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Abstract
Several integrable semi-discretizations are known in the literature for the 
massive Thirring system in characteristic coordinates. We present for the 
first time an integrable semi-discretization of the massive Thirring system 
in laboratory coordinates. Our approach relies on the relation between the 
continuous massive Thirring system and the Ablowitz–Ladik lattice. In 
particular, we derive the Lax pair for the integrable semi-discretization of 
the massive Thirring system by combining together the time evolution of 
the massive Thirring system in laboratory coordinates and the Bäcklund 
transformation for solutions to the Ablowitz–Ladik lattice.

Keywords: massive Thirring model, integrable semi-discretization, 
Ablowitz–Ladik lattice, Bäcklund transformation, laboratory and 
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1.  Introduction

The purpose of this work is to find an integrable semi-discretization of the massive Thirring 
model (MTM) in laboratory coordinates. The MTM is a nonlinear Dirac equation  arising 
in two-dimensional quantum field theory [35], most notably in the context of bosonisation  
[24, 43]. The MTM is also a particular case of the coupled-mode equations that describe pulse 
propagation in optical Bragg gratings [14] and in diatomic chains with periodic couplings [4].

In the space of (1 + 1) dimensions, the MTM can be written as a system of two semi-linear 
equations for (u, v) ∈ C2  in the normalized form:
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{
i
(
∂u
∂t +

∂u
∂x

)
+ v = |v|2u,

i
(
∂v
∂t −

∂v
∂x

)
+ u = |u|2v.

� (1)

The standard Cauchy problem is posed in the time coordinates t ∈ R for the initial data 
(u0, v0) extended in the spatial coordinate x ∈ R. Solutions of the Cauchy problem were stud-
ied recently in [8, 9, 16–18, 34, 44, 45].

Integrability of the MTM follows from the existence of the following Lax operators:

L(λ; u, v) =
1
2
(|u|2 − |v|2)σ3 +

[
0 λv + λ−1u

λv̄ + λ−1ū 0

]
+

1
2
(
λ2 − λ−2)σ3,

�

(2)

and

A(λ; u, v) = −1
2
(|u|2 + |v|2)σ3 +

[
0 λv − λ−1u

λv̄ − λ−1ū 0

]
+

1
2
(
λ2 + λ−2)σ3,

�

(3)

where λ is a spectral parameter, σ3 = diag(1,−1) is the third Pauli spin matrix, and (ū, v̄) 
stands for the complex conjugate of (u, v). The MTM system (1) is the compatibility condition

∂2�ϕ

∂x∂t
=

∂2�ϕ

∂t∂x
,� (4)

for �ϕ ∈ C2 satisfying the following linear equations:

−2i
∂�ϕ

∂x
= L(λ; u, v)�ϕ and − 2i

∂�ϕ

∂t
= A(λ; u, v)�ϕ.� (5)

Lax operators in the form (2) and (3) were introduced by Mikhailov [27] and then studied in 
[21, 25]. More recently, the same Lax operators have been used for many purposes, e.g. for 
the inverse scattering transform [22, 23, 31, 41, 42], for spectral stability of solitary waves 
[20], for orbital stability of Dirac solitons [11, 32], and for construction of rogue waves [15].

Numerical simulations of nonlinear PDEs rely on spatial semi-discretizations obtained 
either with finite-difference or spectral methods. Because the energy functional of the MTM 
system (1) near the zero equilibrium (u, v) = (0, 0) is not bounded, either from above or 
below, the spatial discretizations of the MTM system (like in many other massive Dirac mod-
els) suffer from spurious eigenvalues and other numerical instabilities [6, 12, 13, 26, 33]. An 
integrable semi-discretization would preserve the integrability scheme and model dynamics 
of nonlinear waves without such spurious instabilities and other artifacts. This is why it is 
important to derive an integrable semi-discretization of the MTM system (1).

