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Interaction of lumps with a line soliton for the DSII equation
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Abstract

Exact solutions of the focussing Davey–Stewartson II equation are presented, which describe the interaction of N -lumps
with a line soliton. These solutions are constructed by analysing the inverse spectral problem of the associated Lax pair. The
dynamical properties of these solutions are also discussed. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Gravity–capillary surface waves are described by the Davey–Stewartson (DS) system [1] which, in the shallow
water limit, is integrable by the inverse spectral method [2,19]. The integrable cases are known as the DSI and DSII
equations. The DSI equation possesses dromion solutions [3], while the DSII equation possesses lump solutions
[4,5].

In this paper, we study the interaction of lumps with a line soliton for the focussing DSII equation. This equation
can be written in the form

iut + uzz + uz̄z̄ + 4(g + ḡ)u = 0, 2gz̄ − (|u|2)z = 0, (1.1)

where z = x + iy, z̄ = x − iy, and u(z, z̄, t), g(z, z̄, t) are complex valued functions. Eq. (1.1) is the compatibility
condition of the two-dimensional Dirac problem

ϕ1z̄ = −uϕ2, ϕ2z = ūϕ1, (1.2)

coupled with the time-evolution problem

iϕ1t + ϕ1zz + uϕ2z̄ − uz̄ϕ2 + 4gϕ1 = 0, −iϕ2t + ϕ2z̄z̄ + ūzϕ1 − ūϕ1z + 4ḡϕ2 = 0. (1.3)

In Eqs. (1.1)–(1.3), the bar denotes complex conjugation.
The DSII equation (1.1) was solved formally in [6]. Lump solutions for the focussing DSII equation decaying like

O(|z|−1) and O(|z|−2) as |z| → ∞, were formally incorporated in the inverse spectral formalism in [5] and in [7],
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respectively. It was rigorously proven in [8] that the defocusing DSII equation does not have lump solutions. Rigorous
results for the focussing DSII equation were obtained in [9]; however, these results are based on a “small-norm
assumption” (see Section 2) which excludes lump solutions. It was shown in [10,11] that a single lump is unstable
under a small variation of initial data. A similar result for multilump solutions was obtained in [12].

Several classes of exact solutions of the DSII equation have been constructed, using a variety of “direct methods”.
These include the method of Liouville–Laplace reductions [13], gauge transformations [14], Darboux transforma-
tions [15] and the ∂̄ dressing method [16]. However, the spectral meaning and therefore the genericity of these
solutions remains open.

An interesting exact solution of the focussing DSII equation was obtained in [17] by using the canonical
Zakharov–Shabat dressing method. This solution describes the interaction of a lump and a line soliton. The lump–line
soliton solution is given by

u = w̄(t)[1 + λ̄(z̄ − ζ̄ (t))]

|z − ζ(t)|2 + |w(t)|2 , (1.4)

g = 2λ(z̄ − ζ̄ )|w(t)|2 + λ2|z − ζ(t)|2|w(t)|2 − (z̄ − ζ̄ (t))2

2(|z − ζ(t)|2 + |w(t)|2)2
, (1.5)

where

ζ(t) = 2k0t + z0, w(t) = c0 e−(λ+ik0)(z−ζ(t))−ik̄0(z̄−ζ̄ (t))−i(λ2+k2
0+k̄2

0)t , (1.6)

and λ, k0, z0, and c0 are four arbitrary complex parameters. The lump solution follows from this formula when
λ = 0.

If λ is either real or imaginary, the fields |u|2(z, z̄) and g(z, z̄) do not evolve in time t . For example, the field
|u|2(x, y) for λ = i is plotted in Fig. 1, where z = x + iy. Clearly, the field consists of a lump solution located at

Fig. 1. The exact lump–line soliton (1.4) for λ = i.
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the background of a line soliton. The nonlocalized direction of the line soliton is given by the curve

{(x, y) ∈ R2 : θr ≡ x Re(λ) − y Im(λ) + ln
√
x2 + y2 = const.}. (1.7)

