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Abstract. The newly discovered exponential and algebraic double-soliton solutions of the
massive Thirring model in laboratory coordinates are placed in the context of the inverse
scattering transform. We show that the exponential double-solitons correspond to double
isolated eigenvalues in the Lax spectrum, whereas the algebraic double-solitons correspond to
double embedded eigenvalues on the imaginary axis, where the continuous spectrum resides.
This resolves the long-standing conjecture that multiple embedded eigenvalues may exist in
the spectral problem associated with the massive Thirring model. To obtain the exponential
double-solitons, we solve the Riemann–Hilbert problem with the reflectionless potential in the
case of a quadruplet of double poles in each quadrant of the complex plane. To obtain the
algebraic double-solitons, we consider the singular limit where the quadruplet of double poles
degenerates into a symmetric pair of double embedded poles on the imaginary axis.

1. Introduction

We address the massive Thirring model (MTM) in laboratory coordinates, which can be
written in the following normalized form

i(ut + ux) + v + |v|2u = 0,

i(vt − vx) + u+ |u|2v = 0,
(1.1)

where u = u(x, t) and v = v(x, t) are complex functions of real variables x and t. The MTM
was introduced in [25] in the context of quantum field theory as a relativistically invariant
nonlinear Dirac equation in one spatial dimension. It was found in [20] (see also [14, 16, 21])
that the MTM is a commutativity condition for a Lax pair of linear equations, hence it is
completely integrable by the inverse scattering transform (IST) method. The Lax pair of
linear equations for the MTM is given by

∂xψ = L(u, v, ζ)ψ, ∂tψ = A(u, v, ζ)ψ, (1.2)
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where ζ ∈ C is the spectral parameter, ψ = ψ(x, t) ∈ C2 is the wave function, and the 2-by-2
matrices L(u, v, ζ) and A(u, v, ζ) are given by

L =
i

4

(
|u|2 − |v|2

)
σ3 −

i

2
ζ

(
0 v̄
v 0

)
+

i

2ζ

(
0 ū
u 0

)
+
i

4

(
ζ2 − ζ−2

)
σ3

and

A = − i
4

(
|u|2 + |v|2

)
σ3 −

i

2
ζ

(
0 v̄
v 0

)
− i

2ζ

(
0 ū
u 0

)
+
i

4

(
ζ2 + ζ−2

)
σ3.

Here the bar stands for the complex conjugation and σ3 = diag(1,−1) is the third Pauli’s
matrix. The compatibility condition ∂t∂xψ = ∂x∂tψ in the linear system (1.2) coincides with
the MTM system (1.1).

The IST method based on the Riemann–Hilbert (RH) problem has been applied for the
Lax pair (1.2) in the recent works [23] and [9, 18] (see also earlier works [26] and [17]). The IST
method is used to obtain global solutions and to study the long-time dynamics of the MTM
system (1.1) for the initial-value problem with the initial data (u, v)|t=0 = (u0, v0) decaying to
zero at infinity. The decay condition on (u0, v0) is required to be sufficiently fast so that the
functions and their first and second derivatives are square integrable with the weight

√
1 + x2

[9]. Exponential solitons satisfy this requirement and each soliton corresponds to a quadruplet
of simple poles of the RH problem in each quadrant of the complex plane, or equivalently to
simple isolated eigenvalues in the Lax spectrum of the linear system (1.2). However, algebraic
solitons decay as (u, v) = O(|x|−1) as |x| → ∞ and hence they are not included in the IST
method. Each algebraic soliton corresponds to a simple embedded eigenvalue in the Lax
spectrum located on the imaginary axis (no embedded eigenvalues exist on the real axis).

The algebraic solitons in the MTM were studied in [15], where the perturbation theory for
embedded eigenvalues in the Lax spectrum of the linear system (1.2) was developed. It was
shown in [15, Proposition 7.1] that a pair of simple embedded eigenvalues on the imaginary
axis is structurally unstable and moves into a quadruplet of simple isolated eigenvalues in each
quadrant of the complex plane under a generic perturbation of the initial data. A possibility of
embedded eigenvalues of a higher algebraic multiplicity was also suggested in [15, Lemma 6.4]
with some precise conditions on the spatial decay of eigenvectors and generalized eigenvectors
at infinity. Such embedded eigenvalues of higher algebraic multiplicity generally correspond
to rational solutions of the MTM describing algebraic multi-solitons. However, the existence
of such rational solutions has not been established in the literature up to very recently, despite
many works on rational solutions in integrable systems (see, e.g., [6, 7, 10, 22, 29, 30, 31]).

Rational solutions of the MTM were constructed on the constant nonzero background in
[5, 12, 32]. They are relevant to dynamics of rogue waves on the modulationally unstable
background but do not describe the dynamics of algebraic solitons at the zero background. It
was only recently shown in [8] (based on the Hirota’s bilinear method developed in [4]) that
the algebraic double-solitons exist as the exact solutions of the MTM suggesting the existence
of the higher-order algebraic solitons in a hierarchy of rational solutions to the MTM. Within
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the bilinear method, it was not shown in [8] that the algebraic double-solitons correspond to
the double embedded eigenvalues in the Lax spectrum predicted in [15].

The main motivation for our work is to use the RH problem and to obtain the algebraic
double-solitons of the MTM system (1.1) associated with the double embedded eigenvalues in
the Lax spectrum of the linear system (1.2). To derive this result, we construct the exponential
double-solitons associated with a quadruplet of double isolated eigenvalues in each quadrant
of the complex plane and take the singular limit when the quadruplet of double isolated
eigenvalues transforms into a symmetric pair of double embedded eigenvalues on the imaginary
axis.

The study of double eigenvalues has started with the pioneering work [34], where it was
shown that the double eigenvalues of the associated spectral problem give the exponential
double-solitons describing the slow (logarithmic in time) dynamics of two identical solitons of
the focusing nonlinear Schrödinger (NLS) equation. Properties of such exponential double-
solitons were recently studied in nonintegrable versions of the NLS equation in [19]. The
exponential double-solitons on the nonzero constant background were constructed in [24] after
the development in the IST methods on the nonzero background in [3].

The double-soliton solutions in the closely related derivative NLS equation were con-
structed by using the Darboux transformations in [28, 33] and [11]. It was understood in
[33] that the algebraic double-solitons arise from the exponential double-solitons in the singu-
lar limit, for which the modified Darboux transformations have been developed in [11]. The
IST method was also employed in the context of the derivative NLS equation to construct the
exponential double-solitons from the double poles of the RH problem in [27, 35, 36, 37]. Al-
though both the derivative NLS equation and the MTM system in characteristic coordinates
are related to the same spectral problem [13, 14], the computational details for the MTM
system in laboratory coordinates are different and technically more complicated. We close
this gap in the literature by presenting the exponential double-solitons of the MTM system
(1.1) for the double isolated eigenvalues of the linear system (1.2). The main application of
this result is to obtain the algebraic double-solitons and the double embedded eigenvalues in
the singular limit, where the RH problem cannot be used.

For the spectral problem associated with the focusing NLS equation on a nonzero back-
ground, it was understood in [1] how to modify the RH problem for the simple and multiple
embedded eigenvalues at the end points of the continuous spectrum in order to construct the
rogue waves [2]. This modification of the RH problem has not been developed so far for the
spectral problem associated with the derivative NLS equation and the MTM system on the
zero background. It is still unclear how the simple or multiple embedded eigenvalues can be
constructed in the RH problem directly. We hope that our work will motivate further study
of the associated spectral problems with embedded eigenvalues.

This paper is organized as follows. Section 2 introduces the RH problem for the MTM
and formulates the main results. The exponential double-solitons are constructed in Section
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3 from the isolated double-pole solutions of the RH problem. The algebraic double-solitons
are obtained in Section 4 by taking the singular limit to the embedded double-pole solutions
of the RH problem. Appendix A reports similar computations for the exponential and alge-
braic single-solitons for convenience of readers. Appendix B reviews the construction of the
exponential double-solitons in the MTM system by using the bilinear Hirota method.

2. RH problem for MTM and main results

Assume that (u, v) → (0, 0) as |x| → ∞ fast enough, see Lemmas 2.1 and 2.2 below for
precise requirements on (u, v). We define the matrix Jost functions for the linear system (1.2)
from the boundary conditions:

ψ(±)(ζ, x, t)→

(
e
i
4(ζ2−ζ−2)x+ i

4(ζ2+ζ−2)t 0

0 e−
i
4(ζ2−ζ−2)x− i

4(ζ2+ζ−2)t

)
as x→ ±∞. (2.1)

For simplicity of notations, we will drop the dependence of ψ(±) on (x, t). Since the Jost
functions ψ±(ζ) represent the fundamental matrix solutions of the linear sytem (1.2), they are
related to each other by the scattering relations introduced for ζ ∈ (R ∪ iR)\{0} as

ψ(−)(ζ) = ψ(+)(ζ)

(
a(ζ) b(ζ)
−b(ζ) a(ζ)

)
, (2.2)

where the symmetry of scattering coefficients a(ζ) and b(ζ) follows from the symmetry of
matrix Jost functions:

ψ(±)(ζ) =

(
0 −1
1 0

)
ψ

(±)
(ζ)

(
0 1
−1 0

)
. (2.3)

As is explained in [23], the linear system (1.2) can be folded to the squared spectral
parameter λ := ζ2 in two different ways, one is suitable near ζ = 0 and the other one is
suitable near ζ = ∞. Following [9], we will only consider the second transformation, from
which we will define the Riemann-Hilbert (RH) problem and solve it for the exponential
double-solitons, see Theorem 2.1 below.

Hence we introduce the modified Jost functions as{
n

(±)
1 (λ) := T (v, ζ)ψ

(±)
1 (ζ)e−

i
4(ζ2−ζ−2)x− i

4(ζ2+ζ−2)t,

n
(±)
2 (λ) := ζ−1T (v, ζ)ψ

(±)
2 (ζ)e

i
4(ζ2−ζ−2)x+ i

4(ζ2+ζ−2)t,
(2.4)

where the subscripts indicate the columns of the 2-by-2 matrices and the transformation
matrix is given by

T (v, ζ) :=

(
1 0
v ζ

)
.
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It follows from (2.1) that the modified Jost functions satisfy

n
(±)
1 (λ)→ e1 :=

(
1
0

)
, n

(±)
2 (λ)→ e2 :=

(
0
1

)
as x→ ±∞.

