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ABSTRACT

We prove L2 orbital stability of Dirac solitons in the massive Thirring
model. Our method uses local well posedness of the massive Thirring
model in L2, conservation of the charge functional, and the auto–
Bäcklund transformation. The latter transformation exists because the
massive Thirringmodel is integrable via the inverse scattering transform
method.
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1. Introduction

Among one-dimensional nonlinear Dirac equations, the Massive Thirring Model (MTM)

is particularly interesting because of its integrability via the inverse scattering transform

method [17, 20]. The nonlinear Dirac system arises as a relativistic extension of the nonlinear

Schrödinger equation and while they share common features, the Dirac system is more

di�cult for analytical studies because the classical energy-based methods do not apply to

systems with sign-inde�nite energy functionals.

We consider the Cauchy problem of the MTM system{
i(ut + ux)+ v + u|v|2 = 0,

i(vt − vx)+ u + v|u|2 = 0,
(1.1)

subject to an initial condition (u, v)|t=0 = (u0, v0) in Hs(R) for s ≥ 0. Here the subscripts

denote partial derivatives.

The Cauchy problem for theMTM system (1.1) is known to be locally well-posed inHs(R)

for s > 0 and globally well-posed for s > 1
2 [28] (see earlier results in [11]). More pertinent to

our study is the global well-posedness in L2(R) proved in the recent works [6, 14]. The next

theorem summarizes the global well-posedness result for the scopes needed in our work.

Theorem 1.1 ([6, 14]). Let (u0, v0) ∈ L2(R). There exists a global solution (u, v) ∈
C(R; L2(R)) to the MTM system (1.1) such that the charge is conserved

‖u(·, t)‖2L2 + ‖v(·, t)‖2L2 = ‖u0‖
2
L2 + ‖v0‖

2
L2 (1.2)
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228 A. CONTRERAS ET AL.

for every t ∈ R. Moreover, the solution is unique in a certain subspace of C(R; L2(R)) and
depends continuously on initial data (u0, v0) ∈ L2(R).

We are interested in orbital stability of Dirac solitons in the MTM system (1.1) given by

the explicit expressions
{
uλ(x, t) = iδ−1 sin γ sech

[
α(x + ct)− iγ2

]
e−iβ(t+cx),

vλ(x, t) = −iδ sin γ sech
[
α(x + ct)+ iγ2

]
e−iβ(t+cx),

(1.3)

where λ is an arbitrary complex nonzero parameter that determines δ = |λ|, γ = 2Arg(λ),

as well as

c =
δ2 − δ−2

δ2 + δ−2
, α =

δ2 + δ−2

2
sin γ , β =

δ2 + δ−2

2
cos γ .

Let us now state the main result of our work.

Theorem 1.2. Let (u, v) ∈ C(R; L2(R)) be a solution of the MTM system (1.1) in Theorem 1.1
and λ0 be a complex non-zero number. There exists a real positive ǫ0 such that if the initial value
(u0, v0) ∈ L2(R) satis�es

ǫ := ‖u0 − uλ0(·, 0)‖L2 + ‖v0 − vλ0(·, 0)‖L2 ≤ ǫ0, (1.4)

then for every t ∈ R, there exists λ ∈ C such that

|λ− λ0| ≤ Cǫ (1.5)

and

inf
a,θ∈R

(‖u(· + a, t)− e−iθuλ(·, t)‖L2 + ‖v(· + a, t)− e−iθvλ(·, t)‖L2) ≤ Cǫ, (1.6)

where the positive constant C is independent of ǫ and t.

The proof of Theorem 1.2 relies on the auto-Bäcklund transformation of the MTM system

(1.1) and perturbation analysis. Our approach follows the strategy used by Mizumachi and

Pelinovsky in [23] for proving L2-orbital stability of the NLS solitons. Their result was

extended by Contreras and Pelinovsky in [9] to multi-solitons of the NLS equation by using

a more general dressing transformation. Furthermore, the recent work [10] of Cuccagna

and Pelinovsky shows how an asymptotic stability of the NLS solitons can be deduced by

combining the auto-Bäcklund transformation and the nonlinear steepest descent method.

Similar ideas have been already applied to other completely integrable systems. We men-

tion for example thework [21] ofMerle andVegawhere they proveL2-stability and asymptotic

stability of the KdV solitons by using of the Miura transformation that relates the KdV

solitons to the kinks of the defocusing modi�ed KdV equation. The work [22] of Mizumachi

and Pego makes use of a linearized Bäcklund transformation to establish an asymptotic

stability of Toda lattice solitons. Ho�man and Wayne [13] formulated an abstract orbital

stability result for soliton solutions of integrable equations that can be achieved via Bäcklund

transformations.

In addition to an increasing popularity of the integrability techniques to study nonlinear

stability of soliton solutions, we note that such techniques become particularly powerful
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 229

for the MTM system (1.1). Compared to the NLS equation, proofs of global existence and

orbital stability of solitons in the nonlinear Dirac equations (including the MTM system)

are complicated by the fact that the quadratic part of the corresponding Hamiltonian is not

bounded from neither above nor below. Consequently, there exist two bands of continuous

spectrum of the linear Dirac operator for positive and negative energies, which extend to

positive and negative in�nities. For this reason, proof of orbital stability ofDirac solitons poses

a serious di�culty to the application of standard energy arguments. There are, nevertheless,

many works that deal with spectral properties of Dirac operators linearized at Dirac solitons

[1, 2, 7, 8, 12, 16]. Also, asymptotic stability of small solitary waves in the general nonlinear

Dirac equations has been considered [18, 19, 26] (see [3–5] for similar results in the space of

three dimensions).

Other than theseworks, notmuch is known about the orbital stability ofDirac solitons. The

recent work [27] of Pelinovsky and Shimabukuro incorporates the integrability of the MTM

system to obtain an additional conserved quantity that can serve as a Lyapunov functional

in the proof of H1-orbital stability of the MTM solitons. The results of [27] are restricted to

MTM solitons (1.3) with δ = 1 and γ near π2 . In the present work, we use the auto-Bäcklund

transformation to prove L2-orbital stability of the MTM solitons (1.3) for every δ ∈ R
+ and

γ ∈ (0,π) by a non-variational method.

Bäcklund transformations are used to generate solutions of a di�erential system, usually

depending on a parameter, from another solution of another di�erential system. When

this transformation relates two di�erent solutions of the same system, it is called the auto-

Bäcklund transformation. These transformations, when they exist, can be used to link the

orbital stability of a certain class of solutions to that of another class of solutions [13]. In

particular, a stable neighborhood of the zero solution can bemapped to a stable neighborhood

of one-soliton solution, and vice versa. However, there is no systematic way to �nd such

transformations and, to the best of our knowledge, this is the �rst appearance of the auto-

Bäcklund transformation for the MTM system (1.1) in the literature.

We note in passing that the associated Kaup-Newell spectral problem [17] has been exten-

sively studied and the auto-Bäcklund transformation of other related integrable equations

have been reported in the literature. In particular, the work [15] of Imai reports the Darboux

transformation of the derivative nonlinear Schrödinger equation and claims that the Darboux

transformation of the MTM system (1.1) can be obtained similarly, but no details are given.

Furthermore, the Coleman correspondence between the MTM system and the sine-Gordon

equation is studied through the inverse scattering transform [17, 24] and this may also yield

another derivation of the auto–Bäcklund transformation for the MTM system (1.1) because

the auto–Bäcklund transformation of the sine–Gordon equation is well known. For our

purposes, we derive the auto–Bäcklund transformation of the MTM system (1.1) by using

Ricatti equations and symbolic computations.

The paper is organized as follows. Section 2 introduces the auto-Bäcklund transformation

for the MTM system (1.1) and uses it to recover the MTM solitons (1.3) from zero solutions.

We also list the Lorentz transformation for the MTM system (1.1) and outline the steps in

the proof of Theorem 1.2. Section 3 reports details of the transformation from perturbed

one-soliton solutions to small solutions at the initial time t = 0. Section 4 describes the

transformation from small solutions to perturbed one-soliton solutions for all times t ∈ R.

Section 5 completes the proof of Theorem 1.2.
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230 A. CONTRERAS ET AL.

2. Bäcklund transformation for theMTM system

We begin by introducing the Lax pair and the auto-Bäcklund transformation of the MTM

system (1.1) in the laboratory coordinates. Then, we give the Lorentz transformation for the

MTM system (1.1) and outline the steps in the proof of Theorem 1.2.

The Lax pair of the MTM system (1.1) is de�ned in terms of the following two linear

operators:

L =
i

4
(|u|2 − |v|2)σ3 −

iλ

2

(
0 v̄
v 0

)
+

i

2λ

(
0 ū
u 0

)
+

i

4

(
λ2 −

1

λ2

)
σ3 (2.1)

and

A = −
i

4
(|u|2 + |v|2)σ3 −

iλ

2

(
0 v̄
v 0

)
−

i

2λ

(
0 ū
u 0

)
+

i

4

(
λ2 +

1

λ2

)
σ3. (2.2)

The formal compatibility condition ∂t∂x Eφ = ∂x∂t Eφ for the system of linear equations

∂x Eφ = L Eφ and ∂t Eφ = A Eφ (2.3)

yields the MTM system (1.1).

Note that the solution (u, v) of the MTM system (1.1) appears as coe�cients of di�erential

equations in the linear system (2.3). The auto-Bäcklund transformation relates two solutions

of the MTM system (1.1) while preserving the linear system (2.3). Now let us state the auto-

Bäcklund transformation.

Proposition 2.1. Let (u, v) be a C1 solution of theMTM system (1.1) and Eφ = (φ1,φ2)
t be a C2

nonzero solution of the linear system (2.3) associated with the potential (u, v) and the spectral
parameter λ = δeiγ /2. Then, the following transformation

u = −u
e−iγ /2|φ1|

2 + eiγ /2|φ2|2

eiγ /2|φ1|2 + e−iγ /2|φ2|2
+

2iδ−1 sin γ φ̄1φ2
eiγ /2|φ1|2 + e−iγ /2|φ2|2

(2.4)

and

v = −v
eiγ /2|φ1|2 + e−iγ /2|φ2|

2

e−iγ /2|φ1|2 + eiγ /2|φ2|2
−

2iδ sin γ φ̄1φ2
e−iγ /2|φ1|2 + eiγ /2|φ2|2

(2.5)

generates a new C1 solution (u, v) of the MTM system (1.1). Furthermore, the transformation

ψ1 =
φ̄2

|eiγ /2|φ1|2 + e−iγ /2|φ2|2|
, ψ2 =

φ̄1

|eiγ /2|φ1|2 + e−iγ /2|φ2|2|
(2.6)

yields a new C2 nonzero solution Eψ = (ψ1,ψ2)
t of the linear system (2.3) associated with the

new potential (u, v) and the same spectral parameter λ.