This direction is defined by the complex parameter λ, while the logarithmic curvature of the line soliton is induced
by its interaction with the lump. In the asymptotic limit |z| → ∞, Eqs. (1.4) and (1.5) can be reduced to the form

u∞ = c̄0λ̄ e−θ̄

(1 + |c0|2 e−θ−θ̄ )
, (1.8)

g∞ = λ2|c0|2 e−θ−θ̄

2(1 + |c0|2 e−θ−θ̄ )2
, (1.9)

where θ = (λ+ ik0)(z−ζ )+ ik̄0(z̄− ζ̄ )+ i(λ2 +k2
0 + k̄2

0)t . The fields u∞(z, z̄, t) and g∞(z, z̄, t) are exact solutions
of the DSII equation (1.1) and corresponds to a line soliton along the direction given by (1.7).

For a general complex value of λ, |u|2(z, z̄, t) and g(z, z̄, t) evolve in time. In this case, the two-dimensional
localized field (the DSII lump) decays, the curvature of the front of the one-dimensional soliton disappears and
the line soliton moves with an asymptotically constant propagation speed. Thus, the exact solution (1.4) and (1.5)
displays structural sensitivity with respect to variations of the parameter λ. When this parameter slightly deviates
from real or imaginary axes, the lump–line soliton is destroyed and the localized field decays. This observation
indicates that lump–line solitons are unstable with respect to variations of the initial data. The dynamical instability
of these solutions is reviewed in [17].

In this paper, we describe the spectral theory associated to the lump–line solution (1.4) and (1.5). We also
generalize the exact solution to describe the interaction of N lumps and a line soliton.

2. Review of the spectral theory for small initial data

The Dirac system (1.2) has the following fundamental matrix solution:

ϕϕϕ = [µµµ(z, z̄, t, k, k̄) eikz−ik2t ,χχχ(z, z̄, t, k, k̄) e−ik̄z̄+ik̄2t ], (2.1)

where k is a spectral parameter, and µµµ(z, z̄, t, k, k̄), χχχ(z, z̄, t, k, k̄) satisfy the system

µ1z̄ = −uµ2, µ2z = −ikµ2 + ūµ1, (2.2)

χ1z̄ = ik̄χ1 − uχ2, χ2z = ūχ1. (2.3)

It follows from Eqs. (2.2) and (2.3) that µµµ and χχχ are related by the symmetry constraint

χχχ(z, z̄, t, k, k̄) = σσσµ̄µµ(z, z̄, t, k, k̄), σσσ =
(

0 −1
1 0

)
. (2.4)

Therefore, it is sufficient to consider only the eigenfunction µµµ(z, z̄, t, k, k̄) which satisfies the Dirac system (2.2),
the time-evolution problem

iµ1t + µ1zz + 2ikµ1z + uµ2z̄ − uz̄µ2 + 4gµ1 = 0,

−iµ2t + µ2z̄z̄ − ikµ2z + ūzµ1 − ūµ1z + 4ḡµ2 = 0, (2.5)
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and the boundary condition

lim
|z|→∞

µµµ(z, z̄, t, k, k̄) = e1 =
(

1
0

)
. (2.6)

In what follows, we review the general methodology of how the Lax pair (2.2) and (2.5) are used to establish the
solutions of the initial value problem of the DSII equation for sufficiently small initial data [9]. The starting point
is to assume that there exists a solution u(z, z̄, t) with sufficient smoothness and decay. Under this assumption,
a formula is obtained which expresses u(z, z̄, t) in terms of the initial data. One then postulates this formula and
proves that it solves the Cauchy problem without the a priori assumption of existence.