Since the pioneering works of Ablowitz and Ladik on equations related to the Ablowitz–
Kaup–Newell–Segur (AKNS) spectral problem [1, 2], it is well known that continuous 
nonlinear evolution equations integrable with the inverse scattering transform can be semi-
discretized in spatial coordinates or fully discretized in both spatial and temporal coordinates 
in such a way as to preserve integrability [19]. Since the literature on this subject is vast, we 
shall only restrict our attention to the relevant results on the massive Thirring model.

With the rotation of coordinates

τ =
1
2
(t − x), ξ = −1

2
(x + t),� (6)

the MTM system (1) in laboratory coordinates (x, t) can be rewritten in characteristic coordi-
nates (ξ, τ):

J. Phys. A: Math. Theor. 52 (2019) 03LT01



3

{
−i ∂u

∂ξ + v = |v|2u,
i ∂v
∂τ + u = |u|2v.

� (7)

The Cauchy problem in the time coordinate τ  and the spatial coordinate ξ for the system (7) 
corresponds to the Goursat problem for the system (1) and vice versa. Therefore, the spatial 
discretization of the system (7) in the spatial coordinate ξ is not relevant for the Cauchy prob-
lem for the system (1). Unfortunately, it is the only integrable discretization available for the 
MTM up to now, thanks to the relatively simple connection of the Lax operators for the system 
(7) to the first negative flow of the Kaup–Newell (KN) spectral problem [21].

The first result on the integrable discretizations of the MTM system in characteristic coor-
dinates goes back to the works of Nijhoff et  al in [28, 29]. By using the Bäcklund trans-
formation for the continuous equations related to the KN spectral problem [28], integrable 
semi-discretizations in ξ or full discretizations in ξ and τ  were obtained for the MTM system 
(7) and its equivalent formulations [29]. Since the relevant Bäcklund transformation contains 
a square root singularity [28], the resulting discretizations inherit a square root singularity 
[29], which may cause problems because of ambiguity in the choice of square root branches 
and sign-indefinite expressions under the square root signs. Unlike the continuous system (7), 
the spatial discretizations constructed in [29] were not written in terms of the cubic nonlinear 
terms.

In a different direction, Tsuchida in [36] explored a gauge transformation of the KN spec-
tral problem to the AKNS spectral problem and constructed integrable semi-discretizations of 
nonlinear equations related to the KN spectral problem. The semi-discretization constructed 
in [36] had cubic nonlinearity but had a limitation of a different kind. The complex conjugate 
symmetry of the semi-discrete MTM system was related to the lattice shift by half of the lat-
tice spacing, where the variables were not defined.

In the latest work [38], Tsuchida obtained another semi-discretization of the MTM system 
(7) by generalizing the Ablowitz–Ladik (AL) spectral problem [3] and Bäcklund–Darboux 
transformations for nonlinear equations related to the AL spectral problem [37, 40, 46]. The 
new semi-discretization of the MTM system (7) in [38] contains the cubic nonlinearity and the 
complex conjugate reduction, which resemble those in the continuous system (7).

How to transfer integrable semi-discretizations of the second-order equations  in charac-
teristic coordinates (such as the sine–Gordon equation or the MTM system) to the integrable 
semi-discretizations of these equations in laboratory coordinates has been considered to be 
an open problem for many years. The main obstacle here is that the rotation of coordinates 
mixes positive and negative powers of the spectral parameter λ in the Lax operators related 
to the continuous case, hence the semi-discretization scheme needs to be revised. At the same 
time, the temporal and spatial coordinates are already different in the semi-discrete case (one 
is continuous and the other one is discrete) so that the rotation of coordinates produces a com-
plicated difference-differential equation. Since it is the Cauchy problem for the MTM system 
in laboratory coordinates that is used for most of physical applications of the MTM system 
(1), constructing a proper integrable semi-discretization of it becomes relevant and important.