Proof. Setting Ŵ = φ1/φ2 in the linear system (2.3) with Lax operators (2.1) and (2.2) yields

the Riccati equations




∂xŴ = 2i(ρ22 − ρ21)Ŵ +
i

2
(|u|2 − |v|2)Ŵ + i(ρ2v − ρ1u)Ŵ

2 − i(ρ2v̄ − ρ1ū),

∂tŴ = 2i(ρ22 + ρ21)Ŵ −
i

2
(|u|2 + |v|2)Ŵ + i(ρ2v + ρ1u)Ŵ

2 − i(ρ2v̄ + ρ1ū),
(2.7)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 231

where ρ1 = 1
2λ and ρ2 = λ

2 . If we choose Ŵ
′ := 1

Ŵ
, u := M(Ŵ; ρ1)f (Ŵ; u, ρ1), and v :=

M(Ŵ; ρ2)f (Ŵ; v, ρ2) with

M(Ŵ; k) = −
k|Ŵ|2 + k̄

k̄|Ŵ|2 + k
, f (Ŵ; q, k) = q +

4iIm(k2)Ŵ

k|Ŵ|2 + k̄
,

then the Riccati equations (2.7) remain invariant in variables Ŵ′, u, and v. This invariance

has been checked with Wolfram’s Mathematica. The transformation formulas above yield

representation (2.4) and (2.5). Note that if Eφ = E0 at one point (x0, t0), then Eφ = E0 for all

(x, t). If (u, v) is C1 in (x, t), Eφ is C2 in (x, t), and Eφ 6= E0, then (u, v) is C1 for every x ∈ R and

t ∈ R.

The validity of the transformation (2.6) has also been veri�edwithWolfram’sMathematica.

Again, if Eφ is C2 in (x, t) and Eφ 6= E0, then Eψ is C2 and Eψ 6= E0 for every x ∈ R and t ∈ R.

Let us denote the transformations (2.4)–(2.5) by B, hence

B : (u, v, Eφ, λ) 7→ (u, v),

where Eφ is a corresponding vector of the linear system (2.3) associatedwith the potential (u, v)
and the spectral parameter λ.

In the simplest example, the MTM soliton (1.3) is recovered by the transformations (2.4)

and (2.5) from the zero solution (u, v) = (0, 0), that is,

B : (0, 0, Eφ, λ) 7→ (uλ, vλ).

Indeed, a solution satisfying the linear system (2.3) with (u, v) = (0, 0) is given by
{
φ1(x, t) = e

i
4 (λ

2−λ−2)x+ i
4 (λ

2+λ−2)t ,

φ2(x, t) = e−
i
4 (λ

2−λ−2)x− i
4 (λ

2+λ−2)t .
(2.8)

Substituting this expression into (2.4) and (2.5) yields (u, v) = (uλ, vλ) given by (1.3).

Another important example is a transformation from the MTM solitons (1.3) to the zero

solution. We shall only give the explicit expressions of this transformation for the case |λ| =
δ = 1. By (2.6) and (2.8), we can �nd the vector Eψ solving the linear system (2.3) with (uλ, vλ)
given by (1.3). When λ = eiγ /2, the vector Eψ is given by




ψ1(x, t) = e

1
2 x sin γ+ i

2 t cos γ
∣∣∣sech

(
x sin γ − i

γ

2

)∣∣∣ ,
ψ2(x, t) = e−

1
2 x sin γ− i

2 t cos γ
∣∣∣sech

(
x sin γ − i

γ

2

)∣∣∣ .
(2.9)

We note that Eψ has exponential decay as |x| → ∞ and, therefore, it is an eigenvector of the

spectral problem ∂x Eψ = L Eψ for the eigenvalue λ = eiγ /2. Substituting the eigenvector Eψ into

the transformation (2.4) and (2.5), we obtain the zero solution from theMTM soliton, that is,

B : (uλ, vλ, Eψ , λ) 7→ (0, 0).

When |λ| = δ = 1 for (uλ, vλ) given by (1.3), we realize that c = 0 and hence the MTM

solitons (1.3) are stationary. Travelling MTM solitons with c 6= 0 can be recovered from the

stationary MTM solitons with c = 0 by the Lorentz transformation. Hence, without loss of

generality, we can choose λ0 = eiγ0/2 for a �xed γ0 ∈ (0,π) in Theorem 1.2. Let us state the

Lorentz transformation, which can be veri�ed with the direct substitutions.
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232 A. CONTRERAS ET AL.

Proposition 2.2. Let (u, v) be a solution of the MTM system (1.1) and let Eφ be a solution of the
linear system (2.3) associated with (u, v) and λ = eiγ /2. Then,

{
u′(x, t) := δ−1u(k1x + k2t, k1t + k2x),

v′(x, t) := δv(k1x + k2t, k1t + k2x),
k1 :=

δ2 + δ−2

2
, k2 :=

δ2 − δ−2

2
, (2.10)

is a new solution of the MTM system (1.1), whereas

Eφ′(x, t) := Eφ(k1x + k2t, k1t + k2x), (2.11)

is a new solution of the linear system (2.3) associated with (u′, v′) and λ = δeiγ /2.

The stationary MTM solitons at t = 0 can be written by using the expressions



uγ (x) = i sin γ sech

(
x sin γ − i

γ

2

)
,

vγ (x) = −i sin γ sech
(
x sin γ + i

γ

2

)
,

(2.12)

that depend on the parameter γ ∈ (0,π). The time oscillation, gauge translation, and space

translation can be included with the help of the transformation
{
u(x, t) = eiθ−it cos γ uγ (x + a),

v(x, t) = eiθ−it cos γ vγ (x + a),
(2.13)

where θ , a ∈ R are two translational parameters of the stationary MTM solitons.

Let us now describe our method for the proof of Theorem 1.2. First we clarify some

notations: (uγ0 , vγ0) denotes one-soliton solution given by (2.12) with a �xed γ0 ∈ (0,π),
Eψγ0 denotes the corresponding eigenvector given by (2.9) for t= 0, whereas L(u, v, λ)
and A(u, v, λ) denote the Lax operators L and A that contain (u, v) and a spectral

parameter λ.

The main steps for the proof of Theorem 1.2 are the following. First, we �x an initial data

(u0, v0) ∈ H2(R) such that (u0, v0) is su�ciently close to (uγ0 , vγ0) in L2-norm, according to

the bound (1.4).

Step 1: From a perturbed one-soliton solution to a small solution at t = 0. In this step, we

need to study the vector solution Eψ of the linear equation

∂x Eψ = L(u0, v0, λ) Eψ at time t = 0. (2.14)

In addition to proving the existence of an exponentially decaying solution Eψ of the linear

equation (2.14) for an eigenvalue λ, we need to prove that if (u0, v0) is close to (uγ0 , vγ0) in
L2-norm, then Eψ is close to Eψγ0 in H1-norm and λ is close to eiγ0/2. Parameter λ in bound

(1.5) is now determined by the eigenvalue of the linear equation (2.14).

The earlier example of obtaining the zero solution from the one-soliton solution gives

a good insight that the auto-Bäcklund transformation given by Proposition 2.1 produces a

function (p0, q0) at t = 0,

B : (u0, v0, Eψ , λ) 7→ (p0, q0), (2.15)

such that (p0, q0) is small in L2-norm. Moreover, if (u0, v0) ∈ H2(R), then (p0, q0) ∈ H2(R).

Step 2: Time evolution of the transformed solution. By the standard well-posedness theory

for Dirac equations [11, 25, 28], there exists a unique global solution (p, q) ∈ C(R;H2(R)) to
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 233

the MTM system (1.1) such that (p, q)|t=0 = (p0, q0). Thanks to the L2-conservation (1.2),

the solution (p(·, t), q(·, t)) remains small in the L2-norm for every t ∈ R.

Step 3: From a small solution to a perturbed one-soliton solution for all times t ∈ R. In this

step, we are interested in the existence problem of the vector function Eφ that solves the linear

system

∂x Eφ = L(p, q, λ) Eφ, ∂t Eφ = A(p, q, λ) Eφ (2.16)

where (p, q) ∈ C(R;H2(R)) is the unique global solution to the MTM system (1.1) starting

with the initial data (p, q)|t=0 = (p0, q0) inH2(R). Using the vector Eφ and the auto-Bäcklund

transformation given by Proposition 2.1, we obtain a new solution (u, v) to the MTM

system (1.1),

B : (p, q, Eφ, λ) 7→ (u, v). (2.17)

Moreover, if (p, q) ∈ C(R;H2(R)), then (u, v) ∈ C(R;H2(R)). Some translational parameter

a and θ arise as functions of time t in the construction of the most general solution of the

linear equation ∂x Eφ = L(p, q, λ) Eφ in the system (2.16). Bound (1.6) on the solution (u, v) is
found from the analysis of the auto–Bäcklund transformation (2.17).

To summarize, there are three key ingredients in our method: mapping of an L2-
neighborhood of the one-soliton solution to that of the zero solution at t = 0, the L2-
conservation of the MTM system, and mapping of an L2-neighborhood of the zero solution

to that of the one-soliton solution for every t ∈ R. As a result, if the initial data is su�ciently

close to the one-soliton solution in L2 according to the initial bound (1.4), then the solution

of the MTM system remains close to the one-soliton solution in L2 for all times according to

the �nal bound (1.6). A schematic picture is as follows:

Finally, we can remove the technical assumption that (u0, v0) ∈ H2(R) by an approxima-

tion argument in L2(R). This is possible because theMTM system (1.1) is globally well-posed

in L2(R) by Theorem 1.1, whereas the bounds (1.5) and (1.6) are found to be uniform for

the sequence of approximating solutions of the MTM system (1.1), the initial data of which

approximate (u0, v0) in L2(R).
We note that the solution (p, q) to the MTM system (1.1) in a L2-neighborhood of the

zero solution could contain some L2-small MTM solitons, which are related to the discrete

spectrum of the spectral problem (2.14). Su�cient conditions for the absence of the discrete

spectrum were derived in [25], and the L2 smallness of the initial data is not generally

su�cient for excluding eigenvalues of the discrete spectrum. If the small solitons occur in the

Cauchy problem associated with the MTM system (1.1), asymptotic decay of solutions (u, v)
to the MTM solitons given by (1.3) cannot be proved, in other words, (p, q) do not decay to

(0, 0) in L∞-norm as t→ ∞. Therefore, a more restrictive hypothesis on the initial data is

generally needed to establish asymptotic stability of MTM solitons. See [10] for restrictions
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234 A. CONTRERAS ET AL.

on initial data of the cubic NLS equation required in the proof of asymptotic stability of NLS

solitons.

We also note that modulation equations for parameters a and θ in Theorem 1.2 are

not included in our method. This can be viewed as an advantage of the auto-Bäcklund

transformation, which does not rely on the global control of the dynamics of a and θ bymeans

of the modulation equations. Values of a and θ are related to arbitrary constants that appear

in the construction of Eφ as a solution of the linear equation ∂x Eφ = L(p, q, λ) Eφ in the system

(2.16). These values are eliminated in the in�mum norm stated in the orbital stability result

(1.6) in Theorem 1.2.

