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Abstract
Periodic waves in the modified Korteweg–de Vries (mKdV) equation are revisited in the
setting of the fractional Laplacian. Two families of solutions in the local case are given
by the sign-definite dnoidal and sign-indefinite cnoidal solutions. Both solutions can be
characterized in the general fractional case as global minimizers of the quadratic part of the
energy functional subject to the fixed L4 norm: the sign-definite (sign-indefinite) solutions are
obtained in the subspace of even (odd) functions. Morse index is computed for both solutions
and the spectral stability criterion is derived. We show numerically that the family of sign-
definite solutions has a generic fold bifurcation for the fractional Laplacian of lower regularity
and the family of sign-indefinite solutions has a generic symmetry-breaking bifurcation both
in the fractional and local cases.
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1 Introduction

The purpose of this work is to study existence, variational characterization, and bifurcations
of periodic solutions of the following stationary equation:

Dαψ + cψ + b = 2ψ3, (1.1)

whereψ(x) : T �→ R is the wave profile on a circleT := [−π, π], (c, b) are real parameters,
and Dα is the fractional Laplacian on T defined via Fourier series by

ψ(x) =
∑

n∈Z
ψne

inx , (Dαψ)(x) =
∑

n∈Z
|n|αψne

inx .

Thanks to the scaling transformation for the cubic nonlinearity, the fundamental period of
the wave has been scaled to 2π . In addition, we are interested in the simplest periodic waves
with the single-lobe profile according to the following definition.

Definition 1.1 We say that the periodic wave satisfying Eq. (1.1) has a single-lobe profile ψ

if it admits only one isolated maximum and minimum on T.

Eq. (1.1) arises in the context of the fractional mKdV (modified Korteweg–de Vries)
equation written in the form:

ut + 6u2ux − (Dαu)x = 0, (1.2)

with u(t, x) : R×T �→ R. Traveling waves of the form u(t, x) = ψ(x−ct) satisfy Eq. (1.1),
where c is the wave speed and b is an integration constant. The fractional mKdV equation
(1.2) admits formally the following conserved quantities:

E(u) = 1

2

∫ π

−π

[
(D

α
2 u)2 − u4

]
dx, (1.3)

F(u) = 1

2

∫ π

−π

u2dx, (1.4)

and

M(u) =
∫ π

−π

u dx, (1.5)

which have meaning of energy, momentum, and mass, respectively. Eq. (1.1) is the Euler–
Lagrange equation for the action functional,

G(u) = E(u) + cF(u) + bM(u), (1.6)

so thatG ′(ψ) = 0. TheHessian operator from the action functional (1.6) yields the linearized
operator around the wave ψ in the form:

L := G ′′(ψ) = Dα + c − 6ψ2. (1.7)

In addition to questions of the existence, we study the spectral stability of the periodic
wave with the spatial profile ψ in the time evolution of the fractional mKdV equation (1.2)
according to the following definition.

Definition 1.2 The periodic wave is said to be spectrally stable with respect to perturbations
of the same period if σ(∂xL) ⊂ iR in L2(T). Otherwise, it is said to be spectrally unstable.
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The fractional mKdV equation (1.2) appears to be a generic model for one-dimensional
long waves with weak dispersion (see recent review in [28]). For α = 2, it is the completely
integrable mKdV equation [1]. For α = 1, it is referred to as the modified Benjamin–Ono
equation [8].

Global well-posedness results for the initial data in Hs(R) with s > 1
4 and in Hs(T) with

s ≥ 1
2 were obtained for α = 2 in [16]. Local well-posedness results for initial data in Hs(R)

with s ≥ 1
2 were obtained for α = 1 in [27]. Energy and momentum are conserved in the

time evolution of such solutions. Local solutions with sufficiently large initial data in H
1
2 (R)

blow up in a finite time [26,31].
Periodic waves of Eq. (1.1) were only studied in the local case of α = 2. There exist two

families of periodic solutions for b = 0 with the single-lobe profile: sign-definite solutions
are expressed by the dnoidal elliptic functions and sign-indefinite solutions are expressed by
the cnoidal elliptic functions. For b �= 0, all periodic waves can be expressed as a rational
function of Jacobian elliptic functions [13]. Spectral and orbital stability of periodic waves
in the local case of α = 2 was also considered in the literature.

