr) \biggl( 
\varphi 1

\varphi 2

\biggr) 
with spatially varying angular \theta (x) = \varepsilon 

2d

\int x

 - \pi 
[V (y) - \^V0]dy, where \^V0 =

1
2\pi 

\int \pi 

 - \pi 
V (y)dy

is the mean of the potential V . Since R is an isometry on Z\times Z, the resolvent estimate
(5.5) is equivalent to

\forall \bfitvarphi \in X \times X : \| (\lambda I  - R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1)\bfitvarphi \| L2 \geq C\| \bfitvarphi \| L2 ,

where we note that \sigma (\widetilde Lu(\varepsilon ),\varepsilon ) = \sigma (R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1). The advantage of considering the

operator R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1 becomes clear if we calculate

R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1 = J \~Au(\varepsilon ),\varepsilon ,V  - I(\mu  - \varepsilon \^V0\partial x),

where the operator \~Au(\varepsilon ),\varepsilon ,V is given by

\~Au(\varepsilon ),\varepsilon ,V :=

\biggl( 
 - d\partial 2

x +W1 W2 +W4

W2  - W4  - d\partial 2
x +W3

\biggr) 
with potentials

W1 = \zeta + cos2 \theta U1 + 2cos\theta sin\theta U2 + sin2 \theta U3 + d\theta \prime 
2  - \varepsilon \theta \prime V,

W2 = (cos2 \theta  - sin2 \theta )U2 + cos\theta sin\theta (U3  - U1),

W3 = \zeta + sin2 \theta U1  - 2cos\theta sin\theta U2 + cos2 \theta U3 + d\theta \prime 
2  - \varepsilon \theta \prime V,

W4 = d\theta \prime \prime 

and functions

U1 = - (3u2
1(\varepsilon ) + u2

2(\varepsilon )), U2 = - 2u1(\varepsilon )u2(\varepsilon ), U3 = - (u2
1(\varepsilon ) + 3u2

2(\varepsilon )).

Clearly, the first-order derivative is now multiplied by a constant instead of a spatially
varying potential which will be used in the following calculations. We also note that
the functions Wi \in X, i = 1,2,3 depend upon the solution u and the potential V ,
whereas W4 \in X only depends upon the potential V . For the proof of the resolvent
estimate, we use techniques presented in [34], where the authors construct resolvents
for the unperturbed LLE (1.1).

We need the following proposition, which is Lemma 4 in [34].

Proposition 23. Let d \not = 0 and \mu > 0. Then there exists \lambda \ast > 0 depending on
d and \mu with the property that for all \omega \geq \lambda \ast there is at most one k0 = k0(\omega ,\mu ) \in \BbbN 
such that

\omega \geq | d2k40 + \mu 2  - \omega 2| .

For all other k \in \BbbZ \setminus \{ \pm k0(\omega ,\mu )\} we have

| d2k4 + \mu 2  - \omega 2| \geq 1

10
max\{ d2k2, \omega \} 3/2.

Moreover, we find k0(\omega ,\mu ) =\scrO (\omega 1/2) as \omega \rightarrow \infty .
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3696 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

Now we can start to construct and bound the resolvent. By the Hille--Yosida
Theorem, a uniform resolvent estimate holds whenever Re\lambda is sufficiently large. It
therefore remains for us to consider \lambda = \delta + i\omega \in \Lambda \lambda \ast for some \lambda \ast > 0 and \delta \geq 0
on a compact set. Since \delta replaces \mu in \lambda I  - \widetilde Lu(\varepsilon ),\varepsilon by \mu + \delta , and the estimates of
Proposition 23 hold for any \mu > 0 on a compact set, it suffices for us to prove the
uniform estimates for \delta = 0. For now, we do not specify the value of \lambda \ast , since this
will be done a posteriori. More precisely, we will choose \lambda \ast such that the conditions
(5.8), (5.9), (5.10), (5.16), which we derive below, are all satisfied. We can restrict to
the case \omega \geq \lambda \ast , since the proof for \omega \leq  - \lambda \ast follows from symmetries of the spectral
problem under complex conjugation. For \bfitv \in X \times X we define

(\lambda I  - R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1)\bfitv =:\bfitpsi \in Z \times Z(5.6)

and show that there exist bounded operators T1 and T2 on Z \times Z depending on \lambda ,
with norms satisfying \| T1\| L2\rightarrow L2 =\scrO (\omega  - 1/2) and \| T2\| L2\rightarrow L2 =\scrO (1) as \omega \rightarrow \infty such
that (5.6) implies

(I + T1)\bfitv = T2\bfitpsi .(5.7)

If \lambda \ast is sufficiently large such that

\forall \omega \geq \lambda \ast : \| T1\| L2\rightarrow L2 \leq 1

2
,(5.8)

we then deduce that I+T1 is a small perturbation of the identity and hence invertible
with norm uniformly bounded in \lambda , which is our claim. Therefore, it remains for us
to show (5.7). We introduce the matrix-valued potential

W =

\biggl( 
W1 W2 +W4

W2  - W4 W3

\biggr) 
in order to write

\lambda I  - R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1 = i\omega I  - J( - d\partial 2

x +W ) + I(\mu  - \varepsilon \^V0\partial x).