3. From a perturbed one-soliton solution to a small solution

Here we use the auto-Bäcklund transformation given by Proposition 2.1 to transform a L2-
neighborhood of the one-soliton solution to that of the zero solution at t = 0. Let (u0, v0) ∈
L2(R) be the initial data of the MTM system (1.1) satisfying bound (1.4) for λ0 = eiγ0/2. Let
Eψ be a decaying eigenfunction of the spectral problem

∂x Eψ = L(u0, v0, λ) Eψ , (3.1)

for an eigenvalue λ. First, we show that under the condition (1.4), an eigenvector Eψ always

exists and λ is close to λ0. Then, we write λ = δeiγ /2 and de�ne

p0 := −u0
e−iγ /2|ψ1|

2 + eiγ /2|ψ2|
2

eiγ /2|ψ1|2 + e−iγ /2|ψ2|2
+

2iδ−1 sin γ ψ̄1ψ2

eiγ /2|ψ1|2 + e−iγ /2|ψ2|2
(3.2)

and

q0 := −v0
eiγ /2|ψ1|

2 + e−iγ /2|ψ2|
2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
−

2iδ sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
. (3.3)

We intend to show that (p0, q0) is small in L2 norm.

When (u0, v0) = (uγ0 , vγ0), the spectral problem (3.1) has exactly one decaying eigenvector
Eψ given by




ψ1(x) = e

1
2 x sin γ0

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ ,
ψ2(x) = e−

1
2 x sin γ0

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ ,
(3.4)

which corresponds to the eigenvalueλ = λ0 = eiγ0/2. The other linearly independent solution
Eξ of the spectral problem (3.1) with λ = λ0 is given by





ξ1(x) = e
1
2 x sin γ0(e−2x sin γ0 − x sin(2γ0))

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ ,

ξ2(x) = −e−
1
2 x sin γ0(e2x sin γ0 + 2 cos γ0 + x sin(2γ0))

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ .
(3.5)

This solution grows exponentially as |x| → ∞. Therefore, dim ker(∂x − L(uγ0 , vγ0 , λ0)) = 1.

For clarity, we denote the decaying eigenvector (3.4) by Eψγ0 .
When (u0, v0) is close to (uγ0 , vγ0) in L2-norm, we would like to construct a decaying

solution Eψ of the spectral problem (3.1), which is close to the eigenvector Eψγ0 . This is achieved
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 235

in Lemma 3.1 below. To simplify analysis, we introduce a unitary transformation in the linear

equation (3.1),

Eψ =

[
f 0

0 f̄

]
Eφ, (3.6)

where f (x) = e
i
4

∫ x
0 (|u0|

2−|v0|2)dx is well de�ned for any (u0, v0) ∈ L2(R). Then, the linear
equation (3.1) becomes

∂x Eφ = M(u0, v0, λ) Eφ, (3.7)

where

M(u0, v0, λ) :=
i

4

[
λ2 − λ−2 2(ū0λ−1 − v̄0λ)f̄ 2

2(u0λ−1 − v0λ)f 2 λ−2 − λ2

]
.

The following lemma gives the main result of the perturbation theory. Below, A . B means

that there exists a positive ǫ-independent constant C such that A ≤ CB for all su�ciently

small ǫ.

Lemma 3.1. For a �xed λ0 = eiγ0/2 with γ0 ∈ (0,π), there exists a real positive ǫ such that if

‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 ≤ ǫ, (3.8)

then there exists an eigenvector Eψ ∈ H1(R;C2) of the spectral problem (3.1) for an eigenvalue
λ ∈ C such that

|λ− λ0| + ‖ Eψ − Eψγ0‖H1 . ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 . (3.9)

Proof. We divide the proof into four steps that accomplish the method of Lyapunov–Schmidt

reductions. Step 1 is a set-up for the perturbation theory under the condition (3.8). Step 2 splits

the problem into two parts by appropriate projections. In Step 3, we solve the �rst part of the

problem by using the implicit function theorem. In Step 4, we solve the residual equation that

determines uniquely λ ∈ C and Eψ ∈ H1(R;C2) satisfying bound (3.9).

Step 1. Set u0 = uγ0 + us and v0 = vγ0 + vs, where (us, vs) ∈ L2(R) are remainder terms,

which are O(ǫ) small in L2 norm, according to the bound (3.8). We expand 1/λ2 and 1/λ

around λ0 in Taylor series. Using the fact |uγ0 | = |vγ0 |, we also expand u0f 2 and v0f 2 in

Taylor series, e.g.

u0f
2 = u0e

i
2

∫ x
0 (|u0|

2−|v0|2)dx = (uγ0 + us)

(
1 + g +

1

2
g2 + O(g3)

)
, (3.10)

where

g := i

∫ x

0
Re

(
usūγ0 − vsv̄γ0

)
dx +

i

2

∫ x

0
(|us|

2 − |vs|
2)dx.

Note that g is well de�ned for (us, vs) ∈ L2(R). From these expansions, the linear equation

(3.7) becomes

(∂x − Mγ0)
Eφ = 1M Eφ, (3.11)

where

Mγ0 = M(uγ0 , vγ0 , λ0) =
1

2

[
− sin γ0 i(e−iγ0/2ūγ0 − eiγ0/2v̄γ0)

i(e−iγ0/2uγ0 − eiγ0/2vγ0) sin γ0

]
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236 A. CONTRERAS ET AL.

and the perturbation term1M applied to any Eφ ∈ H1(R) satis�es the inequality

‖1M Eφ‖L2 . (|λ− λ0| + ‖us‖L2 + ‖vs‖L2)‖φ‖H1 , (3.12)

thanks to the embedding of H1(R) in L∞(R) ∩ L2(R). Note that the bound (3.12) cannot

be derived in the context of the spectral problem (3.1) without the unitary transformation

(3.6), which removes the term i
4 (|u|

2 − |v|2)σ3 from the operator L in (2.1). This explains a

posteriori why we are using the technical transformation (3.6).

We will later need the explicit computation of the leading order part in the perturbation

term1M with respect to (λ− λ0), that is,

1M =
i

2
(λ− λ0)

[
(λ0 + λ−3

0 ) −(ūγ0λ
−2
0 + v̄γ0)

−(uγ0λ
−2
0 + vγ0) −(λ0 + λ−3

0 )

]
+ O((λ− λ0)

2, ‖us‖L2 , ‖vs‖L2).

(3.13)

Step 2.We aim to construct an appropriate projection operator by which we split the linear

equation (3.11) into two parts. Recall that dim ker(∂x−Mγ0) = 1 and let Eφγ0 ∈ ker(∂x−Mγ0)

and Eηγ0 ∈ ker(∂x + M∗
γ0
). These null vectors can be obtained explicitly:

Eφγ0(x)=

[
e
1
2 x sin γ0

e−
1
2 x sin γ0

]∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ , Eηγ0(x)=

[
e−

1
2 x sin γ0

−e
1
2 x sin γ0

]∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣ .

We note that 〈Eηγ0 , Eφγ0〉L2 = 0 but 〈σ3Eηγ0 , Eφγ0〉L2 6= 0, where σ3 =
[
1 0
0 −1

]
. Also note that

Eφγ0 = Eψγ0 given by (3.4) because |uγ0 | = |vγ0 |.
Let us make the following decomposition:

Eφ = Eφγ0 + Eφs, (3.14)

where Eφs is de�ned uniquely from the normalization condition 〈σ3Eηγ0 , Eφ〉L2 = 〈σ3Eηγ0 , Eφγ0〉L2 ,
which yields the orthogonality condition 〈σ3Eηγ0 , Eφs〉L2 = 0. Then we introduce the projection

operator Pγ0 : L
2(R;C2) → L2(R;C2) ∩ span{σ3Eηγ0}

⊥ de�ned by

Pγ0 Eφ = Eφ −
〈σ3Eηγ0 , Eφ〉L2

〈σ3Eηγ0 , Eφγ0〉L2
Eφγ0 .

Note that Pγ0 Eφs = Eφs and Pγ0 Eφγ0 = E0.
From equations (3.11) and (3.14), we de�ne the operator equation

F( Eφs, us, vs, λ) := (∂x − Mγ0)
Eφs −1M( Eφγ0 + Eφs) = 0. (3.15)

Clearly, since dim ker(∂x−Mγ0) = 1 6= 0, the Fréchet derivativeD Eφs
F(0, 0, 0, λ0) = ∂x−Mγ0

has no bounded inverse. Let P̂γ0 = σ3Pγ0σ3 and notice that

P̂γ0 : L
2(R;C2) → L2(R;C2) ∩ span{Eηγ0}

⊥.

We decompose equation (3.15) by the projection P̂γ0 into two equations

G( Eφs, us, vs, λ) := P̂γ0F( Eφs, us, vs, λ) = 0, (3.16)

H( Eφs, us, vs, λ) := (I − P̂γ0)F( Eφs, us, vs, λ) = 0. (3.17)

Step 3. First, we note that since dim ker(∂x − Mγ0) = dim ker(∂x + M∗
γ0
) =

1 < ∞, then ∂x − Mγ0 is a Fredholm operator of index zero. Observe that Range(G)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 237

= L2(R;C2)∩ span{Eηγ0}
⊥, where Eηγ0 ∈ ker{∂x+M∗

γ0
}. By the Fredholm alternative theorem,

D Eφs
G(E0, 0, 0, λ0) = P̂γ0D Eφs

F(E0, 0, 0, λ0) = P̂γ0(∂x − Mγ0)Pγ0 has a bounded inverse operator

given by

Pγ0(∂x − Mγ0)
−1P̂γ0 : L

2(R;C2) ∩ span{Eηγ0}
⊥ → H1(R;C2) ∩ span{σ3Eηγ0}

⊥. (3.18)

Next we claim that for some (us, vs) ∈ L2(R) and λ ∈ C, there exists a unique Eφ∗ ∈
H1(R;C2) such that G( Eφ∗, us, vs, λ) = 0. This can be done by the implicit function theorem.

The function

G : H1(R;C2)× L2(R;C)× L2(R;C)× C → L2(R;C2) ∩ span{Eηγ0}
⊥

is C1 in us, vs (and their complex conjugates), λ, and Eφs. We also �nd that G(E0, 0, 0, λ0) = 0

and the derivative D Eφs
G(E0, 0, 0, λs) is invertible with the bounded inverse (3.18). For some

ǫ, ρ > 0, let

Uǫ := {(us, vs, λ) ∈ L2(R)× L2(R)× C : ‖us‖L2 + ‖vs‖L2 + |λ− λ0| < ǫ}

and

Vρ := {Eφs ∈ H1(R;C2) ∩ span{σ3Eηγ0}
⊥ : ‖ Eφs‖H1 ≤ ρ}.

Then, by the implicit function theorem, for su�ciently small ǫ, ρ > 0, and for each

(us, vs, λ) ∈ Uǫ , there exists a unique Eφ∗ ∈ Vρ such that G( Eφ∗, us, vs, λ) = 0.

A unique element Eφ∗ depends implicitly on (us, vs, λ), that is, we can write Eφ∗ :=
Eφ∗(us, vs, λ). From equations (3.15) and (3.16), we have

(I − Pγ0(∂x − Mγ0)
−1P̂γ01M) Eφ∗ = Pγ0(∂x − Mγ0)

−1P̂γ01M Eφγ0 (3.19)

and from boundedness of the inverse operator given by (3.18) and inequality (3.12), we obtain

‖ Eφ∗‖H1 . ‖Pγ0(∂x − Mγ0)
−1P̂γ01M Eφγ0‖H1 . ‖1M Eφγ0‖L2

. |λ− λ0| + ‖us‖L2 + ‖vs‖L2 , (3.20)

if (us, vs, λ) ∈ Uǫ .