Employing the arguments in [9,35,36], orbital stability of sign-definite dnoidal waves with
b = 0 was proven in [5]. Spectral stability of sign-indefinite cnoidal waves with b = 0 was
studied in [17] by using the count of negative eigenvalues of the operator L restricted to the
orthogonal complement of span(1, ψ) (also also [22,34]). It was discovered in [17] that the
cnoidal waves were spectrally stable for smaller speeds c and spectrally unstable for larger
speeds c. Spectral and orbital stability and instability of the cnoidal waves was proven in [7]
by adopting the arguments of [30] in the periodic context and employing the approach in
[23] based on the existence of a sufficiently smooth data-to-solution-map. Orbital stability
of a particular family of positive periodic waves of the dnoidal type with b �= 0 was proven
in [4] by adopting the arguments of [20].

In the limit of c → ∞, periodic waves with the single-lobe profile on the fixed circle
T concentrate near centers of symmetry and approach the solitary waves. With the scaling
transformation,

ψ(x) = c
1
2 Q(c

1
α x), x ∈ R, (1.8)

for c > 0, the solitary wave profile Q(x) : R �→ R satisfies the c-independent problem

DαQ + Q = 2Q3. (1.9)

Existence and uniqueness (modulus translations) of solitary waves with the spatial profile Q
satisfying Eq. (1.9) was shown in [18] based on their variational characterization as mini-
mizers of the Gagliardo–Nirenberg-type inequality considered in [37,38]:

‖u‖4L4(R)
≤ Cα‖D α

2 u‖
2
α

L2(R)
‖u‖4−

2
α

L2(R)
, u ∈ H

α
2 (R), (1.10)

where Cα > 0 is the u-independent constant. Solitary waves satisfying (1.9) give the best
value for Cα which saturates the Gagliardo–Nirenberg-type inequality (1.10).

For α = 2, the classical arguments in [2,9,20] can be used to prove the orbital stability of
solitary waves in the energy space H1(R). Spectral and orbital stability of solitary waves in
the general case α ∈ ( 1

2 , 2
)
was considered in [6] based on the dependence of the momentum

F(ψ) = c1− 1
α F(Q) on the wave speed c > 0. It was shown that the solitary waves were

unstable if α ∈ ( 1
2 , 1

)
and stable if α ∈ (1, 2) in agreement with increasing and decreasing

dependence of F(ψ) versus c respectively. The critical case α = 1 was inconclusive because
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d
dc F(ψ) = 0 in this case. For the critical case, existence of blow up solutions with mini-
mal mass was proven in [31] by combining sharp energy estimates and a refined localized
argument from [26]. Hence, the solitary waves are unstable for α = 1.

The previous review of literature shows that Eq. (1.1) in the periodic domain T has been
unexplored for α < 2. Compared to the cubic case, a similar problem with the quadratic
nonlinearity has been recently studied inmany aspects, e.g. existence and stability of traveling
periodic waves were analyzed by using perturbative [25], variational [10,12,24], and fixed-
point [11,29] methods.

The standard approach to characterize the spectral and orbital stability of periodic waves
with respect to perturbations of the same period is based on the minimization of energy E(u)

subject to the fixed momentum F(u) and mass M(u) [24]. Parameters c and b appear to be
Lagrange multipliers of the action functional (1.6). It is important to realize that smoothness
of the momentum and mass with respect to Lagrange multipliers cannot be taken for granted
(compared to what was done in [24]).

In order to resolve problems of the variational characterization of the traveling periodic
waves in the fractional KdV equation (with quadratic nonlinearity), two new approaches
were recently developed.

In [21], the periodic waveswith the single-lobe profilewere constructed byminimizing the
energy E(u) subject to only one constraint of the fixed momentum F(u). It was shown that
such minimizers were degenerate only up to the translation symmetry and were spectrally
stable.

