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Abstract
We consider the Hamiltonian version of a  -symmetric lattice that describes
dynamics of coupled pendula under a resonant periodic force. Using the
asymptotic limit of a weak coupling between the pendula, we prove the
nonlinear long-time stability of breathers (time-periodic solutions localized in
the lattice) by using the Lyapunov method. Breathers are saddle points of the
extended energy function, which are located between the continuous bands of
positive and negative energy. Despite not rendering the energy minima, the
breathers are shown to admit an approximate Lyapunov function which helps
us to estimate evolution of perturbations on a long but finite time interval. The
nonlinear stability analysis becomes possible for the  -symmetric lattice
only because of the existence of a Hamiltonian structure.
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1. Introduction

We consider the following system of amplitude equations
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where Îu v,n n n{ } are complex-valued amplitudes that depend on time Ît , whereas
gW, ,( ) are real-valued parameters arising in a physical context described below. We

assume W ¹ 0, g > 0, and  > 0 throughout our work.
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The system (1) describes a one-dimensional chain of coupled pendula, which are con-
nected by torsional springs with the tension coefficient ò in the longitudinal direction În .
Each pair of coupled pendula u v,n n( ) are hung on a common string with a periodically
varying tension coefficient proportional to γ. When the frequency of the periodic force is in
1:2 resonance with the frequency of pendula detuned by Ω, the system of Newton’s equations
of motion can be reduced asymptotically to the system of amplitude equations (1). This
system was first derived in the context of two coupled pendula with the periodically driven
coupling in [5] and then was extended to a chain of dimers in [8]. Figure 1 depicts sche-
matically the chain of coupled pendula.

The system of amplitude equations (1) is usually referred to as the  -symmetric
discrete nonlinear Schrödinger (dNLS) equation because solutions to system (1) remain
invariant with respect to the simultaneous action of the parity () and time-reversal ( )
operators given by
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Although the system of amplitude equations (1) is autonomous, it is not norm-preserving and
the parameter γ of the periodic tension coefficient represents gains and losses. Indeed, if
g > 0, the γ-term of the first equation induces the exponential growth of the amplitude un,
whereas the γ-term of the second equation induces the exponential decay of the amplitude vn.
In spite of the gain-loss terms, many  -symmetric systems share properties of the
Hamiltonian systems and admit linearly stable zero equilibrium at least for sufficiently small
values of γ [7].

The remarkable property of the  -symmetric dNLS equation (1) is the existence of the
cross-gradient symplectic structure [4, 5] with two conserved quantities bearing the meaning
of the energy and charge functions. Indeed, the  -symmetric dNLS equation (1) can be cast
in the Hamiltonian form via the cross-gradient symplectic structure
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where the energy function is
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The Hamiltonian system (3) has an additional gauge symmetry, with respect to the
transformation   a a

Î Îu v u v, e , en n n n n n
i i{ } { } , where a Î . The charge function related to

the gauge symmetry is written in the form

Figure 1. The chain of  -symmetric dimers representing coupled pendula. Filled
(empty) circles correspond to sites with gain (loss).
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The energy and charge functions H and Q are conserved in the time evolution of the
Hamiltonian system (3). Compared to the other physically relevant  -symmetric dNLS
equations [13, 17, 18], where the Hamiltonian structure is not available and analysis of
nonlinear stability of the zero equilibrium and time-periodic localized breathers is barely
possible, we are able to address these questions for the  -symmetric dNLS equation (1),
thanks to the Hamiltonian structure (3) with two conserved quantities (4) and (5).

The temporal evolution of the  -symmetric dNLS equation (1) is studied in sequence
space ℓ2 ( ) for sequences (u, v ) as functions of time. Global existence of solutions in ℓ2 ( )
follows from an easy application of Picard’s method and energy estimates (proposition 1).
The global solution in ℓ2 ( ) may still grow at most exponentially in time, due to the
destabilizing properties of the gain-damping terms in the system (1). However, thanks to
coercivity of the energy function (4) near the zero equilibrium, we can still obtain a global
bound on the ℓ2 ( ) norm of the solution near the zero equilibrium, provided it is linearly
stable. Moreover, for gW > + 4( ), the global bound holds for arbitrary initial data. The
corresponding result is given by the following theorem (proved in section 2). A similar result
for a single dimer is deemed as the spontaneous  -symmetry restoration in [5].

Theorem 1. For every gW > + 4( ) and every initial data Îu v ℓ0 , 0 2( ( ) ( )) ( ), there is a
positive constant C that depends on parameters gW, , and    u v0 , 0ℓ ℓ2 2( ( ) ( ) ) such that

 + Î   u t v t C t, for  every . 6
ℓ ℓ
2 2

2 2( ) ( ) ( )

The bound (6) also holds for every gW < - and every Îu v ℓ0 , 0 2( ( ) ( )) ( ) with sufficiently
small ℓ2 ( ) norm.

Remark 1. As shown in [8], the zero equilibrium of the  -symmetric dNLS equation (1) is
linearly stable if g g< 0∣ ∣ , where the  phase transition threshold g0 is given by

⎧⎨⎩
g W - W >

W W <
4 , 0

, 0.
70 ≔ ∣ ∣ ( )

The zero equilibrium is linearly unstable if g g0∣ ∣ . Thus, the constraints on parameters in
theorem 1 coincide with the criterion of linear stability of the zero equilibrium.

We shall now characterize breathers supported by the -symmetric dNLS equation (1).
These are solutions of the form

= =- -u t U v t Ve , e , 8Et Eti i( ) ( ) ( )

where the frequency parameter E is considered to be real and the sequence ÎU V ℓ, 2( ) ( ) is
time-independent. By continuous embedding, we note that ÎU V ℓ, 2( ) ( ) implies the decay
at infinity: + U V 0n n∣ ∣ ∣ ∣ as  ¥n∣ ∣ . The breather is considered to be  -symmetric with
respect to the operators in (2) if =V Ū .

Note that the squared amplitudes u t 2∣ ( )∣ and v t 2∣ ( )∣ are in fact time-independent and
hence the breathers (8) are often referred to as solitons or nonlinear modes in the context of
optics [1]. In the same models of nonlinear optics, other solutions with space localized and
time-periodic squared amplitudes u t 2∣ ( )∣ and v t 2∣ ( )∣ also exist and they are often referred to as
breathers [6]. The reason why we refer to solutions (8) as breathers is understood when these
solutions are considered in the synchronized dynamics of the coupled pendula chain, as in [8].
Within this context, breathers are defined as time-periodic space-localized solutions of the
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coupled pendula chains. In the same context, the periodic solutions of nonlinear optics [6]
become quasi-periodic breathers, which have also been constructed under some non-reso-
nance conditions [3].