Step 4. Lastly we address the bifurcation equation (3.17) to determine λ ∈ C. From

equations (3.15) and (3.17), the bifurcation equation can be written explicitly as

I(us, vs, λ) := 〈Eηγ0 ,1M( Eφγ0 + Eφ∗(us, vs, λ))〉L2 = 0, (3.21)

where Eφ∗(us, vs, λ) is uniquely expressed from (3.19) if (us, vs, λ) ∈ Uǫ . It follows from (3.12)

and (3.20) that I(0, 0, λ0) = 0.

By using the explicit expression (3.13), we check that s := ∂λI(0, 0, λ0) 6= 0, where

s =
i

2
〈Eηγ0 ,

[
(λ0 + λ−3

0 ) −(ūγ0λ
−2
0 + v̄γ0)

−(uγ0λ
−2
0 + vγ0) −(λ0 + λ−3

0 )

]
Eφγ0〉L2

= ie−iγ0/2
∫

R

(
2 cos γ0

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣
2
+ sin2 γ0

∣∣∣sech
(
x sin γ0 − i

γ0

2

)∣∣∣
4
)
dx

= 4ie−iγ0/2
∫

R

1 + cos γ0 cosh(2x sin γ0)

(cosh(2x sin γ0)+ cos γ0)2
dx

=
4ie−iγ0/2

sin γ0
.

D
ow

nl
oa

de
d 

by
 [

M
cM

as
te

r 
U

ni
ve

rs
ity

] 
at

 0
7:

12
 0

4 
M

ar
ch

 2
01

6 



238 A. CONTRERAS ET AL.

As a result, equation (3.21) can be used to uniquely determine the spectral parameter λ

if (us, vs, λ) ∈ Uǫ . From inequalities (3.12) and (3.20), we obtain that this λ satis�es the

bound

|λ− λ0| . ‖us‖L2 + ‖vs‖L2 . (3.22)

With inequalities (3.20) and (3.22), the proof of Lemma 3.1 is complete.

Remark 1. A spectral parameter λ in Lemma 3.1 may not be on the unit circle |λ| = 1 even

if λ0 = eiγ0/2 is on the unit circle. In what follows, we develop the theory when λ occurs on

the unit circle, hence we write λ = eiγ /2 for some γ ∈ (0,π). All results obtained below can

be generalized to the case of |λ| 6= 1 by using the Lorentz transformation in Proposition 2.2.

In Lemma 3.4 below, we will show that a solution Eφ determined in the proof of Lemma

3.1 can be written explicitly as the perturbed solution around Eφγ in suitable function

spaces. Then, in Lemma 3.6 below, we will use this representation and the auto-Bäcklund

transformation (3.2) and (3.3) to show that (p0, q0) is small in L2 norm.

To develop this analysis, we �rst prove several technical results. Let (u, v) = (uγ , vγ ),
λ = eiγ /2 and consider the linear inhomogeneous equation

(∂x − Mγ )Ew = Ef , (3.23)

where

Mγ =
1

2

[
− sin γ i(e−iγ /2ūγ − eiγ /2v̄γ )

i(e−iγ /2uγ − eiγ /2vγ ) sin γ

]
.

We introduce Banach spaces X = X1 ×X2 and Y = Y1 ×Y2 such that for Ew = (w1,w2)
t ∈ X

and Ef = (f1, f2)t ∈ Y , we have

‖Ew‖X := ‖w1‖X1 + ‖w2‖X2 , ‖Ef ‖Y := ‖f1‖Y1 + ‖f2‖Y2 ,

where

‖w1‖X1 := inf
w1=v1+u1

(∥∥∥v1e−
x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L∞
x

+
∥∥∥u1e

x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x∩L

∞
x

)
,

‖w2‖X2 := inf
w2=v2+u2

(∥∥∥v2e
x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L∞
x

+
∥∥∥u2e−

x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x∩L

∞
x

)

and

‖f1‖Y1 := inf
f1=g1+h1

(∥∥∥g1e
x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x

+
∥∥∥h1e−

x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x∩L

1
x

)
,
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 239

‖f2‖Y2 := inf
f2=g2+h2

(∥∥∥g2e−
x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x

+
∥∥∥h2e

x
2 sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x∩L

1
x

)
.

It is obvious that X and Y are continuously embedded into L2(R). We shall estimate the

bound of the operator Pγ (∂x−Mγ )
−1P̂γ : Y → X, where projection operators Pγ and P̂γ are

de�ned in the proof of Lemma 3.1. First, we will obtain an explicit solution Ew ∈ H1(R;C2)∩
span{σ3Eηγ }⊥ for the linear inhomogeneous equation (3.23) when Ef ∈ L2(R;C2) ∩ ker(∂x +

M∗
γ )

⊥. Then, we will prove that the mapping Y ∋ Ef 7→ Ew ∈ X is bounded. These goals are

achieved in the next two lemmas.

Lemma 3.2. For any Ef = (f1, f2)t ∈ L2(R;C2) ∩ span{Eηγ }⊥, there exists a unique solution
Ew ∈ H1(R;C2) ∩ span{σ3Eηγ }⊥ of the inhomogeneous equation (3.23) that can be written as

Ew(x) =
1

4
Eφγ (x)

[
k(Ef )+ W−(x)+ W+(x)

]
+

1

4
Eξγ (x)

∫ x

−∞
Eηγ (y) · Ef (y)dy, (3.24)

where

W−(x) :=

∫ x

−∞
e−

1
2 y sin γ (e2y sin γ + 2 cos γ + y sin(2γ ))

∣∣∣sech
(
y sin γ − i

γ

2

)∣∣∣ f1(y)dy,

W+(x) :=

∫ ∞

x
e−

3
2 y sin γ (−1 + e2y sin γ y sin(2γ ))

∣∣∣sech
(
y sin γ − i

γ

2

)∣∣∣ f2(y)dy,

and k(Ef ) is a continuous linear functional on L2(R;C2).

Proof. Since ∂x − Mγ : H1(R;C2) → L2(R;C2) is a Fredholm operator of index zero

and ker(∂x + M∗
γ ) = span{Eηγ }, the inhomogeneous equation (3.23) has a solution in

H1(R;C2) if and only if Ef ∈ L2(R;C2) ∩ span{Eηγ }⊥. For uniqueness, we add the constraint

Ew ∈ span{σ3Eηγ }⊥.
Recall that U = [Eφγ , Eξγ ] is a fundamental matrix of the homogeneous equation (∂x −

Mγ )U = 0 and Eηγ is a decaying solution of (∂x + M∗
γ )Eη = E0. All functions are known

explicitly as

Eφγ (x) =

[
e
1
2 x sin γ

e−
1
2 x sin γ

]
Q(x), Eηγ (x) =

[
e−

1
2 x sin γ

−e
1
2 x sin γ

]
Q(x),

and

Eξγ (x) =

[
e
1
2 x sin γ (e−2x sin γ − x sin(2γ ))

−e−
1
2 x sin γ (e2x sin γ + 2 cos γ + x sin(2γ ))

]
Q(x),

where

Q(x) :=
∣∣∣sech

(
x sin γ − i

γ

2

)∣∣∣ .

From variation of parameters, we have the explicit representation (3.24), where k(Ef ) is the
constant of integration and the other constant is set to zero to ensure that Ew ∈ H1(R;C2). It

remains to prove that every term in the explicit expression (3.24) belongs to L2(R;C2).
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240 A. CONTRERAS ET AL.

Since | Eφγ (x)| . e−
|x|
2 sin γ and |Q(x)| . e−|x| sin γ for all x ∈ R, we have

‖W− Eφγ ‖L2

.

∥∥∥∥e
− 1

2 |x| sin γ
∫ x

−∞
e−

1
2 y sin γ (e2y sin γ + 2 cos γ + y sin(2γ ))Q(y)f1(y)dy

∥∥∥∥
L2x

.

∥∥∥∥
∫ x

−∞
e
1
2 (y−x) sin γ |f1(y)|dy

∥∥∥∥
L2x

+

∥∥∥∥e
− 1

2 |x| sin γ
∫ x

−∞
e−

1
2 |y| sin γ (2 + |y|)|f1(y)|dy

∥∥∥∥
L2x

. ‖Ef ‖L2 .

and

‖W+ Eφγ ‖L2 .

∥∥∥∥e
− 1

2 |x| sin γ
∫ ∞

x
e−

3
2 y sin γ (−1 + e2y sin γ y sin(2γ ))Q(y)f2(y)dy

∥∥∥∥
L2x

.

∥∥∥∥
∫ ∞

x
e
1
2 (x−y) sin γ |f2(y)|dy

∥∥∥∥
L2x

+

∥∥∥∥e
− 1

2 |x| sin γ
∫ ∞

x
e−

1
2 |y| sin γ |y||f2(y)|dy

∥∥∥∥
L2x

. ‖Ef ‖L2 ,

where notation ‖f (x)‖L2x is used in place of ‖f (·)‖L2 . Since Ef ∈ L2(R;C2) ∩ span{Eηγ }⊥, then

∫ ∞

x
Eηγ (y) · Ef (y)dy = −

∫ x

−∞
Eηγ (y) · Ef (y)dy.

Using this equality, we can estimate the last term in the explicit expression (3.24) as follows
∥∥∥∥Eξγ (x)

∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
L2x

.

∥∥∥∥e
− 1

2 x sin γ
∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
L2x

+

∥∥∥∥e
1
2 x sin γ

∫ ∞

x
Eηγ (y) · Ef (y)dy

∥∥∥∥
L2x

.

∥∥∥∥
∫ x

−∞
e
1
2 (y−x) sin γ |Ef (y)|dy

∥∥∥∥
L2x

+

∥∥∥∥
∫ ∞

x
e−

1
2 (y−x) sin γ |Ef (y)|dy

∥∥∥∥
L2x

. ‖Ef ‖L2 ,

where |Ef | is the vector norm of the 2-vector Ef . Since 〈σ3Eηγ , Eφγ 〉L2 6= 0, k(Ef ) is uniquely
determined from the orthogonality condition 〈σ3Eηγ , Ew〉L2 = 0. Since all other terms in (3.24)

are in L2(R;C2), k(Ef ) is bounded for all Ef ∈ L2(R;C2). Therefore, k(Ef ) is a continuous linear
functional on L2(R;C2).

Lemma 3.3. Let Ef ∈ Y ∩ span{Eηγ }⊥ and let Ew be a solution of the inhomogeneous equation

(3.23) in Lemma 3.2. Then there is a Ef -independent constant C > 0 such that ‖Ew‖X ≤ C‖Ef ‖Y .