Now, let A= \lambda I - R\widetilde Lu(\varepsilon ),\varepsilon R
 - 1+JW , and observe that A\bfitv (x) =

\sum 
k\in \BbbZ Ak\^\bfitv ke

ikx with
\bfitv (x) =

\sum 
k\in \BbbZ \^\bfitv ke

ikx and Fourier multiplier

Ak =A1
k +A2

k =

\biggl( 
i\omega + \mu  - dk2

dk2 i\omega + \mu 

\biggr) 
+

\biggl( 
 - i\varepsilon \^V0k 0

0  - i\varepsilon \^V0k

\biggr) 
.

The inverse of A1
k is given by

(A1
k)

 - 1 =
1

det(A1
k)

\biggl( 
i\omega + \mu dk2

 - dk2 i\omega + \mu 

\biggr) 
,

and by Proposition 23 there exists at most one k0 = k0(\omega ,\mu )\in \BbbN such that

\omega \geq | d2k40 + \mu 2  - \omega 2| (5.9)

and

| det(A1
k)| \geq | d2k4 + \mu 2  - \omega 2| \geq 1

10
max\{ d2k2, \omega \} 3/2 for all k \not =\pm k0(5.10)
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PINNING IN THE EXTENDED LUGIATO--LEFEVER EQUATION 3697

provided that \lambda \ast is sufficiently large. ThusA1
k is invertible with bound \| (A1

k)
 - 1\| \BbbC 2\times 2 \leq 

C/max\{ \omega 1/2, | k| \} for all k \not =\pm k0. Using again Proposition 23, we have the asymptotic
k0 = k0(\omega ) = \scrO (\omega 1/2) as \omega \rightarrow \infty . Consequently, if | \varepsilon | is sufficiently small, then
Ak = A1

k(I + (A1
k)

 - 1A2
k), k \not = \pm k0, is also invertible with the bound \| (Ak)

 - 1\| \BbbC 2\times 2 =
\scrO (\omega  - 1/2) as \omega \rightarrow \infty . Next, for the above k0 \in \BbbN , we introduce the orthogonal
projections P,Q,Q1,Q2 :Z \times Z \rightarrow Z \times Z as follows:

Q1\bfitv = \^\bfitv k0
eik0(\cdot ), Q2\bfitv = \^\bfitv  - k0

e - ik0(\cdot )

and

Q=Q1 +Q2, P = I  - Q.

This allows us to decompose (5.6) as follows:

PAP\bfitv  - PJW\bfitv = P\bfitpsi ,(5.11)

QAQ\bfitv  - QJW\bfitv =Q\bfitpsi .(5.12)

From the preceding arguments we find

\| (PAP ) - 1\| PL2\rightarrow PL2 =\scrO (\omega  - 1/2) as \omega \rightarrow \infty ,

which implies that (5.11) is equivalent to

P\bfitv  - (PAP ) - 1PJW\bfitv = (PAP ) - 1P\bfitpsi (5.13)

with bound \| (PAP ) - 1PJW\| L2\rightarrow L2 =\scrO (\omega  - 1/2) as \omega \rightarrow \infty .
Next we investigate (5.12), which we decompose a second time to find

Q1AQ1\bfitv  - Q1JWQ1\bfitv  - Q1JWQ2\bfitv  - Q1JWP\bfitv =Q1\bfitpsi ,(5.14)

Q2AQ2\bfitv  - Q2JWQ1\bfitv  - Q2JWQ2\bfitv  - Q2JWP\bfitv =Q2\bfitpsi .(5.15)

Both equations can be handled similarly, and thus we focus on the first one. Using
(5.13), we can write (5.14) as

[Q1AQ1  - Q1JWQ1]\bfitv  - Q1JWQ2\bfitv  - Q1JW (PAP ) - 1PJW\bfitv 

=Q1JW (PAP ) - 1\bfitpsi +Q1\bfitpsi .