Thanks to the cross-gradient symplectic structure (3), ÎU V ℓ, 2( ) ( ) in (8) is a critical
point of the extended energy function  H ℓ:E

2 ( ) given by

-H H EQ, 9E ≔ ( )

where H and Q are given by (4) and (5). The Euler–Lagrange equations for HE produce the
stationary  -symmetric dNLS equation:

 g= - + + + W + ++ -EU U U U U U U U U2 i 6 2 , 10n n n n n n n n n1 1
2 3( ¯ ¯ ¯ ) ¯ ∣ ∣ ¯ ( )

which corresponds to the reduction of the  -symmetric dNLS equation (1) for the breather
solution (8) under the  symmetry =V Ū .

Existence and spectral stability of breathers can be characterized in the limit of small
coupling constant ò, when breathers bifurcate from solutions of the dimer equation arising at a
single site, say the central site at n=0. This technique was introduced for the  -symmetric
systems in [14, 17] and was applied to the system of amplitude equations (1) in [8]. Here we
recall the main facts about these breathers obtained in [8].

Figure 2 represents branches of the time-periodic solutions of the central dimer at  = 0,
where the amplitude of the central dimer = =A U V0 0∣ ∣ ∣ ∣ is plotted versus the frequency
parameter E. The left panel corresponds to the solution with gW > > 0, whereas the right
panel corresponds to the solution with gW < - < 0. The constraint g < W∣ ∣ ∣ ∣ is used for
stability of the zero equilibrium at  = 0 outside the central dimer, according to theorem 1.
The values E0 with gW -E0

2 2≔ correspond to bifurcation of the small-amplitude
solutions. The small-amplitude solutions are connected with the large-amplitude solutions for

gW > > 0, whereas the branches of small-amplitude and large-amplitude solutions are
disconnected for gW < - < 0.

Every time-periodic solution supported at the central dimer for  = 0 is continued
uniquely and smoothly with respect to the small coupling parameter ò by the implicit function
arguments [8]. The resulting breather is symmetric about the central site and  -symmetric

Figure 2. Time-periodic solutions of the  -symmetric dimer with = =A U V0 0∣ ∣ ∣ ∣
versus frequency E for g = 1

2
and (a) gW = >3

4
or (b) gW = - < -3

4
.
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so that

= = = Î- -V U U V n, . 11n n n n¯ ¯ ( )
Moreover, the breather profile decays fast at infinity (proposition 2).

Since (U, V ) are critical points of the extended energy function (9), the nonlinear stability
of breathers can be studied by the Lyapunov method if the second variation of HE is sign-
definite in ℓ2 ( ). The second variation of HE is given by a quadratic form associated with the
self-adjoint (Hessian) operator    ℓ ℓ:E

2 2( ) ( ) written in the form

   = + , 12E ( )

where blocks of at each lattice site În are given by
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whereas  is the discrete Laplacian operator applied to blocks of f at each lattice site În :

f f f f= - ++ -2 . 13n n n n1 1( ) ( )

For the two solution branches with gW < - < 0 and <E E0∣ ∣ (points 2 and 4 on
figure 2), it was shown in [8] that the infinite-dimensional part of the spectrum ofE in ℓ2 ( )
is negative definite and the rest of the spectrum includes a simple zero eigenvalue due to
gauge symmetry and either three (in case of point 2) or one (in case of point 4) positive
eigenvalues. As a result, the nonlinear orbital stability of the corresponding breathers was
developed in [8] by using the standard energy methods [9, 11].

On the other hand, for the solution branches with >E E0∣ ∣ (points 1 and 3 on figure 2), it
was shown in [8] that the spectrum ofE in ℓ2 ( ) includes infinite-dimensional positive and
negative parts. Therefore, for >E E0∣ ∣ both for gW > > 0 and gW < - < 0, (U, V ) is an
infinite-dimensional saddle point of the extended energy function HE. This is very similar to
the Hamiltonian systems of the Dirac type, where the zero equilibrium and standing waves are
located in the gap between the positive and negative continuous spectrum.

Spectral stability of the solution branches with gW > > 0 and >E E0∣ ∣ is proved for
sufficiently small ò under the non-resonance condition, which is checked numerically [8]. On
the other hand, the solution branch with gW < - < 0 and >E E0∣ ∣ is spectrally stable for
sufficiently small ò almost everywhere except for the narrow interval in the parameter space,
where the non-resonance condition is not satisfied [8]. Since in both cases, (U, V ) is an
infinite-dimensional saddle point of the extended energy function HE, the standard energy
methods [11] can not be applied to the proof of nonlinear stability of the solution branches
with >E E0∣ ∣ .

The main contribution of this paper is a proof of long-time nonlinear stability of the
infinite-dimensional saddle point (U, V ) by using the asymptotic limit of small coupling
parameter ò. The novel method which we develop here works for the solution branches with

gW > > 0 (point 1 on figure 2) but does not work for the solution branch with gW < - < 0
and >E E0∣ ∣ (point 3 on figure 2).

To remedy the difficulty with the energy method, we select the energy function in the
form

L - +H E u v u v . 14E 0 0 0 0≔ ( ¯ ¯ ) ( )
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Note that LE is different from the extended energy function HE in (9), since LE only includes
the part of Q at the central site n=0, where (U, V ) is supported if  = 0. With the definition
ofLE given by (14), we obtain a function with a positive second variation at (U, V ), however,
two new obstacles arise now:

(i) the first variation of LE does not vanish at (U, V ) if  ¹ 0;
(ii) the value of LE is no longer constant in the time evolution of the dNLS equation (1).

The first difficulty is overcome with a local transformation of dependent variables.
However, due to the second difficulty, instead of the nonlinear stability for all times, as in
Lyapunov’s stability theorem (appendix), we only establish a long-time nonlinear stability of
the breather on a long but finite time interval. This long-time stability is usually referred to as
metastability.

We note that the energy functional similar to (14) is typically used in the normal form
transformations as the leading-order Hamiltonian, where it can be adopted for the proof of
asymptotic stability of breathers under some restrictive assumptions on the nonlinear func-
tions [2]. Compared to this approach, we do not use dispersive decay estimates and hence
have no control on the perturbations to extend the time interval for long-time stability to all
times.

We denote a solution of the  -symmetric dNLS equation (1) in ℓ2 ( ) by y = u v,( )
and the localized solution of the stationary dNLS equation (10) by F = U V,( ). We fix
parameters g > 0, gW > , and ÈÎ -¥ - ¥E E E, ,0 0( ) ( ). The following theorem (proved
in section 3) formulates the main result of this paper.