The present work solves the problem stated above. We derive the semi-discrete MTM 
system in laboratory coordinates together with its Lax pair by implementing the method of 
Tsuchida from his recent work [38]. In particular, we combine together the time evolution of 
the massive Thirring system in laboratory coordinates and the Bäcklund transformation for 
solutions to the Ablowitz–Ladik lattice. The main result is stated in section 2. The proof of the 
main result appears in section 3. The conclusion is given in section 4.
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2.  Main result

We start with the gauge-modified Lax operators for the MTM system (1) derived by 
Barashenkov and Getmanov in [5]:

L(λ; u, v) =
[
λ2 − |v|2 λv + λ−1u
λv̄ + λ−1ū λ−2 − |u|2

]
,

� (8)
and

A(λ; u, v) =
[
λ2 − |v|2 λv − λ−1u
λv̄ − λ−1ū −λ−2 + |u|2

]
.

� (9)
The gauge-modified Lax formulation (8) and (9) differs from the classical (zero-trace) Lax 
formulation (2) and (3) only in the diagonal terms. The MTM system (1) still arises as the 
compatibility condition (4), where �ϕ ∈ C2 satisfies the linear equations

−2i
∂�ϕ

∂x
= L(λ; u, v)�ϕ and − 2i

∂�ϕ

∂t
= A(λ; u, v)�ϕ,� (10)

which are related to the new operators L and A in (8) and (9).
The main result of this work is a derivation of the following spatial discretization of the 

MTM system (1) suitable for the Cauchy problem in the laboratory coordinates:



4i dUn
dt + Qn+1 + Qn +

2i
h (Rn+1 − Rn) + U2

n(R̄n + R̄n+1)

−Un(|Qn+1|2 + |Qn|2 + |Rn+1|2 + |Rn|2)− ih
2 U2

n(Q̄n+1 − Q̄n) = 0,
− 2i

h (Qn+1 − Qn) + 2Un − |Un|2(Qn+1 + Qn) = 0,
Rn+1 + Rn − 2Un +

ih
2 |Un|2(Rn+1 − Rn) = 0,

�

(11)

where h is the lattice spacing parameter and n is the discrete lattice variable. In the limit h → 0 
the slowly varying solutions between the lattice nodes can be represented by

Un(t) = U(x = hn, t), Rn(t) = R(x = hn, t), Qn(t) = Q(x = nh, t),

where the field variables satisfy the continuum limit of the system (11) given by



2i∂U
∂t + i∂R

∂x + Q + U2R̄ − U(|Q|2 + |R|2) = 0,
−i∂Q

∂x + U − |U|2Q = 0,
R − U = 0.

� (12)

The system (12) in variables U(x, t) = u(x, t − x) and Q(x, t) = v(x, t − x) yields the MTM 
system (1). Therefore, the system (11) is a proper integrable spatial semi-discretization of the 
continuous MTM system in laboratory coordinates.

Note that the last two difference equations of the system (11) are uncoupled between the 
components {Rn}n∈Z and {Qn}n∈Z and, moreover, they are linear with respect to {Rn}n∈Z and 
{Qn}n∈Z. If the sequence {Un}n∈Z decays to zero as |n| → ∞ sufficiently fast, then one can 
express Rn and Qn in an explicit form by

Rn = 2
n−1∑

k=−∞

(−1)n−k−1Uk

∏n−1
m=k+1(1 − ih|Um|2/2)∏n−1

m=k(1 + ih|Um|2/2)
,� (13)

and
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Qn = −ih
n−1∑

k=−∞

Uk

∏n−1
m=k+1(1 + ih|Um|2/2)∏n−1

m=k(1 − ih|Um|2/2)
.� (14)

The time evolution of Un is obtained by solving the first differential equation of the system 
(11). Although the representations (13) and (14) express {Rn}n∈Z and {Qn}n∈Z in terms of 
{Un}n∈Z, it may be easier computationally to solve the last two difference equations of the 
system (11) instantaneously at every time t ∈ R.

