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Abstract We consider multiple shock waves in the
Burgers’ equation with a modular advection term. It
was previously shown that the modular Burgers’ equa-
tion admits a traveling viscous shock with a single
interface, which is stable against smooth and exponen-
tially localized perturbations. In contrast, we suggest
in the present work with the help of energy estimates
and numerical simulations that the evolution of shock
waves with multiple interfaces leads to finite-time coa-
lescence of two consecutive interfaces. We formulate
a precise scaling law of the finite-time extinction sup-
ported by the interface equations and by numerical sim-
ulations.
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1 Introduction

The present work addresses multiple shock waves in
the modular Burgers’ equation

∂u

∂t
= ∂|u|

∂x
+ ∂2u

∂x2
, (1.1)

which is different from the classical Burgers’ equation
by themodular advection term. Equation (1.1) has been
used as a model to describe inelastic dynamics of parti-
cles with piecewise interaction potentials [3,13]. Gen-
eralizations of this model with additional terms were
also discussed in [10–12].

Some preliminary results were obtained for the
modular Burgers’ equation (1.1) both analytically
and numerically. Traveling wave solutions were con-
structed in [8,9] by matching solutions at the interfaces
where the modular nonlinearity jumps. Collisions of
compactly supported pulses and dynamics near a vis-
cous shock were studied in [3] by using qualitative
approximations. Numerical approximations of time-
dependent solutions of the modular Burgers’ equa-
tion (1.1) were constructed in [7] with the aid of Fourier
sine series.

A traveling viscous shock of the form u(t, x) =
Uc(x − ct) is available in the exact analytical form:

Uc(ξ) =
{
U+(1 − e(1+c)(ξ0−ξ)), ξ > ξ0,

U−(1 − e(1−c)(ξ−ξ0)), ξ ≤ ξ0,
(1.2)

where lim
ξ→±∞Uc(ξ) = U± satisfy U− < 0 < U+ and

the speed c is uniquely selected at
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c = −U+ +U−
U+ −U−

. (1.3)

The viscous shock (1.2) possesses a single interface at
ξ0 ∈ R, where Uc(ξ0) = 0, such that Uc is a continu-
ously differentiable function with a piecewise continu-
ous second derivative, whose only discontinuity arises
at the interface and is described by the jump condition:

[U ′′
c ]+−(ξ0) : = U ′′

c (ξ0 + 0) −U ′′
c (ξ0 − 0)

= −2|U ′
c(ξ0)|. (1.4)

Asymptotic stability of the traveling shock (1.2)
against smooth, exponentially localized perturbations
was established in [5]. It was shown that the evolution
of such perturbations iswell defined on both sides of the
interface and the perturbations decay in time. A finite-
difference numerical method, which couples the non-
linear dynamics at the interfaces to the linear advection-
diffusion dynamics on both sides of the interface, was
implemented in [5] to corroborate the stability analysis
of the viscous shock.

The purpose of the present work is to study viscous
shocks in the modular Burgers’ equation (1.1) with
multiple interfaces. We show with the aid of energy
estimates that compact regions between two consec-
utive interfaces shrink in time and no new compact
regions can be formed dynamically. In particular, this
yields that no traveling viscous shocks with multiple
interfaces can exist in the modular Burgers’ equation.
Moreover, for odd initial data with three symmetric
interfaces we establish that the interfaces coalesce in
finite time to a single interface. We complement our
analysis with finite-difference numerical simulations.
Postprocessing data analysis suggests a precise scaling
law of the finite-time extinction which agrees with the
interface equations.

We note that, although the finite-difference method
is rather elementary, it allows us to capture the main
feature of the dynamics of the modular Burgers’ equa-
tion (1.1), where the linear equations between inter-
faces are coupled together by the nonlinear interface
equations. It is unclear how else the numerical mod-
eling of the time evolution could be performed due to
the singular contribution of the modular nonlinearity
(without replacing it by a smooth approximation).