Proof. The solution Ew is given by the explicit formula (3.24). We assume now that Ef belongs
to the exponentially weighted space Y and prove that Ew belongs to the exponentially weighted

space X.
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Since ‖a Eφγ ‖X ≤ 2‖a‖L∞ for any a ∈ L∞(R), k(Ef ) is a continuous linear functional on
L2(R;C2), and Y is embedded into L2(R;C2), we have

‖k(Ef ) Eφγ ‖X . |k(Ef )| . ‖Ef ‖L2 . ‖Ef ‖Y .

The second term in (3.24) is estimated by

‖W− Eφγ ‖X .

∥∥∥∥
∫ x

−∞
e−

1
2 y sin γ (e2y sin γ + 2 cos γ + y sin(2γ ))Q(y)f1(y)dy

∥∥∥∥
L∞
x

. inf
f1=g1+h1

(∥∥∥g1e−
1
2 x sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L1x

+
∥∥∥h1e

1
2 x sin γ

∣∣∣cosh
(
x sin γ − i

γ

2

)∣∣∣
∥∥∥
L2x

)

≤ ‖Ef ‖Y1 .

Similarly, the third term in (3.24) is estimated by ‖W+ Eφγ ‖X . ‖Ef ‖Y2 . The last term in (3.24)

is estimated as follows:∥∥∥∥Eξγ

∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
X

≤ N1 + N2 + N3 + N4,

where

N1 =

∥∥∥∥e
−x sin γ

∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
L∞
x ∩L2x

,

N2 =

∥∥∥∥x sin(2γ )
∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
L∞
x

,

N3 =

∥∥∥∥e
x sin γ

∫ ∞

x
Eηγ (y) · Ef (y)dy

∥∥∥∥
L∞
x ∩L2x

,

N4 =

∥∥∥∥(2 cos γ + x sin(2γ ))
∫ x

−∞
Eηγ (y) · Ef (y)dy

∥∥∥∥
L∞
x

.

Since |Eηγ (x)| . e−
|x|
2 sin γ and ‖e

|x|
2 sin γ Ef ‖L2x . ‖Ef ‖Y for all x ∈ R, we have

N1 .

∥∥∥∥
∫ x

−∞
e−(y−x) sin γ e

1
2 |y| sin γ (|f1| + |f2|)dy

∥∥∥∥
L∞
x ∩L2x

≤ ‖e
1
2 |x| sin γ f1‖L2x + ‖e

1
2 |x| sin γ f2‖L2x

. ‖Ef ‖Y .

The other termsN2,N3, andN4 are estimated similarly. Altogether, these estimates justify the

bound ‖Ew‖X ≤ C‖Ef ‖Y for a Ef -independent positive constant C.

Lemma 3.4. Under the condition (3.8), assume that λ = eiγ /2 is the eigenvalue of the
spectral problem (3.1) for the eigenvector Eψ ∈ H1(R;C2) determined in Lemma 3.1. Then,
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242 A. CONTRERAS ET AL.

the eigenvector can be written in the form (3.6) with

Eφ(x) =

[
e
1
2 x sin γ (1 + r11(x))+ e−

1
2 x sin γ r12(x)

e
1
2 x sin γ r21(x)+ e−

1
2 x sin γ (1 + r22(x))

] ∣∣∣sech
(
x sin γ − i

γ

2

)∣∣∣ , (3.25)

where components rij for 1 ≤ i, j ≤ 2 satisfy the bound

‖r11‖L∞ + ‖r12‖L2∩L∞ + ‖r21‖L2∩L∞ + ‖r22‖L∞ . ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 . (3.26)

Proof. Recall the projection operators Pγ : L2(R;C2) → L2(R;C2) ∩ span{σ3Eηγ }⊥ and P̂γ :

L2(R;C2) → L2(R;C2) ∩ span{Eηγ }⊥ introduced in the proof of Lemma 3.1. The existence

of the eigenvector Eφ ∈ H1(R;C2) of the spectral problem (3.7) for the eigenvalue λ = eiγ /2

has been established in Lemma 3.1. Therefore, we are using operators Pγ and P̂γ to prove

additional properties of the eigenvector Eφ.
Using the projection operator Pγ , we decompose Eφ = Eφγ + Eφs and rewrite the spectral

problem (3.7) in the form
(
∂x − Mγ

)
Eφs = 1M̃( Eφγ + Eφs), (3.27)

where1M̃ is the anti-diagonal matrix that contains the perturbation terms u0 − uγ and v0 −
vγ only. Because Eφs ∈ H1(R;C2) exists by Lemma 3.1, we realize that 1M̃( Eφγ + Eφs) =
P̂1M̃( Eφγ + Eφs), which yields equivalently the constraint

〈Eηγ ,1M̃( Eφγ + Eφs)〉L2 = 0. (3.28)

Therefore, we write the perturbed equation (3.27) in the form

Eφs = Pγ
(
∂x − Mγ

)−1
P̂γ1M̃( Eφγ + Eφs). (3.29)

Note that the operator P̂γ applies to the sum of the two terms in the right-hand-side of (3.29)

thanks to (3.28) and cannot be applied to each term separately.

Since1M̃ is anti-diagonal, for any Eζ = (ζ1, ζ2)
t ∈ X, we have

‖1M̃Eζ‖Y = ‖(1M̃)1,2ζ2‖Y1 + ‖(1M̃)2,1ζ1‖Y2 ,

which is bounded as follows:

‖(1M̃)1,2ζ2‖Y1 . (‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2)‖ζ2‖X2 , (3.30)

‖(1M̃)2,1ζ1‖Y2 . (‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2)‖ζ1‖X1 . (3.31)

Bound (3.30) follows simply from

‖(1M̃)1,2ζ2‖Y1 ≤ inf
ζ2=ξ2+η2

(
‖(1M̃)1,2ξ2e

x
2 sin γR(x)‖L2x + ‖(1M̃)1,2η2e

− x
2 sin γR(x)‖L2x∩L1x

)

. ‖(1M̃)1,2‖L2 inf
ζ2=ξ2+η2

(
‖ξ2e

x
2 sin γR(x)‖L∞

x
+ ‖η2e

− x
2 sin γR(x)‖L∞

x ∩L2x

)

= ‖(1M̃)1,2‖L2‖ζ2‖X2 ,

where R(x) =
∣∣cosh

(
x sin γ − iγ2

)∣∣. Bound (3.31) is obtained similarly. Because Eφγ ∈ X, the

bound ‖Ew‖X . ‖Ef ‖Y in Lemma 3.3 and bounds (3.30) and (3.31) imply

‖Pγ
(
∂x − Mγ

)−1
P̂γ1M̃( Eφγ + Eφs)‖X . ‖1M̃( Eφγ + Eφs)‖Y

.
(
‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2

)
(1 + ‖Eφs‖X).
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 243

Since ‖u0 − uγ ‖L2 +‖v0 − vγ ‖L2 is su�ciently small, the component Eφs in (3.29) satis�es the

bound

‖ Eφs‖X . ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 . (3.32)

This completes the proof of the bound (3.26) in the representation (3.25), because the bound

(3.32) on Eφs in Banach space X yields the bounds on the components rij in the corresponding

spaces.

Corollary 3.5. In addition to the assumptions of Lemma 3.4, assume that (u0, v0) ∈ Hm(R)

for an integer m ≥ 0. Then, rij for 1 ≤ i, j ≤ 2 de�ned by (3.25) are Cm-functions of x.

Proof. The statement is proved for m = 0 in Lemma 3.4, because rij are bounded functions

according to the bound (3.26) and they are continuous functions since Eφ ∈ H1(R;C2).

Form = 1, we di�erentiate the equation (3.27) with respect to x to get

(
∂x − Mγ

)
∂x Eφs = Er + R Eφs +1M̃∂x Eφs, (3.33)

where Er := ∂x(1M̃ Eφγ ) and R := ∂x(Mγ ) + ∂x(1M̃). Recall that Eφs ∈ X by Lemma 3.4. If

(u0, v0) ∈ H1(R), then Er + R Eφs ∈ Y according to the bounds

‖Er‖Y . ‖u0 − uγ ‖H1 + ‖v0 − vγ ‖H1 ,

‖R Eφs‖Y . (1 + ‖u0 − uγ ‖H1 + ‖v0 − vγ ‖H1)‖ Eφs‖X .

From bootstrapping of solution of the linear equation (3.29), we have ∂x Eφs ∈ H1(R). Then,

since Er + R Eφs ∈ Y , we have

Er + R Eφs +1M̃∂x Eφs = P̂γ (Er + R Eφs +1M̃∂x Eφs)

Therefore, we can write the derivative equation (3.33) in the form

∂x Eφs = Pγ
(
∂x − Mγ

)−1
P̂γ (Er + R Eφs +1M̃∂x Eφs). (3.34)

Using bounds (3.30) and (3.31) and the smallness of ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 , we obtain

‖∂x Eφs‖X . ‖Er + R Eφs‖Y < ∞, (3.35)

from which it follows that ∂x Eφs ∈ H1(R) ∩ X, hence ∂xrij ∈ C(R) for 1 ≤ i, j ≤ 2. Note that

the bound (3.26) does not hold for ∂xrij because ‖u0−uγ ‖H1 +‖v0−vγ ‖H1 may not be small.

Form ≥ 2, we di�erentiate (3.27)m times and obtain the expression
(
∂x − Mγ

)
∂mx

Eφs = Erm +1M̃∂mx Eφs, (3.36)

where Erm := ∂mx (1M̃ Eφγ ) + [∂mx ,Mγ + 1M̃] Eφs and we denote [∂x, f ]g = ∂x(fg) − f ∂x(g).
We note that the term [∂mx ,Mγ + 1M̃] Eφs does not contain the m-th derivative of Eφs. By an
induction similar to the casem = 1, we �nd that Erm ∈ Y according to the bound

‖Erm‖Y . ‖u0 − uγ ‖Hm + ‖v0 − vγ ‖Hm .

Hence if (u0, v0) ∈ Hm(R), then ∂mx Eφs ∈ H1(R)∩X, hence ∂mx rij ∈ C(R) for 1 ≤ i, j ≤ 2.
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244 A. CONTRERAS ET AL.

Lemma 3.6. Under the condition (3.8), assume that λ = eiγ /2 is the eigenvalue of the spectral
problem (3.1) for the eigenvector Eψ ∈ H1(R;C2) determined in Lemma 3.1 and de�ne

p0 := −u0
e−iγ /2|ψ1|

2 + eiγ /2|ψ2|
2

eiγ /2|ψ1|2 + e−iγ /2|ψ2|2
+

2i sin γ ψ̄1ψ2

eiγ /2|ψ1|2 + e−iγ /2|ψ2|2
, (3.37)

q0 := −v0
eiγ /2|ψ1|

2 + e−iγ /2|ψ2|
2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
−

2i sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
. (3.38)

Then, (p0, q0) ∈ L2(R) satisfy the bound

‖p0‖L2 + ‖q0‖L2 . ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 . (3.39)

If, in addition, (u0, v0) ∈ Hm(R) for an integer m ≥ 1, then (p0, q0) ∈ Hm(R).

Proof. Let us rewrite equation (3.37) as

p0S = −u0 +
2i sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
, (3.40)

where S is a module-one factor given by

S :=
eiγ /2|ψ1|

2 + e−iγ /2|ψ2|
2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
.