Moreover, n
(±)
1,2 (λ) satisfy the integral equations, from which the following properties were

proven in [23, Lemmas 3–5].

Lemma 2.1. Let (u, v) ∈ L1(R) ∩ L∞(R) and (ux, vx) ∈ L1(R). For every λ ∈ R \ {0}, there

exists unique bounded Jost functions n
(±)
1 (λ) and n

(±)
2 (λ). For every x ∈ R, n

(±)
1 and n

(±)
2 are

continued analytically in C± and satisfy the following limits as |λ| → ∞ and λ → 0 along a
contour in the domains of their analyticity:

lim
|λ|→∞

n
(±)
1 (λ)

n±∞1

= e1, lim
|λ|→∞

n
(±)
2 (λ)

n±∞2

= e2, (2.5)

and

lim
λ→0

[
n±∞1 n

(±)
1 (λ)

]
= e1 + ve2, lim

λ→0

[
n±∞2 n

(±)
2 (λ)

]
= ūe1 + (1 + ūv)e2, (2.6)

where

n±∞1 := e
i
4

∫ x
±∞(|u|2+|v|2)dy, n±∞2 := e−

i
4

∫ x
±∞(|u|2+|v|2)dy.

Recall that λ := ζ2 and that λ ∈ R for ζ ∈ (R ∪ iR). Hence we define new scattering
coefficients for λ ∈ R\{0} as

α(λ) := a(ζ), β+(λ) := ζb(ζ), β−(λ) := ζ−1b(ζ).

After the folding transformation (2.4), the scattering relations (2.2) are modified as follows

n(−)(λ) = n(+)(λ)

(
α(λ) β−(λ)e2iθ(λ)

−β+(λ)e−2iθ(λ) α(λ)

)
, (2.7)

where

θ(λ) :=
1

4
(λ− λ−1)x+

1

4
(λ+ λ−1)t. (2.8)

The following lemma was proven in [23, Lemma 6].

Lemma 2.2. Let (u, v) ∈ L1(R)∩L∞(R) and (ux, vx) ∈ L1(R). Then, α is continued analyt-
ically into C+ with the following limits in C+:

lim
|λ|→∞

α(λ) = e−
i
4

∫
R(|u|2+|v|2)dy (2.9)

and

lim
λ→0

α(λ) = e
i
4

∫
R(|u|2+|v|2)dy, (2.10)
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whereas β± are not continued analytically outside R and satisfy the limits

lim
|λ|→∞

β±(λ) = lim
λ→0

β±(λ) = 0.

The RH problem for the modified Jost functions n(±)(λ) is constructed as follows. We first
define the sectionally meromorphic matrix P (λ) ∈ C2×2 by

P (λ) :=



(
n

(+)
1 (λ),

n
(−)
2 (λ)

α(λ)

)
, λ ∈ C+,(

n
(−)
1 (λ)

ᾱ(λ)
, n

(+)
2 (λ)

)
, λ ∈ C−.

(2.11)

By using (2.5) and (2.9), we obtain the following limits as |λ| → ∞ in the domain of mero-
morphicity of P (λ):

lim
|λ|→∞

P (λ) =

(
n+∞

1 0
0 n+∞

2

)
=: P∞, (2.12)

where P∞ = (P∞)−1. We finally define M(λ) := (P∞)−1P (λ) and formulate the normalized
RH problem.

RH problem. Find a complex-valued function M(λ) with the following properties:

• M(λ) is meromorphic in C \ R.
• M(λ)→ I as |λ| → ∞, where I is the 2-by-2 identity matrix.
• M+(λ) = M−(λ)V (λ) for every λ ∈ R, where M±(λ) := lim

Im(λ)→±0
M(λ) and

V (λ) :=

(
1 −r−(λ)e2iθ(λ)

−r+(λ)e−2iθ(λ) 1 + r+(λ)r−(λ)

)
, r±(λ) :=

β±(λ)

α(λ)
.

It follows from (2.6) and (2.10) (see also [9, Proposition 2.24]) that the potentials (u, v)
for solutions of the MTM system (1.1) can be recovered from solutions of the RH problem by
using the following asymptotic limits taken in the domains of meromorphicity of M(λ):

u = lim
λ→0

M12(λ), v = lim
λ→0

M21(λ). (2.13)

Solvability of the RH problem under some conditions of the reflection coefficients r±(λ)
was studied in [9, 23]. In this work, we consider the reflectionless case r±(λ) ≡ 0 for λ ∈ R in
the particular case when α(λ) admits a double pole at λ0 ∈ C+.

It is well-known (see, e.g., [9, 18]) that a simple pole of α(λ) leads to a single-soliton
solution. For completeness, we give details of the RH problem with a simple pole in Appendix
A. To simplify the presentation of soliton solutions, we should use the basic symmetries of
the MTM system. In particular, the relativistically invariant MTM system (1.1) admits the
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Lorentz symmetry[
u(x, t)
v(x, t)

]
7→

(1−c
1+c

)1/4
u
(

x+ct√
1−c2 ,

t+cx√
1−c2

)
(

1+c
1−c

)1/4
v
(

x+ct√
1−c2 ,

t+cx√
1−c2

) , c ∈ (−1, 1). (2.14)

In addition, it admits the translational and rotational symmetries[
u(x, t)
v(x, t)

]
7→

[
u(x+ x0, t+ t0)eiθ0

v(x+ x0, t+ t0)eiθ0

]
, x0, t0, θ0 ∈ R. (2.15)

By using (2.14) and (2.15), the single-soliton solutions can be expressed in a short form:{
u(x, t) = i(sin γ)sech

(
x sin γ − iγ

2

)
e−it cos γ,

v(x, t) = −i(sin γ)sech
(
x sin γ + iγ

2

)
e−it cos γ,

(2.16)

where γ ∈ (0, π) is a free parameter. More general single-soliton solutions can be extended
with speed parameter c ∈ (−1, 1) by using (2.14) and with two translational parameters
x0, t0 ∈ R by using (2.15), where translation in θ0 is linearly dependent from translation in t0.

The normalized single-soliton solution (2.16) corresponds to the simple pole of the RH
problem at λ0 = eiγ ∈ C+ with γ ∈ (0, π), see Appendix A. The double-soliton solutions will
also be constructed for λ0 = eiγ ∈ C+. The following theorem gives the explicit representation
of the double-soliton solutions. As we show in Appendix B, this representation coincides with
the explicit formula obtained by the bilinear Hirota method developed in [4].

Theorem 2.1. Let λ0 = eiγ with γ ∈ (0, π) be a double pole of the RH problem. Then, the
solution (u, v) of the MTM system (1.1) obtained from (2.13) is given by

u =
N̄u

D(M)
, v =

Nv

D(M)
, (2.17)

where

Nu = 4i(sin γ)2e−x sin γ+it cos γ− iγ
2

(
(x− x̃0) cos γ + i(t− t̃0) sin γ + i

−e−2x sin γ−iγ[2 cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ]
)
,

Nv = 4i(sin γ)2e−x sin γ−it cos γ− iγ
2

(
(x− x̃0) cos γ − i(t− t̃0) sin γ

−e−2x sin γ−iγ[2 cot γ + (x− x̃0) cos γ + i(t− t̃0) sin γ + i]
)
,

and

D(M) = 1 + e−4x sin γ−2iγ + 2e−2x sin γ−iγ

×

(
1 + 2(sin γ)2

[
cot γ + (x− x̃0) cos γ +

i

2

]2

+ 2(sin γ)4

[
t− t̃0 +

1

2 sin γ

]2
)
,

where x̃0, t̃0 ∈ R are arbitrary parameters in addition to parameters c ∈ (−1, 1) and x0, t0 ∈ R
obtained from the transformations (2.14) and (2.15).
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Remark 2.2. Parameter t̃0 is trivially removed by using translational symmetries (2.15) with
translations in θ0 and t0. Hence, the double-soliton solutions of Theorem 2.1 only have two
non-trivial parameters: γ ∈ (0, π) and x̃0 ∈ R.

Although the explicit form of double-soliton solutions in Theorem 2.1 can be obtained
by algebraic methods such as Darboux transformations or the bilinear Hirota method, see
Appendix B, the RH problem enables us to clarify the Lax spectrum of the double-soliton
solutions. Based on the solution in Section 3, we prove that ζ0 :=

√
λ0 = e

i
2
γ is a double

eigenvalue of the linear system (1.2) with only one eigenvector ψ0 ∈ H1(R,C2) and one
generalized eigenvector ψ1 ∈ H1(R,C2). The eigenvector and the generalized eigenvector
satisfy the following linear equations:

∂xψ0 = L(u, v, ζ0)ψ0, ∂tψ0 = A(u, v, ζ0)ψ0 (2.18)

and

∂xψ1 = L(u, v, ζ0)ψ1 + ∂ζL(u, v, ζ0)ψ0, ∂tψ1 = A(u, v, ζ0)ψ1 + ∂ζA(u, v, ζ0)ψ0, (2.19)

where (u, v) is given by (2.17) and ζ0 = e
iγ
2 .

The knowledge of eigenvectors and generalized eigenvectors in (2.18) and (2.19) is partic-
ularly important when the exponential double-soliton solution of Theorem 2.1 converges as
γ → π to the algebraic double-soliton solution obtained in [8]. The following theorem states
that the corresponding Lax spectrum includes the double embedded eigenvalue ζ0 = i of the
linear system (1.2) with only one eigenvector ψ0 ∈ H1(R,C2) and one generalized eigenvector
ψ1 ∈ H1(R,C2) satisfying (2.18) and (2.19) for ζ0 = i.

