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Stability of Discrete Breathers in Magnetic
Metamaterials

Dmitry Pelinovsky and Vassilis Rothos

Abstract We consider the discrete Klein–Gordon equation for magnetic metama-
terials derived by Lazarides, Eleftheriou, and Tsironis Phys Rev Lett 97:157406,
2006). We obtain a general criterion for spectral stability of multi-site breathers
for a small coupling constant. We show how this criterion differs from the one
derived in the standard discrete Klein–Gordon equation (Koukouloyannis and
Kevrekidis, Nonlinearity 22:2269–2285, 2009; Pelinovsky and Sakovich, Nonlin-
earity 25:3423–3451, 2012).

1 Introduction

We address space-localized and time-periodic breathers in the discrete Klein–
Gordon equation describing magnetic metamaterials which consist of periodic
arrays of split-ring resonators [4, 7]:

Rqn C V 0.qn/ D 	. RqnC1 C Rqn�1/; n 2 Z; (1)

where t 2 R is the evolution time, qn.t/ 2 R is the normalized charge stored in the
capacitor of the n-th split-ring resonator, V W R ! R is a smooth on-site potential
for the voltage across the slit of the n-th resonator, and 	 2 R is the coupling
constant from the mutual inductance. In particular, the voltage u D f .q/ D V 0.q/
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360 D. Pelinovsky and V. Rothos

is found by inverting the charge-voltage dependence near small charge:

q D u C ˛u3 ) u D f .q/ D q � ˛q3 C O.q5/ as q ! 0; (2)

where ˛ is the parameter for the self-focusing (˛ > 0) or self-defocusing (˛ < 0)
nonlinearity. These parameter values correspond to the soft and hard potentials V
respectively, for sufficiently small values of q. Note that V is an even function of q.

Discrete breathers in both one-dimensional and two-dimensional lattices were
approximated numerically in the limit of small coupling constant 	 [4,7]. Excitations
of discrete breathers near the edge of a one-dimensional lattice created by a
truncated array of nonlinear split-ring resonators were considered numerically
in [8].

It is the purpose of this paper to consider spectral stability of multi-site discrete
breathers in the limit of small coupling constant 	. This limit is referred usually as
the anti-continuum limit and it has been considered before in the context of spectral
stability of discrete breathers in the standard discrete Klein–Gordon equation
[1,3,6,10] and in the discrete nonlinear Schrödinger equation [11,13]. Recent works
[12, 14, 16] were devoted to the derivation of the most general stability criterion
for multi-site breathers in Klein–Gordon lattices. Our main result shows that the
stability criterion for multi-site breathers in the discrete Klein–Gordon equation (1)
differs from the one derived in the standard discrete Klein–Gordon equation [6,12].

The paper is organized as follows. We formulate the discrete Klein–Gordon
equation (1) as an evolution problem in Sect. 2. The existence and continuation
results for multi-site discrete breathers in the limit of small coupling constant 	
are reviewed in Sect. 3. Spectral stability of multi-site breathers for small coupling
constants is considered in Sect. 4. Section 5 discusses application of the stability
criterion to the multi-site breathers in magnetic metamaterials.

2 Formalism

In what follows, we shall use bold-faced notations for vectors in discrete space lp.Z/
defined by their norms

kqklp WD
 X
n2Z

jqnjp
!1=p

; p � 1:

Components of q are denoted by qn for n 2 Z. These components can be functions
of t , in which case they can be considered either in the space C2.0; T / of twice
continuously differentiable functions on .0; T / or in the L2-based Sobolev space
Hs

per.0; T / of T -periodic functions equipped with the norm,
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kf kHs
per

WD
 X
m2Z

.1Cm2/s jcmj2
!1=2

; s � 0;

where the coefficients fcmgm2Z define the Fourier series of a T -periodic function f ,

f .t/ D
X
m2Z

cm exp

�
2�imt

T

�
; t 2 Œ0; T �:

To start analysis, we set up the discrete Klein–Gordon equation (1) as an
evolution problem in t in the phase space C2.Œ0; T /; l2.Z//, where T > 0 is
the maximal existence time (which may be infinite). Let us consider the bounded
operator