Before closing the introduction, we mention some
contemporary work on other related problems. A dif-

fusion equation with a piecewise defined nonlinear-
ity, namely the KPP model with the cutoff reaction
rate, was studied in [14,15], where matched asymp-
totic expansions in the dynamically moving coordinate
frame have been used to establish both the existence
and asymptotic stability of traveling viscous shocks.
Metastable N -waves of the classical Burgers’ equation
were studied in [2,6] by employing dynamical systems
methods.

The ultimate goal of our studies is to understand the
dynamics of the logarithmic Burgers’ equations [4],
which commonly arises in the modeling of granular
chains in viscous systems.The logarithmic nonlinearity
is more singular than the modular nonlinearity in (1.1);
hence, it presents further challenges in the analysis of
(traveling) viscous shocks. We remark that, compared
to the logarithmic Burgers’ equation, the logarithmic
diffusion equation has been well studied [1].

The paper is organized as follows. Section 2 con-
tains general energy estimates for themodular Burgers’
equation. Section 3 addresses the finite-time extinc-
tion of shocks for odd initial data with three symmetric
interfaces, both analytically and numerically. Section 4
concludes the paper with a discussion of open prob-
lems.

2 Energy estimates

Here we use energy estimates to show that a com-
pact region between two consecutive interfaces shrinks
and eventually disappears in the time evolution of the
modular Burgers’ equation (1.1). We take T > 0
and consider a continuously differentiable solution
u(t, x) : (0, T ) × R → R to the modular Burgers’
equation (1.1), whose second derivative uxx is piece-
wise continuous with discontinuities arising only at the
interfaces.

We consider two consecutive interfaces −∞ <

ξ1(t) < ξ2(t) < ∞, so that u(t, ξ1(t)) = 0 and
u(t, ξ2(t)) = 0 for t ∈ (0, T ). Without loss of gen-
erality, we assume u(t, x) > 0 for ξ1(t) < x < ξ2(t).
All in all, this yields the following linear evolutionary
boundary-value problem:

⎧⎨
⎩
ut = ux + uxx , ξ1(t) < x < ξ2(t), 0 < t < T,

u(t, ξ1(t)) = 0, 0 < t < T,

u(t, ξ2(t)) = 0, 0 < t < T .

(2.1)
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The linear problem (2.1) is not closed as we need to
find the evolution of ξ1,2(t) from the boundary con-
ditions at x = ξ1,2(t) and the evolutionary boundary-
value problems satisfied by u(t, x) for x < ξ1(t) and
for x > ξ2(t). At each interface x = ξ1,2(t), two addi-
tional boundary conditions are needed. These two con-
ditions are given by the continuity of the derivative
ux (t, x) across x = ξ1,2(t) and by a jump condition
for uxx (t, x), which read

[ux ]+−(t, ξ1,2(t)) := ux (t, ξ1,2(t) + 0)

− ux (t, ξ1,2(t) − 0) = 0,

[uxx ]+−(t, ξ1,2(t)) := uxx (t, ξ1,2(t) + 0) (2.2)

− uxx (t, ξ1,2(t) − 0)

= −2|ux (t, ξ1,2(t))|,

for 0 < t < T . We note that the jump condition for uxx
is equivalent to the continuity of the temporal deriva-
tive ut across the interfaces.Wederive energy estimates
from the linear boundary-value problem (2.1) by ignor-
ing the global information from other boundary condi-
tions (2.2). Consequently, the time evolution of ξ1,2(t)
is not relevant for our energy estimates.

Integrating (2.1) on [ξ1(t), ξ2(t)] yields
d

dt

∫ ξ2(t)

ξ1(t)
u(t, x)dx = ux (t, ξ2(t)) − ux (t, ξ1(t)) ≤ 0,

(2.3)

where we have used the inequalities ux (t, ξ2(t)) ≤ 0
and ux (t, ξ1(t)) ≥ 0, which follow from the fact that
u(t, x) > 0 for ξ1(t) < x < ξ2(t). Hence, the positive
mass

∫ ξ2(t)
ξ1(t)

u(t, x)dx is monotonically decreasing as a
function of t as long as the slopes at the end points of
the compact region are nonzero.