As follows from our construction, the semi-discrete MTM system (11) is the compatibility 
condition

−2i
d
dt

Nn = Pn+1Nn − NnPn,� (15)

for �ϕ ∈ C2 on n ∈ Z and t ∈ R satisfying the following Lax equations:

�ϕn+1 = Nn�ϕn, −2i
d�ϕn

dt
= Pn�ϕn,� (16)

associated with the Lax operators

Nn :=


λ+ 2ih−1λ−1 1+ih|Un|2/2

1−ih|Un|2/2
2Un

1−ih|Un|2/2
2Ūn

1−ih|Un|2/2 −λ 1+ih|Un|2/2
1−ih|Un|2/2 + 2ih−1λ−1


� (17)

and

Pn :=
[

λ2 − |Rn|2 λRn − λ−1Qn

λR̄n − λ−1Q̄n −λ−2 + |Qn|2

]
.� (18)

The trivial zero solution satisfies the semi-discrete MTM system (11) and reduces the Lax 
equation (16) to uncoupled equations for components of �ϕ  which are readily solvable. Non-
trivial solutions of the semi-discrete MTM system (11) will be constructed in future work.

3.  Proof of the main result

Here we derive the semi-discrete MTM system (11) by using the method of Tsuchida [38] 
with suitable modifications. Since the work [38] relies on the MTM system in characteristic 
coordinates (7) and the Ablowitz–Ladik lattice, we will incorporate these details in our subse-
quent analysis. The proof is broken into several subsections.

3.1.  MTM system in characteristic coordinates

The MTM system (7) is the compatibility condition

∂2�ϕ

∂ξ∂τ
=

∂2�ϕ

∂τ∂ξ
� (19)

for �ϕ ∈ C2 satisfying the following Lax equations:

i
∂�ϕ

∂ξ
=

[
λ2 − |v|2 λv

λv̄ 0

]
�ϕ and i

∂�ϕ

∂τ
=

[
0 λ−1u

λ−1ū λ−2 − |u|2

]
�ϕ.� (20)

Consequently, by using the transformation (6) in the linear equations (20), we obtain the linear 
equations (5) with L and A given by (8) and (9).
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The linear equations (20) with triangular matrices are different from the classical Lax equa-
tions with zero-trace matrices [25]:

i
∂�ϕ

∂ξ
=

[ 1
2 (λ

2 − |v|2) λv
λv̄ − 1

2 (λ
2 − |v|2)

]
�ϕ, i

∂�ϕ

∂τ
=

[
− 1

2 (λ
−2 − |u|2) λ−1u
λ−1ū 1

2 (λ
−2 − |u|2)

]
�ϕ� (21)

where the ξ-dependent problem is referred to as Kaup–Newell spectral problem [21] and the 
τ -dependent problem is the first negative flow of the Kaup–Newell hierarchy. As shown in [5], 
the two formulations are gauge-equivalent by using the conservation law

∂|v|2

∂τ
=

∂|u|2

∂ξ
,� (22)

which holds for the MTM system in characteristic coordinates (7). Adding 1
2 (λ

2 − |v|2)I2×2 
to the ξ-dependent problem and 1

2 (λ
−2 − |u|2)I2×2 to the τ -dependent problem in the clas-

sical linear equations (21) with zero-trace matrices, where I2×2 is the 2 × 2 identity matrix, 
yields the linear equations (20) with triangular matrices. The representations (20) and (21) 
are equivalent because the MTM system (7) is invariant under the gauge transformation [5].

3.2.  Relation to the Ablowitz–Ladik lattice

The gauge-modified Lax formulation (20) of the MTM system (7) is related to the following 
Ablowitz–Ladik (AL) lattice:
{

dQm
dt = a(1 − QmRm)(Qm+1 − Qm−1) + ib(1 − QmRm)(Qm+1 + Qm−1),

dRm
dt = a(1 − QmRm)(Rm+1 − Rm−1)− ib(1 − QmRm)(Rm+1 + Rm−1),

m ∈ Z,� (23)

where a, b ∈ R are parameters of the model. In order to show how the AL lattice (23) is related 
to the MTM system (7), we write the linear equations for the AL lattice:

�ϕm+1 =

[
λ Qm

Rm λ−1

]
�ϕm,� (24)

and

d�ϕm

∂t
= (a + ib)

[
λ2 − QmRm−1 λQm

λRm−1 0

]
�ϕm + (a − ib)

[
0 λ−1Qm−1

λ−1Rm λ−2 − Qm−1Rm

]
�ϕm.� (25)

The compatibility condition for the system (24) and (25) yields the AL lattice (23). With the 
correspondence

Qm−1 = u, Qm = v, Rm−1 = v̄, Rm = ū,

the two matrix operators in the linear combination of the time evolution equation (25) can be 
used in the Lax equation (20). In this context, the index m  can be dropped and the variables 
(u, v) satisfy the MTM system (7) from commutativity of the Lax equation (20).