Theorem 2. For every n > 0 sufficiently small, there exist  > 00 and d > 0 such that for
every  Î 0, 0( ) the following is true. If y Î ℓ0 2( ) ( ) satisfies y d- F 0 l2( ) , then there
exist a positive time  -t0

1 2 and a C1 function  a pt t: 0, 20( ) [ ] ( ) such that the
unique solution y t t ℓ: 0, 0

2( ) [ ] ( ) to the  -symmetric dNLS equation (1) satisfies the
bound

y n- F Îa t t te , for  every 0, . 15t
l

i
02( ) [ ] ( )( )

Moreover, there exists a positive constant C such that a n- E C∣ ˙ ∣ , for every Ît t0, 0[ ].

Remark 2. The statement of theorem 2 remains true for  = 0. In this (anti-continuum)
limit, theorem 2 gives nonlinear stability of the standing localized state F compactly
supported at the central site =n 0. The bound (15) is extended in the case  = 0 for all
times Ît .

Remark 3. It becomes clear from the proof of theorem 2 for  ¹ 0, see inequality (72)
below, that the bound (15) on the perturbation f to the stationary solution F is defined within
the size of  d+1 2( ). Therefore, if F =n

n( ) for every ¹n 0 (proposition 2), then the
perturbation term is f d= +n

1 2( ) for every În . This is a limitation of the result of
theorem 2. Not only it holds for long but finite times = -t0

1 2( ) but also it gives a larger
than expected bound on the perturbation term f. It may be quite possible to improve the
approximation result with a sequence of normal form transformations, similar to what was
done recently in [16].

Remark 4. The statement of theorem 2 can be improved on a shorter time scale =t 10 ( ).
In this case, see inequality (71) below, the perturbation term f has the size of  d+( ). Thus,
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the perturbation term fn at = n 1 is comparable with the standing localized state Fn at
= n 1, but it is still much larger than Fn for every n such that n 2∣ ∣ .

Remark 5. Theorem 2 cannot be extended to the solution branch with gW < - < 0 and
>E E0∣ ∣ (point 3 on figure 2) because the second variation ofLE at (U, V ) is not coercive and

does not control the size of perturbation terms. This analytical difficulty reflects the
unfortunate location of the discrete and continuous spectra that leads to a resonance studied in
[8]. No resonance was found for the solution branch with gW > > 0 and >E E0∣ ∣ (point 1
on figure 2) and this numerical result from [8] is in agreement with the analytical method used
in the proof of theorem 2.

The remainder of this paper is devoted to the proof of theorems 1 and 2.

2. Proof of theorem 1

The following proposition gives the global existence result for the  -symmetric dNLS
equation (1).

Proposition 1. For every Îu v ℓ,0 0 2( ) ( )( ) ( ) , there exists a unique solution
 Îu v t C ℓ, ,1 2( )( ) ( ( )) of the  -symmetric dNLS equation (1) such that

=u v u v, 0 ,0 0( )( ) ( )( ) ( ) . The unique solution depends continuously on initial
data Îu v ℓ,0 0 2( ) ( )( ) ( ) .

Proof. Since discrete Laplacian is a bounded operator in ℓ2 ( ) and the sequence space
ℓ2 ( ) forms a Banach algebra with respect to pointwise multiplication, the local well-

posedness of the initial-value problem for the  -symmetric dNLS equation (1) follows from
the standard Picard’s method. The local solution u v t,( )( ) exists in -C t t ℓ, ,0

0 0
2([ ] ( )) for

some finite >t 00 . Thanks again to the boundedness of the discrete Laplacian operator in
ℓ2 ( ), bootstrap arguments extend this solution to -C t t ℓ, ,1

0 0
2([ ] ( )).

The local solution is continued globally by using the energy method. For any solution
u v t,( )( ) in -C t t ℓ, ,1

0 0
2([ ] ( )), we obtain the following balance equation from system (1):

 
å åg+ = -
Î Ît

u v u v
d

d
2 .

n
n n

n
n n

2 2 2 2(∣ ∣ ∣ ∣ ) (∣ ∣ ∣ ∣ )

Integrating this equation in time and applying Gronwall’s inequality, we get

+ + Î -g       u t v t u v e t t t0 0 , , .
l l l l

t2 2 2 2 2
0 02 2 2 2( ) ( ) ( ( ) ( ) ) [ ]∣ ∣

Therefore  u t l2( ) and  v t l2( ) cannot blow up in a finite time, so that the local solution
Î -u v t C t t ℓ, , ,1

0 0
2( )( ) ([ ] ( )) is continued for every >t 00 . ,

A critical question also addressed in [13, 17] for other  -symmetric dNLS equations is
whether the ℓ2 ( ) norms of the global solution of proposition 1 remain bounded as  ¥t . In
the context of the Hamiltonian  -symmetric dNLS equation (1), this question can be
addressed by using the energy function given by (4). In what follows, we use coercivity of the
energy function and prove the result stated in theorem 1.

Proof of theorem 1. We use g > 0 and  > 0 everywhere in the proof. If gW > + 4( ),
the following lower bound is available for the energy function H given by (4) using Cauchy–
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Schwarz inequality:

 gW - - +   H u v4 . 16
ℓ ℓ
2 2

2 2( )( ) ( )

Since H is time-independent and bounded for any  Îu v t C ℓ, ,1 2( )( ) ( ( )) due to the
continuous embedding    u uℓ ℓ4 2, we obtain the time-independent bound (6) for
any gW > + 4( ).

If gW < - , the following lower bound is available for the energy function -H :

 g- W - + - +       H u v u v , 17
ℓ ℓ ℓ ℓ
2 2 2 2 2

2 2 2 2(∣ ∣ )( ) ( ) ( )

where the continuous embedding    u uℓ ℓ4 2 has been used. If +   u v0 0ℓ ℓ2 2( ) ( ) is
sufficiently small, then H∣ ∣ is sufficiently small, and the bound (6) with sufficiently small C
holds for every Ît . ,

Remark 6. For every  gW + 4( ), the energy functions H or-H do not produce a useful
lower bound for global solution u v t,( )( ) starting with an arbitrary initial data. This is because
the continuous embedding    u uℓ ℓ4 2 is not sufficient to close the lower bound for H or
-H . If the lattice is truncated on a finitely many (say, N) sites, then the bound

   u N uℓ ℓ
1 42 4 can be used to obtain from (4):

 g+ - + - W +       H u v N u v4 .
ℓ ℓ ℓ ℓ
4 4 1 2 2 2

4 4 4 4( ) ( ) ( )

Thus, the time-independent bound on the ℓ N
4 ( ) (and then ℓ N

2 ( )) norms for the global
solution u v t,( )( ) restricted on N sites of the lattice  is available for every Ω. However, the
control becomes impossible in the limit  ¥N if  gW + 4( ).

Remark 7. It is an interesting open question to investigate if the global dynamics of the
 -symmetric dNLS equation (1) on the infinite lattice is globally bounded in time for

 gW + 4( ). This open question would include the case  g g- W + 4( ), when the
zero equilibrium is linearly unstable, and the case gW < - with sufficiently large initial data

Îu v ℓ0 , 0 2( ( ) ( )) ( ), when the zero equilibrium is linearly stable but the bound (17) can no
longer be closed.