From a different point of view, we characterized the traveling periodic waves in our
previous work [32] by minimizing the quadratic part of the action functional G(u) subject
to the fixed cubic part of the energy E(u) and the zero mean constraint M(u) = 0. This
approach combined with the Galilean transformation allowed us to represent all possible
periodic waves of the single-lobe profile ψ and to derive a simple stability criterion from the
derivative of the momentum F(ψ) with respect to the wave speed c.

When ideas of [32] are extended to the cubic nonlinearity in the framework of Eq. (1.1),
we face the difficulty that the Galilean transformation generates a quadratic nonlinear term
and connects solutions of the fractional mKdV equation to solutions of the fractional Gardner
equation. As a result, we are not able yet to characterize all possible periodic waves of the
single-lobe profile in Eq. (1.1). Instead, we shall study the two particular families of solutions
which correspond tob = 0 andgeneralize the sign-definite dnoidal and sign-indefinite cnoidal
elliptic solutions of the local case α = 2. Both families are obtained as minimizers of the
quadratic part of the action functional G(u) subject to the fixed quartic part of the energy,
but one family is obtained in the subspace of even functions and the other family is obtained
in the subspace of odd functions. For the purpose of simplicity, we refer to the first family as
the even periodic waves and to the second family as the odd periodic waves.

The following two theorems present the main results of this paper. In what follows, we
write Hs

per instead of Hs
per(T). The subspace of odd (even) functions in L2 is denoted by

L2
odd (L

2
even). Similarly, the subspace of odd (even) periodic functions in Hs

per is denoted by
Hs
per,odd (H

s
per,even).

Theorem 1.3 (Odd periodic wave) Fix α ∈ ( 1
2 , 2

]
. For every c0 ∈ (− 1,∞), there exists a

solution to Eq. (1.1) with b = 0 and the odd, single-lobe profile ψ0, which is obtained from
a constrained minimizer of the following variational problem:
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inf
u∈H

α
2
per,odd

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π

u4dx = 1

}
. (1.11)

There exists a C1 mapping c �→ ψ(·, c) ∈ Hα
per,odd in a local neighborhood of c0 such that

ψ(·, c0) = ψ0. The spectrum of L in L2(T) has exactly two negative eigenvalues and if 1 ∈
Range(L), a simple zero eigenvalue. Assuming 1 ∈ Range(L) and setting σ0 := 〈L−11, 1〉,
the periodic wave with the profile ψ0 is spectrally stable if

σ0 ≤ 0,
d

dc
‖ψ‖2L2 ≥ 0 (1.12)

and is spectrally unstable with exactly one real, positive eigenvalue of ∂xL in L2(T) if

either σ0
d

dc
‖ψ‖2L2 > 0 or σ0 = 0,

d

dc
‖ψ‖2L2 < 0, or σ0 > 0,

d

dc
‖ψ‖2L2 = 0.

(1.13)

If 1 /∈ Range(L), then the periodic wave is spectrally unstable with exactly one real positive
eigenvalue of ∂xL in L2(T) if

d

dc
‖ψ‖2L2 ≥ 0. (1.14)

Remark 1.4 If σ0 = 0, the odd periodic wave of Theorem 1.3 undertakes the stability bifur-
cation, which also results in the bifurcation of new solutions in Eq. (1.1) with b �= 0. The
stability bifurcation was first discovered in [17] for α = 2. We show numerically that this
bifurcation is generic for every α ∈ ( 1

2 , 2
)
.

Remark 1.5 Based on numerical studies, we conjecture that the case 1 /∈ Range(L) is impos-
sible for the odd periodic wave in Theorem 1.3 for every α ∈ ( 1

2 , 2
]
and every c ∈ (− 1,∞).

Nevertheless, the case 1 /∈ Range(L) is observed for the new solutions bifurcating from the
odd periodic wave in Theorem 1.3.