We use the representation (3.6) and (3.25) for the eigenvector Eψ . Substituting Eψ into the

second term of (3.40), we obtain

2i sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
=

2if̄ 2 sin γ
[
1 + ǫ1 + ǫ2ex sin γ + ǫ3e−x sin γ

]

ex sin γ−iγ /2(1 + ǫ4)+ e−x sin γ+iγ /2(1 + ǫ5)+ ǫ6

= if̄ 2 sin γ sech
(
x sin γ − i

γ

2

) [
1 + O(|ǫ1| + |ǫ4| + |ǫ5| + |ǫ6|)

]
+ O(|ǫ2| + |ǫ3|),

where f (x) = e
i
4

∫ x
0 (|u0|

2−|v0|2)dx and we have de�ned

ǫ1 := r̄11 + r22 + r̄11r22 + r̄12r21,

ǫ2 := r21 + r̄11r21,

ǫ3 := r̄12 + r̄12r22,

ǫ4 := r11 + r̄11 + |r11|
2 + eiγ |r21|

2,

ǫ5 := r22 + r̄22 + |r22|
2 + e−iγ |r12|

2,

ǫ6 := 2e−iγ /2Re(r12 + r̄11r12)+ 2eiγ /2Re(r21 + r21r̄22).

Bound (3.26) in Lemma 3.4 implies that

‖ǫ1‖L∞+‖ǫ2‖L∞∩L2+‖ǫ3‖L∞∩L2+‖ǫ4‖L∞+‖ǫ5‖L∞+‖ǫ6‖L∞∩L2 . ‖u0−uγ ‖L2+‖v0−vγ ‖L2 .

Since uγ (x) = i sin γ sech
(
x sin γ − iγ2

)
and |f (x)| = 1 for all x ∈ R, we obtain

∥∥∥∥
2i sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
− f̄ 2uγ

∥∥∥∥
L2

. ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 .
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Applying the triangle inequality to the representation (3.40), we obtain

‖p0‖L2 = ‖p0S‖L2 ≤ ‖u0 − f̄ 2uγ ‖L2 +

∥∥∥∥
2i sin γ ψ̄1ψ2

e−iγ /2|ψ1|2 + eiγ /2|ψ2|2
− f̄ 2uγ

∥∥∥∥
L2

. ‖u0 − f̄ 2uγ ‖L2 + ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 .

Using the Taylor series expansion (3.10) and the triangle inequality, we obtain

‖u0 − f̄ 2uγ ‖L2 ≤ ‖u0 − uγ ‖L2 + ‖uγ ‖L2‖1 − f̄ 2‖L∞

. ‖u0 − uγ ‖L2 + ‖v0 − vγ ‖L2 ,

which �nally yields the bound (3.39) for ‖p0‖L2 . The bound (3.39) for ‖q0‖L2 is obtained in

exactly the same way.

Now if (u0, v0) ∈ Hm(R) for an integerm ≥ 1, we can di�erentiate equation (3.40) in x m
times and use Corollary 3.5 to conclude that (p0, q0) ∈ Hm(R).

4. From a small solution to a perturbed one-soliton solution

Here we use the auto-Bäcklund transformation given by Proposition 2.1 to transform a

su�ciently smooth solution of the MTM system (1.1) in a L2-neighborhood of the zero

solution to the one in a L2-neighborhood of the one-soliton solution.

Let (p0, q0) ∈ H2(R) be the initial data for the MTM system (1.1), which is su�ciently

small in L2 norm. Let Eφ be a solution of the linear equation

∂x Eφ = L(p0, q0, λ) Eφ (4.1)

withλ = eiγ /2. Two linearly independent solutions of the linear equation (4.1) are constructed
in Lemma 4.1 below.

Now, let (p, q) ∈ C(R;H2(R)) be the unique global solution to theMTM system (1.1) such

that (p, q)|t=0 = (p0, q0). This solution exists in H2(R) by the global well-posedness theory

for Dirac equations [11, 25, 28]. The time evolution of the vector function Eφ in t for every
x ∈ R is de�ned by the linear equation

∂t Eφ = A(p, q, λ) Eφ (4.2)

for the same λ = eiγ /2. Lemma 4.2 characterizes two linearly independent solutions of the

linear equation (4.2) for every t ∈ R.

Lastly, Lemma 4.3 constructs a new solution (u, v) ∈ C(R;H2(R)) to the MTM system

(1.1) in a L2-neighborhood of the one-soliton solution from the auto–Bäcklund transforma-

tion involving (p, q) and Eφ for every t ∈ R.

Let us introduce the following unitary matrices

M1 =

[
m1 0

0 m̄1

]
and M2 =

[
m̄2 0

0 m2

]
, (4.3)

wherem1(x) := e
i
4

∫ x
−∞(|p0|

2−|q0|2)ds andm2(x) := e
i
4

∫ ∞
x (|p0|2−|q0|2)ds. We make substitution

Eφ1(x) = e−
sin γ
2 xM1(x)

[
ϕ1(x)
ϕ2(x)

]
and Eφ2(x) = e

sin γ
2 xM2(x)

[
χ1(x)
χ2(x)

]
, (4.4)

D
ow

nl
oa

de
d 

by
 [

M
cM

as
te

r 
U

ni
ve

rs
ity

] 
at

 0
7:

12
 0

4 
M

ar
ch

 2
01

6 



246 A. CONTRERAS ET AL.

into the linear equation (4.1) with λ = eiγ /2 and obtain two boundary value problems:




ϕ′
1 =

i

2
(e−iγ /2p̄0 − eiγ /2q̄0)m̄

2
1ϕ2,

ϕ′
2 =

i

2
(e−iγ /2p0 − eiγ /2q0)m

2
1ϕ1 + sin γ ϕ2,

(4.5)

and




χ ′
1 = − sin γχ1 +

i

2
(e−iγ /2p̄0 − eiγ /2q̄0)m

2
2χ2,

χ ′
2 =

i

2
(e−iγ /2p0 − eiγ /2q0)m̄

2
2χ1,

(4.6)

subject to the boundary conditions

{
limx→−∞ ϕ1(x) = 1,

limx→∞ e−x sin γ ϕ2(x) = 0,
and

{
limx→−∞ ex sin γχ1(x) = 0,

limx→∞ χ2(x) = 1.
(4.7)

The following lemma characterizes solutions of the boundary value problems (4.5), (4.6), and

(4.7) if (p0, q0) is small in the L2-norm.

Lemma 4.1. There exists a real positive δ such that if ‖p0‖L2 + ‖q0‖L2 ≤ δ, then the boundary
value problems (4.5), (4.6), and (4.7) have unique solutions in the class

(ϕ1,ϕ2) ∈ L∞(R)× (L2(R) ∩ L∞(R)), and (χ1,χ2) ∈ (L2(R) ∩ L∞(R))× L∞(R),

satisfying bounds

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 (4.8)

and

‖χ1‖L2∩L∞ + ‖χ2 − 1‖L∞ . ‖p0‖L2 + ‖q0‖L2 . (4.9)

Proof. The boundary value problem (4.5) and (4.7) can be written in the integral form



ϕ1(x) = T1(ϕ1,ϕ2)(x) := 1 + i

2

∫ x
−∞

[
e−iγ /2p̄0(y)− eiγ /2q̄0(y)

]
m̄2

1(y)ϕ2(y)dy,

ϕ2(x) = T2(ϕ1,ϕ2)(x) := − i
2

∫ ∞
x e(x−y) sin γ

[
e−iγ /2p0(y)− eiγ /2q0(y)

]
m2

1(y)ϕ1(y)dy.

(4.10)

We introduce a Banach space Z := L∞(R)× (L2(R) ∩ L∞(R)) equipped with the norm

‖Eu‖Z := ‖u1‖L∞ + ‖u2‖L∞∩L2

and show that ET = (T1,T2)
t : Z → Z is a contraction mapping. Using the Schwartz

inequality, the Younge inequality, and the triangle inequality, we obtain for any Eϕ, Ẽϕ ∈ Z,

‖T1(ϕ1,ϕ2)− T1(ϕ̃1, ϕ̃2)‖L∞

= sup
x∈R

∣∣∣∣
i

2

∫ x

−∞

[
e−iγ /2p̄0(y)− eiγ /2q̄0(y)

]
m̄2

1(y)(ϕ2(y)− ϕ̃2(y))dy

∣∣∣∣

≤
1

2

(
‖p0‖L2 + ‖q0‖L2

)
‖ϕ2 − ϕ̃2‖L2
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and

‖T2(ϕ1,ϕ2)− T2(ϕ̃1, ϕ̃2)‖L∞∩L2

≤
1

2
‖ex sin γ ‖L1x(R−)∩L2x(R−)

‖e−iγ /2p0 − eiγ /2q0‖L2‖ϕ1 − ϕ̃1‖L∞

≤
1

sin γ

(
‖p0‖L2 + ‖q0‖L2

)
‖ϕ1 − ϕ̃1‖L∞ .

If ‖p0‖L2 + ‖q0‖L2 ≤ δ is su�ciently small such that δ < sin γ for a �xed γ ∈ (0,π), then
ET = (T1,T2)

t is a contraction mapping on Z. To prove the inequality (4.8), we have

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2∩L∞ ≤ ‖ET(ϕ1,ϕ2)− ET(0, 0)‖Z

≤
‖p0‖L2 + ‖q0‖L2

sin γ
(1 + ‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞∩L2).

Since ‖p0‖L2 +‖q0‖L2 ≤ δ < sin γ , the above estimates yields the inequality (4.8). Repeating

similar estimates for the boundary-value problem (4.6) and (4.7), we can prove that (χ1,χ2) ∈
(L2(R) ∩ L∞(R))× L∞(R) and the inequality (4.9) holds.

Let us now de�ne the time evolution of the vector functions Eφ1 and Eφ2 in t for every x ∈ R,

according to the linear equation (4.2), whereλ = eiγ /2 and (p, q) ∈ C(R;H2(R)) is the unique

solution of the MTM system (1.1) such that (p, q)|t=0 = (p0, q0). We also consider the initial

data for Eφ1 and Eφ2 at t = 0 given by the two linearly independent solutions (4.4) of the linear

equation (4.1). The linear equation (4.2) for Eφ1,2 with λ = eiγ /2 take the form

∂t Eφ1,2 =

[
− i

4 (|p|
2 + |q|2)+ i

2 cos γ − i
2 (e

−iγ /2p̄ + eiγ /2q̄)
− i

2 (e
−iγ /2p + eiγ /2q) i

4 (|p|
2 + |q|2)− i

2 cos γ

]
Eφ1,2. (4.11)

We set

Eφ1(x, t) := e−
x
2 sin γM1(x, t) Eϕ(x, t), Eφ2(x, t) := e

x
2 sin γM2(x, t) Eχ(x, t), (4.12)

whereM1(x, t) andM2(x, t) are given by (4.3) with

m1(x, t) := e
i
4

∫ x
−∞(|p(s,t)|

2−|q(s,t)|2)ds, m2(x, t) := e
i
4

∫ ∞
x (|p(s,t)|2−|q(s,t)|2)ds. (4.13)

The following lemma characterizes vector functions Eϕ and Eχ .