3. Proof of theorem 2

We divide the proof of theorem 2 into several subsections.

3.1. Characterization of the localized solutions

For  = 0, a solution to the stationary dNLS equation (10) is supported on the central site
n=0 and satisfies

g- - W = +E U U U U Ui 6 2 . 180 0 0
2

0 0
3( ) ¯ ∣ ∣ ¯ ( )

The parameters γ and Ω are considered to be fixed, and parameter E is thought to
parameterize a continuous branch of solutions of the nonlinear algebraic equation (18).
Substituting the decomposition = qU Ae0

i with >A 0 and q pÎ 0, 2[ ) into the algebraic
equation (18), we obtain

q
g

q=
+ W

=
+ WA

E

A
sin 2

4
, cos 2

8
, 19

2 2
( ) ( ) ( )
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from which the solution branches of E versus A are obtained in [8] as shown on figure 2. The
dependence of E versus A is given analytically by

⎡
⎣⎢

⎤
⎦⎥

g
= W + -

W +
E A

A
8 1

4
. 202 2 2

2

2 2
( )

( )
( )

Persistence of the central dimer in the unbounded lattice with respect to the coupling
parameter ò is given by the following proposition.

Proposition 2. Fix g > 0, gW > , and ¹ E E0, where gW - >E 00
2 2≔ . There exist

 > 00 sufficiently small and >C 00 such that for every   Î - ,0 0( ), there exists a unique
solution ÎU l2 ( ) to the difference equation (10) such that

  - ¹qU A C U C ne , , 0, 21n
n

0
i

0 0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )∣ ∣

where A and q are defined in (19). Moreover, the solution U is smooth in  .

Proof. Persistence and smoothness of a solution ÎU l2 ( ) to the difference equation (10) in
ò is proved with two applications of the implicit function theorem (appendix). In the first
application, we consider the following system of algebraic equations coming from system
(10),

 g= - + + + W + +  Î+ -EU U U U U U U U U n2 i 6 2 , , 22n n n n n n n n n1 1
2 3( ¯ ¯ ¯ ) ¯ ∣ ∣ ¯ ( )

where ÎU0 is considered to be given, in addition to the given parameters γ, Ω, and E. Let
=  Îx Un n{ } , =X ℓ2 ( ), =y , =Y , and =Z ℓ2 ( ) in the definition of system

´ F X Y Z: . Then we have =F 0, 0 0( ) and the Jacobian operator D F X Z0, 0 :x ( )
is block-diagonal with identical blocks given by

⎡
⎣⎢

⎤
⎦⎥

g
g

- - W
- W +

E
E

i
i

, 23( )

with the eigenvalues l  E E0≔ , where gW -E0
2 2≔ . By the assumption of the

proposition, l ¹ 0, so that the Jacobian operator D F 0, 0x ( ) is one-to-one and onto. By the
implicit function theorem, for every  ¹ 0 sufficiently small, there exists a unique small
solution ÎU ℓ2 ( ) to the system (22) such that

 ¢ U C U , 24l 02 ∣ ∣∣ ∣ ( )
where a positive constant ¢C is independent from ò. By the symmetry of the two systems (22)
for  În and uniqueness of solutions, we have =-U Un n for every În .

In the second application of the implicit function theorem, we consider the following
algebraic equation coming from system (10),

 g= - + + W + +EU U U U U U U U2 i 6 2 , 250 1 0 0 0 0
2

0 0
3( ¯ ¯ ) ¯ ∣ ∣ ¯ ( )

where ÎU1 depends on U0, γ, Ω, and E, according to the previous result. Let =x U0,
=X , =y , =Y , and =Z in the definition of system ´ F X Y Z: . Then we have

=qF Ae , 0 0i( ) , where A and θ are defined by (19). The Jacobian operator
qD F A X Ze , 0 :x

i( ) is given by the matrix

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

g

g

- - - - W -

- W - + - -
= q

E U U U

U E U U

i 6 6 12

12 i 6 6
. 26

U A

0
2

0
2

0
2

0
2

0
2

0
2

e0
i

¯ ∣ ∣

∣ ∣ ¯
( )
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It is shown in [8] that the matrix given by (26) is invertible for every gW > > 0 and
>E E0∣ ∣ . By the implicit function theorem, for every  ¹ 0 sufficiently small, there exists a

unique solution ÎU0 to the algebraic equation (25) near qAei such that

- qU A Ce , 270
i∣ ∣ ∣ ∣ ( )

where a positive constant C is independent from ò. Since both equations (22) and (25) are
smooth in ò, the solution U is smooth in ò. Thus, persistence of a smooth solution ÎU ℓ2 ( )
with the first bound in (21) is proved by the implicit function theorem and the bound (27).

It remains to prove the second bound in (21), for which we employ the implicit function
theorem for the third time. Inspecting the difference equation (10) shows that if =U 1 (∣ ∣)
according to the bound (24), then = -U Un n can be expressed by using the scaling
transformation

 =  ÎU W n, , 28n
n

n ( )∣ ∣
∣ ∣

where the sequence ÎW ℓ2 ( ) is found from the system

   g- - W = + - + +- +EW W W W W W W W Wi 2 6 2 , 29n n n n n n
n

n n
n

n1
2

1
2 2 2 3¯ ¯ ¯ ¯ ∣ ∣ ¯ ( )∣ ∣ ∣ ∣

with =W U0 0 given by the previous result. Let = Îx Wn n{ } , =X ℓ2 ( ), =y , =Y , and
=Z ℓ2 ( ) in the definition of system ´ F X Y Z: . Then, we have =F x , 0 00( ) , where

= Îx Wn n0
0{ }( ) is a unique solution of the recurrence equation

g- - W = Î-EW W W W ni , , 30n n n n
0 0 0

1
0¯ ¯ ( )( ) ( ) ( ) ( )

starting with a given =W U0
0

0
( ) . Indeed, each block in the left-hand side of system (30) is

given by the invertible matrix (23) with eigenvalues l =  ¹ E E 00 , hence, a unique
solution for Î ¥W ℓ0 ( )( ) is found from the recurrence relation (30). Moreover, since

D F X Z0, 0 :x ( ) is one-to-one and onto (as a lower block-triangular matrix with invertible
diagonal blocks), the solutionW 0( ) is actually in =X ℓ2 ( ). By the implicit function theorem
(appendix), for every  ¹ 0 sufficiently small, there exists a unique solution ÎW ℓ2 ( ) to the
system (29) such that

- < W W C , 31ℓ
0 2 ‴∣ ∣ ( )( )

( )

where a positive constant C‴ is independent of ò. Thus, the second bound in (21) is proved
from (28) and (31). ,

3.2. Decomposition of the solution

Let y = u u v v, , ,( ¯ ¯) denote a solution of the  -symmetric dNLS equation (1) in ℓ2 ( )
given by proposition 1. Let F = U U V V, , ,( ¯ ¯ ) denote a localized solution of the stationary
dNLS equation (10) given by proposition 2. Let f y= - F = u u v v, , ,( ¯ ¯) denote a per-
turbation to Φ. Note that these are extended 4-component variables at each lattice site
(concatenated by the complex conjugate functions) compared to the two-component variables
used in the formulation of theorem 2. The extended variables are more suitable for dealing
with the energy functions such as (9) or (14).