Proposition 2.1. Let u(z, z̄, t) satisfy the focussing DSII equation in the complex z-plane for all t > 0, with initial
data

u(z, z̄, 0) = u0(z, z̄) ∈ S(R2), (2.7)

where S(R2) denotes the space of Schwartz functions. Assume that there exists a solution which has sufficient
smoothness and decay, and its L1 and L∞ norms are sufficiently small. Then this solution can be represented in the
form

ū(z, z̄, t) = − 1

2π

∫∫
dk ∧ dk̄ T0(k, k̄)µ̄1(z, z̄, t, k, k̄) e−i(kz+k̄z̄)−i(k2+k̄2)t , (2.8)

where the functions T0(k, k̄) and µ1(z, z̄, t, k, k̄) are defined as follows. The function µ1(z, z̄, t, k, k̄) is the first
component of the vector solution of the system of the linear integral equations

µµµ(z, z̄, t, k, k̄) = e1 + 1

2π i

∫∫
dl ∧ dl̄

l − k
T0(l, l̄)σσσµ̄µµ(z, z̄, t, k, k̄) e−i(lz+l̄z̄)−i(l2+l̄2)t , (2.9)

and T0(k, k̄) is given by

T0(k, k̄) = 1

2π

∫∫
dz ∧ dz̄ ū0(z, z̄)ν1(z, z̄, k, k̄) ei(kz+k̄z̄). (2.10)

Here the eigenfunction ν1(z, z̄, k, k̄) is the first component of the vector solution of the system of the linear integral
equations

ν1(z, z̄, k, k̄) = 1 − 1

2π i

∫∫
dζ ∧ dζ̄

ζ − z
u0(ζ, ζ̄ )ν2(ζ, ζ̄ , k, k̄), (2.11)

ν2(z, z̄, k, k̄) = 1

2π i

∫∫
dζ ∧ dζ̄

ζ̄ − z̄
ū0(ζ, ζ̄ )ν1(ζ, ζ̄ , k, k̄) e−ik(z−ζ )−ik̄(z̄−ζ̄ ). (2.12)

Proof. Details are given in [9]. The proof involves the following steps. The solution of Eq. (2.2) supplemented with
the boundary conditions (2.6) is given by the system of the linear integral equations (2.11) and (2.12) with u0(ζ, ζ̄ )

replaced by u(ζ, ζ̄ , t). Using this equation as well as the symmetry condition (2.4), it can be shown that

∂µµµ

∂k̄
= T (k, k̄, t)σσσµ̄µµ(z, z̄, t, k, k̄) e−i(kz+k̄z̄), (2.13)

where T (k, k̄, t) is the spectral data

T (k, k̄, t) = 1

2π

∫∫
dz ∧ dz̄ ū(z, z̄, t)µ1(z, z̄, t, k, k̄) ei(kz+k̄z̄).
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The time-evolution problem (2.5) implies that T (k, k̄, t) = T0(k, k̄) exp(−i(k2 + k̄2)t), where T0(k, k̄) is given by
(2.10).

The above formulas can be used to prove the existence of a solution under the assumption that the L1 and L∞

norms of u0(z, z̄) are small. �

Theorem 2.2 (Fokas and Sung [9]). Let u0(z, z̄) ∈ S(R2). Assume that the L1 and L∞ norms of u0(z, z̄) and of
its Fourier transform û0(k, k̄) satisfy

‖u0‖∞‖u0‖1 <
π

2

‖û0‖∞‖û0‖1

(1 − τ)2
<

π

2
, (2.14)

where

τ = 1√
2π3

√
‖û‖1‖u‖1.

Then, the Cauchy problem (2.7) for the focussing DSII equation has a unique solution. This solution can be obtained
through Eqs. (2.8)–(2.12).

Proof. Details can be found in [9]. Given u0(z, z̄), define ννν(z, z̄, k, k̄) by Eqs. (2.11) and (2.12). This system has a
unique solution provided that ‖u0‖∞‖u0‖1 < π/2. Given u0(z, z̄) and ν1(z, z̄, k, k̄), define T0(k, k̄) by Eq. (2.10).
The norms of T0(k, k̄) can be bounded in terms of the norms of u0(z, z̄),

‖T0‖∞ ≤ ‖û0‖∞
1 − τ

, ‖T0‖1 ≤ ‖û0‖1

1 − τ
.