Lemma 4.2. Let (p0, q0) ∈ H2(R) and assume that there exists a su�ciently small δ such that
‖p0‖L2 +‖q0‖L2 ≤ δ. Let (p, q) ∈ C(R;H2(R)) be the unique solution of theMTM system (1.1)
such that (p, q)|t=0 = (p0, q0). Let Eφ1 and Eφ2 be solutions of the linear equation (4.11) starting
with the initial data given by (4.4). Then, for every t ∈ R, Eφ1 and Eφ2 are given by (4.12), where

(ϕ1,ϕ2)(·, t) ∈ L∞(R)×(L2(R)∩L∞(R)) and (χ1,χ2)(·, t) ∈ (L2(R)∩L∞(R))×L∞(R)

satisfy the di�erential equations

∂x Eϕ =

[
0 i

2 (e
−iγ /2p̄ − eiγ /2q̄)m̄2

1
i
2 (e

−iγ /2p − eiγ /2q)m2
1 sin γ

]
Eϕ (4.14)

and

∂x Eχ =

[
− sin γ i

2 (e
−iγ /2p̄ − eiγ /2q̄)m2

2
i
2 (e

−iγ /2p − eiγ /2q)m̄2
2 0

]
Eχ , (4.15)
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248 A. CONTRERAS ET AL.

subject to the boundary values
{

limx→−∞ ϕ1(x, t) = e
i
2 t cos γ ,

limx→∞ e−x sin γ ϕ2(x, t) = 0,
and

{
limx→−∞ ex sin γχ1(x, t) = 0,

limx→∞ χ2(x, t) = e−
i
2 t cos γ .

(4.16)

Furthermore, for every t ∈ R, these functions satisfy the bounds

‖ϕ1(·, t)− e
i
2 t cos γ ‖L∞ + ‖ϕ2(·, t)‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 (4.17)

and

‖χ1(·, t)‖L2∩L∞ + ‖χ2(·, t)− e−
i
2 t cos γ ‖L∞ . ‖p0‖L2 + ‖q0‖L2 . (4.18)

Proof. By Sobolev embedding of H2(R) into C1(R), the x-derivatives of solutions (p, q) ∈
C(R;H2(R)) are continuous and bounded functions of x for every t ∈R. Moreover, boot-

strapping arguments for the MTM system (1.1) show that the same solution (p, q) exists
in C1(R;H1(R)). Therefore, the t-derivatives of solutions (p, q) are also continuous and

bounded functions of x for every t ∈ R. Thus, the technical assumption (p0, q0) ∈ H2(R)

simpli�es working with the system of Lax equations (4.1) and (4.2). In particular, we shall

prove that Eϕ satis�es the di�erential equation (4.14) for every t ∈R if Eφ1 satis�es the

di�erential equation (4.11) for every x ∈ R and the representation (4.12) is used.

By Lemma 4.1, Eϕ is a bounded function of x for t = 0 and by bootstrapping arguments,

Eϕ ∈ C(R) for t = 0.We now claim that the di�erential equation (4.11) preserves this property

for every t ∈ R. From the di�erential equation (4.11) and the representation (4.12), we obtain

∂t(|ϕ1|
2 + |ϕ2|

2) = sin
(γ
2

) [
(q̄ − p̄)m̄2

1ϕ̄1ϕ2 + (q − p)m2
1ϕ1ϕ̄2

]

≤ (|p| + |q|)(|ϕ1|
2 + |ϕ2|

2).

By Gronwall’s inequality, for any T > 0, we obtain

|ϕ1(x, t)|
2 + |ϕ2(x, t)|

2 ≤ eαTT(|ϕ1(x, 0)|
2 + |ϕ2(x, 0)|

2) x ∈ R, t ∈ [−T,T], (4.19)

where

αT := sup
t∈[−T,T]

sup
x∈R

(
|p(x, t)| + |q(x, t)|

)
.

Since the exponential factor remains bounded for any �nite time T > 0, then it follows that

Eϕ(·, t) ∈ L∞(R) for every t ∈ R. Bootstrapping then yields Eϕ(·, t) ∈ C(R) for every t ∈ R.

Since coe�cients of the linear system (4.11) are continuous functions of (x, t), we have
∂t Eϕ(·, t) ∈ C(R) for every t ∈ R. Now, if (p, q) are C1 functions of x and t, then a similar

method shows that ∂x Eϕ, ∂t∂x Eϕ, ∂2t Eϕ ∈ C(R) for every t ∈ R.

We shall now establish the validity of the di�erential equation (4.14). For Eφ1 in (4.12), we

write this equation in the abstract form ∂x Eφ1 = L Eφ1. We also write the di�erential equation

(4.11) for Eφ1 in the abstract form ∂t Eφ1 = A Eφ1. To establish (4.14) for every t ∈ R, we construct

the residual function EF := ∂x Eφ1 − L Eφ1. This function is zero for every x ∈ R and t = 0. We

shall prove that EF is zero for every x ∈ R and t ∈ R.

The compatibility condition ∂xA− ∂tL+ [A, L] = 0 is satis�ed for every x ∈ R and t ∈ R,

if (p, q) is a C1 solution of the MTM system (1.1). A�er di�erentiating EF with respect to t,
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we obtain

∂tEF = ∂t∂x Eφ1 − (∂tL) Eφ1 − L∂t Eφ1

= ∂x(A Eφ1)− (∂tL) Eφ1 − LA Eφ1

= (∂xA − ∂tL + [A, L]) Eφ1 + AEF

= AEF.

Let EF = (F1, F2)t . From the linear evolution ∂tEF = AF, we again obtain

∂t(|F1|
2 + |F2|

2) = sin
(γ
2

) [
(q̄ − p̄)F̄1F2 + (q − p)F1F̄2

]

≤ (|p| + |q|)(|F1|
2 + |F2|

2),

which yields with Gronwall’s inequality for any T > 0

|F1(x, t)|
2 + |F2(x, t)|

2 ≤ eαTT(|F1(x, 0)|
2 + |F2(x, 0)|

2), x ∈ R, t ∈ [−T,T],

with the same de�nition of αT . Since EF(x, 0) = E0, then the above inequality yields EF(x, t) = E0
for every x ∈ R and t ∈ [−T,T]. Hence, Eϕ satis�es the di�erential equation (4.14).

We have shown that Eϕ(·, t) ∈ L∞(R) for every t ∈ R. We now show that ϕ2(·, t) ∈ L2(R)
for every t ∈ R. It follows from the di�erential equation (4.11) and the representation (4.12)

that

∂t(|ϕ2|
2) ≤ (|p| + |q|)|ϕ̄1ϕ2|

. |ϕ2|
2 + (|p|2 + |q|2)|ϕ1|

2.

Using Gronwall’s inequality and the previous bound (4.19), we have for any T > 0

|ϕ2(x, t)|
2 ≤ eT

[
|ϕ2(x, 0)|

2 +

∫ T

−T
(|p(x, s)|2 + |q(x, s)|2)|ϕ1(x, s)|

2ds

]

≤ eT |ϕ2(x, 0)|
2 + e(1+αT)T

∫ T

−T
(|p(x, s)|2 + |q(x, s)|2)

(
|ϕ1(x, 0)|

2 + |ϕ2(x, 0)|
2
)
ds,

where x ∈ R and t ∈ [−T,T]. Therefore, we have

‖ϕ2(·, t)‖
2
L2 ≤ eT‖ϕ2(·, 0)‖

2
L2

+ e(1+αT)T
(
‖ϕ1(·, 0)‖

2
L∞ + ‖ϕ2(·, 0)‖

2
L∞

) ∫ T

−T
(‖p(·, s)‖2L2 + ‖q(·, s)‖2L2)ds.

Since the right-hand side of this inequality remains bounded for any �nite time T > 0, then

it follows that ϕ2(·, t) ∈ L2(R) for every t ∈ R.

It remains to prove the boundary values for Eϕ1(x, t) as x → ±∞ in (4.16). The second

boundary condition

lim
x→∞

e−x sin γ ϕ2(x, t) = 0

follows from the fact that ϕ2(·, t) ∈ L∞(R) for every t ∈ R. To prove the �rst boundary

condition, we use Duhamel’s formula to write the di�erential equation (4.11) in the integral

form:

Eφ1(x, t) = e
i
2 tσ3 cos γ Eφ1(x, 0)+

∫ t

0
e
i
2 (t−s)σ3 cos γA1(x, s) Eφ1(x, s)ds,
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250 A. CONTRERAS ET AL.

where

A1(x, t) :=

[
− i

4 (|p|
2 + |q|2) − i

2 (e
−iγ /2p̄ + eiγ /2q̄)

− i
2 (e

−iγ /2p + eiγ /2q) i
4 (|p|

2 + |q|2)

]
.

Using the representation (4.12), we have for t ∈ R

|M1 Eϕ(x, t)− e
i
2 tσ3 cos γM1 Eϕ(x, 0)| ≤

∫ |t|

0
|A1(x, s)M1 Eϕ(x, s)|ds,

where |Ef | denotes the vector norm of the 2-vector Ef . Since Eϕ(·, t) ∈ L∞(R)×(L∞(R)∩L2(R))
for every t ∈ R and p(·, t), q(·, t) ∈ H2(R), we claim that

• |A1(x, s)M1 Eϕ(x, s)| is bounded by some s-independent constant for every x ∈ R and

|s| ≤ |t|
• lim|x|→∞ A1(x, s)M1 Eϕ(x, s) = E0 pointwise for every |s| ≤ |t|.
Then, the dominated convergence theorem gives

lim
x→−∞

|M1(x, t) Eϕ(x, t)− e
i
2 tσ3 cos γM1(x, 0) Eϕ(x, 0)| = 0, t ∈ R.

Since Eϕ(x, 0) → (1, 0)t as x → −∞ and M1(x, t) → I as x → −∞ for every t ∈ R, the

above limit recovers the �rst boundary condition

lim
x→−∞

ϕ1(x, t) = e
i
2 t cos γ .

The proof of the di�erential equation (4.15) and the boundary condition for Eχ in (4.16)

is analogous. Finally, since the L2 norm of solutions of the MTM system (1.1) is constant in

time t, according to (1.2), the proof of bounds (4.17) and (4.18) is analogous to the proof in

Lemma 4.1.