M.	/ D I � 	.�C C ��/ W l2.Z/ ! l2.Z/;

where the shift operators �˙ W l2.Z/ ! l2.Z/ are defined by

.�˙q/n D qn˙1; n 2 Z: (3)

For any 	 2 �� 1
2
; 1
2

�
, the operator M.	/ W l2.Z/ ! l2.Z/ is diagonally dominant

and hence invertible and the inverse operator M�1.	/ W l2.Z/ ! l2.Z/ is bounded.
Moreover, the operatorM�1.	/ is analytic at 	 D 0 and admits the Taylor series,

M�1.	/ D I C
1X
kD1

	k.�C C ��/k; 	 2
�

�1
2
;
1

2

�
: (4)

The discrete Klein–Gordon equation (1) can be written in the operator form as
follows:

M.	/
d2q
dt2

C f.q/ D 0; (5)

where .f.q//n D V 0.qn/. Inverting M.	/ for any 	 2 �� 1
2
; 1
2

�
, we obtain the

evolution form of the discrete Klein–Gordon equation (5):

d2q
dt2

CM�1.	/f.q/ D 0: (6)

With this formulation, we prove the first result on local existence of solutions of the
Cauchy problem associated with the evolution equation (6).

Proposition 1. Let V 2 C2.R/ and q0;q1 2 l2.Z/. For any 	 2 �� 1
2
; 1
2

�
, there

exist T > 0 and a unique local solution of the evolution problem (6) in the phase
space q 2 C2.Œ0; T /; l2.Z// such that q.0/ D q0 and Pq.0/ D q1.

dmpeli@math.mcmaster.ca



362 D. Pelinovsky and V. Rothos

Proof. Because V 2 C2.R/ and l2.Z/ is a Banach algebra with respect to pointwise
multiplication, the map f.q/ W l2.Z/ ! l2.Z/ is C1. For any 	 2 �� 1

2
; 1
2

�
, there

exists C.	/ > 0 such that kM�1.	/kl2!l2 � C.	/. Therefore, the vector field
M�1.	/f.q/ is a boundedC1 map from l2.Z/ to l2.Z/, hence, it is locally Lipschitz.
The result of Proposition 1 follows from the standard existence theory of second-
order evolution equations in Banach spaces [2, Chap. 2]. ut
Remark 1. For the particular function V defined by (2), we note that the assumption
V 2 C2.R/ is satisfied for any ˛ > 0 (in which case, V 2 C1.R/), because
1 C 3˛u2 > 0 for all u 2 R and f W R ! R is one-to-one and onto. However,
for ˛ < 0, the function f is one-to-one and onto on .�Q0;Q0/ with the range in
.�U0; U0/, where

Q0 D 2p
27j˛j ; U0 D 1p

3j˛j : (7)

Therefore, in this case, we only have V 2 C2.�Q0;Q0/ (in fact, V 2
C1.�Q0;Q0/), so a unique local solution of the evolution problem (6) exists
if q0 2 l2.Z/ satisfies further restriction: .q0/n 2 .�Q0;Q0/ for all n 2 Z.

Remark 2. We shall only consider the Klein–Gordon lattice (1) with the nonlinear
potential (2) for small values of qn.

3 Existence of Multi-site Discrete Breathers

We consider space-localized and time-periodic breathers of the discrete Klein–
Gordon equation (1) in the space q 2 H2

per..0; T /; l
2.Z//, where T > 0 represents

the fundamental period.

Remark 3. Note that the space H2
per..0; T /; l

2.Z// for discrete breathers is actually
weaker than the space C2.Œ0; T /; l2.Z//, for which the existence of a unique local
solution is established in Proposition 1, but Sobolev’s embedding of H2

per.0; T / to
Cper.0; T / and the bootstrapping arguments from the evolution equation (6) show
that if q 2 H2

per..0; T /; l
2.Z//, then q 2 C2

per..0; T /; l
2.Z// (the opposite is true

immediately).

