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Abstract. Babenko’s equation describes traveling water waves in holomorphic coordinates. It
has been used in the past to obtain properties of Stokes waves with smooth profiles analytically
and numerically. We show in the deep-water limit that properties of Stokes waves with peaked
profiles can also be recovered from the same Babenko’s equation. In order to develop the
local analysis of singularities, we rewrite Babenko’s equation as a fixed-point problem near the
maximal elevation level. As a by-product, our results rule out a corner point singularity in the
holomorphic coordinates, which has been obtained in a local version of Babenko’s equation.

Since the work of G. Stokes [16], the periodic traveling wave solutions to Euler’s equations –
referred to as Stokes’ waves – have been studied in the context of incompressible and irrotational
two-dimensional surface water waves. According to the famous Stokes conjecture [18], the
peaked profiles of the traveling waves with wave speed c form an angle of 120o in physical
coordinates (x, y) at the spatially dependent surface y = η(x − ct). The surface elevation η is
assumed to satify the zero mean constraint in the spatial coordinate x, which is defined on the
2π-periodic domain denoted by T. Since the two-dimensional hydrodynamics can be analyzed
by using the complex variable z := x + iy and conformal transformations to the new complex
variable w := u+ iv, the study of the traveling waves with peaked profiles has relied for a long
time on the use of holomorphic variables. The fluid domain in the (x, y)-plane is transformed to
the flat domain in the (u, v)-plane by using the holomorphic coordinates, with the singularity
of η as a function of u− ct at v = 0 [3].

With the use of the transformed coordinates, the existence of the peaked Stokes waves has
been proven in [1] and the 120o angle was proven in [14]. Convexity of Stokes waves was further
established in [15]. Asymptotic results about the limiting singularity of η as a function of u−ct
were found in [6, 17] and were recently reviewed in [12] as the limit of smooth Stokes waves.
Numerical approximations of the Stokes waves with smooth profiles break down before the wave
can approach to the limiting peaked profile [4, 9, 13]. Holomorphic coordinates were also used
for analysis of well-posedness of Euler’s water wave equations [7, 8].

Bernoulli’s principle implies that the maximal height of the surface with zero pressure and
with the gravitational acceleration g set to unity is given by

max
u∈R

η(u) =
c2

2
. (1)

The location of the maximal height can be placed at the origin u = 0 due to the translational
invariance. It is known, see [12, 14], that the singular behavior of η as u→ 0 is given by

η(u) =
c2

2
− A(c)|u|2/3 + o(|u|2/3) as u→ 0, (2)
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where A(c) > 0 is some constant and the admissible values of c are not known explicitly. Note
that the singular behavior (2) leads to the 120o angle in physical coordinates [14].

The main motivation for our work is to explore a closed equation for traveling Stokes waves
in holomorphic coordinates called Babenko’s equation, named after the pioneering work in [2].
Babenko’s equation can be written for the surface elevation in the form

(c2Kh − 1)η − ηKhη −
1

2
Khη

2 = 0, (3)

where Kh is a linear, self-adjoint, positive operator in L2(T) defined by the Fourier symbol

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0,
(4)

and h is the fluid depth in the holomorphic coordinate v, see Appendix A in [11]. The profile
η ∈ Dom(Kh) ⊂ L2(T) satisfies the constraint∮

η(1 +Khη)du = 0, (5)

which represents the zero-mean constraint
∮
ηdx = 0 rewritten in the holomorphic coordinate

u. Babenko’s equation (3) was used in [3, 19] to get small-amplitude expansions of Stokes waves
with smooth profiles and the conserved quantities in the dynamics of water waves. It was used
for numerical approximations of Stokes waves with steeper, though still smooth, profiles in
[4, 9, 13].

We perform computations of the traveling waves in the deep-water limit (h→∞), for which
(3) will now use K∞ := lim

h→∞
Kh = −H∂u, where H is the periodic Hilbert transform defined

by either the Fourier symbol

(̂H)n = i sgn(n), n ∈ Z (6)

or the integral formulation

H(f)(u) :=
1

π

∞∑
n=−∞

p.v

∫
T

f(u′)

u′ − u+ 2πn
du′. (7)

The purpose of this paper is to show that Babenko’s equation (3) in the limit h→∞ gives
accurate predictions for Stokes waves with peaked profiles, which agrees with the previous results
obtained directly from Euler’s equations.

The integral formulation (7) is particularly useful to prove the following main results.

Theorem 1. Assume that Babenko’s equation (3) in the deep-water limit h → ∞ admits a
solution with the local behavior

η(u) =
c2

2
− A|u|β + o(|u|β) as u→ 0, (8)

where β ∈ (0, 1] for some admissible values of A > 0 and c > 0. Then, β = 2
3
.