Integrating (2.1) multiplied by u on [ξ1(t), ξ2(t)]
yields

d

dt

∫ ξ2(t)

ξ1(t)
u2(t, x)dx = −2

∫ ξ2(t)

ξ1(t)
u2x (t, x)dx ≤ 0. (2.4)

Hence, the positive energy
∫ ξ2(t)
ξ1(t)

u2(t, x)dx is mono-
tonically decreasing as a function of t as long as
ξ1(t) < ξ2(t). In particular, identity (2.4) shows that
no traveling viscous shocks with multiple interfaces
can exist in the modular Burgers’ equation (1.1), as for
such solutions the positive energies

∫ ξ2(t)
ξ1(t)

u2(t, x)dx
and

∫ ξ2(t)
ξ1(t)

u2x (t, x)dx between two consecutive inter-
faces must stay constant in time.

We remark that energy estimates involving spatial
derivatives of u(t, x) cannot be derived from the linear
boundary-value problem (2.1), because of the lack of
information on the spatial derivatives of u(t, x) at x =
ξ1,2(t).

The twoestimates (2.3) and (2.4) suggest that nonew
compact regions may be formed dynamically in time
since the mass and energy of the compact region with
positive u(t, x) cannot increase from zero to positive
values. However, the argument does not clarify if the
mass and energy extinguish in finite or infinite times or
if the two interface ξ1,2(t) coalesce when the mass and
energy vanish. In the next section we will answer these
questions for the special case of odd shock waves and
corroborate our analysis by numerical experiments.

3 Odd initial data with three symmetric interfaces

Herewe consider the simplest problem for shockwaves
with multiple interfaces. Since the modular Burgers’
equation (1.1) preserves odd functions in the time evo-
lution, we restrict solutions to the class of odd func-
tions u(t,−x) = −u(t, x) closed on (0,∞) sub-
ject to Dirichlet condition at x = 0 and the normal-
ized boundary condition u(t, x) → 1 as x → +∞.
We will assume that there exists a single interface at
x = ξ(t) ∈ (0,∞). Due to the oddness condition, the
multiple shock wave consists of three symmetric inter-
faces at x = −ξ(t), x = 0 and x = ξ(t), cf. Fig. 1.

The mathematical formulation of the evolutionary
boundary-value problem is given by

⎧⎪⎨
⎪⎩
ut = −ux + uxx , u(t, x) < 0, 0 < x < ξ(t),
ut = ux + uxx , u(t, x) > 0, ξ(t) < x < ∞,

u(t, 0) = 0, u(t, ξ(t)) = 0, lim
x→+∞ u(t, x) = 1,

(3.1)

where u(t, x) : (0, T )×R → R is odd in x and contin-
uously differentiablewith piecewise continuous second
derivative uxx having discontinuities only at the inter-
faces x = 0,±ξ(t). The supplementary conditions at
the interfaces read

uxx (t,+0) = ux (t, 0),

[ux ]+−(t, ξ(t)) = 0,

[uxx ]+−(t, ξ(t)) = −2ux (t, ξ(t)).

(3.2)
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Fig. 1 Odd initial data with three symmetric interfaces shown
by shown by stars. The depicted initial data on (0,∞) is given
by (3.8) with α = 1

The first interface condition in (3.2) is consistent with
the Dirichlet condition u(t, 0) = 0 and the evolution
system in (3.1). The last interface condition in (3.2) in
combination with the Dirichlet condition u(t, ξ(t)) =
0 and the evolution system in (3.1) can be rewritten as
the differential equation

ξ ′(t) = −1 − uxx (t, ξ(t) + 0)

ux (t, ξ(t))

= +1 − uxx (t, ξ(t) − 0)

ux (t, ξ(t))
. (3.3)

The interface equation (3.3) holds as long as ux (t, ξ(t))
> 0.