Accounting for symmetries, we shall work in the restriction of H2
per.0; T / to the

space of even T -periodic functions,

H2
e .0; T / D

n
f 2 H2

per.0; T / W f .�t/ D f .t/; t 2 R

o
:

We shall also assume everywhere that the nonlinear potential V is an even function
of q, which agrees with the potential defined by (2). This assumption is not very
restrictive and is used to simplify the technical computations.

dmpeli@math.mcmaster.ca
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At 	 D 0, we have many possible configurations of multi-site breathers,

Q.0/.t/ D
X
k2S

�k'.t/ek; (8)

where ek is the unit vector in l2.Z/ associated with the site k 2 Z, S 
 Z is a finite
set of excited sites of the lattice, �k 2 fC1;�1g encodes the phase factor of the k-th
oscillator, and ' 2 H2

e .0; T / is an even solution of the nonlinear oscillator equation
at the energy level E ,

R' C V 0.'/ D 0 ) E D 1

2
P'2 C V.'/: (9)

Remark 4. Note that if ' is a solution of (9), then �' is also a solution of (9)
because V 0 is an odd function of '. This motivates the notations in (8) due to the
technical simplification that V is even. If V is of general type, we would need to
modify the representation formula (8) and the subsequent analysis.

The unique even solution '.t/ satisfies the initial condition,

'.0/ D a; P'.0/ D 0; (10)

where a is the smallest positive root of V.a/ D E for a fixed value of E . Period of
oscillations T is uniquely defined by the energy level E , according to the following
formula:

T D p
2

Z a

�a
d'p

E � V.'/
: (11)

Remark 5. All nonlinear oscillators at the excited sites of S 
 Z in the configura-
tion (8) have the same period T . Two oscillators at the j -th and k-th sites are said
to be in-phase if �j �k D 1 and anti-phase if �j �k D �1.

Persistence of the limiting configuration (8) as a space-localized and time-
periodic breather of the discrete Klein–Gordon equation (1) for small values of 	
is established by MacKay and Aubry [9]. Using this theory, we prove the next result
on the existence and continuation of the multi-site discrete breathers.

Proposition 2. Fix the period T and the solution ' 2 H2
e .0; T / of the nonlinear

oscillator equation (9) with an even function V 2 C1.R/ such that V 00.0/ D 1.
Assume that T ¤ 2�n, n 2 N and T 0.E/ ¤ 0. Define Q.0/ by the representation
(8) with fixed finite S 
 Z and f�kgk2S . There are 	0 2 �0; 1

2

�
and C > 0 such that

for all 	 2 .�	0; 	0/, there exists a unique solution Q.	/ 2 H2
e ..0; T /; l

2.Z// of the
discrete Klein–Gordon equation (1) satisfying

kQ.	/ � Q.0/kH2
per..0;T /;l

2.Z// � C j	j: (12)
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Moreover, the map .�	0; 	0/ 3 	 7! Q.	/ 2 H2
e ..0; T /; l

2.Z// is C1.

Proof. We shall write M�1.	/ D I C 	K.	/, where K.	/ W l2.Z/ ! l2.Z/ is a
bounded analytic operator for all 	 2 �� 1

2
; 1
2

�
. Then, the discrete Klein–Gordon

equation (1) for T -periodic solutions Q can be rewritten in the perturbed form:

d2Q
dt2

C f.Q/ D �	K.	/f.Q/; (13)

where .f.Q//n D V 0.Qn/.
Substituting Q D Q.0/ C W, where Q.0/ is given by (8), we obtain the coupled

system of differential-difference equations in the form:

LeWn D �	 �K.	/f.Q.0//
�
n

C .N.W; 	//n ; n 2 S (14)

and

L0Wn D �	 �K.	/f.Q.0//
�
n

C .N.W; 	//n ; n 2 ZnS; (15)

where the linear operators are

Le D @2t C V 00.'.t// W H2
e .0; T / ! L2e.0; T /;

L0 D @2t C 1 W H2
e .0; T / ! L2e.0; T /

and the nonlinear vector field is

.N.W; 	//n D �	 �K.	/.f.Q.0/ C W/� f.Q.0///
�
n

CV 0.Q.0/
n /C V 00.Q.0/

n /Wn � V 0.Q.0/
n CWn/:

We have used here that V is even and V 00.0/ D 1.
Under the condition T 0.E/ ¤ 0, the operator Le is invertible, because the only

eigenvector P' of L D @2t C V 00.'.t// W H2
per.0; T / ! L2per.0; T / is odd in t .