Theorem 2. Assume that Babenko’s equation (3) in the deep-water limit h → ∞ admits a
solution with the local behavior

η(u) =
c2

2
− A|u|2/3 −B|u|µ + o(|u|µ) as u→ 0, (9)
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where µ ∈
(
2
3
, 2
)

for some admissible values of A > 0, B ∈ R, and c > 0. Then, µ is the second
root of the transcendental equation(

µ+
2

3

)
tan
(πµ

2
+
π

3

)
+ µ tan

(πµ
2

)
+

2√
3

= 0. (10)

Remark 1. In our previous work [11], we considered Babenko’s equation (3) with Kh ≡ −∂2u
as a toy model. We proved [11, Theorem 1] that there exist c∗ := π

2
√
2

and c∞ ∈ (c∗,∞) such

that the family of periodic solutions admits smooth profiles for c ∈ (1, c∗) and singular profiles
satisfying the expansion (2) for c ∈ (c∗, c∞). The periodic solution for c = c∗ has the peaked
profile with η ∈ C0

per(T) ∩W 1,∞(T), that is, it corresponds to the expansion (8) with β = 1.
Theorem 1 rules out possibility of such peaked profiles in the deep-water limit.

Remark 2. The transcendental equation (10) was derived in [6] by direct analysis of Euler’s
equations and in a different form. The second root of this equation can be found numerically
at µ ≈ 1.469. Hence the profile satisfies η(u) + A|u|2/3 ∈ C1

per(T) beyond the leading-order
singularity. Thus, the known results for the asymptotic analysis of the traveling waves with the
singular profiles can be recovered from Babenko’s equation (3) in Theorem 2.

Remark 3. Local analysis in the proof of Theorems 1 and 2 does not allow us to obtain the
admissible values for A > 0, B ∈ R, and c > 0. It is not clear if the admissible values of
c > 0 includes just one point, as believed from numerical data in [4, 13], or an interval of wave
speeds, as follows from the local model in [11]. This unsatisfactory conclusion is because these
coefficients are obtained from the remainder terms of the asymptotic expansions, which can not
be deduced without a complete solution of Babenko’s equation (3).

To prove the main results of Theorems 1 and 2, we use Bernoulli’s principle (1) and introduce
the deviation of the surface elevation from the maximal height as

η̃ :=
c2

2
− η. (11)

Using (3) with K∞ = −H∂u, we obtain the following fixed-point equation for the deviation
coordinate

η̃ = T∞η̃ :=
c2

2
+

1

2
K∞η̃

2 + η̃K∞η̃. (12)

The method of the proof is to assume the expansions (8) and (9) of η in fractional powers of u
and to get a contradiction with the range of T∞. We note the following table integral from [5]
for every ν ∈ (0, 1) and u ∈ R:

1

π
p.v.

∫ ∞
−∞

|u′|ν−1

u′ − u
du′ = − cot

(πν
2

)
|u|ν−1sgn(u). (13)

Based on the exact formula (13) and the decomposition of (7), we show the following.

Lemma 1. For every ν ∈ (0, 1), u0 ∈ (0, π), and u ∈ (−u0, u0) we have

H(|u|ν−1) = − cot
(πν

2

)
|u|ν−1sgn(u) + Fν(u), (14)

where Fν ∈ C∞(−u0, u0).
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Proof. We can write

p.v.

∫ ∞
−∞

|u′|ν−1

u′ − u
du′ = p.v.

∫ π

−π

|u′|ν−1

u′ − u
du′ +

(∫ −π
−∞

+

∫ ∞
π

)
|u′|ν−1

u′ − u
du′,

where the remainder term is C∞ for any u ∈ (−π, π) if ν ∈ (0, 1). On the other hand, writing

πH(|u|ν−1) = p.v.

∫ π

−π

|u′|ν−1

u′ − u
du′ +

∑
n∈Z\{0}

∫ π

−π

|u′|ν−1

u′ − u+ 2πn
du′

and estimating the remainder term by using Cauchy estimates (see Theorem 7.1 in [10]) shows
that the remainder term is holomorphic on any compact subset of (−π, π). Combining the two
expansions together with the table integral (13) yields (14). �

Since H2 = −Id, we also obtain from Lemma 1 with a similar decomposition that

Lemma 2. For every ν ∈ (0, 1), u0 ∈ (0, π), and u ∈ (−u0, u0) we have

H(|u|ν−1sgn(u)) = tan
(πν

2

)
|u|ν−1 + Fν(u), (15)

where Fν ∈ C∞(−u0, u0).