Given T0(k, k̄), define µµµ(z, z̄, t, k, k̄) by Eq. (2.9). If ‖T0‖∞‖T0‖1 < π/2, this equation also has a unique solu-
tion. Then, from Eq. (2.8) define u(z, z̄) and prove directly that u(z, z̄, 0) = u0(z, z̄) and that u(z, z̄, t) satisfies
Eq. (1.1). �

3. The lump solutions

If the values of u0(z, z̄) are not too small, the system (2.11) and (2.12) can have homogeneous solutions """j(z, z̄)

associated with eigenvalues k = kj . These solutions give rise to lumps. When such solutions exist, the formalism
presented earlier must be modified, see [5,7].

Let µµµ(z, z̄, t, k, k̄) satisfy the system (2.11) and (2.12) with u0(z, z̄) replaced by u(z, z̄, t). Assume that this
equation has a homogeneous solution """j(z, z̄, t) corresponding to k = kj . This implies that µµµ(z, z̄, t, k, k̄) is
singular at k = kj . Assuming that this singularity is a simple pole, it follows that

µµµ(z, z̄, t, k, k̄) = e1 + µ̃µµ(z, z̄, t, k, k̄) + i"""j(z, z̄, t)

k − kj
, (3.1)

where µ̃µµ(z, z̄, t, k, k̄) is bounded at k = kj and """j(z, z̄, t) is normalized by the boundary condition

lim
|z|→∞

z"""j(z, z̄, t) = e1. (3.2)

Using the symmetry relation (2.4), it follows that:

"""′
j (z, z̄, t) = σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄) (3.3)
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is also a homogeneous solution associated with k = kj . It was shown in [9] that the function

µµµj (z, z̄, t) = lim
k→kj

(
µµµ(z, z̄, t, k, k̄) − i"""j(z, z̄, t)

k − kj

)

satisfies an equation, whose homogeneous part is identical to the equation satisfied by """j(z, z̄, t), and which has a
particular solution given by z"""j(z, z̄, t). As a result, the following limiting relation is valid:

e1 + µ̃µµ(z, z̄, t, k, k̄) = (z + αj (t))"""j(z, z̄, t) + βj (t)σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄), (3.4)

where αj (t) and βj (t) are arbitrary coefficients. If µ̃µµ(z, z̄, t, k, k̄) = 0, the system of Eq. (3.4) and its complex
conjugate reduces to two algebraic equations for """j(z, z̄, t) and "̄""j (z, z̄, t). Their solution is

"""j(z, z̄, t) = 1

|z + αj (t)|2 + |βj (t)|2
(

z̄ + ᾱj (t)

−βj (t) e−i(kj z+k̄j z̄)

)
. (3.5)

This equation together with the relation, ū(z, z̄, t) = −Φj2(z, z̄), where the subscript denotes the second component
of the vector """(z, z̄, t), yields the lump soliton

ū(z, z̄, t) = βj (t) e−i(kj z+k̄j z̄)

|z + αj (t)|2 + |βj (t)|2 . (3.6)

The time-evolution problem (2.5) implies

αj (t) = −2kj t − z0, βj (t) = c0 e−i(kj αj (t)+k̄j ᾱj (t))−i(k2
j+k̄2

j )t , (3.7)

where z0 and c0 are constants. The lump solution (3.6) coincides with Eq. (1.4) for λ = 0.
The above analysis can be generalized to the N -lump solution. The eigenfunction µµµ(z, z̄, t, k, k̄), solving

Eqs. (2.2), (2.5) and (2.6), has the following meromorphic representation [7]

µµµ(z, z̄, t, k, k̄) = e1 +
N∑

j=1

i"""j(z, z̄, t)

k − kj
, (3.8)

where the bound states """j(z, z̄, t) are solutions of the algebraic system

e1 +
∑
l �=j

i"""l(z, z̄, t)

kj − kl
= (z + αj (t))"""j(z, z̄, t) + βj (t)σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄). (3.9)

Then, the N -lump exact solutions of the DSII equation (1.1) are given by the relation

ū(z, z̄, t) = −
N∑

j=1

Φj2(z, z̄, t). (3.10)

The linear system (3.9) and its complex conjugate is solvable for Φj1(z, z̄, t) and Φ̄j2(z, z̄, t) since the determinant
is positive definite

det =
[

M N

−N̄ M̄

]
, (3.11)
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where the matrix elements Mij and Nij are given by

Mij = (z + αj (t))δij − i

ki − kj
(1 − δij), (3.12)

Nij = −βj (t) e−i(kj z+k̄j z̄)δij, (3.13)

and δij is the Kroneker’s symbol.