By using the energy function (14), we introduce the energy difference function

fD L F + - L F . 32E E≔ ( ) ( ) ( )
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Let us write the expansion for Δ as follows:

f f f fD = + + +N N N N , 331 2 3 4( ) ( ) ( ) ( ) ( )

where the linear part is


åf = + + +

Î
N E V V U Uu u v v , 34

n
n n n n n n n n1

0

( ) ( ¯ ¯ ¯ ¯ ) ( )
⧹ { }

the quadratic part is



åf f f=  + +

Î
N E v u v u

1

2
, , 35E l

n
n n n n2

0

2( ) ⟨ ⟩ (¯ ¯ ) ( )
⧹ { }

whereas the cubic and quartic parts of Δ denoted by fN3 ( ) and fN4 ( ) are not important for
estimates, thanks to the bounds

 f f f f   N C N C, , 36
l l3 3
3

4 4
4

2 2∣ ( )∣ ∣ ( )∣ ( )

where C3, C4 are positive constants and we have used continuous embedding    u uℓ ℓ
p 2

for any p 2.
In the next three subsections, we show that the quadratic part fN2 ( ) is positive, the linear

part fN1( ) can be removed by a local transformation, and the time evolution of Δ can be
controlled on a long but finite time interval.

In what follows, all constants depend on parameters g > 0, gW > , and
ÈÎ -¥ - ¥E E E, ,0 0( ) ( ). The parameter  > 0 is sufficiently small, and unless it is stated

otherwise, the constants do not depend on the small parameter ò.

3.3. Positivity of the quadratic part of Δ

The quadratic part (35) can be analyzed by a parameter continuation from the case  = 0.
Compared to the self-adjoint (Hessian) operator    ℓ ℓ:E

2 2( ) ( ) given by (12), the
Hessian operator for fN2 ( ) denoted by  L ℓ ℓ:E

2 2( ) ( ) is given by

 L =
~

+ , 37E ( )

where the discrete Laplacian  is the same as in (13) but the blocks of
~

at each site În
are now given differently for n=0 and ¹n 0. For n=0, 

~
=0 0, whereas for ¹n 0,

we have

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥


g

g

g

g

~
=

W + + - + +

+ W + + + +

+ + + W + +

- + + + W +

U U U U U U

U U U U U U

U U U U U U

U U U U U U

8 2 i 4 4

2 8 4 i 4

i 4 4 8 2

4 i 4 2 8

,n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

∣ ∣ ( ¯ ) ( ¯ ) ∣ ∣
( ¯ ) ∣ ∣ ∣ ∣ ( ¯ )

( ¯ ) ∣ ∣ ∣ ∣ ( ¯ )
∣ ∣ ( ¯ ) ( ¯ ) ∣ ∣

that is, parameter E is removed fromn.
The following proposition characterizes eigenvalues of

~
at  = 0.
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Proposition 3. Fix  = 0, g > 0, gW > , and ¹ E E0, where gW - >E 00
2 2≔ . The

matrix block of
~

n has three positive and one zero eigenvalues for =n 0 and two double
positive eigenvalues for every ¹n 0.

Proof. If  = 0, the stationary state of proposition 2 is given by Un = 0 for every ¹n 0 and
= qU Ae0

i , where A and θ are defined by the parametrization (19).
For n=0, the 4-by-4 matrix block of 

~
=0 0 is given by

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



q g q
q g q

g q q
g q q

~
=

W + - - +
W + - + +

- + + W +
- - + W +

A A E A A

A A A E A

E A A A A

A E A A A

8 4 cos 2 i 8 cos 2 4

4 cos 2 8 4 i 8 cos 2

i 8 cos 2 4 8 4 cos 2

4 i 8 cos 2 4 cos 2 8

.0

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

Using relations (19) and (20), as well as symbolic computations with MAPLE, we found that
the 4-by-4 matrix block

~
0 has a simple zero eigenvalue and three non-zero eigenvalues m1,

m2, and m3 given by

m = W + A2 4 , 381
2( ) ( )

m
g

= W +  W - +
W

W +
A A

A

A
12 4

16

4
. 392,3

2 2 2
2 2

2 2
( )

( )
( )

It is shown in [8] that m m m >, , 01 2 3 for every point on the solution branch with gW > > 0,
and >E E0∣ ∣ .

For every În 0⧹{ }, the 4-by-4 matrix block of
~

n is given by

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥


g
g

g
g

~
=

W -
W +

+ W
- W

0 i 0
0 0 i
i 0 0

0 i 0

.n

Each block has two double eigenvalues m+ and m - given by

m g m g= W + = W -+ -, ,

which are positive since gW > . ,

By proposition 3, if  = 0, then fN 02 ( ) for every f Î ℓ2 ( ) and, moreover,
f =N 02 ( ) if and only if f is proportional to an eigenvector supported at n=0. The exis-

tence of the zero eigenvalue at  = 0 is related to the gauge symmetry of the  -symmetric
dNLS equation (1). Both for  = 0 and  ¹ 0, there exists a non-trivial kernel of the Hessian
operator    ℓ ℓ:E

2 2( ) ( ) associated with the standing localized state (U, V ), thanks to
the identity

 s F = 0, 40E ( ) ( )

where the blocks of the eigenvector sF are given by

sF - - ÎU U V V n, , , , . 41n n n n n( ) ≔ ( ¯ ¯ ) ( )
In the limit of   0, the eigenvector sF is supported at the central site n=0 and it
corresponds to the zero eigenvalue of the matrix block 

~
=0 0. By using proposition 3

and identity (40), we can now state that if  = 0, then f =N 02 ( ) if and only
if f sÎ Fspan{ }.

J. Phys. A: Math. Theor. 49 (2016) 475201 A Chernyavsky and D E Pelinovsky

12



By the perturbation theory for linear operators (appendix), the strictly positive part of LE
remains strictly positive for a sufficiently small ò. On the other hand, the simple zero
eigenvalue may drift away from zero if  ¹ 0.