The operator B :=Q1AQ1 - Q1JWQ1 acts like a Fourier multiplier on rangeQ1 with
matrix

Bk0
=

\biggl( 
i(\omega  - \varepsilon \^V0k0) + \mu  - ( \^W2)0 + ( \^W4)0  - dk20  - ( \^W3)0

dk20 + ( \^W1)0 i(\omega  - \varepsilon \^V0k0) + \mu + ( \^W2)0 + ( \^W4)0

\biggr) 
,

and we observe that

| det(Bk0
)| \geq | Imdet(Bk0

)| = 2| \omega  - \varepsilon \^V0k0| | \mu + \^(W4)0| \sim \omega 

since k0 =\scrO (\omega 1/2). This means that we find \lambda \ast \gg 1 such that

\forall \omega \geq \lambda \ast : Bk0
is invertible with \| B - 1

k0
\| \BbbC 2\times 2 =\scrO (1) as \omega \rightarrow \infty ,(5.16)

and thus the same holds for the operator B. Inverting B yields

Q1\bfitv  - B - 1[Q1JWQ2+Q1JW (PAP ) - 1PJW ]\bfitv =B - 1Q1JW (PAP ) - 1P\bfitpsi +B - 1Q1\bfitpsi ,
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and since we have Wi \in Y for i = 1,2,3,4 we can exploit decay of the Fourier-
coefficients

| ( \^Wi)k| \leq 
C\surd 

1 + k2
\forall k \in \BbbZ 

to bound Q1JWQ2\bfitv = ( \^JW )2k0
\^\bfitv  - k0e

ik0(\cdot ):

\| Q1JWQ2\| L2\rightarrow L2 =\scrO (k0(\omega ,\mu )
 - 1) =\scrO (\omega  - 1/2) as \omega \rightarrow \infty .

Finally from the bounds of the first part, we infer that

\| Q1JW (PAP ) - 1PJW\| L2\rightarrow L2 =\scrO (\omega  - 1/2) as \omega \rightarrow \infty ,

\| Q1JW (PAP ) - 1\| L2\rightarrow L2 =\scrO (\omega  - 1/2) as \omega \rightarrow \infty ,

and as a conclusion we arrive at (5.7) which is all we had to prove.

Appendix A. Derivation of the perturbed LLE. The following is a deriva-
tion of the perturbed LLE (1.3) from the dual laser pump equation (1.2). We start
by taking a solution u= u(x, t) of (1.2). Jumping in a moving coordinate system, we
set \~u(x, t) = u(k1x - \nu 1t, t) and find that \~u satisfies

i\partial t\~u - i\nu 1\partial \xi \~u= - dk21\partial 
2
\xi \~u+ ( - i\mu + \zeta )\~u - | \~u| 2\~u+ if0 + if1e

i\xi ,(A.1)

where \xi := k1x  - \nu 1t. Next, using the approximation arctans \approx s for | s| small, we
find, for | f0| \gg | f1| , that

f0 + f1e
i\xi =

\sqrt{} 
f2
0 + 2f0f1 cos \xi + f2

1 e
i arctan

f1 \mathrm{s}\mathrm{i}\mathrm{n} \xi 
f0+f1 \mathrm{c}\mathrm{o}\mathrm{s} \xi \approx f0e

i
f1
f0

sin \xi .

Inserting this into (A.1) we find that approximately the following equation holds for \~u:

i\partial t\~u - i\nu 1\partial \xi \~u= - dk21\partial 
2
\xi \~u+ ( - i\mu + \zeta )\~u - | \~u| 2\~u+ if0e

i
f1
f0

sin \xi .(A.2)

This suggests setting \~u(\xi , t) =w(\xi , t)ei
f1
f0

sin \xi so that w solves

i\partial tw= - dk21\partial 
2
\xi w+

\biggl( 
i\nu 1  - i2dk21

f1
f0

cos \xi 

\biggr) 
\partial \xi w

+

\left(      - i\mu + \zeta  - \nu 1
f1
f0

cos \xi + dk21
f2
1

f2
0

cos2 \xi + idk21
f1
f0

sin \xi \underbrace{}  \underbrace{}  
=:\alpha (\xi )

\right)     w - | w| 2w+ if0.

Using | f1| \ll | f0| we see that the term \alpha (\xi ) is much smaller than  - i\mu +\zeta for physically
relevant (normalized) values of \mu =\scrO (1) and \zeta between \scrO (1) and \scrO (10). Neglecting
\alpha (\xi ), we arrive at

i\partial tw= - dk21\partial 
2
\xi w+ i

\left(     \nu 1  - 2dk21
f1
f0

cos \xi \underbrace{}  \underbrace{}  
=:V (\xi )

\right)     \partial \xi w+ ( - i\mu + \zeta )w - | w| 2w+ if0,

which is our target equation (1.3) in the case \varepsilon = 1 and with d replaced by dk21.
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Appendix B. Stability criterion for solitary waves in the limit of small
\bfitmu . The stability criterion of Theorem 8 becomes more explicit in the limit \mu \rightarrow 0+
for solitary waves on \BbbR for the focusing case d > 0. We thus consider the stationary
LLE in the form

 - du\prime \prime + (\zeta  - i\mu )u - | u| 2u+ i\mu f0 = 0, x\in \BbbR .(B.1)