Similarly, operator L0 is invertible if T ¤ 2�n, n 2 N.
Thanks to Banach algebra ofH2

e ..0; T /; l
2.Z// and the assumption V 2 C1.R/,

the map N.Q; 	/ W H2
e ..0; T /; l

2.Z// 
 R ! H2
e ..0; T /; l

2.Z// is C1, hence it is
locally Lipschitz. Thanks to the invertibility of the linearized operators Le and L0
on L2e.0; T /, the result of the theorem follows from the Implicit Function Theorem
and the map 	 7! Q.	/ is C1 for small 	 (Theorem 4.E in [17]). ut
Remark 6. Although persistence of other breather configurations, where oscillators
are neither in-phase nor anti-phase, cannot be apriori excluded, we restrict our
studies to the breather configurations covered by Proposition 2.

dmpeli@math.mcmaster.ca
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4 Stability of Multi-site Breathers

Let Q 2 H2
e ..0; T /; l

2.Z// be a multi-site breather in Proposition 2. To study the
spectral stability of multi-site breathers, we substitute the decomposition q.t/ D
Q.t/Cw.t/ to the discrete Klein–Gordon equation (1), neglect quadratic and higher-
order terms in w, and obtain the linearized discrete Klein–Gordon equation,

Rwn C V 00.Qn/wn D 	 . RwnC1 C Rwn�1/ ; n 2 Z: (16)

Using the abstract evolution form (6) and the decompositionM�1.	/ D I C	K.	/,
we can rewrite the linearized equations (16) in the equivalent form:

d2w
dt2

C f0.Q/w D �	K.	/f0.Q/w; (17)

where f0.Q/ is the diagonal operator with entries V 00.Qn/, n 2 Z.
Because Q.t C T / D Q.t/, an infinite-dimensional analogue of the Floquet

theorem applies and the Floquet monodromy matrix M is defined by w.T / D
Mw.0/. We say that the breather is stable if all eigenvalues of M, called Floquet
multipliers, are located on the unit circle and it is unstable if there is at least
one Floquet multiplier outside the unit disk. Because the linearized system (16)
is reversible, Floquet multipliers come in pairs �1 and �2 with �1�2 D 1.

To consider Floquet multipliers, we can introduce the characteristic exponent �
in the decomposition w.t/ D W.t/e�t . If � D e�T is the Floquet multiplier of
the monodromy operator M, then W 2 H2

per..0; T /; l
2.Z// is a solution of the

eigenvalue problem,

d2W
dt2

C 2�
dW
dt

C �2W C f0.Q/W D �	K.	/f0.Q/W: (18)

In particular, Floquet multiplier � D 1 corresponds to the characteristic exponent
� D 0. The generalized eigenvector Z0 2 H2

per..0; T /; l
2.Z// of the eigenvalue

problem (18) for � D 0 solves the inhomogeneous problem,

d2Z0
dt2

C f0.Q/Z0 D �	K.	/f0.Q/Z0 � 2
dW0

dt
; (19)

where W0 is the eigenvector of (18) for � D 0. To normalize Z0 uniquely, we add a
constraint that Z0 is orthogonal to W0 with respect to the natural inner product

hW0;Z0iL2per..0;T /;l
2.Z// WD

Z T

0

X
n2Z
. NZ0/n.t/.W0/n.t/dt:

dmpeli@math.mcmaster.ca



366 D. Pelinovsky and V. Rothos

At 	 D 0, the eigenvector W0 of the eigenvalue problem (18) for � D 0 is
spanned by the linear combination of N fundamental solutions,

W.0/.t/ D
X
k2S

ck P'.t/ek; (20)

where N is the number of sites in the set S . The generalized eigenvector Z0 is
spanned by the linear combination of N solutions,

Z.0/.t/ D �
X
k2S

ckv.t/ek; v WD 2L�1
e R'; (21)

where Le D @2t CV 00.'.t// W H2
e .0; T / ! L2e.0; T / is invertible and R' 2 L2e.0; T /.