Remark 1.6 Although the solution ψ0 is obtained as a global minimizer of the variational
problem (1.11), the solution ψ(·, c) ∈ Hα

per,odd in a local neighborhood of c0 is continued

from the Euler–Lagrange equation. Therefore, even if the solution ψ(·, c) ∈ Hα
per,odd is C1

with respect to c, it may not coincide with the global minimizer of (1.11) for c �= c0 because
uniqueness of minimizers of the variational problem (1.11) is not proven. Nevertheless,
the spectral stability conclusions of Theorem 1.3 apply to every global minimizer of the
variational problem (1.11) for every c0 ∈ (− 1,∞).

Theorem 1.7 (Even periodic wave) Fix α ∈ ( 1
2 , 2

]
. For every c0 ∈ ( 1

2 ,∞
)
, there exists a

solution to Eq. (1.1) with b = 0 and the even, single-lobe profile ψ0, which is obtained from
a constrained minimizer of the following variational problem:

inf
u∈H

α
2
per,even

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π

u4dx = 1

}
. (1.15)

The spectrum ofL in L2(T) has exactly one simple negative eigenvalue and if 1 ∈ Range(L),
a simple zero eigenvalue. With the transformation,

ψ0(x) = a0 + φ0(x), a0 := 1

2π

∫ π

−π

ψ0(x)dx, ω0 := c0 − 6a20 , (1.16)
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assuming ω0 ∈ (− 1,∞), there exists a C1 mapping (ω, a) �→ φ(·, ω, a) ∈ Hα
per,even in a

local neighborhood of (ω0, a0) such that φ(·, ω0, a0) = φ0 and the mean value of φ is zero.
The periodic wave ψ0 is spectrally stable if

∂

∂ω
‖φ‖2L2 ≥ 0 (1.17)

and is spectrally unstable with exactly one real, positive eigenvalue of ∂xL in L2(T) if

∂

∂ω
‖φ‖2L2 < 0. (1.18)

Remark 1.8 We derive the criterion for 1 /∈ Range(L), in which case L has the double zero
eigenvalue and the even periodic wave of Theorem 1.7 undertakes the fold bifurcation. Two
solutions of Eq. (1.1) with b = 0 coexist for the same value of c near the fold bifurcation.
We show numerically that the fold bifurcation is generic for every α ∈ ( 1

2 , α0
)
, where

α0 := log 8 − log 5

log 2
≈ 0.6781.

If α ∈ ( 1
2 , α0

)
, two solutions with the even, single-lobe profile exist for the same value of

c ∈ (c0,
1
2 ) with c0 ∈ (

0, 1
2

)
beyond the admissible range of values of c in Theorem 1.7.

Remark 1.9 Based on numerical evidences, we conjecture that ω ∈ (− 1,∞) is always
satisfied for the even periodic wave in Theorem 1.7.

Remark 1.10 Similarly to Remark 1.6, the smooth continuation of the solution ψ(·, ω, a) =
a +φ(·, ω, a) with φ(·, ω, a) ∈ Hα

per,even is obtained from the Euler–Lagrange equation and
the solutionψ(·, ω, a)may not coincidewith the globalminimizer of (1.15) for c(ω, a) �= c0.
Nevertheless, under the assumption ω0 ∈ (− 1,∞), the spectral stability conclusions of
Theorem 1.7 apply to every global minimizer of the variational problem (1.15) for every
c0 ∈ ( 12 ,∞).

The paper is organized as follows. The odd periodic wave of Theorem 1.3 is characterized
in Sect. 2. Examples of the odd periodic waves are given in Sect. 3 with Stokes expansions,
exact elliptic solutions in the local case α = 2, and numerical approximations for α = 1. The
even periodic wave of Theorem 1.7 is characterized in Sect. 4. Similar examples of the even
periodic waves are given in Sect. 5. Section 6 discusses an open problem to characterize all
possible periodic waves with the single-lobe profile among solutions to Eq. (1.1) with b �= 0.

2 Odd Periodic Waves

Here we consider the odd periodic waves and provide the proof of Theorem 1.3. First, we
obtain the variational characterization of the odd periodic waves. Next, we consider a smooth
continuation of the odd periodic waves with respect to the speed parameter c. Finally, we
obtain the spectral stability conclusions.