In order to avoid a problem of degeneracy (or even slight negativity) of LE, we introduce
a constrained subspace of ℓ2 ( ) by

 f s f= Î F =l l : , 0 . 42c l
2 2 2( ) { ( ) ⟨ ⟩ } ( )

If  = 0 and f belongs to lc
2 ( ), then the quadratic form fN2 ( ) in (35) is strictly positive and

coercive. By the perturbation theory for linear operators (appendix), for  ¹ 0 sufficiently
small, the quadratic part fN2 ( ) given by (35) for f Î lc

2 ( ), remains strictly positive and
coercive. This argument yields the proof of the following proposition.

Proposition 4. Fix g > 0, gW > , and ¹ E E0. There exist  > 00 sufficiently small and
>C 02 such that for every   Î - ,0 0( ),

 f f f Î N C lfor every , 43
ℓ c2 2
2 2

2( ) ( ) ( )

where lc
2 ( ) is given by (42).

Bounds (36) and (43) allow us to estimate the principal part ofΔ in (33) from below, e.g.

 f f f f fD - - - Î     N C C C lfor every .ℓ ℓ ℓ c1 2 3 4
2 2 2

2 2 2∣ ( )∣ ( ) ( )

However, the linear part fN1( ) is an obstacle for such estimates. In the following section, we
remove the obstacle by a local transformation.

3.4. Removal of the linear part of Δ

Let us define

f f r= + , 44˜ ( )

where f = u u v v, , ,n n n n
˜ ( ˜ ˜ ˜ ˜ ) is a new variable and r = a a b b, , ,( ¯ ¯) is a correction term to be

found uniquely by removing the linear term fN1( ). Since the breather is  -symmetric with
=V Ū , we shall look for a  -symmetric correction term with =b ā.
The easiest way of finding Îa ℓ2 ( ) is to write the Euler–Lagrange equations for the

energy function LE given by (14). For the  -symmetric solution with =v ū, the Euler–
Lagrange equations for LE take the form

d g= - + + + W + ++ -Eu u u u u u u u u2 i 6 2 , 45n n n n n n n n n n,0 1 1
2 3( ¯ ¯ ¯ ) ¯ ∣ ∣ ¯ ( )

where dn,0 is the Kronecker symbol supported at n=0. Let = +u U a, where U is a solution
of the stationary dNLS equation (10). Then, a satisfies the nonlinear equation

d g

d

- W - - - + - - +

- + - - - = -
+ -Ea a a a a a U a U U a

U a a U a a a a EU

i 2 12 6

6 12 6 2 1 , 46

n n n n n n n n n n n n

n n n n n n n n n n

,0 1 1
2 2 2

2 2 2 2 3
,0

¯ ( ¯ ¯ ¯ ) ∣ ∣ ¯ ( ¯ )
( ¯ ) ¯ ∣ ∣ ∣ ∣ ¯ ( ) ( )

where În . Thanks to the bounds (21) in proposition 2, the right-hand side of system (46) is
small in ò. The following proposition characterizes a unique solution to system (46). This
solution with =b ā defines a unique ρ in the transformation (44).

Proposition 5. Fix g > 0, gW > , and ¹ E E0. There exist  > 00 sufficiently small and
>C 01 such that for every   Î - ,0 0( ), there exists a unique solution Îa ℓ2 ( ) to the

system (46) such that
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   Îa C a C n, , 0 . 47n
n

0 1
2

1∣ ∣ ∣ ∣ ∣ ∣ ⧹{ } ( )∣ ∣

Proof. The proof repeats the three steps in the proof of proposition 2. On the sites
În 0⧹{ }, the Jacobian operator D F 0, 0x ( ) is block-diagonal with identical blocks given by

⎡
⎣⎢

⎤
⎦⎥

g
g

- - W
- W

i
i

. 48( )

Each block is invertible thanks to the constraint gW > . On the central site n=0, the
Jacobian operator qD F Ae , 0x

i( ) coincides with the block (26), which is invertible for every
g ¹ 0, gW > > 0, and >E E0∣ ∣ [8]. Thus, existence and uniqueness of solutions to the
nonlinear system (46) for small ò is established with two applications of the implicit function
theorem.

In order to justify the bound (47), we use (28) and substitute

  = =  Îa A a A n, , 49n
n

n0
2

0 ( )∣ ∣
∣ ∣

to the system (46). The sequence ÎAn n{ } is found from the system

  

  

  

g d d- W - - + - - -

- + - - +

- - - =

+ -A A A A A A

W W A W A W A A

W A A A A EW

i 2 1

6 12 6

12 6 2 , 50

n n n n n n n

n
n n n

n
n n

n
n n n

n
n n

n
n n

n
n n

2
1 1 ,1

2
0 ,1

2 2 2 2 2 2 2 2

2 2 2 2 2 3

¯ ¯ ¯ ¯ ( )

( ¯ ) ∣ ∣ ¯ ( ¯ )
¯ ∣ ∣ ∣ ∣ ¯ ( )

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

whereas the term A0 satisfies the nonlinear equation



   

g- W - - + - + -

- + - - - =

EA A A A A U U A U A

U A A U A A A A

i 2 2 6 12

6 12 6 2 0. 51

0 0 0 1 0 0
2

0
2

0 0
2

0

2
0 0

2
0
2 2

0 0
2 4

0
2

0
2

0
3

¯ ¯ ¯ ( ¯ ) ∣ ∣ ¯

( ¯ ) ¯ ∣ ∣ ∣ ∣ ¯ ( )

It follows from the invertibility of the block (26) that there exists a unique solution to the
nonlinear equation (51) for ÎA0 if ò is sufficiently small and ÎA1 is given. The solution
satisfies the bound

 ¢A C A , 520 1∣ ∣ ∣ ∣ ( )
where the positive constant ¢C is ò-independent. By substituting this solution for ÎA0 to
the system (50), we observe that the leading-order system is given by the recurrence equation

g d-W - - - = Î-A A A EW ni 1 , . 53n n n n n
0 0

1
0

,1¯ ¯ ( ) ( )( ) ( ) ( )

Since gW > , there exists a unique solution Î ¥A ℓ0 ( )( ) of the leading-order system (53).
Moreover, because the Jacobian operator D F 0, 0x ( ) is one-to-one and onto, the solution A 0( )

is actually in ℓ2 ( ). By using the implicit function theorem again, for  ¹ 0 sufficiently small,
there exists a unique solution ÎA ℓ2 ( ) to the system (50) satisfying the bound

- <  A A C , 54ℓ
0 2 ∣ ∣ ( )( )

( )

where the positive constant C is ò-independent. Combining bounds (52) and (54) with the
representation (49) yields the bounds (47). ,

By using the transformation (44), we rewrite the expansion (33) in the following
equivalent form

f f fD = D + D + D + D , 550 2 3 4( ˜ ) ( ˜ ) ( ˜ ) ( )
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where the f̃-independent term D0 is given by

r r r rD + + +N N N N ,0 1 2 3 4≔ ( ) ( ) ( ) ( )
the quadratic and cubic parts fD2 ( ˜ ) and fD3( ˜ ) are ò-close to fN2 ( ˜ ) and fN3 ( ˜ ), while

f fD = N4 4( ˜ ) ( ˜ ). The following proposition characterizes each term of the decomposition
(55). The new definitions of constants override the previous definitions of constants.