Note that h P'; viL2per.0;T /
D 0 because P' is odd and v is even in t .

We proceed now with perturbation expansions for particular configurations S of
the limiting breather (8). Perturbation expansions are different depending if the set S
has no holes (the excited oscillators are adjacent) or includes some holes (oscillators
at rest are located between excited oscillators).

4.1 Adjacent Excited Oscillators

We consider here the set S D f1; 2; : : : ; N g of N adjacent sites with excited
oscillators at 	 D 0. By Proposition 2, the breather solution Q.	/ can be expanded
into the power series

Q.	/ D Q.0/ C
1X
mD1

	mQ.m/; (22)

where Q.0/.t/ D PN
kD1 �k'.t/ek and the correction terms are computed recursively

from the system of linear inhomogeneous equations. In particular, for the first-order
correction term, we write the linear inhomogeneous problem explicitly as follows:

�
d2

dt2
C V 00.Q.0/

n /

�
Q.1/
n D � �.�C C ��/f.Q.0//

�
n
; n 2 Z: (23)

where again .f.Q//n D V 0.Qn/.
Let ' be an even T -periodic solution of the nonlinear oscillator equation (9)

subject to the initial conditions (10). Let  and � be even T -periodic solutions of
the linear inhomogeneous equations

R C V 00.'/ D V 0.'/; (24)

dmpeli@math.mcmaster.ca
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and

R� C � D V 0.'/: (25)

Note that the unique even solutions exist for the linear equations (24) and (25) under
the conditions T 0.E/ ¤ 0 and T ¤ 2�m, m 2 N because of invertibility of
operators Le and L0 defined in the proof of Proposition 2. By using solutions  
and �, we can write the first-order correction term Q.1/ explicitly as follows:

Q.1/.t/ D ��1�.t/e0 �
NX
kD1

.�k�1 C �kC1/ .t/ek � �N�.t/eNC1; (26)

where we have used the convention: �0 D �NC1 D 0. The following theorem
represents the main result of the perturbation computations.

Theorem 1. Under assumptions of Proposition 2, let Q.0/ D PN
kD1 �k'ek yield a

solution Q.	/ 2 H2
e ..0; T /; l

2.Z// of the discrete Klein–Gordon equation (1) for
small 	 > 0. Then the eigenvalue problem (18) for small 	 > 0 has 2N small
eigenvalues,

� D 	1=2�C O.	/;

where � is an eigenvalue of the matrix eigenvalue problem

T 2.E/

T 0.E/M1

�2c D Sc; c 2 C
N : (27)

Here M1 is a positive numerical coefficient given by

M1 D
Z T

0

R'2dt > 0

and the N 
N matrix S is given by

S D

2
666666664

��1�2 1 0 : : : 0 0

1 ��2.�1 C �3/ 1 : : : 0 0

0 1 ��3.�2 C �4/ : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : ��M�1.�M�2 C �M/ 1

0 0 0 : : : 0 ��M�M�1

3
777777775
:

Proof. At 	 D 0, the eigenvalue problem (18) admits eigenvalue� D 0 of geometric
multiplicity N and algebraic multiplicity 2N , which is isolated from the rest of the
spectrum. Perturbation theory in 	 applies thanks to the smoothness of Q.	/ in 	 and

dmpeli@math.mcmaster.ca
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V 0 in u. Perturbation expansions (so-called Puiseux series, see Chap. 2 in [5]) are
smooth in powers of 	1=2 thanks to the Jordan block decomposition at 	 D 0.

We need to find out how the eigenvalue � D 0 of algebraic multiplicity 2N split
for small 	 > 0. Therefore, we are looking for the eigenvectors of the eigenvalue
problem (18) in the subspace associated with the eigenvalue � D 0 using the
substitution � D 	1=2 Q� and the decomposition

W D W.0/ C 	1=2 Q�W.1/ C 	 QW;

where

W.0/ D
NX
kD1

ck P'ek

and

W.1/ D �
NX
kD1

ckv.t/ek; v WD 2L�1
e R':

The error term QW satisfies a residual equation, which we only write on the active
sites k 2 S in the perturbation form:

RQWk C V 00.'/ QWk D � �.�C C ��/f0.Q.0//W.0/
�
k

� ck�kV
000.'/Q.1/

k P'
CQ�2ck.2 Pv � P'/C O.	1=2/; (28)

where again f0.Q/ is the diagonal operator with entries V 00.Qn/, n 2 Z.
Expanding Q� D � C O.	1=2/, projecting the system of linear inhomogeneous

equations (28) to P' 2 H2
per.0; T /, the kernel of L D @2t C V 00.'/ W H2

per.0; T / !
L2per.0; T /, and truncating at the leading order, we obtain the system of difference
equations for k 2 S :

�2ck

Z T

0

� P'2 C 2v R'�dt D �.ckC1 C ck�1/
Z T

0

V 00.'/ P'2dt

C�k.�kC1 C �k�1/ck
Z T

0

V 000.'/ P'2 dt; (29)

where the explicit expression (26) has been used, as well as the convention: c0 D
cNC1 D 0.

It is proved with the standard computation [12] that

Z T

0

� P'2 C 2v R'� dt D �T
2.E/

T 0.E/
: (30)

dmpeli@math.mcmaster.ca
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On the other hand, differentiating the linear inhomogeneous equation (24) and
projecting it to P', we infer that

Z T

0

V 000.'/ P'2 dt D
Z T

0

V 00.'/ P'2dt; (31)

Using now the equation

«' C V 00.'/ P' D 0; (32)

we finally obtain

Z T

0

V 00.'/ P'2dt D �
Z T

0

P'«'dt D
Z T

0

R'2dt D M1:

Combining all together, the system of difference equations (29) yields the matrix
eigenvalue problem (27), which defines 2N small eigenvalues that bifurcate from
� D 0 for small 	 > 0. ut

We recall the result obtained by Sandstede in Lemma 5.4 and Appendix C [15],
which we reproduce here without a proof.

Proposition 3. Let n0 be the number of negative elements in f�j �jC1gN�1
jD1 . Matrix

S in Theorem 1 has exactly n0 positive andN�1�n0 negative eigenvalues counting
their multiplicities, in addition to the simple zero eigenvalue.

Remark 7. Because M1 > 0, the matrix eigenvalue problem (27) differs from the
similar reduction for the standard Klein–Gordon equation in [12] by the sign change
in front of the matrix S. In particular, if T 0.E/ < 0, the matrix eigenvalue problem
(27) has n0 pairs of purely imaginary eigenvalues � and N � 1 � n0 pairs of
purely real eigenvalues � counting their multiplicities, in addition to the double
zero eigenvalue. If T 0.E/ > 0, the conclusion changes to the opposite.

4.2 Oscillators at Rest Between Excited Oscillators

We consider here the set S D f1; 3; : : : ; 2N � 1g of N sites with excited oscillators
separated by exactly one oscillator at rest at 	 D 0. By using the power series
expansions (22) in Proposition 2 with Q.0/.t/ D PN

kD1 �2k�1'.t/e2k�1, we compute
a different explicit solution of the linear inhomogeneous equation (23):

Q.1/.t/ D �
NX
kD0

.�2k�1 C �2kC1/�.t/e2k; (33)
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where � is an even T -periodic solution of the linear inhomogeneous equation (25)
and we have used the convention: ��1 D �2NC1 D 0.

To find the second-order correction term, we write the linear inhomogeneous
problem explicitly as follows:

�
d2

dt2
C V 00.Q.0/

n /

�
Q.2/
n D � �.�C C ��/2f.Q.0//

�
n

� �
.�C C ��/f0.Q.0//Q.1/

�
n
;

where we have used the fact that V 000.Q.0/
n /.Q

.1/
n /

2 D 0 for all n 2 Z.
Let � and � be even T -periodic solutions of the linear inhomogeneous equation

R� C V 00.'/� D �; t 2 R (34)

and

R� C � D �; t 2 R; (35)

which exist and are unique under the conditions that T 0.E/ ¤ 0 and T ¤ 2�m,
m 2 N. By using these solutions, we can write the second-order correction term
Q.2/ explicitly as follows:

Q.2/.t/ D �
NX
kD1

.�2k�3 C 2�2k�1 C �2kC1/. .t/ � �.t//e2k�1

��1.�.t/� �.t//e�1 � �2N�1.�.t/� �.t//e2NC1: (36)

The following theorem represents the main result of the perturbation computations.