3.1 Finite-time coalescence of interfaces

We establish finite-time coalescence of interfaces for
solutions u(t, x) : (0, T ) × R → R of the boundary-
value problem (3.1)–(3.2) by introducing the new vari-
able z(t, x) = 1 − u(t, x), which measures the differ-
ence between the solution u(t, x) and its asymptotic
value lim

x→+∞ u(t, x) = 1. Clearly, z satisfies the evolu-
tion equation

zt = −|1 − z|x + zxx .

We aim to derive a differential inequality for the mass

M(t) =
∫ ∞

0
z(t, x)dx .

In order to assure that the mass is well defined and
positive, we require z(t, ·) to be nonnegative and inte-
grable on (0,∞) for each t ∈ (0, T ). By a standard
application of maximum and comparison principles for
advection-diffusion equations, this is the case if the ini-
tial condition z(0, x) = 1− u(0, x) is nonnegative and
integrable on (0,∞).

The advantage of working with the mass M(t) over∫ ξ(t)
0 u(t, x)dx , as in Sect. 2, is that information on
both sides of the interface at x = ξ(t) is taken into
account. That is, the estimate (2.3) only relies on the
linear dynamics (2.1) between interfaces, whereas the
modular nonlinearity can only be captured by consid-
ering both sides of an interface.

Let us proceedwith deriving a differential inequality
for the mass M(t). We take t ∈ (0, T ) and assume no
coalescence of interfaces has occurred on [0, t], so that
ξ(s) > 0 for all s ∈ [0, t]. We have for all s ∈ (0, t)
that

z(s, ξ(s)) = z(s, 0) = 1, −zx (s, 0) = ux (s, 0) ≤ 0,

and

lim
x→+∞ z(s, x) = lim

x→+∞ zx (s, x) = 0.

Hence, with the aid of the Leibniz rule, we obtain for
s ∈ (0, t) that

d

ds
M(s) = lim

x→+∞
d

ds

(∫ ξ(s)

0
z(s, y)dy +

∫ x

ξ(s)
z(s, y)dy

)

= lim
x→+∞

(
z(s, ξ(s))ξ ′(s)

+
∫ ξ(s)

0
(zxx (s, y) − zx (s, y)) dy

− z(s, ξ(s))ξ ′(s)

+
∫ x

ξ(s)
(zxx (s, y) +zx (s, y)) dy

)

= lim
x→+∞ (zx (s, ξ(s)) − 1 − (zx (s, 0) − 1)

+zx (s, x) + z(s, x) − (zx (s, ξ(s)) + 1))

= −1 − zx (s, 0) ≤ −1,

where we remark that the interchange of limit and
derivative is justified byuniformconvergence of the rel-
evant differential quotient. Upon integrating the above
differential inequality for the mass M(s) for s ∈ [0, t],
we obtain M(t) ≤ M(0) − t .

To finish the argument, we note that z(t, x) ≥ 1 for
x ∈ (0, ξ(t)) and z(t, x) ≥ 0 for x ∈ (ξ(t),∞), so that
we arrive at
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0 < ξ(t) ≤
∫ ξ(t)

0
z(t, x)dx ≤ M(t) ≤ M(0) − t,

(3.4)

which implies that there exists t0 ∈ (0, M(0)) such
that ξ(t) → 0 as t → t0. Hence we have established
finite-time coalescence of interfaces for the simplest
odd multiple shock waves. Moreover, our method pro-
vides an upper bound for the timeof coalescence,which
is given by the integral

M(0) =
∫ ∞

0
(1 − u0(x)) dx,

where u0(x) = u(0, x) is the initial condition of the
solution u(t, x) to the evolutionary boundary-value
problem (3.1)–(3.2).