4. The lump–line soliton solutions

A simple calculation shows that if µµµ(z, z̄, t, k, k̄) satisfies Eq. (2.2), then the vector

σσσµ̄µµ(z, z̄, t, k, k̄) e−i(kz+k̄z̄)−λz (4.1)

satisfies the same equation with k replaced by k − iλ. Thus, if the bound state """j(z, z̄, t) satisfies Eqs. (2.2) and
(2.5) for k = kj , the bound state """′

j (z, z̄, t) defined by

"""′
j (z, z̄, t) = σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄)−λz, (4.2)

also solves the system (2.2) and (2.5) for k = kj − iλ. Denote µµµj (z, z̄, t) as

µµµj (z, z̄, t) = lim
k→kj

(
µµµ(z, z̄, t, k, k̄) − i"""j(z, z̄, t)

k − kj

)
. (4.3)

If the eigenfunction µµµ(z, z̄, t, k, k̄) satisfies Eq. (2.2), then µµµj (z, z̄, t) satisfies the system

µj1z̄ = −uµj2, µj2z + ikjµj2 − Φj2 = ūµj1.

A particular solution of this system is µµµj = z"""j(z, z̄, t). Thus,

lim
k→kj

(
µµµ(z, z̄, t, k, k̄) − i"""j(z, z̄)

k − kj

)
= (z + αj (t))"""j(z, z̄, t). (4.4)

If the equation for µµµ(z, z̄, t, k, k̄) has homogeneous solutions at k = kj and k = kj − iλ, the eigenfunction
µµµ(z, z̄, t, k, k̄) is singular at these points. As before, assuming that these singularities are simple poles, we postulate
the following expansion:

µµµ(z, z̄, t, k, k̄) = e1 + µ̃µµ(z, z̄, t, k, k̄) + i"""j(z, z̄, t)

k − kj
− iλcj (t)σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄)−λz

k − (kj − iλ)
, (4.5)

where cj (t) is arbitrary coefficient and µ̃µµ(z, z̄, t, k, k̄) is bounded at k = kj and k = kj − iλ. This equation together
with Eq. (4.4) yields the system

e1 + µ̃µµ(z, z̄, t, k, k̄) − icj (t)σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄)−λz = (z + αj (t))"""j(z, z̄, t). (4.6)

If µ̃µµ(z, z̄, t, k, k̄) = 0, this equation and its complex conjugate are two algebraic equations for """j(z, z̄, t) and
"̄""j (z, z̄, t). Their solutions yield

"""j(z, z̄, t) = 1

|z − ζ(t)|2 + |w(t)|2
(

z̄ − ζ̄ (t)

−w(t)

)
, (4.7)



196 A.S. Fokas et al. / Physica D 152–153 (2001) 189–198

where ζ(t) = −αj (t) and w(t) = cj (t) e−i(kj z+k̄j z̄)−λz. The time-dependence of ζ(t) and w(t) follows from the
time-evolution problem (2.5) in the form (1.6). Finally, the exact solution u(z, z̄, t) given by Eq. (1.4) follows from
the relation:

u = −(Φj2(z, z̄, t) − λj cj (t)Φ̄j1(z, z̄, t) e−i(kj z+k̄j z̄)). (4.8)

The generalization of the lump–line soliton solution to the N -lump–line soliton solutions is straightforward

µµµ(z, z̄, t, k, k̄) = e1 +
N∑

j=1

i"""j(z, z̄, t)

k − kj
−

N∑
j=1

iλcj (t)σσσ"̄""j(z, z̄, t) e−i(kj z+k̄j z̄)−λz

k − (kj − iλ)
. (4.9)