2.1 Variational Characterization

If ψ ∈ Hα
per is a solution to Eq. (1.1) with b = 1

π

∫ π

−π
ψ3dx , then ψ satisfies the zero-mean

constraint and the boundary-value problem:

Dαψ + cψ = 2	0ψ
3, (2.1)
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where 	0 f := f − 1
2π

∫ π

−π
f (x)dx is the projection operator reducing the mean value of

2π-periodic functions to zero.
Since we use variational methods, we consider weak solutions of the boundary-value

problem (2.1) in H
α
2
per. By the same bootstrapping argument as in Proposition 1 in [21] or

Proposition 2.4 in [32], if ψ ∈ H
α
2
per is a weak solution of the boundary-value problem (2.1),

then ψ ∈ H∞
per and, in particular, it is a strong solution to the boundary-value problem (2.1)

in Hα
per.

The following theoremand its corollary give the construction and properties of the periodic
waves in a subspace of odd functions which satisfy the boundary-value problem (2.1).

Theorem 2.1 Fix α > 1
2 . For every c > −1, there exists the ground state (minimizer)

χ ∈ H
α
2
per,odd of the following constrained minimization problem:

qc,odd := inf
u∈H

α
2
per,odd

{
Bc(u) :

∫ π

−π

u4dx = 1

}
, (2.2)

where

Bc(u) := 1

2

∫ π

−π

[
(D

α
2 u)2 + cu2

]
dx . (2.3)

If α ≤ 2, the ground state has the single-lobe profile, which is even with respect to the points
at x = ±π/2.

Proof It follows that Bc is a smooth functional bounded on H
α
2
per,odd. Moreover, Bc is pro-

portional to the quadratic form of the operator c + Dα with the spectrum in L2
odd given by

{c + mα, m ∈ N}. By Friedrichs’s inequality, we have

Bc(u) ≥ 1

2
(c + 1)‖u‖2L2 , u ∈ H

α
2
per,odd, (2.4)

and by Gårding’s inequality, for every c > −1 there exists C > 0 such that

Bc(u) ≥ C‖u‖2
H

α
2
per

, u ∈ H
α
2
per,odd.

Hence Bc is equivalent to the squared norm in H
α
2
per,odd so that qc,odd ≥ 0.

Let {un}n∈N be a minimizing sequence for the constrained minimization problem (2.2),
that is, a sequence satisfying

Bc(un) → qc,odd as n → ∞.

Since {un}n∈N is bounded in H
α
2
per,odd, there existsχ ∈ H

α
2
per,odd such that, up to a subsequence,

un⇀χ in H
α
2
per,odd, as n → ∞.

For every α > 1
2 , the energy space H

α
2
per,odd is compactly embedded in L4

odd (see, e.g.,

Theorem 4.2 in [3]). Thus, there is a positive constant C such that for every χ ∈ H
α
2
per,odd,

‖χ‖L4 ≤ C‖χ‖
H

α
2
, (2.5)
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and

un → χ in L4
odd, as n → ∞.

Using the estimate
∣∣∣∣
∫ π

−π

(u4n − χ4)dx

∣∣∣∣ ≤
∫ π

−π

|u4n − χ4|dx
≤ (‖χ‖3L4 + ‖χ‖2L4‖un‖L4 + ‖χ‖L4‖un‖2L4 + ‖un‖3L4

) ‖un − χ‖L4 ,

it follows that χ satisfies the constraint:
∫ π

−π
χ4dx = 1. In view of (2.5), this implies that

qc,odd > 0.
Thanks to the weak lower semi-continuity of Bc, we have

Bc(χ) ≤ lim inf
n→∞ B(un) = qc,odd.

Since χ satisfies the constraint, we also have Bc(χ) ≥ qc,odd, hence Bc(χ) = qc,odd and

χ ∈ H
α
2
per,odd is the ground state (global minimizer) of the variational problem (2.2).