Theorem 2.3. Let λ0 = eiγ be a double pole of the RH problem with the solution (u, v) of the
MTM system (1.1) obtained in Theorem 2.1. With proper choice of x̃0 and t̃0, this solution
transforms in the limit γ → π to the form:

ualg(x, t) =
−8

3
x3 − 4ix2 + 2x− i− 4i(t− t̃0)(i+ 2x) + 8x̃0

4
3
x4 + 8

3
ix3 + 2x2 + 2ix− 1

4
− 4(t− t̃0)2 + 4x̃0(i+ 2x)

eit (2.20)

and

valg(x, t) =
−8

3
x3 + 4ix2 + 2x+ i+ 4i(t− t̃0)(i− 2x) + 8x̃0

4
3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x)

eit, (2.21)

where x̃0, t̃0 ∈ R are (new) arbitrary parameters in addition to parameters c ∈ (−1, 1) and
x0, t0 ∈ R obtained from the transformations (2.14) and (2.15). The linear equations (2.18)
and (2.19) with (u, v) = (ualg, valg) and ζ0 = i admit the eigenvector

ψ0 = e−
i
2
tT−1n0, (2.22)
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where T−1 := [T (valg, i)]
−1 =

(
1 0

ivalg −i

)
and n0 = (n01, n02)T is given by

n01 = e
i
4

∫ x
+∞(|u|2+|v|2)dy 2x2 − 2i(t− t̃0) + 1

2
4
3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x)

,

n02 = e−
i
4

∫ x
+∞(|u|2+|v|2)dy+it −2ix2 − 4x+ 2(t− t̃0) + 3

2
i

4
3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x)

eit.

and the generalized eigenvector

ψ1 = 2ie−
i
2
tT−1n1 + i∂ζT (v, ζ)ψ0, (2.23)

where ∂ζT (v, ζ) =

(
0 0
0 1

)
and n1 = (n11, n12)T is given by

n11 =e
i
4

∫ x
+∞(|u|2+|v|2)dy−

1
3
ix3 − 2x2 − 4

3
ix+ x(t− t̃0) + 2i(t− t̃0)− 1

2
− 2ix̃0

4
3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x)

,

n12 =e−
i
4

∫ x
+∞(|u|2+|v|2)dy+it −

1
3
x3 − ix2 − 15

4
x+ ix(t− t̃0) + 5

4
i+ 3(t− t̃0)− 2x̃0

4
3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x)

eit.

Remark 2.4. The eigenvector ψ0 and generalized eigenvector ψ1 in (2.22) and (2.23) for the
double embedded eigenvalue ζ = i satisfy the criterion for the spatial decay in [15, Lemma
6.4], namely ψ0 = O(|x|−2) and ψ1 = O(|x|−1) as |x| → ∞.

Remark 2.5. The algebraic double-soliton given by (2.20) and (2.21) reduces to the explicit
expression obtained in [8] by using the transformation

x→ −x, t→ −t, u→ u, v → −v,

due to a different normalization of the MTM system used in [8].

3. Exponential double-solitons for a double pole

Here we study solutions of the normalized RH problem for the refelectionless potential
r±(λ) ≡ 0 for λ ∈ R with a double pole of M(λ) at λ0 ∈ C+. By symmetry (2.3), λ̄0 ∈ C− is
also a double pole of M(λ). The normalized RH problem can be rewritten in the form:

RH problem. Find a complex-valued function M(λ) with the following properties:

• M(λ) has double poles at λ0 ∈ C+ and λ̄0 ∈ C−.
• M(λ)→ I as |λ| → ∞, where I is the 2-by-2 identity matrix.
• M+(λ) = M−(λ) for every λ ∈ R, where M±(λ) := lim

Im(λ)→±0
M(λ).
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In order to regularize the RH problem, we subtract the residue conditions in both sides of
the formula M+(λ) = M−(λ) and obtain the following solution of the normalized RH problem:

M(λ) = I +
Resλ=λ0M+(λ)

λ− λ0

+
Resλ=λ̄0M−(λ)

λ− λ̄0

+
P−2
λ=λ0

M+(λ)

(λ− λ0)2
+

P−2
λ=λ̄0

M−(λ)

(λ− λ̄0)2
, (3.1)

where Resλ=λ0 is the residue coefficient and P−2
λ=λ0

is the double pole coefficient at λ = λ0.

3.1. Computations of the residue coefficients. In order to compute the residue coeffi-
cients, we use the following result.

Lemma 3.1. Assume f and g be analytic in a complex region Ω ∈ C such that g has a double
pole at z0 ∈ Ω with g(z0) = g′(z0) = 0, g′′(z0) 6= 0, and f(z0) 6= 0. The residue coefficients of
f/g at z = z0 are given by

Resz=z0
f(z)

g(z)
=

2f ′(z0)

g′′(z0)
− 2f(z0)g′′′(z0)

3[g′′(z0)]2
, P−2

z=z0

f(z)

g(z)
=

2f(z0)

g′′(z0)
.

Proof. Under conditions of the lemma, we have

f(z) = f(z0) + f ′(z0)(z − z0) +O((z − z0)2),

g(z) =
1

2
g′′(z0)(z − z0)2 +

1

6
g′′′(z0)(z − z0)3 +O((z − z0)4),

from which the result follows by the Laurent expansion of f(z)/g(z). �

The residue coefficients in (3.1) are obtained from (2.11) and (2.12):

Resλ=λ0M+(λ) = (P∞)−1

(
~0 Resλ=λ0

n
(−)
2 (λ)

α̃(λ)

)
, P−2

λ=λ0
M+(λ) = (P∞)−1

(
~0 P−2

λ=λ0

n
(−)
2 (λ)

α(λ)

)
,

Resλ=λ̄0M̃−(λ) = (P∞)−1

(
Resλ=λ̄0

n
(−)
1 (λ)

ᾱ(λ)
~0

)
, P−2

λ=λ̄0
M−(λ) = (P∞)−1

(
P−2
λ=λ̄0

n
(−)
1 (λ)

α̌(λ)
~0

)
,

where ~0 is a 2-by-1 zero vector. Based on Lemma 3.1 and this representation, we obtain the
residue coefficients in the following proposition.

Proposition 3.1. The residue coefficients of M+(λ) at λ = λ0 are given by

P−2
λ=λ0

[
n

(−)
2 (λ)

α(λ)

]
= A0n

(+)
1 (λ0)e2iθ(λ0), (3.2)

Resλ=λ0

[
n

(−)
2 (λ)

α(λ)

]
= A0e

2iθ(λ0)
[
(n

(+)
1 )′(λ0) + n

(+)
1 (λ0) (2iθ′(λ0) +B0)

]
, (3.3)
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where A0 and B0 are arbitrary coefficients. The residue conditions of M−(λ) at λ = λ̄0 are
given by

P−2
λ=λ̄0

[
n

(−)
1 (λ)

α̌(λ)

]
= −Ā0λ̄0n

(+)
2 (λ̄0)e−2iθ(λ̄0), (3.4)

Resλ=λ̄0

[
n

(−)
1 (λ)

ᾱ(λ̄)

]
= −Ā0λ̄0e

−2iθ(λ̄0)
[
(n

(+)
2 )′(λ̄0) + n

(+)
2 (λ̄0)

(
−2iθ′(λ̄0) + B̄0 + λ̄−1

0

)]
. (3.5)

Proof. By assumption, λ0 = ζ2
0 is a double zero of α(λ) extended to C+ by Lemma 2.2. Since

it folows from (2.2) that

α(λ) = a(ζ) = det(ψ
(+)
1 (ζ), ψ

(−)
2 (ζ)),

we conclude that there exists a constant e0 such that

ψ
(−)
2 (ζ0) = e0ψ

(+)
1 (ζ0). (3.6)

Furthermore, since ζ0 is the double zero of a(ζ), we have

0 = a′(ζ0) = det
(

(ψ
(+)
1 )′, ψ

(−)
2

)
+ det

(
ψ

(+)
1 , (ψ

(−)
2 )′

) ∣∣
ζ=ζ0

= det
(
ψ

(+)
1 ,−e0(ψ

(+)
1 )′ + (ψ

(−)
2 )′

) ∣∣
ζ=ζ0

,

so that there exists another constant h0 such that

(ψ
(−)
2 )′(ζ0) = e0(ψ

(+)
1 )′(ζ0) + h0ψ

(+)
1 (ζ0). (3.7)

By using transformation (2.4), we rewrite (3.6) as

n
(−)
2 (λ0) = e0ζ

−1
0 n

(+)
1 (λ0)e2iθ(λ0), (3.8)

where θ(λ) is given by (2.8). This expression agrees with (2.7) for α(λ0) = 0. By using
transformation (2.4) again and the product rule, we derive

(n
(+)
1 )′(λ0) = (2ζ0)−1T (v, ζ0)[(ψ

(+)
1 )′(ζ0)− 2iζ0θ

′(λ)ψ
(+)
1 (ζ0)]e−iθ(λ0)

+ (2ζ0)−1[∂ζT (v, ζ0)]ψ
(+)
1 (ζ0)e−iθ(λ0),

(n
(−)
2 )′(λ0) = (2ζ2

0 )−1T (v, ζ0)[(ψ
(−)
2 )′(ζ) + 2iζ0θ

′(λ0)]eiθ(λ0) − (2ζ2
0 )−1n

(−)
2 (λ0)

+ (2ζ2
0 )−1[∂ζT (v, ζ0)]ψ

(−)
2 (ζ0)eiθ(λ0),

which imply due to (3.7) and (3.8) that

(n
(−)
2 )′(λ0) = e2iθ(λ0)

[
e0ζ
−1
0 (n

(+)
1 )′(λ0) + (2ζ2

0 )−1(h0 + 4ie0ζ0θ
′(λ0)− e0ζ

−1
0 )n

(+)
1 (λ0)

]
, (3.9)

in agreement with the derivative of (2.7) at λ = λ0.
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We use the chain rule

α′(λ) = (2ζ)−1a′(ζ),

α′′(λ) = (2ζ)−2[a′′(ζ)− ζ−1a′(ζ)],

α′′′(λ) = (2ζ)−3[a′′′(ζ)− 3ζ−1a′′(ζ) + 3ζ−2a′(ζ)].