Proposition 6. Fix g > 0, gW > , and ¹ E E0. There exist  > 00 sufficiently small and
>C C C C C, , , , 00 1 2 3 4 such that for every   Î - ,0 0( ), we have

D C , 560 0
2∣ ∣ ( )

  f f f f+ +       C C, , 57l l l l1 12 2 2 2˜ ˜ ( )

 f f f fD D       C C, , 58l l l l3 3
3

4 4
42 2 2 2( ˜ ) ˜ ( ˜ ) ˜ ( )

and

 f f fD Î C lfor every . 59
ℓ c2 2
2 2

2( ˜ ) ˜ ˜ ( ) ( )

Proof. Since ρ is constructed in proposition 5 with the  -symmetric correction term
=b ā, it is true that r Î ℓc

2 ( ). Therefore, the condition f Î ℓc
2 ( ) is satisfied if and only if

f Î ℓc
2˜ ( ). Since the constants C2, C3, and C4 in the bounds (36) and (43) are ò-independent,

whereas D2, D3, and D4 are ò-close to N2, N3, and N4 in space ℓ2 ( ), then the bounds (58)
and (59) follow from the bounds (36) and (43) respectively, thanks to the smallness of ò.

In order to obtain the bounds (56) and (57), we use the bounds (21) and (47) and obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟       

 
å år r¢ + ¢

Î Î
 N C C C C, , 60

n

n
l

n

n
1

0

2 2 2 4

0

2 2
2∣ ( )∣ ( )

⧹ { }

∣ ∣

⧹ { }

∣ ∣

where the positive constants C, ¢C are ò-independent and ò is sufficiently small. Since N2, N3,
and N4 are quadratic, cubic, and quartic respectively, the bound (56) is obtained from the
triangle inequality and the estimates (60). The bounds (57) follow from the triangle inequality
and the second estimate (60). ,

3.5. Time evolution of Δ

We recall that H given by (4) is a constant of motion for the  -symmetric dNLS
equation (1). On the other hand, the part of Q at n=0 satisfies the balance equation

+ = + - + + + - +- - - -
t

u v u v u u u u u u v v v v v vi
d

d
.

61

0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1( ¯ ¯ ) [ ¯ ( ) ( ¯ ¯ ) ¯ ( ) ( ¯ ¯ )]

( )

If the initial data y Î l0 2( ) ( ) is close to Φ in the sense of the bound y d- F 0 ℓ2( ) ,
then the unique solution  y Ît C l,1 2( ) ( ( )) to the  -symmetric dNLS equation (1) with
the same initial data can be defined in the modulation form

y f= F +a s-t te , 62ti( ) [ ( )] ( )( )

as long as the solution remains close to the orbit of Φ under the phase rotation in the sense of
the bound (15). Note again that the vectors ψ, Φ, and f are extended 4-component vectors at
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each lattice site compared to the 2-component vectors used in the formulation of theorem 2.
As a result, the gauge symmetry is represented by the matrix operator σ defined by (41).

The decomposition (62) is defined uniquely only if a constraint is imposed to
f Ît ℓ2( ) ( ). In agreement with the definition (42) of the constrained space ℓc

2 ( ), we
impose the orthogonality condition:

s fF =t, 0. 63l2⟨ ( )⟩ ( )
The decomposition (62) under the orthogonality condition (63) and the modulation equation
for α are justified in the next section. Here we estimate how the time-dependent energy
quantity Δ changes along the solution  y Ît C l,1 2( ) ( ( )) represented by the decomposi-
tion (62).

The rate of change of Δ defined by (32) along the solution y t( ) represented by (62) is
obtained from (61) as follows:

 f f f
D

F + F + + F +- -     
t

C
d

d
, 64E 0 0 1 1 1 1( ) ( )

where CE is a positive ò-independent constant. By using the bounds (21) and (47), the
transformation (44), and the triangle inequality (57), we obtain from (64):

 

 





f f f

f f f f f f

D
+ + +

¢ + + + + + +

-

- -

     

           
t

C

C

d

d
1

, 65

E

E

0 1 1

0 1 1 0
2

1
2

1
2

( ˜ )( ˜ ˜ )

( ˜ ˜ ˜ ˜ ˜ ˜ ) ( )

where ¢CE is another positive ò-independent constant.
Let us now define a ball in the space ℓc

2 ( ) of a finite size >K 0 by

  f fÎ  ℓ K: . 66K c ℓ
2

2≔ { ( ) } ( )

From estimates (58) and (59), there is a positive K-dependent constant CK such that

 f fD - D Î C for every . 67K ℓ K0
2

2
˜ ˜ ( )

By using coercivity (67) in the ballK and the Young inequality

 a
a

+ Îab a b a b
2

1

2
, , ,2 2∣ ∣

where a Î + is arbitrary, we estimate

 f f f
a

a
+ + D - D + D - D-

-      C
C2

1

2
,K

K
0 1 1

1
0 0˜ ˜ ˜ ( ) ( )

where D - D 00 follows from (67). Substituting this estimate to (65) yields

  a a
D

+ + D - D + D - D-

t
C

d

d
, 68E 0

1
0( ( ) ( )) ( )

for another ò-independent constant >C 0E . In what follows, we will set the scaling parameter
α such that a  0 as   0. Therefore, the constant a-1 is much larger compared to unity.
Integrating (68) with an integrating factor,

   aD - D +a a- -- -

t
C

d

d
e e ,C t

E
C t

0E E
1 1( ) ( )
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we obtain with the Gronwall’s inequality:

⎜ ⎟⎛
⎝

⎞
⎠ 



 






òa

a a

D - D D - D + +

D - D + +

a a

a

-- -

-

t C se 0 e d

e 0 . 69

C t
E

t
C s

C t

0 0
0

0

E E

E

1 1

1

( ) ( ) ( )

( ( ) ( )) ( )

It is clear from the estimate (69) that D - Dt 0( ) is small only if a  0 as   0. If a = ,
then

 a = D - D D +t C: e 0 ,C t
0 0

2E( ) ( ( ) )
where the bound (56) has been used and C0 is an ò-independent constant. Therefore, ifD 0( ) is
small, then D t( ) remains small on the time scale =t 1( ) as   0. On the other hand, if

a = 1 2, then the estimate (69) yields

 a = D - D D +t C: e 0 ,C t1 2
0 0E

1 2( ) ( ( ) )
so that D t( ) remains small on the time scale = -t 1 2( ).