Theorem 2. Under assumptions of Proposition 2, let Q.0/ D PN
kD1 �2k�1'e2k�1

yield a solution Q.	/ 2 H2
e ..0; T /; l

2.Z// of the discrete Klein–Gordon equation (1)
for small 	 > 0. Then the eigenvalue problem (18) for small 	 > 0 has 2N small
eigenvalues,

� D 	�C O.	2/;

where � is an eigenvalue of the matrix eigenvalue problem

T 2.E/

T 0.E/M2

�2c D Sc; c 2 C
N ; (37)

associated with the same matrix S as in Theorem 1 and a different numerical
coefficientM2 given by

M2 D �
Z T

0

R' R�dt:
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Proof. Similarly to the proof of Theorem 1, we are looking for the eigenvectors of
the eigenvalue problem (18) in the subspace associated with the eigenvalue � D 0

using the substitution � D 	 Q� and the decomposition

W D W.0/ C 	 Q�W.1/ C 	W.2/ C 	2 QW;

where

W.0/ D
NX
kD1

c2k�1 P'e2k�1; (38)

W.1/ D �
NX
kD1

c2k�1ve2k�1; (39)

W.2/ D �
NX
kD0

.c2k�1 C c2kC1/ P�e2k; (40)

subject to the convention: c�1 D c2NC1 D 0. The error term QW satisfies a residual
equation, which we only write on the active sites 2k � 1 2 S in the perturbation
form:

RQW2k�1 C V 00.'/ QW2k�1 D � �.�C C ��/2f0.Q.0//W.0/
�
2k�1

� �.�C C ��/f0.Q.0//W.2/
�
2k�1

�c2k�1�2k�1V 000.'/Q.2/

k P' C Q�2c2k�1.2 Pv � P'/
CO.	/; (41)

where we have used properties of the explicit solutions (33), (36), and (38)–(40).
Expanding Q� D � C O.	/, projecting the system of linear inhomogeneous

equations (41) to P' 2 H2
per.0; T /, and truncating at the leading order, we obtain

the system of difference equations for 2k � 1 2 S :

�2c2k�1
Z T

0

� P'2 C 2v R'�dt D �.c2kC1 C 2c2k�1 C c2k�3/
Z T

0

.V 00.'/ P'2 � P' P�/dt

C�2k�1.�2kC1 C 2�2k�1 C �2k�3/c2k�1
Z T

0

V 000.'/ P'2. � �/dt: (42)

Differentiating the linear inhomogeneous equation (34) and projecting it to P', we
infer that

Z T

0

V 000.'/ P'2�dt D
Z T

0

P' P�dt: (43)
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Combining (30), (31), and (43), the system of difference equations (42) yields the
matrix eigenvalue problem (37) with

M2 D
Z T

0

.V 00.'/ P'2 � P' P�/dt D
Z T

0

R'. R' C �/dt

D
Z T

0

R'.� � V 0.'//dt D �
Z T

0

R' R�dt;

where we have used Eqs. (25) and (32), as well as integration by parts. The matrix
eigenvalue problem (37) defines 2N small eigenvalues that bifurcate from � D 0

for small 	 > 0. ut
Remark 8. The matrix eigenvalue problem (37) differs from the similar reduction
for the standard Klein–Gordon equation in [12] by the sign change in front of the
matrix S and by the replacement of the quantityM2 with the quantity

M
Œ12�
2 D

Z T

0

P' P�dt;

where � is now a solution of the linear inhomogeneous equation R�C� D ' instead
of Eq. (25).