By using (3.8) and (3.9), we compute from the expressions in Lemma 3.1 that

P−2
λ=λ0

[
n

(−)
2 (λ)

α(λ)

]
=

8ζ2
0n

(−)
2 (λ0)

a′′(ζ0)
=

8e0ζ0

a′′(ζ0)
n

(+)
1 (λ0)e2iθ(λ0) (3.10)

and

Resλ=λ0

[
n

(−)
2 (λ)

α(λ)

]
=

8ζ2
0 (n

(−)
2 )′(λ0)

a′′(ζ0)
−

4ζ0n
(−)
2 (λ0)

[
a′′′(ζ0)− 3ζ−1

0 a′′(ζ0)
]

3[a′′(ζ0)]2
,

=
8e0ζ0

a′′(ζ0)
e2iθ(λ0)

[
(n

(+)
1 )′(λ0) + n

(+)
1 (λ0)

(
2iθ′(λ0) +

h0

2e0ζ0

− a′′′(ζ0)

6ζ0a′′(ζ0)

)]
.

(3.11)

Let

A0 =
8e0ζ0

a′′(ζ0)
, B0 =

h0

2e0ζ0

− a′′′(ζ0)

6ζ0a′′(ζ0)
, (3.12)

then (3.10) and (3.11) are transformed into (3.2) and (3.3).

By using the symmetry condition (2.3), we have

ψ
(±)
1 (ζ) =

(
0 1
−1 0

)
ψ

(±)

2 (ζ), ψ
(±)
2 (ζ) =

(
0 −1
1 0

)
ψ

(±)

1 (ζ),

from which we obtain with the help of (3.6) and (3.7) that

ψ
(−)
1 (ζ̄0) = −ē0ψ

(+)
2 (ζ̄0)

and

(ψ
(−)
1 )′(ζ̄0) = −ē0(ψ

(+)
2 )′(ζ̄0)− h̄0ψ

(+)
2 (ζ̄0).

Furthermore, by using the transformation (2.4) and its derivative, similarly to (3.8) and (3.9),
we obtain

n
(−)
1 (λ̄0) = −ē0ζ̄0n

(+)
2 (λ̄0)e−2iθ(λ̄0)

and

(n
(−)
1 )′(λ̄0) = −e−2iθ(λ̄0)

[
ē0ζ̄0(n

(+)
2 )′(λ̄0) +

1

2
(h̄0 − 4iē0ζ̄0θ

′(λ̄0) + ē0ζ̄
−1
0 )n

(+)
2 (λ̄0)

]
.

By using these expressions we compute from Lemma 3.1, similarly to (3.10) and (3.11), that

P−2
λ=λ̄0

[
n

(−)
1 (λ)

ᾱ(λ̄)

]
= − 8ē0ζ̄

3
0

ā′′(ζ0)
n

(+)
2 (λ̄0)e−2iθ(λ̄0) (3.13)
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and

Resλ=λ̄0

[
n

(−)
1 (λ)

ᾱ(λ̄)

]

= − 8ē0ζ̄
3
0

ā′′(ζ0)
e−2iθ(λ̄0)

[
(n

(+)
2 )′(λ̄0) + n

(+)
2 (λ0)

(
−2iθ′(λ̄0) +

h̄0

2ē0ζ̄0

+
1

ζ̄2
0

− ā′′′(ζ0)

6ζ̄0ā′′(ζ0)

)]
.

(3.14)

Using the same notations (3.12) for A0 and B0, we transform (3.13) and (3.14) into (3.4) and
(3.5). �

3.2. Computation of solutions of the linear algebraic system. Using the first column
of M(λ) in (3.1) for λ ∈ C+, we obtain from (3.4) and (3.5) that

n
(+)
1 (λ) = n+∞

1 e1 −
Ā0λ̄0

(λ− λ̄0)2

[
1 + (λ− λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )
]
n

(+)
2 (λ̄0)e−2iθ(λ̄0)

− Ā0λ̄0

λ− λ̄0

(n
(+)
2 )′(λ̄0)e−2iθ(λ̄0).

(3.15)

Using the second column of M(λ) in (3.1) for λ ∈ C−, we obtain from (3.2) and (3.3) that

n
(+)
2 (λ) = n+∞

2 e2 +
A0

(λ− λ0)2
[1 + (λ− λ0)(2iθ′(λ0) +B0)]n

(+)
1 (λ0)e2iθ(λ0)

+
A0

λ− λ0

(n
(+)
1 )′(λ0)e2iθ(λ0).

(3.16)

We can close the algebraic system by evaluating (3.15) at λ = λ0 and (3.16) at λ = λ̄0:

n
(+)
1 (λ0) = n+∞

1 e1 − C̄0λ̄0

[
1 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )
]
n

(+)
2 (λ̄0)e−2iθ(λ̄0)

− C̄0λ̄0(λ0 − λ̄0)(n
(+)
2 )′(λ̄0)e−2iθ(λ̄0),

n
(+)
2 (λ̄0) = n+∞

2 e2 + C0

[
1− (λ0 − λ̄0)(2iθ′(λ0) +B0)

]
n

(+)
1 (λ0)e2iθ(λ0)

− C0(λ0 − λ̄0)(n
(+)
1 )′(λ0)e2iθ(λ0),

(3.17)

as well as their derivatives at λ = λ0 and λ = λ̄0 respectively:

(n
(+)
1 )′(λ0) = C̄0λ̄0

[
2(λ0 − λ̄0)−1 − 2iθ′(λ̄0) + B̄0 + λ̄−1

0

]
n

(+)
2 (λ̄0)e−2iθ(λ̄0)

+ C̄0λ̄0(n
(+)
2 )′(λ̄0)e−2iθ(λ̄0),

(n
(+)
2 )′(λ̄0) = C0

[
2(λ0 − λ̄0)−1 − 2iθ′(λ0)−B0

]
n

(+)
1 (λ0)e2iθ(λ0)

− C0(n
(+)
1 )′(λ0)e2iθ(λ0),

(3.18)

where

C0 :=
A0

(λ0 − λ̄0)2
.
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The following proposition solves the linear system (3.17) and (3.18) and derive the explicit
representation for the exponential double-soliton solution of the MTM system (1.1) by using
the recovery formulas (2.13).

Proposition 3.2. The potentials u(x, t) and v(x, t) in (2.13) are expressed from solutions of
the RH problem with a double pole by

u =
Nu

D(M)
, v =

Nv

D(M)
, (3.19)

where

Nu = −λ−1
0 A0e

2iθ(λ0)(2iθ′(λ0) +B0 − λ−1
0 )− λ−1

0 A0|C0|2λ̄0e
4iθ(λ0)−2iθ(λ̄0)

× [4(λ0 − λ̄0)−1 + (−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )λ̄0λ

−1
0 − 3λ−1

0 ],
(3.20)

Nv = Ā0e
−2iθ(λ̄0)

(
−2iθ′(λ̄0) + B̄0

)
+ Ā0|C0|2λ̄0e

2iθ(λ0)−4iθ(λ̄0)

× [−4(λ0 − λ̄0)−1 + (2iθ′(λ0) +B0)λ0λ̄
−1
0 − 3λ̄−1

0 ].
(3.21)

and

D(M) = 1 + |C0|4λ̄2
0e

4iθ(λ0)−4iθ(λ̄0)

+ |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)

[
6 + 2(λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 − 2iθ′(λ0)−B0)

−(λ0 − λ̄0)2(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )(2iθ′(λ0) +B0)

]
(3.22)

Proof. By substituting (3.1), (3.2), and (3.3) into (2.13), we obtain

u = lim
λ→0

M12(λ)

= − 1

λ0

n+∞
2 Resλ=λ0

[
n

(−)
21 (λ)

α(λ)

]
+

1

λ2
0

n+∞
2 P−2

λ=λ0

[
n

(−)
21 (λ)

α(λ)

]
,

= − 1

λ0

n+∞
2 A0e

2iθ(λ0)
[
(n

(+)
11 )′(λ0) + n

(+)
11 (λ0)(2iθ′(λ0) +B0 − λ−1

0 )
]
,

(3.23)

where the second index for vectors n
(+)
1 and n

(−)
2 denotes the corresponding components of

2-vectors. Similarly, by substituting (3.1), (3.4), and (3.5) into (2.13), we obtain

v = lim
λ→0

M21(λ)

= − 1

λ̄0

n+∞
1 Resλ=λ̄0

[
n

(−)
12 (λ)

ᾱ(λ)

]
+

1

λ̄2
0

n+∞
1 P−2

λ=λ̄0

[
n

(−)
12 (λ)

ᾱ(λ)

]
,

= n+∞
1 Ā0e

−2iθ(λ̄0)
[
(n

(+)
22 )′(λ̄0) + n

(+)
22 (λ̄0)(−2iθ′(λ̄0) + B̄0)

]
.

(3.24)
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The linear system (3.17) and (3.18) can be rewritten for the vectors n
(+)
1 (λ0) and (n

(+)
1 )′(λ0):

M

(
n

(+)
1 (λ0)

(n
(+)
1 )′(λ0)

)
=

(
n+∞

1 e1 − C̄0λ̄0

[
1 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )
]
n+∞

2 e−2iθ(λ̄0)e2

C̄0λ̄0

[
2(λ0 − λ̄0)−1 − 2iθ′(λ̄0) + B̄0 + λ̄−1

0

]
n+∞

2 e−2iθ(λ̄0)e2

)
,

where

M =

(
M11I M12I
M21I M22I

)
with I being a 2-by-2 identity matrix and Mij being scalar entries given by

M11 = 1 + |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)[3 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )− 2(λ0 − λ̄0)(2iθ′(λ0) +B0)

− (λ0 − λ̄0)2(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )(2iθ′(λ0) +B0)],

M12 = −|C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)(λ0 − λ̄0)

[
2 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )
]
,

M21 = −|C0|2λ̄0(λ0 − λ̄0)−1e2iθ(λ0)−2iθ(λ̄0)[4 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )

− 3(λ0 − λ̄0)(2iθ′(λ0) +B0)− (λ0 − λ̄0)2(2iθ′(λ0) +B0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )],

M22 = 1 + |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)[3 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )].