Then, the bound states can be found from the algebraic system for """j(z, z̄, t) and "̄""j (z, z̄, t),

e1 +
∑
l �=j

i"̄""l(z, z̄, t)

kj − kl
−

N∑
l=1

iλcl(t)σσσ"̄""l(z, z̄, t) e−i(klz+k̄l z̄)−λz

kj − (kl − iλ)
= (z + αj (t))"""j(z, z̄, t). (4.10)

The solution of the DSII equation is related to the bound states by

ū(z, z̄, t) = −
N∑

j=1

[Φj2(z, z̄, t) − λcj (t)Φ̄j1(z, z̄, t) e−i(kj z+k̄j z̄)−λz]. (4.11)

The linear system (4.10) and its complex conjugate is solvable for Φj1(z, z̄, t) and Φ̄j2(z, z̄, t) since the determinant
is positive definite. The determinant is given by Eq. (3.11), where Mij are the same as in (3.12) and Nij are given by

Nij = − iλcj (t)

ki − kj + iλ
e−i(kj z+k̄j z̄)−λz.

We conclude with the following remarks:

1. The bound state """j(z, z̄, t) does not satisfy the boundary condition (3.2). Instead, it satisfies the following
asymptotic limit along the direction of the line soliton defined in (1.7):

lim
|z|→∞

z"""j(z, z̄, t) = 1

1 + |c0|2 e−θ−θ̄

[
1

−c0 e−θ

]
. (4.12)

On the other hand, the bound state """′
j (z, z̄, t) given by Eq. (4.2) is delocalized but bounded along the direction

of the line soliton (1.7); it satisfies the boundary condition

lim
|z|→∞

"""′
j (z, z̄, t) = 1

1 + |c0|2 e−θ−θ̄

[
c̄0 e−θ−θ̄

e−θ

]
. (4.13)

The bound states satisfy the relation

e1 = (z + zj )"""α=0(z, z̄) + cj"""
′
α=1(z, z̄). (4.14)

2. The eigenfunction µµµ(z, z̄, t, k, k̄) does not satisfy the boundary condition (2.6). Instead, it has the following
behaviour:

µµµ(z, z̄, t, k, k̄) → e1 as θr → +∞, (4.15)
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µµµ(z, z̄, t, k, k̄) → k − kj

k − kj + iλ
e1 as θr → −∞. (4.16)

By virtue of Eq. (4.16), we can introduce an equivalent (double-pole) representation for a solution of the Dirac
system (2.2)

µµµ′(z, z̄, t, k, k̄) = k − kj + iλ

k − kj
µµµ(z, z̄, t, k, k̄) = e1 + i[1 + λ(z + αj (t))]"""j(z, z̄, t)

k − kj
− λ"""j(z, z̄, t)

(k − kj )2
,

(4.17)

where we have used the relation (4.14). We notice that similar boundary conditions appear in one-dimensional
spectral problems with line solitons [18].

3. The bound state """j(z, z̄, t) can be generalized into a family of bound states along the line segment between
k = kj and k = kj − iλ. Indeed, the following eigenfunction:

"""α(z, z̄, t) = """j(z, z̄, t) e−αλz, (4.18)

solves Eq. (2.2) for k = kj − iαλ, where real α ∈ [0, 1]. Inside the interval 0 < α < 1, the bound state"""α(z, z̄, t)

is localized algebraically in the direction of the line soliton given by (1.7).

5. Conclusion

We have characterized the exact solution of the focussing DSII equation which describes the interaction of N

lumps and a line soliton. This solution is given by Eq. (4.11), where """j(z, z̄, t) are solutions of the 2N algebraic
equations given by Eq. (4.10) and its complex conjugate. The derivation of the above solution is based on the analysis
of the inverse problem. The direct problem remains open. This involves deriving the analogue of Eqs. (2.11) and
(2.12) for initial data u(z, z̄, 0) = us(z, z̄)+u0(z, z̄), where us(z, z̄) is the line soliton of the DSII equation at t = 0
(see Eq. (1.8)) and u0(z, z̄) is a perturbation decaying to zero as |z| → ∞.
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