If α ∈ (0, 2], the symmetric rearrangements of u do not increase Bc(u) while leaving the
constraint on the L4-norm invariant due to the fractional Polya–Szegö inequality, see Lemma

A.1 in [15]. As a result, the minimizer χ ∈ H
α
2
per,odd of Bc(u) must decrease symmetrically

away from the maximum point. Since χ(x) = 0 at x = 0 and x = ±π , the symmetry points
of χ are located at x = ±π/2, so that the single-lobe profile is even with respect to the points
at x = ±π/2. ��
Corollary 2.2 Let χ be the ground state of Theorem 2.1. There exists C > 0 such that
ψ(x) = Cχ(x) satisfies Eq. (1.1) with b = 0.

Proof By Lagrange’s Multiplier Theorem, the constrained minimizer χ ∈ H
α
2
per,odd satisfies

the stationary equation

Dαχ + cχ = μχ3, (2.6)

where μ = 2Bc(χ) is the Lagrange multiplier found from the constraint
∫ π

−π
χ4dx = 1.

Since Bc(χ) > 0, the scaling transformation ψ = Cχ with C := √Bc(χ) maps Eq. (2.6) to
the form (1.1) with b = 0. ��
Lemma 2.3 Let χ be the ground state of Theorem 2.1 and qc,odd = Bc(χ). Then qc,odd is
continuous in c for c > −1 and qc,odd → 0 as c → −1.

Proof The proof of continuity of qc,odd follows the proof of Lemma 2.3 in [32] verbatim. In
order to show that qc,odd → 0 as c → −1, we consider the following function

u(x) = A sin(x),

which satisfies the constraint in (2.2) for A := ( 4
3π

)1/4
. Substituting u into Bc(u) yields

Bc(u) = π

2
A2(1 + c) =

√
π√
3

(1 + c).

Since

0 ≤ qc,odd ≤ Bc(u),

it follows that qc,odd → 0 as c → −1. ��
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2.2 Smooth Continuation

Let ψ ∈ Hα
per,odd be a solution to the boundary-value problem (2.1) for some c ∈ (− 1,∞)

obtained by Theorem 2.1 and Corollary 2.2. LetL be the linearized operator around the wave
ψ given by (1.7) and

L : Hα
per ⊂ L2(T) → L2(T). (2.7)

In what follows, we determine the multiplicity of the zero eigenvalue of L denoted as z(L)

and the number of negative eigenvalues of L with the account of their multiplicities denoted
as n(L). It follows from Eq. (1.1) with b = 0 that

L1 = c − 6ψ2 (2.8)

and

Lψ = −4ψ3. (2.9)

By the translational symmetry, we always have L∂xψ = 0.
Since ψ is the single-lobe profile of the periodic wave in the sense of Definition 1.1

and since ψ is even with respect to the points at x = ±π/2, then we can place the unique
maximum of ψ at x = π/2 and adopt several results of [24] with the same proof after
translation x �→ x − π/2.

Proposition 2.4 [24] Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theorem

2.1 and Corollary 2.2. An eigenfunction of L defined by (1.7) and (2.7) corresponding to
the n-th eigenvalue of L for n = 1, 2, 3 changes its sign at most 2(n − 1) times over T. An
eigenfunction of L|L2

even
for the n-th eigenvalue of L|L2

even
changes its sign at most 2(n − 1)

times over T.

Proposition 2.5 [24] Assume α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theo-

rem 2.1 and Corollary 2.2. If {1, ψ,ψ2} ∈ Range(L), then Ker(L) = span(∂xψ).

Proposition 2.6 [24] Assume α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theo-

rem 2.1 and Corollary 2.2. Then, ∂xψ ∈ Ker(L) corresponds to the lowest eigenvalue of L
in the space of odd functions with respect to x = π/2.

Remark 2.7 Compared to [24], the potential of L is ψ2 ∈ Hα
per rather than ψ ∈ Hα

per, where

we recall that α > 1
2 . This implies that the spatial period of the potential of L is π rather than

2π . Nevertheless, we are interested in the properties of L on L2(T) rather than on L2( 12T).

By an elementary application of the implicit function theorem (similarly to Lemma 3.8 in
[32]), we can also obtain the following result.