Lemma 4.3. Let (p0, q0) ∈ H2(R) and assume that there exists a su�ciently small δ such that
‖p0‖L2 + ‖q0‖L2 ≤ δ. Let (p, q) ∈ C(R;H2(R)) be the unique solution to the MTM system
(1.1) such that (p, q)|t=0 = (p0, q0). Using solutions Eϕ and Eχ in Lemma 4.2, let us de�ne

[
φ1(x, t)
φ2(x, t)

]
:= c1(t)e

− x
2 sin γM1(x, t) Eϕ(x, t)+ c2(t)e

x
2 sin γM2(x, t) Eχ(x, t), (4.20)

where c1(t) := e(a+iθ)/2, c2(t) := e−(a+iθ)/2 are given in terms of the real coe�cients a, θ , which
may depend on t. Then, the auto–Bäcklund transformation

u := −p
e−iγ /2|φ1|

2 + eiγ /2|φ2|2

eiγ /2|φ1|2 + e−iγ /2|φ2|2
+

2i sin γ φ̄1φ2
eiγ /2|φ1|2 + e−iγ /2|φ2|2

(4.21)

and

v := −q
eiγ /2|φ1|2 + e−iγ /2|φ2|

2

e−iγ /2|φ1|2 + eiγ /2|φ2|2
−

2i sin γ φ̄1φ2
e−iγ /2|φ1|2 + eiγ /2|φ2|2

(4.22)

generates a new solution (u, v) ∈ C(R;H2(R)) to the MTM system (1.1) satisfying the bound
∥∥∥u(x, t)− ie−iθ−it cos γ sin γ sech

(
x sin γ − i

γ

2
− a

)∥∥∥
L2x

. ‖p0‖L2 + ‖q0‖L2 (4.23)
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and
∥∥∥v(x, t)+ ie−iθ−it cos γ sin γ sech

(
x sin γ + i

γ

2
− a

)∥∥∥
L2x

. ‖p0‖L2 + ‖q0‖L2 (4.24)

for every t ∈ R.

Proof. Let us introduce Eψ = (ψ1,ψ2)
t by

ψ1 :=
φ̄2

|eiγ /2|φ1|2 + e−iγ /2|φ2|2|
, ψ2 :=

φ̄1

|eiγ /2|φ1|2 + e−iγ /2|φ2|2|
. (4.25)

The inequalities (4.17) and (4.18) imply that (u, v) and Eψ are bounded for every x ∈ R and

t ∈ R. If (p, q) are C1 functions of (x, t) and Eφ is a C2 function of (x, t), then (u, v) are C1

functions of (x, t) and Eψ is aC2 function of (x, t). Proposition 2.1 states that Eψ given by (4.25)

satis�es the evolution equations

∂x Eψ = L(u, v, λ) Eψ , ∂t Eψ = A(u, v, λ) Eψ ,

for λ = eiγ /2. As a result, the compatibility condition ∂x∂t Eψ = ∂t∂x Eψ for every x ∈ R and

t ∈ R yields the MTM system (1.1) for the functions (u, v).
We shall now prove inequality (4.23). The proof of inequality (4.24) is analogous. First, we

write (4.21) in the form of

R :=
2i sin γ φ̄1φ2

eiγ /2|φ1|2 + e−iγ /2|φ2|2
= u + p

e−iγ /2|φ1|
2 + eiγ /2|φ2|2

eiγ /2|φ1|2 + e−iγ /2|φ2|2
. (4.26)

Explicit substitutions of (4.20) into (4.26) yield

R :=
2i sin γ

(
m̄1m2e−iθ ϕ̄1χ2 + R1

)

eiγ /2+a−x sin γ |ϕ1|2 + e−iγ /2−a+x sin γ |χ2|2 + R2
,

where

R1 := m̄2
1e

a−x sin γ ϕ̄1ϕ2 + m̄1m2e
iθϕ2χ̄1 + m2

2e
−a+x sin γ χ̄1χ2

and

R2 := eiγ /2−a+x sin γ |χ1|
2 + e−iγ /2+a−x sin γ |ϕ2|

2 + 2eiγ /2Re[m1m2e
iθϕ1χ̄1]

+ 2e−iγ /2Re[m̄1m̄2e
iθϕ2χ̄2].

By bounds (4.17) and (4.18) in Lemma 4.2, we have |ϕ1|, |χ2| ∼ 1 and |ϕ2|, |χ1| ∼ 0, so

that for a − x sin γ ≤ 0,

R =
2i sin γ m̄1m2e−iθ+a−x sin γ ϕ̄1χ2

eiγ /2+2(a−x sin γ )|ϕ1|2 + e−iγ /2|χ2|2
+ O(|ϕ2| + |χ1|) (4.27)

and for a − x sin γ ≥ 0,

R =
2i sin γ m̄1m2e−iθ−a+x sin γ ϕ̄1χ2

eiγ /2|ϕ1|2 + e−iγ /2−2(a−x sin γ )|χ2|2
+ O(|ϕ2| + |χ1|). (4.28)
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252 A. CONTRERAS ET AL.

Combining (4.27) and (4.28), we get

∣∣∣∣R −
2i sin γ e−iθ−it cos γ

eiγ /2+a−x sin γ + e−iγ /2 − a + x sin γ

∣∣∣∣

. e−|a−x sin γ |(|ϕ1 − eit
cos γ
2 | + |χ2 − e−it cos γ

2 | + |m1 − 1| + |m2 − 1|)+ |ϕ2| + |χ1|

Sincem1 = e
i
4

∫ x
−∞(|p|

2−|q|2)ds andm2 = e
i
4

∫ ∞
x (|p|2−|q|2)ds, we obtain the bounds

‖m1,2(·, t)− 1‖L∞ . ‖p‖2L2 + ‖q‖2L2 ,

provided that ‖p‖L2 and ‖q‖L2 are su�ciently small. Then, by Lemma 4.2 and the L2

conservation law (1.2), the previous estimate yields

∥∥∥R(x, t)− ie−iθ−it cos γ sin γ sech
(
x sin γ − i

γ

2
− a

)∥∥∥
L2x

. ‖p0‖L2 + ‖q0‖L2 . (4.29)

Using the de�nition (4.26), the bound (4.29), and the triangle inequality, we obtain inequal-

ity (4.23).

Lastly, if (p, q) ∈ C(R;H2(R)), we can di�erentiate equations (4.27) and (4.28) in x twice
to show from (4.21) and (4.22) that (u, v) ∈ C(R;H2(R)).

5. Proof of theorem 1.2

Thanks to the Lorentz transformation given by Proposition 2.2, we may choose λ0 = eiγ0/2,
γ0 ∈ (0,π) in Theorem 1.2. For a given initial data (u0, v0) satisfying the inequality (1.4)

for su�ciently small ǫ, we map a L2-neighborhood of one-soliton solution to that of the zero

solution. To do so, we use Lemma 3.1 and obtain an eigenvector Eψ of the spectral problem

(3.1) for an eigenvalue λ ∈ C satisfying

|λ− eiγ0/2| . ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 =: ǫ. (5.1)

We should note that the same Lorentz transformation cannot be used twice to consider the

cases of λ0 = eiγ0/2 and λ = eiγ /2 simultaneously; the assumption λ0 = eiγ0/2 implies that λ

is not generally on the unit circle, and vice versa. Hence, if λ0 = eiγ0/2 is set, all formulas

in Section 3 below Remark 1 must in fact be generalized for a general λ. However, this

generalization is straightforward thanks again to the existence of the Lorentz transformation

given by Proposition 2.2. Inwhat follows, we then use the generalMTMsolitons (uλ, vλ) given
by (1.3).

By Lemma 3.6, the auto–Bäcklund transformation (3.2) and (3.3) with Eψ in Lemma 3.1

yields an initial data (p0, q0) ∈ L2(R) of the MTM system (1.1) satisfying the estimate

‖p0‖L2 + ‖q0‖L2 . ‖u0 − uλ(·, 0)‖L2 + ‖v0 − vλ(·, 0)‖L2

. ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 + ‖uλ(·, 0)− uγ0‖L2 + ‖vλ(·, 0)− vγ0‖L2

. ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 =: ǫ, (5.2)

where we have used the triangle inequality and the bound (5.1).
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Since the time evolution in Section 4 is well-de�ned if (p0, q0) ∈ H2(R), let us �rst assume

that the initial data (u0, v0) ∈ L2(R) satisfying the inequality (1.4) also satis�es (u0, v0) ∈
H2(R). Then, (p0, q0) ∈ H2(R) by Lemma 3.6. Let (p, q) ∈ C(R;H2(R)) be the unique

solution of the MTM system (1.1) such that (p, q)|t=0 = (p0, q0). Next we will map a L2-
neighborhood of the zero solution to that of one-soliton solution for all t ∈ R.

By Lemma 4.2, we construct a solution of the Lax equations

∂x Eφ = L(p, q, λ) Eφ and ∂t Eφ = A(p, q, λ) Eφ (5.3)

for the same eigenvalue λ as in (5.1). Let

k1(λ) :=
i

4

(
λ2 −

1

λ2

)
, k2(λ) :=

1

4

(
λ2 +

1

λ2

)
.

The solution of the Lax system (5.3) is constructed in the form

Eφ(x, t) = c1(t)M1(x, t)e
xk1(λ) Eϕ(x, t)+ c2(t)M2(x, t)e

−xk1(λ) Eχ(x, t), (5.4)

where unitary matricesM1 andM2 are given in (4.3) withm1 andm2 given by (4.13), whereas

the vectors Eϕ and Eχ satisfy the estimates

‖ϕ1(·, t)− eitk2(λ)‖L∞ + ‖ϕ2(·, t)‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 (5.5)

and

‖χ1(·, t)‖L2∩L∞ + ‖χ2(·, t)− e−itk2(λ)‖L∞ . ‖p0‖L2 + ‖q0‖L2 . (5.6)

The coe�cients c1 and c2 of the linear superposition (5.4) can be parameterized by parameters

a and θ as follows:

c1 = e(a+iθ)/2, c2 = e−(a+iθ)/2,

where parameters a and θ may depend on the time variable t but not on the space variable x.
These parameters determine the spatial and gauge translations of theMTMsolitons according

to the transformation (2.13).

By Lemma 4.3, the auto–Bäcklund transformation generates a new solution (u, v) of the
MTM system (1.1) satisfying the bound for every t ∈ R,

inf
a,θ∈R

(‖u(· + a, t)− e−iθuλ(·, t)‖L2 + ‖v(· + a, t)− e−iθvλ(·, t)‖L2)

. ‖p0‖L2 + ‖q0‖L2 . (5.7)

Theorem 1.2 is proved if (u0, v0) ∈ H2(R). To obtain the same result for (u0, v0) ∈ L2(R)
but (u0, v0) /∈ H2(R), we construct an approximating sequence (u0,n, v0,n) ∈ H2(R) (n ∈ N)

that converges as n → ∞ to (u0, v0) ∈ L2(R) in the L2-norm. For a su�ciently small ǫ > 0,

we let

‖u0,n − uγ0‖L2 + ‖v0,n − vγ0‖L2 ≤ ǫ, for every n ∈ N.

Under this condition, for each (u0,n, v0,n) ∈ H2(R), we obtain inequalities (5.1), (5.2),

and (5.7) independently of n. Therefore, there is a subsequence of solutions (un, vn) ∈

D
ow

nl
oa

de
d 

by
 [

M
cM

as
te

r 
U

ni
ve

rs
ity

] 
at

 0
7:

12
 0

4 
M

ar
ch

 2
01

6 



254 A. CONTRERAS ET AL.

C(R;H2(R)) (n ∈ N) of theMTM system (1.1) such that it converges as n → ∞ to a solution

(u, v) ∈ C(R; L2(R)) of the MTM system (1.1) satisfying inequalities (1.5) and (1.6). The

proof of Theorem 1.2 is now complete.
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