We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. By using (8) and (11), we assume η̃(u) = A|u|β + o(|u|β) for some A > 0
and β ∈ (0, 1]. By Lemma 2, we get for every β ∈ (0, 1) that

K∞|u|β = −βH(|u|β−1sgn(u)) = −β tan

(
πβ

2

)
|u|β−1 +O(1) as |u| → 0. (16)

For K∞|u|2β, we have to consider separately 2β ∈ (0, 1) and 2β ∈ (1, 2). If 2β ∈ (0, 1), we get

K∞|u|2β = −2βH(|u|2β−1sgn(u)) = −2β tan(πβ)|u|2β−1 +O(1) as |u| → 0. (17)

This yields

T∞η̃ = −A2β

[
tan (πβ) + tan

(
πβ

2

)]
|u|2β−1 +O(1) + o(|u|2β−1) as |u| → 0. (18)

Since 2β − 1 < β, the fixed-point equation η̃ = T∞η̃ can be satified as |u| → 0 if and only if

tan (πβ) + tan

(
πβ

2

)
= 0, (19)

which is equivalent to 1 + 2 cos(πβ) = 0 for 2β ∈ (0, 1). However, there are no roots of this
equation for 2β ∈ (0, 1).

If 2β ∈ (1, 2), the expansion (17) is not valid. By Lemma 1, we compute

∂

∂u
K∞|u|2β = −2β(2β − 1)H(|u|2β−2)

= 2β(2β − 1) cot

(
(2β − 1) π

2

)
|u|2β−2sgn(u) +O(1) as |u| → 0.
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Integrating this equation yields

K∞|u|2β = 2β cot

(
(2β − 1) π

2

)
|u|2β−1 +O(1) as |u| → 0. (20)

Since cot
(

(2β−1)π
2

)
= − tan(πβ), expansions (16) and (20) in (12) yields the same expansion

(18) for 2β ∈ (1, 2). Since 2β − 1 < β, the balance of singular terms in η̃ = T∞η̃ as |u| → 0 is
satisfied under the same condition (19), which is equivalent to 1 +2 cos(πβ) = 0 for 2β ∈ (1, 2).
Hence, there exists a unique root β = 2

3
in the admissible range 2β ∈ (1, 2).

It remains to rule out the marginal cases 2β = 1 and β = 1. It follows from Cauchy
estimates in [10, Theorem 7.1] and the explicit computations of (7) that

H(|u|) = − 2

π
u ln |u|+O(u) as |u| → 0,

which yields

K∞|u| =
2

π
ln |u|+O(1) as |u| → 0. (21)

If 2β = 1, then expansion (16) holds and gives O(1) in T∞η̃, whereas expansion (17) is
replaced by (21) to give O(ln |u|) in T∞η̃. Since there is no balance of singular terms in
η̃ = T∞η̃ as |u| → 0, the case 2β = 1 is impossible.

If β = 1, then expansion (16) is replaced by (21) to give O(|u| ln |u|) in T∞η̃. On the other
hand, K∞|u|2 = K∞u

2 is smooth as |u| → 0. Since there is no balance of singular terms O(|u|)
and O(|u| ln |u|) in η̃ = T∞η̃ as |u| → 0, the case β = 1 is also impossible. �

Proof of Theorem 2. By using (9) and (11), we assume η̃(u) = A|u|2/3 + B|u|µ + o(|u|µ) for
some A > 0, B ∈ R, and µ ∈

(
2
3
, 2
)
. Similarly to (16), (17), and (20), we obtain for µ 6= 1 that

η̃K∞η̃ = − 2√
3
A2|u|1/3 − AB

[
2√
3

+ µ tan
(µπ

2

)]
|u|µ−1/3 +O(|u|2/3) + o(|u|µ−1/3)

and

1

2
K∞η̃

2 =
2√
3
A2|u|1/3 − AB

(
µ+

2

3

)
tan
(πµ

2
+
π

3

)
|u|µ−1/3 +O(1) + o(|u|µ−1/3)

where we took into account that 2µ − 1 > µ − 1
3

for µ > 2
3
. When these expansions are

substituted into the fixed-point equation (12), the terms of O(|u|2/3) and O(1) determine a
nonlocal problem for A and c, whereas the singular term O(|u|µ−1/3) for µ 6= 1 is not matched
and must vanish. This yields the transcendental equation (10). The first root µ = 2

3
of (10) is

excluded for µ ∈
(
2
3
, 1
)
. The second root of (10) can be found graphically at µ ≈ 1.469 [6].

For the marginal case µ = 1, η̃K∞η̃ produces O(|u|2/3 ln |u|) due to expansion (21) and
K∞η̃

2 produces O(|u|2/3) as |u| → 0. Since there is no balance of singular terms in η̃ = T∞η̃ as
|u| → 0, the marginal case µ = 1 is excluded. �
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