By Cramer’s rule, we obtain the first components of vectors n
(+)
1 (λ0) and (n

(+)
1 )′(λ0):

n
(+)
11 (λ0) =

n∞1 M22

D(M)
, (n

(+)
11 )′(λ0) =

−n∞1 M21

D(M)
, (3.25)

where D(M) = M11M22 −M12M21 recovers (3.22) after cancelation of several terms at |C0|4.
Substituting (3.25) into (3.23), we get u in the form (3.19) with

Nu = −λ−1
0 A0e

2iθ(λ0)
[
−M21 +M22(2iθ′(λ0) +B0 − λ−1

0 )
]

which yields (3.20) after cancelation of several terms at |C0|2.

For the vectors n
(+)
2 (λ0) and (n

(+)
2 )′(λ0), the linear system (3.17) and (3.18) can be rewritten

as

M̃

(
n

(+)
2 (λ0)

(n
(+)
2 )′(λ0)

)
=

(
n+∞

2 e2 + C0

[
1− (λ0 − λ̄0)(2iθ′(λ0) +B0)

]
n+∞

1 e2iθ(λ0)e1

C0

[
2(λ0 − λ̄0)−1 − 2iθ′(λ0)−B0

]
n+∞

1 e2iθ(λ0)e1

)
,

where

M̃ =

(
M̃11I M̃12I

M̃21I M̃22I

)
with

M̃11 = 1 + |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)[3 + 2(λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1

0 )− (λ0 − λ̄0)(2iθ′(λ0) +B0)

− (λ0 − λ̄0)2(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )(2iθ′(λ0) +B0)],

M̃12 = |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)(λ0 − λ̄0)

[
2− (λ0 − λ̄0)(2iθ′(λ0) +B0)

]
,
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M̃21 = |C0|2λ̄0(λ0 − λ̄0)−1e2iθ(λ0)−2iθ(λ̄0)[4 + 3(λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )

− (λ0 − λ̄0)(2iθ′(λ0) +B0)− (λ0 − λ̄0)2(2iθ′(λ0) +B0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )],

M̃22 = 1 + |C0|2λ̄0e
2iθ(λ0)−2iθ(λ̄0)[3− (λ0 − λ̄0)(2iθ′(λ0) +B0)].

By Cramer’s rule, we obtain the second components of vectors n
(+)
2 (λ0) and (n

(+)
2 )′(λ0):

n
(+)
22 (λ0) =

n∞2 M̃22

D(M̃)
, (n

(+)
22 )′(λ0) =

−n∞2 M̃21

D(M̃)
, (3.26)

where D(M̃) = M̃11M̃22−M̃12M̃21 = D(M) is given by (3.22). Substituting (3.26) into (3.24),
we get v in the form (3.19) with

Nv = Ā0e
−2iθ(λ̄0)

[
−M̃21 + M̃22(−2iθ′(λ̄0) + B̄0)

]
,

which yields (3.21) after cancelation of several terms at |C0|2. �

3.3. Proof of Theorem 2.1. In order to rewrite the recovered potentials of Proposition 3.2
in the simplified form of Theorem 2.1, we set λ0 = eiγ ∈ S1 ∩ C+ with γ ∈ (0, π). A more
general solution is obtained with the Lorentz symmetry (2.14).

Since λ0 = eiγ, we obtain

2iθ(λ0) = −x sin γ + it cos γ,

4iθ′(λ0) = i(x+ t) + i(x− t)e−2iγ,

and complex conjugate for −2iθ(λ̄0) and −4iθ′(λ̄0).

Let us define A0 = (λ0− λ̄0)2λ
3/2
0 = −4(sin γ)2e

3iγ
2 , which yields C0 = e

3iγ
2 . A more general

solution with two translational parameters x0, t0 ∈ R can be obtained by the translational
symmetry (2.15) or by including two additional parameters in A0 ∈ C. Then it follows from
(3.20), (3.21), and (3.22) that

Nu = 2i(sin γ)2e−x sin γ+it cos γ+ iγ
2

(
x+ t+ (x− t)e−2iγ − 2iB0 + 2ie−iγ

−e−2x sin γ−iγ[4(sin γ)−1 + (x+ t+ (x− t)e2iγ + 2iB̄0 + 2ieiγ)e−2iγ − 6ie−iγ]
)
,

Nv = 2i(sin γ)2e−x sin γ−it cos γ− 3iγ
2

(
x+ t+ (x− t)e2iγ + 2iB̄0

−e−2x sin γ−iγ[4(sin γ)−1 + (x+ t+ (x− t)e−2iγ − 2iB0)e2iγ + 6ieiγ]
)
,

and

D(M) = 1 + e−4x sin γ−2iγ + e−2x sin γ−iγ

×
[
6 + 4(sin γ)(x+ t+ (x− t) cos 2γ + i(B̄0 −B0 + eiγ))

+(sin γ)2(x+ t+ (x− t)e2iγ + 2iB̄0 + 2ieiγ)(x+ t+ (x− t)e−2iγ − 2iB0)
]
.
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By using trigonometric identities, we reduce expressions for Nu, Nv and D(M) to the form:

Nu = 4i(sin γ)2e−x sin γ+it cos γ− iγ
2

(
x cos γ + it sin γ − iB0e

iγ + i

−e−2x sin γ−iγ[2 cot γ + x cos γ − it sin γ + iB̄0e
−iγ]
)
,

Nv = 4i(sin γ)2e−x sin γ−it cos γ− iγ
2

(
x cos γ − it sin γ + iB̄0e

−iγ

−e−2x sin γ−iγ[2 cot γ + x cos γ + it sin γ − iB0e
iγ + i]

)
,

D(M) = 1 + e−4x sin γ−2iγ + 2e−2x sin γ−iγ

×
[
3 + 2(sin γ)(2x(cos γ)2 + 2t(sin γ)2 + i(B̄0 −B0 + eiγ))

+2(sin γ)2(x cos γ − it sin γ + iB̄0e
−iγ + i)(x cos γ + it sin γ − iB0e

iγ)
]
.

By selecting B0 = −ie−iγ[x̃0 cos γ + it̃0 sin γ] with arbitrary parameters x̃0 and t̃0, we obtain
the same expressions for Nu and Nv as in Theorem 2.1. Regarding the expression for D(M),
we obtain

D(M) = 1 + e−4x sin γ−2iγ + 2e−2x sin γ−iγ

×
[
3 + 2(sin γ)[2(x− x̃0)(cos γ)2 + 2(t− t̃0)(sin γ)2 + i cos γ − sin γ]

+2(sin γ)2[(x− x̃0) cos γ − i(t− t̃0) sin γ + i][(x− x̃0) cos γ + i(t− t̃0) sin γ)]
]
.

Expanding the bracket being 2e−2x sin γ−iγ yields

3− 2(sin γ)2 + 2i(sin γ)(cos γ) + 4(sin γ)(cos γ)2(x− x̃0) + 2(sin γ)3(t− t̃0)

+ 2(sin γ)2(cos γ)2(x− x̃0)2 + 2i(sin γ)2(cos γ)(x− x̃0) + 2(sin γ)4(t− t̃0)2

=1 + 2(sin γ)2

[
cot γ + (x− x̃0) cos γ +

i

2

]2

+ 2(sin γ)4

[
t− t̃0 +

1

2 sin γ

]2

,

which coincides with the expression for D(M) in Theorem 2.1.

3.4. Computations of eigenvectors and generalized eigenvectors. An eigenvector of

the linear system (2.18) is given by ψ
(+)
1 (ζ0) for ζ0 = e

iγ
2 with γ ∈ (0, π), which decays

exponentially as |x| → ∞ due to (2.1) and (3.6). By using the transformation (2.4), we
obtain

ψ
(+)
1 (ζ0) = eiθ(λ0)[T (v, ζ0)]−1n

(+)
1 (λ0), (3.27)

where

[T (v, ζ0)]−1 =

(
1 0

−e− iγ2 v e−
iγ
2

)
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and n
(+)
1 (λ0) with λ0 = eiγ is obtained from the linear system in the proof of Proposition 3.2.

By Cramer’s rule, as in (3.25), we obtain

n
(+)
1 (λ0) =

1

D(M)
P∞

(
M22

−C̄0λ̄0e
−2iθ(λ̄0)(M22b1 +M12b2)

)
, (3.28)

where

b1 = 1 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 ),

b2 = (λ0 − λ̄0)−1(2 + (λ0 − λ̄0)(−2iθ′(λ̄0) + B̄0 + λ̄−1
0 )),

and we recall that P∞ = diag(n+∞
1 , n+∞

2 ) with

n+∞
1 = e

i
4

∫ x
+∞(|u|2+|v|2)dy = n̄+∞

2 .

By using the same definitions of A0 and B0 as in the proof of Theorem 2.1, we obtain

M12 = −4i(sin γ)2e−2x sin γ
(
cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ

)
,

M22 = 1 + (sin γ)e−2x sin γ
(
3 cot γ + 2(x− x̃0) cos γ − 2i(t− t̃0) sin γ − i

)
which yields the second component of the vector n

(+)
1 (λ0) in the explicit form:

−C̄0λ̄0e
−2iθ(λ̄0)(M22b1 +M12b2) = −e−x sin γ−it cos γ− 3iγ

2

×
(
eiγ + 2 sin γ[(x− x̃0) cos γ − i(t− t̃0) sin γ]− e−2x sin γ−2iγ

)
.

A generalized eigenvector of the linear system (2.19) is given by (ψ
(+)
1 )′(ζ0) for ζ0 = e

iγ
2

with γ ∈ (0, π), which decays exponentially as |x| → ∞ due to (2.1), (3.6), and (3.7). By
differentiating the transformation (2.4) in λ = ζ2 at λ0 = ζ2

0 = eiγ, we obtain

(ψ
(+)
1 )′(ζ0) = 2ζ0e

iθ(λ0)[T (v, ζ0)]−1(n
(+)
1 )′(λ0) + 2iζ0θ

′(λ0)ψ
(+)
1 (ζ0)

− ζ−1
0 ∂ζT (v, ζ)ψ

(+)
1 (ζ0),

(3.29)

where ψ
(+)
1 (ζ0) is given by the exponentially decaying eigenfunction (3.27) and

∂ζT (v, ζ) =

(
0 0
0 1

)
.