Here both the pumping term i\mu f0 and the dissipative term  - i\mu u are small and of
equal order in \mu . When \mu is small, the solution can be expanded asymptotically as

u= u(0) + \mu u(1) +\scrO (\mu 2).(B.2)

Here u(0) is the solitary wave of the nonlinear Schr\"odinger equation which exists if
d> 0 and u(1) is found from the linear inhomogeneous equation

( - d\partial 2
x + \zeta  - 2| u(0)| 2)u(1)  - (u(0))2\=u(1) = iu(0)  - if0.(B.3)

By using the vector form with u= u1+iu2 and the notation from (2.2), we can rewrite
(B.3) in the form JAu(0)\bfitu (1) =\bfitu (0) + f0. Recall that

ker \widetilde Lu = span\{ \bfitu \prime \} , ker \widetilde L\ast 
u = span\{ J\bfitphi \ast \} ,

according to Assumption (A2), which implies that

JAu\bfitu 
\prime = \mu \bfitu \prime , JAu\bfitphi 

\ast = - \mu \bfitphi \ast .

Inserting expansion (B.2) into the operator Au and using expansions for the eigen-
functions \bfitu \prime and \bfitphi \ast in powers of \mu up to the order of \scrO (\mu ), one can derive that

\bfitu \prime = (\bfitu (0))\prime + \mu (\bfitu (1))\prime +\scrO (\mu 2),

\bfitphi \ast =C
\Bigl[ 
(\bfitu (0))\prime + \mu [(\bfitu (1))\prime + 2\bfitv (1)] +\scrO (\mu 2)

\Bigr] 
,

where \bfitv (1) is a solution of the linear inhomogeneous equation JAu(0)\bfitv (1) = - (\bfitu (0))\prime ,
and the constant C =C(\mu )\in \BbbC is found from the normalization condition \langle \bfitu \prime , J\bfitphi \ast \rangle L2

= 1. The solution of JAu(0)\bfitv (1) = - (\bfitu (0))\prime on the line \BbbR is available explicitly:

\bfitv (1) = - 1

2d
xJ\bfitu (0),

where \bfitu (0)(x) \rightarrow 0 as | x| \rightarrow \infty exponentially fast in the case of solitary waves for
d> 0. This allows us to compute the following by using integration by parts:

\langle \bfitu \prime , J\bfitphi \ast \rangle L2 =C

\biggl[ 
2\mu 

\int 
\BbbR 
[(u

(0)
1 )\prime v

(1)
2  - (u

(0)
2 )\prime v

(1)
1 ]dx+\scrO (\mu 2)

\biggr] 
=C

\biggl[ 
\mu d - 1

\int 
\BbbR 
x[(u

(0)
1 )\prime u

(0)
1 + (u

(0)
2 )\prime u

(0)
2 ]dx+\scrO (\mu 2)

\biggr] 
=C

\Bigl[ 
 - \mu 

2d
\| u(0)\| 2L2 +\scrO (\mu 2)

\Bigr] 
.

Normalization \langle \bfitu \prime , J\bfitphi \ast \rangle L2 = 1 defines C asymptotically as follows:

C = - 2d

\mu \| u(0)\| 2L2

[1 +\scrO (\mu )] .
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3700 L. BENGEL, D. PELINOVSKY, AND W. REICHEL

The stability condition of Theorem 8 is expressed in terms of the sign of V \prime 
eff(\sigma 0),

where \sigma 0 is a simple root of Veff . The effective potential can now be written more
explicitly as

Veff(\sigma 0) = \langle V (\cdot + \sigma 0)\bfitu 
\prime , J\bfitphi \ast \rangle L2

=C

\biggl[ 
\mu d - 1

\int 
\BbbR 
xV (x+ \sigma 0)[(u

(0)
1 )\prime u

(0)
1 + (u

(0)
2 )\prime u

(0)
2 ]dx+\scrO (\mu 2)

\biggr] 
=

1

\| u(0)\| 2L2

\int 
\BbbR 
[xV \prime (x+ \sigma 0) + V (x+ \sigma 0)]| u(0)| 2dx+\scrO (\mu ).

If Veff(\sigma 0) = 0, then the solitary wave of the stationary LLE (B.1) with small \mu \not = 0 is
uniquely continued in the perturbed equation for small \varepsilon , and the unique continuation
is spectrally stable if V \prime 

eff(\sigma 0) \cdot \varepsilon > 0.

Acknowledgments. We are grateful to Dr. Huanfa Peng, Institute of Photonics
and Quantum Electronics at Karlsruhe Institue of Technology for having shown us
how to derive our main equation (1.3) from the two-mode pumping variant (1.2) of
the LLE.

Note Added in Proof. The code used for generating the figures in section 3 is
available at https://doi.org/10.5445/IR/1000155820.
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