3.2 Finite-difference method

Next, we set up the framework for the numerical exper-
iments, which rely on a finite-difference method. To
implement the method we assume that ξ(t) > 0
and work with the rescaled spatial coordinate y :=
x/ξ(t). This transformation scales the domain of the
boundary-value problem (3.1) to the time-independent
regions (0, 1) and (1,∞). Thus, abusing notation, we
rewrite the evolutionary boundary-value problem for
u = u(t, y) as:

⎧⎪⎨
⎪⎩
ut = ξ−1(ξ ′y − 1)uy + ξ−2uyy, u(t, y) < 0, 0 < y < 1,
ut = ξ−1(ξ ′y + 1)uy + ξ−2uyy, u(t, y) > 0, 1 < y < ∞,

u(t, 0) = 0, u(t, 1) = 0, lim
y→+∞ u(t, y) = 1,

(3.5)

whereas the interface equation (3.3) transforms into

ξ ′(t) = −1 − uyy(t, 1 + 0)

ξ(t)uy(t, 1)

= +1 − uyy(t, 1 − 0)

ξ(t)uy(t, 1)
. (3.6)

By using an equally spaced grid with the step size h
on [0, 1] and [1, L] for sufficiently large L , we replace
the first and second spatial derivatives in (3.5) by the
central differences. We can do this for every interior

point of the grid since there are no evolution equations
at y = 0 and y = 1 due to the Dirichlet conditions. The
Neumann condition uy(t, L) = 0 is used at y = L .
It remains to derive a discretization of the interface
condition (3.6).

To couple the solutions on [0, 1] and [1, L], we use
the central difference approximation of the first and
second spatial derivatives at y = 1 in (3.6). This can
only be done if additional grid points are added to the
left and to the right of the interface point y = 1. In
other words, we augment {uk}k=N

k=0 for yk = hk with
vN+1 for yN+1 = 1 + h and {uk}k=M

k=N for yk = hk
with vN−1 for yN−1 = 1 − h, where h = 1

N = L
M and

u0 = uN = 0 due to the Dirichlet conditions at y = 0
and y = 1. For the Neumann condition at y = L , we
use an additional grid point at yM+1 = L + h with
uM+1 = uM−1.

The continuity of uy(t, y) and the jump of uyy(t, y)
across y = 1 are expressed in the central difference
approximation by the linear equations

vN+1 − uN−1

2h
= uN+1 − vN−1

2h
,

uN+1 + vN−1

h2
− vN+1 + uN−1

h2
= −2ξ

vN+1 − uN−1

2h
.

These linear equations admit a unique solution for the
additional variables vN+1 and vN−1 given by

vN+1 = 2uN+1 − hξuN−1

2 − hξ
,

vN−1 = 2uN−1 − hξuN+1

2 − hξ
,

where we assume that h is chosen so small that hξ(t) <

2. Substituting these solutions into the central dif-
ference approximation of the interface equation (3.6)
yields the approximation

ξ ′(t) = − (2 − hξ)(uN+1 + uN−1)

hξ(uN+1 − uN−1)
. (3.7)
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The time evolution of the linear system (3.5) was
approximated by the implicit Crank–Nicolson method
based on the trapezoidal rule of numerical integration.
The Crank–Nicolson method is unconditionally stable
for the linear advection-diffusion equations. However,
the stability of iterations was affected by the approxi-
mation (3.7) since ξ(t) and ξ ′(t) were used in the evo-
lutionary system (3.5) explicitly based on the predictor-
corrector pair (with ξ(t) obtained from ξ ′(t) by using
Heun’s method).

It remains to provide initial data u0(x) := u(0, x),
which are consistent with the interface conditions (3.2).
Without loss of generality, we assume ξ(0) = 1 so that
y = x at t = 0. For sufficiently fast convergence of
u0(x) towards 1 as x → +∞, we consider a Gaussian
function on (1,∞) concatenated with a quartic poly-
nomial on (0, 1):

u0(x) =
{
x(1 − x)(ax2 + bx + c), 0 < x < 1,

1 − e−α(x2−1), 1 < x < ∞,

(3.8)

so that the boundary conditions u0(0) = u0(1) = 0
and lim

x→+∞ u0(x) = 1 are satisfied. Parameters a, b,

and c can then be found uniquely in terms of α by using
the interface conditions (3.2). The condition u′′

0(0) =
u′
0(0) yields 2b = 3c. The condition u′

0(1 + 0) =
u′
0(1−0) yields a+b+c = −2α. Finally, the condition

u′′
0(1 + 0) − u′′

0(1 − 0) = −2u′
0(1) yields 2a + b =

2α2 − α. Solving all three conditions, we obtain

a = α(10α + 1)

7
, b = −3α(2α + 3)

7
,

c = −2α(2α + 3)

7
,

which completes the construction of the initial condi-
tion u0(x) for arbitrary α > 0. Since ξ ′(0) = 2(α−1),
the interface expands initially if α > 1 and contracts
initially if α < 1.