Hence, in order to obtain (ψ
(+)
1 )′(ζ0), we only need to compute (n

(+)
1 )′(λ0) and use the trans-

formation (3.29). By Cramer’s rule, as in (3.25), we obtain

(n
(+)
1 )′(λ0) =

1

D(M)
P∞

(
−M21

C̄0λ̄0e
−2iθ(λ̄0)(M11b2 +M21b1)

)
. (3.30)

Proceeding similarly, we obtain

M11 = 1 + e−2x sin γ−iγ (3 + 2(sin γ)eiγ[(x− x̃0) cos γ − i(t− t̃0) sin γ + i]

+ 4(sin γ)e−iγ[(x− x̃0) cos γ + i(t− t̃0) sin γ]
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+4(sin γ)2[(x− x̃0) cos γ − i(t− t̃0) sin γ + i][(x− x̃0) cos γ + i(t− t̃0) sin γ]
)
,

M21 =
i

sin γ
e−2x sin γ−iγ (2 + (sin γ)eiγ[(x− x̃0) cos γ − i(t− t̃0) sin γ + i]

+ 3(sin γ)e−iγ[(x− x̃0) cos γ + i(t− t̃0) sin γ]

+2(sin γ)2[(x− x̃0) cos γ − i(t− t̃0) sin γ + i][(x− x̃0) cos γ + i(t− t̃0) sin γ]
)
,

which yields the second component of the vector (n
(+)
1 )′(λ0) in the explicit form:

C̄0λ̄0e
−2iθ(λ̄0)(M11b2 +M21b1) = −ie−x sin γ−it cos γ− 3i

2
γ
(
cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ

+e−2x sin γ−3iγ
[
cot γ + (x− x̃0) cos γ + i(t− t̃0) sin γ + i

])
.

Remark 3.1. The explicit expressions (3.28) and (3.30) confirm that both the eigenvector
(3.27) and the generalized eigenvector (3.29) decays exponentially as x→ ±∞ since D(M)→
1 as x→ +∞ and D ∼ e−4x sin γ−2iγ as x→ −∞.

3.5. Numerical illustration of the exponential double-solitons. We plot the exponen-
tial double-soliton solutions of Theorem 2.1 in Figure 1 for three different values of γ. The
translational parameters in (2.17) are set to x̃0 = 1

sin γ
and t̃0 = 1

2 sin γ
. The solutions describe

scattering of two identical solitons which slowly approach to each other, overlap, and then
slowly diverge from each other.

(a) (b) (c)

Figure 1. (Color online) The surface plots of |u(x, t)|2 + |v(x, t)|2 for the ex-
ponential double-soliton solutions with (a) γ = π

3
, (b) γ = 2π

3
, and (c) γ = 5π

6
.

We shall find the approximate distance between the two identical solitons for large |x|+ |t|.
It follows from the bilinear equations, see [4, 8] and Appendix B, that

|u|2 + |v|2 =
|Nu|2 + |Nv|2

|D(M)|2
= 2i

∂

∂x
log

D(M)

D(M)
. (3.31)
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Therefore, we just need to investigate the behavior of D(M) for large |x|+ |t|. The dominant
terms of D(M) as |x|+ |t| → ∞ are given by

D(M) ∼ e−2x sin γ−iγ (e−2x sin γ−iγ + 4(sin γ)4t2
)
,

from which we obtain that

|x| ∼ ln |t|
sin γ

, as |x|+ |t| → ∞. (3.32)

The dependence (3.32) is shown in Figure 2 by red line together with the contour plots from
Figure 1.
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(a) (b) (c)

Figure 2. (Color online) The contour plots of |u(x, t)|2 + |v(x, t)|2 for the solutions
of Figure 1 with (a) γ = π

3 , (b) γ = 2π
3 , (c) γ = 5π

6 .

4. Limit to the algebraic double-solitons

Here we take the limit γ → π of the exponential double-solitons in Theorem 2.1 to derive
the algebraic double-solitons. We show that the algebraic double-solitons correspond to the
double embedded eigenvalue ζ0 = i in the linear systems (2.18) and (2.19). In order to obtain
nontrivial limits, we change the arbitrary parameters x̃0 and t̃0 used in Section 3 with the
transformation

x̃0 → x̃0 +
1

sin γ
, t̃0 → t̃0 +

1

2 sin γ
. (4.1)

The two computations below give the proof of Theorem 2.3.

4.1. Computations of (2.20) and (2.21). Let γ := π − ε and consider the limit ε → 0+.
Taylor’s expansions yield

sin γ = ε− 1

6
ε3 +O(ε5),
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cos γ = −1 +
ε2

2
+O(ε4).

To obtain (2.20) and (2.21), we only need to substitute (4.1) into D(M), Nu and Nv given
below (2.17) and collect together the coefficients of Taylor expanion at powers ε, ε2, ε3, and
ε4. With the transformation (4.1), we rewrite D(M) as

D(M) = 1 + e−4x sin γ−2iγ + 2e−2x sin γ−iγ

×

(
1 + 2(sin γ)2

[
(x− x̃0) cos γ +

i

2

]2

+ 2(sin γ)4(t− t̃0)2

)
.

Expansion as ε→ 0 gives nonzero terms at powers ε2, ε3, and ε4:

ε2 : − 4x̃0(i− 2x+ x̃0),

ε3 : − 4x̃0(i− 2x)(i− 2x+ x̃0),

ε4 :
1

12
(i− 2x)4 +

1

3
(i− 2x)(i− 6x)− 4(t− t̃0)2 − 2x̃0(i− 2x)2(i− 2x+ x̃0)

+
2

3
x̃0(8x̃0 − 16x+ 5i).

With the transformation (4.1), we rewrite Nu and Nv as

Nu = 4i(sin γ)2e−x sin γ+it cos γ− iγ
2

(
− cot γ + (x− x̃0) cos γ + i(t− t̃0) sin γ +

i

2

−e−2x sin γ−iγ
[
cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ +

i

2

])
and

Nv = 4i(sin γ)2e−x sin γ−it cos γ− iγ
2

(
− cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ +

i

2

−e−2x sin γ−iγ
[
cot γ + (x− x̃0) cos γ + i(t− t̃0) sin γ +

i

2

])
.

The expression in the circular brackets for Nu and Nv are multiplied by

4i(sin γ)2e−x sin γ±it cos γ− iγ
2 ∼ 4ε2e∓it as ε→ 0.

Since the expansions of the exponential factors in powers of ε do not modify the limit of ε→ 0,
we collect nonzero terms in the expansions of Nue

−it cos γ and Nve
it cos γ at powers ε2, ε3, and

ε4:

ε2 : 8x̃0,

ε3 : 4x̃0(i− 2x),

ε4 :
1

3
(i− 2x)3 + 5x̃0(i− 2x)2 − 4i(t− t̃0)(i− 2x) +

4i

3
− 20

3
x̃0,
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and

ε2 : 8x̃0,

ε3 : 4x̃0(i− 2x),

ε4 :
1

3
(i− 2x)3 + 5x̃0(i− 2x)2 + 4i(t− t̃0)(i− 2x) +

4i

3
− 20

3
x̃0.

By rescaling x̃0 → x̃0ε
2, we now obtain the nontrivial limit at the power ε4:

lim
ε→0

D(M)ε−4 =
4

3
x4 − 8

3
ix3 + 2x2 − 2ix− 1

4
− 4(t− t̃0)2 − 4x̃0(i− 2x),

lim
ε→0

Nue
itε−4 = −8

3
x3 + 4ix2 + 2x+ i− 4i(t− t̃0)(i− 2x) + 8x̃0,

lim
ε→0

Nve
−itε−4 = −8

3
x3 + 4ix2 + 2x+ i+ 4i(t− t̃0)(i− 2x) + 8x̃0,

which yields the explicit expressions (2.20) and (2.21) from the quotients given by (2.17).

4.2. Computations of (2.22) and (2.23). We substitute the phase shift (4.1) into n
(+)
1 (λ0)

and (n
(+)
1 )′(λ0) given in (3.28) and (3.30). These expressions define the eigenvector and the

generalized eigenvector of the linear systems (2.18) and (2.19) for ζ0 = e
iγ
2 by (3.27) and (3.29)

respectively. By using γ := π − ε and expanding in powers of ε, we derive (2.22) and (2.23).

After the transformation (4.1), we rewrite M22 and −C̄0λ̄0e
−2iθ(λ̄0)(M22b1+M12b2) in (3.28)

as follows:

M22 = 1 + (sin γ)e−2x sin γ
(
cot γ + 2(x− x̃0) cos γ − 2i(t− t̃0) sin γ

)
and

− C̄0λ̄0e
−2iθ(λ̄0)(M22b1 +M12b2) = −e−x sin γ−it cos γ− 3iγ

2

×
(
eiγ + 2 sin γ

[
− cot γ + (x− x̃0) cos γ − i(t− t̃0) sin γ +

i

2

]
− e−2x sin γ−2iγ

)
.

Expansion as ε→ 0 gives nonzero terms at powers ε1, and ε2.

• The coefficients of M22:

ε1 : 2x̃0,

ε2 : 2x2 − 2i(t− t̃0) +
1

2
− 4xx̃0.

• The coefficients of −C̄0λ̄0e
−2iθ(λ̄0)(M22b1 +M12b2)eit cos γ:

ε1 : − 2ix̃0,

ε2 : 2ix2 + 4x− 2(t− t̃0)− 3

2
i+ 3x̃0 + 2ixx̃0.
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Rescaling x̃0 → x̃0ε
2 yields the nontrivial limit at the power ε2:

lim
ε→0

M22ε
−2 = 2x2 − 2i(t− t̃0) +

1

2
,

lim
ε→0

(
−C̄0λ̄0e

−2iθ(λ̄0)(M22b1 +M12b2)e−it
)
ε−2 = −2ix2 − 4x+ 2(t− t̃0) +

3

2
i.

By using (3.27) and (3.28), taking the limit

ψ0 := lim
ε→0

ε2ψ
(+)
1 (ζ0),

we obtain (2.22) with

n0 := lim
ε→0

ε2n
(+)
1 (λ0)

given below (2.22) in the explicit form.