The initial value for D 0( ) is estimated from (55)–(57). By (57), for every f Î d0( )
with d > 0 sufficiently small, we have f Î0 K

˜ ( ) with d= +K and there are positive (ò,
δ)-independent constants ¢C C, such that

  f dD + ¢ + C C0 0 . 70
ℓ

2 2 2 2
2∣ ( )∣ ( ˜ ( ) ) ( ) ( )

By using the triangle inequality (57), coercivity (67), and the bound (70), we finally obtain the
following two estimates:

 a f d= + t C: e
ℓ

C t2 2 2E
2( ) ( )

and

 a f d= + t C: e ,
ℓ

C t1 2 2 2E
2

1 2( ) ( )

where the positive constant C is independent of ò and δ. Comparing with the bound (15)
stated in theorem 2, we obtain

  a d n= +t C, 1 : 710 ( ) ( )

and

   a d n= +-t C, : , 721 2
0

1 2 1 2( ) ( )

where t0 is the final time in the bound (15) and C is another positive (ò, δ)-independent
constant. For every n > 0, there exist  > 00 and d > 0 such that inequalities (71) and (72)
can be satisfied for every  Î 0, 0( ). The statement of theorem 2 is formulated on the
extended time scale corresponding to the inequality (72). The short time scale corresponding
to the inequality (71) is mentioned in remark 4.

3.6. Modulation equations in ℓ2c ðZÞ

It remains to show how we can define the decomposition (62) under the constraint (63) for a
solution to the  -symmetric dNLS equation (1) and how the evolution of α in time t can be
estimated from the modulation equation. Here we modify standard results on modulation
equations, see, e.g., lemmas 6.1 and 6.3 in [10] for similar analysis. For reader’s convenience,
we only give the main ideas behind the proofs.
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Proposition 7. There exist constants n Î 0, 10 ( ) and C 10 such that, for any y Î l2 ( )
satisfying




y n- F
a

as
Î
 d inf e , 73l

i
02≔ ( )

one can find modulation parameter  a pÎ 2( ) such that y f= F +as-e i ( ) with
f Î ℓc

2 ( ) satisfying  f d C dl 02 .

Proof. We consider a function  f : given by

a s yF - F =asf , e 0.ℓ
i 2( ) ≔ ⟨ ⟩

Let  a pÎ 20 ( ) be the argument of the infimum in (73). Then, a F f d ℓ0 2∣ ( )∣ by the
Cauchy–Schwartz inequality. On the other hand, the derivative a¢f 0( ) is bounded away from
zero because

a s s y y¢ = F = F + F - Fa s a s f , i e i i , e ,ℓ ℓ ℓ0
i 2 i0 2 2

0 2( ) ⟨ ⟩ ⟨ ⟩

where the second term is bounded by F d ℓ2 and the first term is d-independent. The function
 f : is smooth in α. By the implicit function theorem, for any >d 0 sufficiently

small, there is a unique solution of the equation a =f 0( ) for α near a0 such that
a a- Cd0∣ ∣ , where C is d-independent. By the triangle inequality,

 f y y= - F - F + - Fas a s as a s- - - -        C de e e e ,l l l l
i i i i

02 2 0 2 0 2( )

where C 10 is also d-independent. ,

Proposition 8. Assume that the solution y t( ) to the  -symmetric dNLS equation (1)
satisfies  nd t( ) for every Ît t0, 0[ ], where d t( ) is given by (73). Then the modulation
parameter a t( ) defined by (62) in proposition 7 is a continuously differentiable function of t
and there is a positive constant C such that a n- E C∣ ˙ ∣ , for every Ît t0, 0[ ].

Proof. Let  y Ît C l,1 2( ) ( ( )) be a solution to the  -symmetric dNLS equation (1).
Substituting the decomposition(62) into the  -symmetric dNLS equation (1), we obtain the
evolution equation in the form

f f a s f f=  + - F + +E Ni , 74E
˙ ( ˙ ) ( ) ( ) ( )

where the bounded invertible operator   ℓ ℓ: 2 2( ) ( ) represents the symplectic structure
(3) of the  -symmetric dNLS equation (1), fN ( ) contains quadratic and cubic terms in f,
and the gauge invariance of the  -symmetric dNLS equation (1) has been used. From the
condition (63), projecting the evolution equation (74) to sF yields

 
a

s f s f
f

- =
 F + F

F + F 
E

N, ,

,
. 75E ℓ ℓ

ℓ ℓ
2

2 2

2 2
˙

⟨ ⟩ ⟨ ( )⟩
⟨ ⟩

( )

By proposition 7, if  nd t( ) is sufficiently small for every Ît t0, 0[ ], then
f t C d tℓ 02( ) ( ) for a positive constant C0. Then, the denominator in (75) is bounded

away from zero, whereas the numerator is bounded by Cd t( ), which yields the bound
a n- E C∣ ˙ ∣ , for every Ît t0, 0[ ]. ,
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Appendix. Useful results

Implicit function theorem (Theorem 4.E in [19]). Let X Y, and Z be Banach spaces
and let ´ F x y X Y Z, :( ) be a C1 map on an open neighborhood of the point

Î ´x y X Y,0 0( ) . Assume that

=F x y, 00 0( )

and that

D F x y X Z is one to one and onto, : .x 0 0( ) ‐ ‐

There are >r 0 and s > 0 such that for each y with  s- y y Y0  there exists a unique
solution Îx X of the nonlinear equation =F x y, 0( ) with - x x rX0 . Moreover, the
map  ÎY y x y X( ) is C1 near =y y0.

Perturbation theory for linear operators (Theorem VII.1.7 in [12]). Let T ( ) be a
family of operators from Banach space X to itself, which depends analytically on the small
parameter ò. If the spectrum of T(0) is separated into two parts, the subspaces of X
corresponding to the separated parts also depend on ò analytically. In particular, the
spectrum of T ( ) is separated into two parts for any  ¹ 0 sufficiently small.

Lyapunov’s stability theorem ([15]). Consider the following evolution problem on a
Hilbert space X,

= Î
   x

t
f x x X

d

d
, , 76( ) ( )

where 

f X X: satisfies =

  
f 0 0( ) . Let V X: satisfy the following properties:

(1) ÎV C X2 ( ) with =


V 0 0;( )
(2) There exists >C 0 such that  V x C x X

2( ) for every Î

x X;

(3) 
V x 0

t

d

d
( ) for every solution of (76).

Then the zero equilibrium of the evolution system(76) is nonlinearly stable in the sense: for
every n > 0 there is d > 0 such that if Î


x X0 satisfies  d x X0 , then the unique solution

x t( ) of the evolution system (76) such that =
 
x x0 0( ) satisfies  x t X( ) for every Î +t .
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