3.3.  Bäcklund–Darboux transformation for the AL lattice

It is known [40, 46] that a new solution {Q̃m, R̃m}m∈Z of the AL lattice (23) can be obtained 
from another solution {Qm, Rm}m∈Z of the same lattice by the Bäcklund–Darboux trans-
formation. The Bäcklund–Darboux transformation also relates the eigenvectors �ϕm and �̃ϕm 
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satisfying the Lax equations  (24) and (25) for the same spectral parameter λ. The relation 
between �ϕm and �̃ϕm can be written in the form used in [38]:

�̃ϕm =

[
αλ+ δλ−1 0

0 γλ+ βλ−1

]
�ϕm + (αβ − γδ)

[
γλ Um

Vm δλ−1

]−1

�ϕm,� (26)

where (α,β, γ, δ) are arbitrary parameters such that αβ − γδ �= 0 and {Um, Vm}m∈Z are some 
potentials. For the purpose of the Bäcklund–Darboux transformation for the AL lattice, the 
potentials {Um, Vm}m∈Z are expressed in terms of eigenfunctions satisfying the spectral prob-
lem (24) at a fixed value of the spectral parameter λ. However, for the purpose of the inte-
grable semi-discretization of the MTM system, we specify constraints on {Um, Vm}m∈Z from 
the commutativity condition below.

3.4.  Derivation of the Lax equations (16) with (17) and (18)

Let us drop the index m  and forget about the AL lattice (23) and the spectral problem (24). If 
the Bäcklund–Darboux transformation (26) is iterated in new index n, we can introduce the 
new spectral problem

�ϕn+1 = Nn�ϕn� (27)

with

Nn :=
[
αλ+ δλ−1 0

0 γλ+ βλ−1

]
+ (αβ − γδ)

[
γλ Un

Vn δλ−1

]−1

.

The spectral problem (27) is coupled with the time evolution problem

−2i
d�ϕn

∂t
= Pn�ϕn,� (28)

with

Pn :=
[

λ2 − |Rn|2 λRn − λ−1Qn

λR̄n − λ−1Q̄n −λ−2 + |Qn|2

]
.

The time evolution problem (28) is obtained from the time evolution problem in (9) and (10) 
for the MTM system (1). In the linear equations (27) and (28), we have unknown potentials 
{Un, Vn, Rn, Qn}n∈Z and arbitrary parameters (α,β, γ, δ) such that αβ − γδ �= 0.

In what follows, we consider the compatibility condition (15) and obtain the constraints on 
these unknown potentials. Since the spectral parameter λ is independent of t, we obtain

d
dt

Nn = −(αβ − γδ)

[
γλ Un

Vn δλ−1

]−1 [ 0 dUn
dt

dVn
dt 0

] [
γλ Un

Vn δλ−1

]−1

.

For Nn in Pn+1Nn, we can use the equivalent representation

Nn =

[
αλ(γλ+ βλ−1) Un(αλ+ δλ−1)

Vn(γλ+ βλ−1) βλ−1(αλ+ δλ−1)

] [
γλ Un

Vn δλ−1

]−1

.

For Nn in NnPn , we can use the equivalent representation

Nn =

[
γλ Un

Vn δλ−1

]−1 [
αλ(γλ+ βλ−1) Un(γλ+ βλ−1)

Vn(αλ+ δλ−1) βλ−1(αλ+ δλ−1)

]
.