5 Discussion

We consider the example of the discrete Klein–Gordon equation (1) related to the
potential (2). Because V is even, the even solution ' 2 H2

e .0; T / satisfies the
symmetry

'

�
T

2
� t
�

D �'.t/; t 2 R; (44)

so that it can be expanded into the Fourier cosine series,

'.t/ D
X
n2Nodd

cn.T / cos

�
2�nt

T

�
; (45)

with zero coefficients cn for all even n. Because V 0.'/ D � R', a solution of the
linear inhomogeneous equation (25) can also be found in the form of the Fourier
cosine series:

�.t/ D
X
n2Nodd

4�2n2cn.T /

T 2 � 4�2n2 cos

�
2�nt

T

�
: (46)

dmpeli@math.mcmaster.ca



Stability of Discrete Breathers in Magnetic Metamaterials 373

Table 1 Stable multi-site breathers in the hard and soft potentials

Theorem 1 Theorem 2

T 0.E/ < 0
Anti-phase Anti-phase

0 < T < 2�

T 0.E/ > 0
In-phase

2� < T < T� anti-phase
2� < T < 6� T� < T < 6� in-phase

Using Parseval’s equality, we compute the numerical coefficient M2 in Theorem 2
in the Fourier series form:

M2 D �
Z T

0

R' R�dt D
X
n2Nodd

.4�2n2/3jcn.T /j2
T 3.4�2n2 � T 2/

: (47)

Consider now the dependence T .E/ defined by the integral formula (11).
Because V 00.0/ D 1, we have T .E/ ! 2� as E ! 0. For small values of E ,
the cubic term in the expansion (2) shows that the case ˛ < 0 gives a hard potential
with T 0.E/ < 0, whereas the case ˛ > 0 gives a soft potential with T 0.E/ > 0 for
small E .

If T 0.E/ < 0 and T .E/ < 2� , then M2 > 0. Also recall that M1 > 0. In
this case, Proposition 3 implies that the only stable configuration of the multi-site
breathers in Theorems 1 and 2 is the one with all alternating f�kgNkD1 or f�2k�1gNkD1
(anti-phase breathers). This conclusion is recorded in the first line of Table 1.

If T 0.E/ > 0 and T .E/ > 2� , then the situation is different between Theorems 1
and 2. Because M1 > 0, the only stable configuration of the multi-site breathers in
Theorem 1 is the one with all equal f�kgMkD1 (in-phase breathers).

On the other hand, the quantity M2 changes sign in the interval T .E/ between
two resonances at 2� and 6� , because the first negative term in the series (47)
dominates if T .E/ is close to 2� whereas the second positive term dominates if
T .E/ is close to 6� . Therefore, there exists a period T� 2 .2�; 6�/ such thatM2 <

0 for T 2 .2�; T�/ and M2 > 0 for T 2 .T�; 6�/. Stable configurations of discrete
solitons for T 0.E/ > 0 and 2� < T < 6� are recorded in the second line of Table 1.

We can now compare these analytical results with numerical simulations of one-
dimensional discrete breathers in [4, 7]. Figure 1 in [7] and Fig. 6 in [4] show
stable propagation of the so-called fundamental breather (N D 1 in Theorem 1)
for ˛ > 0. Profiles of stable breathers are also shown in Fig. 4 for ˛ > 0 and Fig. 5
for ˛ < 0 [4]. The stable fundamental breather corresponds to the sign-definite
(positive) amplitudes for ˛ > 0 and sign-alternating amplitudes for ˛ < 0, which
is in agreement with the results of Table 1. The two-site twisted (sign-alternating)
mode (N D 2 in Theorem 2) is reported to be stable both for ˛ > 0 and ˛ < 0,
which is also in agreement with Table 1 for 2� < T < T�.

We note that the results of Table 1 apply only to the small-amplitude discrete
breathers in the nonlinear potential (2) because the sign of T 0.E/ may change for
large amplitudes. In particular, the potential may become hard for large amplitudes
in the case ˛ > 0 because f .q/ � q1=3 as q ! 1. Similarly, the potential may
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become soft for large amplitudes in the case ˛ < 0 because f .q/ only exists for
q 2 .�Q0;Q0/, where Q0 is given by (7).

We do not also know if any discrete breather in the nonlinear potential given
by (2) can have the period close to the resonant value 6� , to observe additional
phenomena such as pitchfork bifurcations of single-site and multi-site breathers
[12]. These open questions will await further detailed numerical studies of the
discrete Klein–Gordon equation (1).
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