3.3 Outcomes of numerical simulations with the
initial data (3.8)

We performed iterations on the domain [0, L] with
L = 10, discretized with the step size h = 0.02. The
time step was selected to be τ = 0.0001 in order to
obtain better accuracy in the evolution of the interface

ξ(t) within the finite-difference approximation (3.7).
Nevertheless, the accuracy was decreasing when ξ(t)
and uy(t, 1) were getting smaller and iterations even-
tually broke up and stopped before ξ(t) could reach 0.
This was partly related to the fact that the Neumann
condition at the end point L = 10 was preserving the
initial value u0(L) ≈ 1 for a while, after which the
value of u(t, L) started to decrease during the extinc-
tion stage.

Figure 2 depicts the outcomes of the numerical sim-
ulations with the initial data (3.8) for α = 1.5 (top)
and α = 0.5 (bottom). The left panels show the pro-
file u(t, y) for y > 0 and two values of time: t = 0
(dashed line) and t = t1 (solid line), where t1 = 0.25
for α = 1.5 and t1 = 0.15 for α = 0.5. The right pan-
els show the numerically computed evolution of the
interface ξ(t) versus t .

First, we observe that the evolution of ξ(t) is non-
monotone for α = 1.5 and monotone for α = 0.5. This
is in agreement with ξ ′(0) = 2(α − 1) computed from
(3.8). Moreover, performing computations for longer
times with these and other values of α suggests that in
all cases there exists an extinction time t0 ∈ (0,∞)
such that

ξ(t) → 0, ux (t, ξ(t)) → 0, uxx (t, ξ(t) ± 0) → 0,

as t → t0,

where the spatial derivativeswere computed in the orig-
inal variable x by using the chain rule and the numerical
approximations:

ux (t, ξ(t)) = uN+1 − uN−1

hξ(t)(2 − hξ(t))
,

uxx (t, ξ(t) − 0) = 2
uN+1 + uN−1(1 − hξ(t))

h2ξ2(t)(2 − hξ(t))
. (3.9)

Figure 2 suggests that the extinction time t0 of
the interfaces is actually much smaller than the upper
bound T (α) = M(0) computed from (3.4), or explic-
itly,

T (α) =
∫ ∞

0
(1 − u0(x)) dx

=
√

πeαerfc
(√

α
)

2
√

α
+ 2α2

21
+ 17α

70
+ 1.

Indeed, we find T (1.5) ≈ 1.84859 and T (0.5) ≈
1.80092. Hence, the upper bound of the extinction time
derived from (3.4) is not sharp.
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Fig. 2 Evolution of the boundary-value problem (3.5) for the initial data (3.8) for α = 1.5 (top) and α = 0.5 (bottom). Left: u(t, y)
versus y > 0 for t = 0 (dashed) and t = t1 (solid). Right: evolution of ξ(t) versus t

3.4 Scaling laws describing the finite-time extinction

We claimbased on the postprocessing data analysis that
the following scaling law of extinction holds as t → t0:

ξ(t) ∼ √
t0 − t, ux (t, ξ(t)) ∼ (t0 − t),

uxx (t, ξ(t) − 0) ∼ √
t0 − t . (3.10)

This scaling law is in agreementwith the interface equa-
tion (3.3), which suggests that ξ ′(t) diverges as t → t0:

ξ ′(t) ∼ − 1√
t0 − t

.

For postprocessing data analysis, we use linear regres-
sion in the log-log variable, i.e.,

log(ξ(t)) versus c1 log(t0 − t) + c2, (3.11)

where the coefficient c1 determines the power of the
scaling law (3.10). The only obstacle with this method

is that the value of t0 is unknown and cannot be approx-
imated well because the iterations break down when
ξ(t) becomes too small (in our simulations smaller than
0.3).