To obtain a nontrivial limit for the generalized eigenvector, we rewrite the expression (3.29)
in the equivalent form:

(ψ
(+)
1 )′(ζ0)− 2(λ0 − λ̄0)−1ψ

(+)
1 (ζ0)

= 2ζ0e
iθ(λ0)[T (v, ζ0)]−1

[
(n

(+)
1 )′(λ0) +

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
n

(+)
1 (λ0)

]
− ζ−1

0 ∂ζT (v, ζ)ψ
(+)
1 (ζ0),

After the transformation (4.1), we rewrite −M21 and C̄0λ̄0e
−2iθ(λ̄0)(M11b2 + M21b1) in (3.30)

as follows:

−M21 = −2ie−2x sin γ−iγ
[
sin γ

[
(x− x̃0)2(cos γ)2 + (t− t̃0)2(sin γ)2

]
+ i(t− t̃0) sin γ cos γ +

sin γ

4

]
and

C̄0λ̄0e
−2iθ(λ̄0)(M11b2 +M21b1) = −ie−x sin γ−it cos γ− 3i

2
γ

×
(

(x− x̃0) cos γ − i(t− t̃0) sin γ +
i

2
+ e−2x sin γ−3iγ

[
(x− x̃0) cos γ + i(t− t̃0) sin γ +

i

2

])
.

Expansion as ε→ 0 gives nonzero terms at powers ε0, ε1, and ε2 for both components of the

numerator of (n
(+)
1 )′(λ0) +

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
n

(+)
1 (λ0).

• The coefficients of −M21 +
(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
M22:

ε0 : − 2ix̃0,

ε1 : ixx̃0 + 2ix̃2
0,

ε2 :
4

3
ix̃0 + x(t− t̃0)− 1

3
ix3 + 2ix2x̃0 −

4

3
ix+ x̃0t

+ 3xx̃0 − 4ixx̃2
0 − 2x2 − 2x̃2

0 −
1

2
+ 2i(t− t̃0).
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• The coefficients of

C̄0λ̄0e
−2iθ(λ̄0)

[
M11b2 +M21b1 −

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
(M22b1 +M12b2)

]
eit cos γ :

eitε2 : − 2x̃0,

eitε3 : 6ix̃0 − 5xx̃0,

eitε4 : ix(t− t̃0)− itx̃0 − ix2 +
5

4
i− 1

3
x3 − 15

4
x

+ 3(t− t̃0) +
155

12
x̃0 − 6x2x̃0 − itx̃0 +

35

2
ixx̃0.

Rescaling x̃0 → x̃0ε
2 yields the nontrivial limit at the power ε2:

lim
ε→0

[
−M21 +

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
M22

]
ε−2

= −1

3
ix3 − 2x2 − 4

3
ix+ x(t− t̃0) + 2i(t− t̃0)− 1

2
− 2ix̃0,

lim
ε→0

C̄0λ̄0e
−2iθ(λ̄0)

[
M11b2 +M21b1 −

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
(M22b1 +M12b2)

]
e−itε−2

= −1

3
x3 − ix2 − 15

4
x+ ix(t− t̃0) +

5

4
i+ 3(t− t̃0)− 2x̃0.

By using (3.29) and (3.30), taking the limit

ψ1 := lim
ε→0

ε2
[
(ψ

(+)
1 )′(ζ0)− 2(λ0 − λ̄0)−1ψ

(+)
1 (ζ0)

]
,

we obtain (2.23) with

n1 := lim
ε→0

ε2
[
(n

(+)
1 )′(λ0) +

(
iθ′(λ0)− 2(λ0 − λ̄0)−1

)
n

(+)
1 (λ0)

]
given below (2.23) in the explicit form.

Appendix A. Single-soliton from a simple pole

Here we consider solutions of the normalized RH problem for the refelectionless potential
r±(λ) ≡ 0 for λ ∈ R with a simple pole at λ0 ∈ C+. By symmetry (2.3), both λ0 ∈ C+ and
λ̄0 ∈ C− are poles of M(λ) in C. The normalized RH problem can be rewritten in the form:

RH problem. Find a complex-valued function M(λ) with the following properties:

• M(λ) has simple poles at λ0 ∈ C+ and λ̄0 ∈ C−.
• M(λ)→ I as |λ| → ∞, where I is the 2-by-2 identity matrix.
• M+(λ) = M−(λ) for every λ ∈ R, where M±(λ) := lim

Im(λ)→±0
M(λ).
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The solution of the RH problem is immediately given by

M(x, t, λ) = I +
Resλ=λ0M+(λ)

λ− λ0

+
Resλ=λ̄0M−(λ)

λ− λ̄0

. (A.1)

In order to compute the residue terms, we note from (2.11) that λ0 is a simple zero of α(λ)
extended to C+ by Lemma 2.2. Since it follows from (2.2) that

α(λ) = a(ζ) = det
(
ψ

(+)
1 (ζ), ψ

(−)
2 (ζ)

)
,

we define ζ0 :=
√
λ0 and a constant b0 ∈ C such that the columns of ψ(±)(ζ) satisfying (2.1)

are related at ζ = ζ0 by

ψ
(−)
2 (ζ0) = b0ψ

(+)
1 (ζ0). (A.2)

Since λ0 ∈ C+, it follows from (2.1) and (A.2) that ψ
(−)
2 (ζ0) decays to zero exponentially fast

both as x→ ±∞. Hence it is the eigenvector of the linear system (1.2) for ζ = ζ0.

By using the transformation (2.4), we can rewrite (A.2) in the form:

n
(−)
2 (λ0) = b0ζ

−1
0 n

(+)
1 (λ0)e2iθ(λ0), (A.3)

where θ(λ) is given by (2.8). By using (2.11) and (A.3), we compute the residue term as
follows

Resλ=λ0P (λ) =

(
~0

n
(−)
2 (λ0)

α′(λ0)

)
=

(
~0

b0

ζ0α′(λ0)
n

(+)
1 (λ0)e2iθ(λ0)

)
, (A.4)

where ~0 is the 2-by-1 null vector.

By using the symmetry condition (2.3), we have

ψ
(±)
1 (ζ) =

(
0 1
−1 0

)
ψ

(±)

2 (ζ), ψ
(±)
2 (ζ) =

(
0 −1
1 0

)
ψ

(±)

1 (ζ),

then (A.2) can be transformed into

ψ
(−)
1 (ζ̄0) = −b̄0ψ

(+)
2 (ζ̄0).

Using the transformation (2.4), we obtain

n
(−)
1 (λ̄0) = −b̄0ζ̄0n

(+)
2 (λ̄0)e−2iθ(λ̄0), (A.5)

from which we compute the other residue term by using (2.11) and (A.5):

Resλ=λ̄0P (λ) =

(
n

(−)
1 (λ̄0)

ᾱ′(λ̄0)
~0

)
=

(
− b̄0ζ̄0

ᾱ′(λ̄0)
n

(+)
2 (λ̄0)e−2iθ(λ̄0) ~0

)
, (A.6)
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We recall that M(λ) = [P∞]−1P (λ) with P∞ = diag(n+∞
1 , n+∞

2 ) with n+∞
2 = n+∞

1 , see
(2.12). Using the first column of (A.1) at λ = λ0 due to (A.4) and the second column of (A.1)
at λ = λ̄0 due to (A.6), we obtain a closed system of linear algebraic equations:

n
(+)
1 (λ0) = n+∞

1 e1 −
λ̄0c̄0

λ0 − λ̄0

n
(+)
2 (λ̄0)e−2iθ(λ̄0) (A.7)

and

n
(+)
2 (λ̄0) = n+∞

2 e2 +
c0

λ̄0 − λ0

n
(+)
1 (λ0)e2iθ(λ0), (A.8)

where e1 = (1, 0)T , e2 = (0, 1)T , and

c0 :=
b0

ζ0α′(ζ0)
.

Then, from (A.7) and (A.8), we have

n
(+)
1 (λ0) = n+∞

1 e1 −
λ̄0c̄0

λ0 − λ̄0

n+∞
2 e−2iθ(λ̄0)e2 +

λ̄0|c0|2

(λ0 − λ̄0)2
e2iθ(λ0)−2iθ(λ̄0)n

(+)
1 (λ0),

n
(+)
2 (λ̄0) = n+∞

2 e2 +
c0

λ̄0 − λ0

n+∞
1 e2iθ(λ0)e1 +

λ̄0|c0|2

(λ0 − λ̄0)2
e2iθ(λ0)−2iθ(λ̄0)n

(+)
2 (λ̄0).

By using (2.13), we obtain the explicit solutions to the MTM system (1.1) in the form

u = lim
λ→0

M12(λ) = − c̄0

λ̄0

n+∞
1 n

(+)
11 (λ0)e−2iθ(λ̄0) = − c̄0e

−2iθ(λ̄0)

λ̄0 − |λ0|2|c0|2
(λ0−λ̄0)2

e2iθ(λ0)−2iθ(λ̄0)

and

v = lim
λ→0

M21(λ) = c̄0n
+∞
1 (x)n

(+)
22 (λ̄0)e−2iθ(λ̄0) =

c̄0e
−2iθ(λ̄0)

1− λ̄0|c0|2
(λ0−λ̄0)2

e2iθ(λ0)−2iθ(λ̄0)
.

To simplify the expressions for the single-soliton solution (u, v), we pick λ0 = eiγ with
γ ∈ (0, π) on S1 ∩ C+. A more general solution can be obtained with the Lorentz symmetry
(2.14). If λ0 = eiγ, we obtain from (2.8) that

2iθ(λ0) = −αx+ iβt,

where α = sin γ and β = cos γ. In addition, we choose

c0 = 2i sin γe
iγ
2

and obtain the single-soliton solution in the form

u(x, t) = 2iα
e−αx−iβt+

iγ
2

1 + e−2αx+iγ
= iα sech

(
αx− iγ

2

)
e−iβt (A.9)
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and

v(x, t) = −2iα
e−αx−iβt−

iγ
2

1 + e−2αx−iγ = −iα sech

(
αx+

iγ

2

)
e−iβt, (A.10)

which coincides with (2.16) since α = sin γ and β = cos γ. A more general solution with
two translational parameters x0, t0 ∈ R can be obtained by using the symmetries (2.15) or by
introducing two translational parameters in the expression for c0 ∈ C.