J. Phys. A: Math. Theor. 52 (2019) 03LT01
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3.4.1.  (1,1) and (2,2) entries.  Substituting the equivalent expressions for Nn to the compat-
ibility condition (15) yields the following two constraints arising at different powers of λ in 
the (1, 1) entries:

αγ(|Rn+1|2 − |Rn|2) + γ(UnR̄n − VnRn+1) + α(VnRn − UnR̄n+1) = 0,� (29)

UnVn(|Qn|2 − |Qn+1|2) + α(UnQ̄n+1 − VnQn) + γ(VnQn+1 − UnQ̄n) = 0
�

(30)

and the following two constraints arising at different powers of λ in the (2, 2) entries:

UnVn(|Rn+1|2 − |Rn|2) + β(UnR̄n − VnRn+1) + δ(VnRn − UnR̄n+1) = 0,� (31)

βδ(|Qn|2 − |Qn+1|2) + δ(UnQ̄n+1 − VnQn) + β(VnQn+1 − UnQ̄n) = 0.� (32)

We claim that the constraints (29)–(32) are equivalent to the following constraints:

γ(αβ − UnVn)Rn+1 − α(δγ − UnVn)Rn = (αβ − δγ)Un,� (33)

α(γδ − UnVn)R̄n+1 − γ(αβ − UnVn)R̄n = −(αβ − δγ)Vn,� (34)

and

β(γδ − UnVn)Qn+1 − δ(αβ − UnVn)Qn = −(αβ − δγ)Un,� (35)

δ(αβ − UnVn)Q̄n+1 − β(γδ − UnVn)Q̄n = (αβ − δγ)Vn.� (36)

To show the equivalence, we use linear combinations of (29) and (31) and obtain

α(γδ − UnVn)(|Rn+1|2 − |Rn|2)− (αβ − γδ)(UnR̄n − VnRn+1) = 0,

γ(αβ − UnVn)(|Rn+1|2 − |Rn|2) + (αβ − γδ)(VnRn − UnR̄n+1) = 0.

These relations are regrouped as follows:

Rn+1 [α(γδ − UnVn)R̄n+1 + (αβ − γδ)Vn]− R̄n [α(γδ − UnVn)Rn + (αβ − γδ)Un] = 0,

R̄n+1 [γ(αβ − UnVn)Rn+1 − (αβ − γδ)Un]− Rn [γ(αβ − UnVn)R̄n − (αβ − γδ)Vn] = 0,

where each constraint is satisfied if and only if constraints (33) and (34) hold. The equivalence 
of constraints (30) and (32) to constraints (35) and (36) is established by similar operations.

3.4.2.  (1,2) entries.  At different powers of λ in the (1, 2) entries of the compatibility condi-
tion (15), we obtain two constraints

αγUn(|Rn+1|2 − |Rn|2) + (αβ − γδ)Un + αγ(δRn − βRn+1) + U2
n(γR̄n − αR̄n+1) = 0,� (37)

βδUn(|Qn|2 − |Qn+1|2) + (αβ − γδ)Un + βδ(γQn+1 − αQn) + U2
n(δQ̄n+1 − βQ̄n) = 0,� (38)

and the evolution equation

2i(αβ − γδ)
dUn

dt
+ αγ(βQn+1 − δQn) + βδ(αRn − γRn+1) + U2

n(αQ̄n+1 − γQ̄n)

+U2
n(βR̄n − δR̄n+1) + Un(γδ|Qn|2 − αβ|Qn+1|2) + Un(γδ|Rn+1|2 − αβ|Rn|2) = 0.

� (39)

We claim that the two constraints (37) and (38) are redundant in view of the constraints (33)–
(36). Indeed, substituting

J. Phys. A: Math. Theor. 52 (2019) 03LT01
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αγ(βRn+1 − δRn)− (αβ − δγ)Un = UnVn(γRn+1 − αRn)

from (33) into (37) and dividing the result by Un, we obtain

αγ(|Rn+1|2 − |Rn|2)− Vn(γRn+1 − αRn) + Un(γR̄n − αR̄n+1) = 0,

which is nothing but (29). Similar transformations apply to (38) with (35) to end up at (32). 
Hence the constraints (37) and (38) are satisfied if the constraints (33)–(36) hold.