To deal with this numerical issue, we introduce a
grid of values of t0 and use the linear regression (3.11)
with t0-dependent values of c1 and the approximation
error. The outcomes of these computations for α =
0.1 are depicted in Fig. 3, where the left panel shows
the coefficient c1 versus t0 and the right panel shows
the corresponding approximation error versus t0. The
minimal error of the size 10−9 is attained at t0 = 0.1738
and this value of t0 corresponds to c1 = 0.4917, which
is close to the claimed value 1

2 in (3.10).
Using similar ideas for ux (t, ξ(t)) and uxx (t, ξ(t)−

0), we have found that the minimal approximation
errors of the size 10−9 and 10−6 correspond to t0 =
0.1750 and t0 = 0.1675, respectively. The correspond-
ing coefficients for the power are c1 = 1.0125 and
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Fig. 3 Power of the linear regression (left) and the approximation error (right) versus t0 for (3.11) with the initial data (3.8) with
α = 0.1

c1 = 0.4503, which are close to the claimed values 1
and 1

2 in (3.10). It is not surprising that the approxi-
mation error for the second derivative uxx (t, ξ(t) − 0)
is significantly larger than that for the first derivative
ux (t, ξ(t)) since we use central difference approxi-
mations. Consequently, the coefficient c1 = 0.4503
deviates from 1

2 more significantly than the coefficient
c1 = 1.0125 deviates from 1.

The accuracy is lower for larger values ofα in the ini-
tial data (3.8). For instance, computations at α = 0.5
show that the linear regression (3.11) gives the best
approximation result at t0 = 0.2008 with an error of
size 10−6. The coefficient c1 = 0.4510 corresponds to
the power 1

2 , which isworse than in the case ofα = 0.1.
Similar discrepancy was found for ux (t, ξ(t)) with the
corresponding approximation of c1 = 1.0609. It was
surprising, however, that the accuracy of computations
for uxx (t, ξ(t)− 0) was comparable between the cases
α = 0.1 and α = 0.5. The minimal error was found in
the latter case of size 10−6 with corresponding coeffi-
cient c1 = 0.4589.

We have also computed the numerical approxima-
tions for the mass and energy integrals for the compact
area on [0, ξ(t)], see Sect. 2. After the change of vari-
ables, these quantities are given by

M(t) : = ξ(t)
∫ 1

0
u(t, y)dy,

E(t) : = ξ(t)
∫ 1

0
u2(t, y)dy. (3.12)

Figure 4 shows the evolution of the mass and energy
integrals versus t for the initial data (3.8) with α = 0.1.

The numerically detected best power fits suggest that

|M(t)| ∼ (t0 − t)2, E(t) ∼
√

(t0 − t)7, (3.13)

which are also in agreement with the balance equa-
tions (2.3) and (2.4) under the scaling laws (3.10).

4 Conclusion

To summarize, we have shown analytically and numer-
ically that the dynamics of odd viscous shocks in the
modular Burgers’ equations with three interfaces leads
to the finite-time extinction of compact regions by
means of coalescence of two consecutive interfaces.
We have specified precise scaling laws for the finite-
time extinction based on numerical simulations with
the central difference method, which is well adapted to
deal with the nonlinear interface equations.

These results open a road for futurework to establish
finite-time extinction of shocks and associated scaling
laws analytically for general initial data with multi-
ple interfaces. We anticipate that all initial data with
finitely many interfaces evolve in finite time to shock
waves with a single interface or to solutions of lin-
ear advection-diffusion equations (depending on the
boundary conditions). However, it is unclear if the scal-
ing laws, as stated in this paper, are universal for other
data. Among other open questions, one can consider
extensions of these results to the modular Burgers’
equation with additional terms and to the logarithmic
Burgers’ equation.
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Fig. 4 Mass (left) and energy (right) versus t for the time evolution for the initial data (3.8) with α = 0.1
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