Finally, we write the explicit form of the eigenvector ψ
(+)
1 (ζ0), see (A.2), which satisfies

(2.18) with (u, v) given by (A.9)–(A.10) and with ζ0 = e
iγ
2 . By using the transformation (2.4),

we write

ψ
(+)
1 (ζ0) = eiθ(λ0)[T (v, ζ0)]−1n

(+)
1 (λ0),

where

[T (v, ζ0)]−1 =

(
1 0

−e− iγ2 v e−
iγ
2

)
and

n
(+)
1 (λ0) =

n+∞
1 e1 − λ̄0c̄0

λ0−λ̄0
n+∞

2 e−2iθ(λ̄0)e2

1− λ̄0|c0|2
(λ0−λ̄0)2

e2iθ(λ0)−2iθ(λ̄0)

=
1

1 + e−2αx−iγ

(
n+∞

1

e−αx−iβt−
3iγ
2 n+∞

2

)
=

1

2
sech

(
αx+

iγ

2

)(
eαx+ iγ

2
+ i

4

∫ x
+∞(|u|2+|v|2)dx

e−iβt−iγ−
i
4

∫ x
+∞(|u|2+|v|2)dx

)
.

We note that
1

4

∫
R
(|u|2 + |v|2)dx =

∫
R

sin2 γ

cosh(2 sin γ x) + cos γ
dx = γ.

Hence we can write

eiθ(λ0)n
(+)
1 (λ0) =

1

2
sech

(
αx+

iγ

2

)(
e

1
2
αx+ i

2
βt+ iγ

2
+ i

4

∫ x
+∞(|u|2+|v|2)dx

e−
1
2
αx− i

2
βt− i

4

∫ x
−∞(|u|2+|v|2)dx

)
, (A.11)

which decays exponentially to 0 as x → ±∞. Since [T (v, ζ0)]−1 is bounded, then ψ
(+)
1 (ζ0) ∈

H1(R,C2) is an exponentially decaying eigenvector of the linear system (2.18).

The algebraic soliton appears in the singular limit γ → π, where ζ0 → i. The simple
eigenvalue ζ0 = i is embedded into the continuous spectrum of the Lax system (1.2), which is
located on R ∪ (iR). By writing γ := π − ε and taking the limit ε → 0 in (A.9) and (A.10),
we obtain

u(x, t) =
2i

1− 2ix
eit, v(x, t) = − 2i

1 + 2ix
eit. (A.12)
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The eigenvector ψ0 for the simple embedded eigenvalue ζ0 = i of the linear system (2.18) with
(u, v) given by (A.12) is obtained from (A.11) in the limit ε→ 0 in the explicit form:

ψ0 := lim
ε→0

εψ
(+)
1 (ζ0) =

1

1 + 2ix

(
1 0
iv −i

)(
e−

it
2

+i arctan(2x)

e
it
2
− iπ

2
−i arctan(2x)

)
, (A.13)

where we have used the elementary integral

1

4

∫ x

−∞
(|u|2 + |v|2)dx =

∫ x

−∞

2

1 + 4x2
dx =

π

2
+ arctan(2x).

Based on the explicit expression (A.13), we confirm that ψ0 ∈ H1(R,C2) is an algebraically
decaying eigenvector of the linear system (2.18) such that |ψ0(x)| = O(|x|−1) as |x| → ∞.

Appendix B. Exponential double-solitons in the bilinear Hirota method

Here we obtain the exponential double-soliton solutions by using the bilinear Hirota
method developed in [4]. To proceed with computations, we use the parameterization from
[8] and write the general exponential two-soliton solutions in the form:

u =
g

f̄
, v =

h

f
, (B.1)

where

f = 1 + e−2ξ1−iγ1 + e−2ξ2−iγ2 + A12e
−2ξ1−2ξ2−iγ1−iγ2 − 4

√
δ1δ2 sin γ1 sin γ2e

−ξ1−ξ2− i
2
γ1− i

2
γ2

×

[
δ1e
−i(η1−η2)

(δ1e
− i

2
(γ1+γ2) − δ2e

i
2

(γ1+γ2))2
+

δ2e
i(η1−η2)

(δ1e
i
2

(γ1+γ2) − δ2e
− i

2
(γ1+γ2))2

]
,

h = −ᾱ1e
−ξ1−iη1

[
1 +

(
p1 − p2

p1 + p̄2

)2

e−2ξ2+iγ2

]
− ᾱ2e

−ξ2−iη2

[
1 +

(
p1 − p2

p̄1 + p2

)2

e−2ξ1+iγ1

]
,

and

g =
iᾱ1

p1

e−ξ1−iη1

[
1 +

(
p1 − p2

p1 + p̄2

)2

e−2ξ2+3iγ2

]
+

iᾱ2

p2

e−ξ2−iη2

[
1 +

(
p1 − p2

p̄1 + p2

)2

e−2ξ1+3iγ1

]
,

with arbitrary parameters γj ∈ (0, π), δj > 0, (xj, tj) ∈ R2, and uniquely defined for j = 1, 2
as

pj = iδje
−iγj , αj = 2

√
δj sin γje

iγj
2 ,

ξj = sin γj

(
1

2
(δj + δ−1

j )x+
1

2
(δj − δ−1

j )t+ xj

)
,

ηj = cos γj

(
1

2
(δj − δ−1

j )x+
1

2
(δj + δ−1

j )t+ tj

)
,
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and

A12 =

(
δ2

1 + δ2
2 − 2δ1δ2 cos(γ1 − γ2)

δ2
1 + δ2

2 − 2δ1δ2 cos(γ1 + γ2)

)2

.

Due to Lorentz transformation (2.14), we can consider the exponential double-solitons with
zero speed, for which we take δ1 = δ2 = 1. In addition, we use translational symmetry and
replace e−ξ1,2 by e−ξ1,2 sin

(
γ1+γ2

2

)
in all expressions.

Considering f , we obtain

f = 1 + sin2

(
γ1 + γ2

2

)[
e−2ξ1−iγ1 + e−2ξ2−iγ2

]
+ sin4

(
γ1 − γ2

2

)
e−2ξ1−2ξ2−iγ1−iγ2

+ 2 sin γ1 sin γ2e
−ξ1−ξ2− i

2
γ1− i

2
γ2 cos(η1 − η2).

We now define the small parameter ε from γ1 = γ + ε and γ2 = γ − ε and take the limit
ε→ 0 for a given γ ∈ (0, π). In order to get a nontrivial limit, we also define the translational
parameters x1,2 from the power series:

ξ1 = (sin γ1)(x+ x1) = log(ε) + α(x− x0) + εβ(x− x̃0)− 1

2
ε2α(x− ˜̃x0) +O(ε3),

ξ2 = (sin γ2)(x+ x2) = log(ε) + α(x− x0)− εβ(x− x̃0)− 1

2
ε2α(x− ˜̃x0) +O(ε3),

with new translational parameters x0, x̃0, ˜̃x0 ∈ R and with α = sin γ, β = cos γ. Similarly, we
define the translational parameters t1,2 from the power series:

η1 = (cos γ1)(t+ t1) = −π
2

+ β(t− t0)− εα(t− t̃0)− 1

2
ε2β(t− ˜̃t0) +O(ε3),

η2 = (cos γ2)(t+ t2) =
π

2
+ β(t− t0) + εα(t− t̃0)− 1

2
ε2β(t− ˜̃t0) +O(ε3),

with new translational parameters t0, t̃0,
˜̃t0 ∈ R. With these choices, we expand the expression

for f in powers of ε and obtain the following explicit expression

lim
ε→0

f = 1 + e−2ξ−iγ [2 + α2(2β(x− x̃0) + i)2 + 4α4(t− t̃0)2
]

+ e−4ξ−2iγ, (B.2)

where ξ := α(x− x0).

Considering h, we obtain

h = −2 sin γ1 sin

(
γ1 + γ2

2

)
e−ξ1−iη1− iγ1

2

[
1 +

(
e−iγ1 − e−iγ2

e−iγ1 − eiγ2

)2

sin2

(
γ1 + γ2

2

)
e−2ξ2+iγ2

]

− 2 sin γ2 sin

(
γ1 + γ2

2

)
e−ξ2−iη2− iγ2

2

[
1 +

(
e−iγ1 − e−iγ2

e−iγ2 − eiγ1

)2

sin2

(
γ1 + γ2

2

)
e−2ξ1+iγ1

]
,
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With the choice of the translational parameters above, we expand the expression for h in the
powers in ε and obtain the following explicit expression

lim
ε→0

h = 4iα2e−ξ−iη− iγ
2

[
− cot γ + β(x− x̃0)− iα(t− t̃0) +

i

2

−e−2ξ−iγ

(
cot γ + β(x− x̃0) + iα(t− t̃0) +

i

2

)]
, (B.3)

where η := β(t− t0).

Considering g, we obtain

g = 2 sin γ1 sin

(
γ1 + γ2

2

)
e−ξ1−iη1+

iγ1
2

[
1 +

(
e−iγ1 − e−iγ2

e−iγ1 − eiγ2

)2

sin2

(
γ1 + γ2

2

)
e−2ξ2+3iγ2

]

+ 2 sin γ2 sin

(
γ1 + γ2

2

)
e−ξ2−iη2+

iγ2
2

[
1 +

(
e−iγ1 − e−iγ2

e−iγ2 − eiγ1

)2

sin2

(
γ1 + γ2

2

)
e−2ξ1+3iγ1

]
.

With the same computations, this yields the following explicit expression

lim
ε→0

g = −4iα2e−ξ−iη+ iγ
2

[
− cot γ + β(x− x̃0)− iα(t− t̃0)− i

2

−e−2ξ+iγ

(
cot γ + β(x− x̃0) + iα(t− t̃0)− i

2

)]
, (B.4)

The exponential double-solitons are given by the explicit expression (B.1) with f , h, and g
given by (B.2), (B.3), and (B.4). By using translational symmetry, we can redefine

x̃0 → x̃0 −
1

sin γ
, t̃0 → t̃0 −

1

2 sin γ

to obtain exactly the same expressions as in Theorem 2.1 for f = D(M), h = Nv, and g = N̄u.
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