3.4.3.  (2,1) entries.  Similarly, at different powers of λ in the (2, 1) entries of the compatibil-
ity condition (15), we obtain two constraints

αγVn(|Rn+1|2 − |Rn|2)− (αβ − γδ)Vn + αγ(βR̄n − δR̄n+1) + V2
n (αRn − γRn+1) = 0,� (40)

βδVn(|Qn|2 − |Qn+1|2)− (αβ − γδ)Vn + βδ(αQ̄n+1 − γQ̄n) + V2
n (βQn+1 − δQn) = 0,� (41)

and the evolution equation

2i(αβ − γδ)
dVn

dt
+ αγ(δQ̄n+1 − βQ̄n) + βδ(γR̄n − αR̄n+1) + V2

n (γQn+1 − αQn)

+V2
n (δRn − βRn+1) + Vn(αβ|Qn|2 − γδ|Qn+1|2) + Vn(αβ|Rn+1|2 − γδ|Rn|2) = 0.

� (42)

The two constraints (40) and (41) are once again redundant in view of the constraints (33)–
(36). The proof of this is achieved by transformations similar to the computations of (1, 2) 
entries.

Summarizing it up, we have shown that the compatibility condition (15) is satisfied under 
the four constraints (33)–(36) and the two evolution equations (39) and (42).

3.5.  Choice of parameters

The constraints (35) and (36) and the time evolution equations (39) and (42) with Rn = 0 are 
obtained in [38], where the Bäcklund–Darboux transformation (27) is coupled with the time 
flow given by the negative powers of λ. Similarly, the constraints (33) and (34) and the time 
evolution equations  (39) and (42) with Qn = 0 are obtained when the Bäcklund–Darboux 
transformation (27) is coupled with the time flow given by the positive powers of λ. All four 
constraints (33)–(36) and the full system of time evolution equations (39) and (42) arise in the 
full time flow (28).

The complex-conjugate symmetry Vn = Ūn between the constraints (33) and (35) on one 
side and the constraints (34) and (36) on the other side as well as between the evolution equa-
tions (39) and (42) is preserved if α = γ̄  and β = δ̄ . Without loss of generality, we normalize 
α = γ = 1 and introduce the parameter h ∈ R by β = −δ = 2i/h. Then, equations (33), (35), 
and (39) divided by 2i/h give respectively the third, second, and first equations of the system 
(11). Thus, integrability of the system (11) is verified from the linear equations (16) with the 
Lax operators given by (17) and (18).

4.  Conclusion

We have derived an integrable semi-discretization of the MTM system in labora-
tory coordinates (1). Integrability of the semi-discrete MTM system (11) with the 
Lax operators (17) and (18) is a starting point for derivation of conserved quanti-
ties, multi-soliton solutions, and other useful properties. It is also a starting point for 
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numerical simulations of the integrable semi-discretizations of the continuous MTM  
system (1).

We conclude by mentioning some relevant works on the semi-discretizations of other inte-
grable nonlinear evolution equations.

By the semi-discretization of the Hirota bilinear method, one can obtain an integrable 
semi-discretization of many continuous nonlinear equations as done in [10] for the coupled 
Yajima–Oikawa system. One can verify [30] that this technique applied to the Chen–Lee–
Liu system yields the same semi-discretization as the one obtained by Tsuchida [38] from  
coupling the Bäcklund transformation for the AL lattice and the time evolution of the Chen–
Lee–Liu system.

From a different point of view, Lax operators for the AL-type lattices with quadratic and 
higher-order polynomial dependence were considered by Vakhnenko (see the recent review in 
[39] and earlier references therein). This approach brings many interesting semi-discretizations 
of coupled nonlinear Schrödinger equations, but these equations are not related to the semi-
discretizations of the massive Thirring model [7].

We conclude that the present contribution contains the only integrable semi-discretization 
of the MTM system in the laboratory coordinates available in the present time.
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