Lemma 2.8 Assume α ∈ ( 12 , 2] and ψ0 ∈ Hα
per,odd be a solution obtained in Theorem 2.1

and Corollary 2.2 for c = c0. AssumeKer(L|L2
odd

) is trivial. Then, there exists a C1 mapping
in an open subset of c0 denoted by I ⊂ R:

I � c �→ ψ(·, c) ∈ Hα
per,odd (2.10)

such that ψ(·, c) = ψ0 and L∂cψ(·, c0) = −ψ0.

123
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Proof Let ϒ : (− 1,∞)× Hα
per,odd → L2

odd(T) be defined by ϒ(c, f ) := Dα f + c f −2 f 3.
By hypothesis of the lemma, we haveϒ(c0, ψ0) = 0. Moreover,ϒ is smooth and its Fréchet
derivative with respect to f evaluated at (c0, ψ0) is given by L computed at ψ0. Since
Ker(L|L2

odd
) is empty by the assumption, we conclude that L is one-to-one. It is also onto

since its spectrum consists of nonzero isolated eigenvalues with finite algebraic multiplicities
because Hα

per,odd is compactly embedded in L2
odd(T) ifα > 1/2 and becauseL is a self-adjoint

operator. Hence, L has a bounded inverse. Thus, since ϒ and its derivative with respect to f
are smooth maps on their domains, the result follows from the implicit function theorem. ��

ByusingPropositions 2.4–2.6, andLemma2.8,we computen(L) and z(L) in the following
lemma.

Lemma 2.9 Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theorem 2.1 and

Corollary 2.2. Then, n(L) = 2 and

z(L) =
{
1, if 1 ∈ Range(L),

2, if 1 /∈ Range(L).

Proof Since ψ ∈ Hα
per,odd is a minimizer of the constrained variational problem (2.2) with

only one constraint, we have n(L|L2
odd

) ≤ 1. On the other hand, we have

〈Lψ,ψ〉L2 = −4‖ψ‖4L4 < 0,

with odd ψ , hence n(L|L2
odd

) ≥ 1, so that n(L|L2
odd

) = 1.
Since ∂xψ ∈ Ker(L) and ∂xψ is evenwith two nodes onT, then by Proposition 2.4, 0 is not

the first eigenvalue of L|L2
even

, so that n(L|L2
even

) ≥ 1. However, another negative eigenvalue
ofL|L2

even
is impossible since the eigenfunction for the second eigenvalue ofL|L2

even
must have

two nodes by Proposition 2.4 and the nodes are located at the symmetry points x = ±π/2,
hence this eigenfunction is not orthogonal to ∂xψ ∈ Ker(L). Therefore, 0 is the second
eigenvalue of L|L2

even
, which yields n(L|L2

even
) = 1 and

n(L) = n(L|L2
odd

) + n(L|L2
even

) = 2.

It remains to consider z(L) ≥ 1. For illustration purposes, we give the first five eigen-
functions of the operator L in L2(T) for α = 2 on Fig. 1. By the symmetry of ψ and ψ2, the
operator L in (1.7) and (2.7) has a π -periodic potential, which is even with respect to both
x = 0 and x = π/2. The negative eigenvalue of L in L2

even, which is the lowest eigenvalue of
L in L2(T), corresponds to the sign-definite π -periodic function, which is even with respect
to both x = 0 and x = π/2. The negative eigenvalue in L2

odd, which is the second eigenvalue
of L in L2(T), corresponds to the eigenfunction with two nodes on T, which is even with
respect to x = π/2. The eigenfunction ∂xψ for the zero eigenvalue in L2

even, which is the
third eigenvalue of L in L2(T), has two nodes and is odd with respect to x = π/2. By
Proposition 2.6, the zero eigenvalue is the lowest eigenvalue for the eigenfunctions that are
odd with respect to x = π/2.

Finally, we consider the eigenfunctions with four nodes onT since 0 is the third eigenvalue
of L. These eigenfunctions have the same parity with respect to x = 0 and x = π/2, hence
odd functions in L2

odd are also odd with respect to x = π/2. Since the zero eigenvalue is
the lowest eigenvalue for the eigenfunctions that are odd with respect to x = π/2, the odd
eigenfunction of L in L2

odd with four nodes corresponds to the positive eigenvalue of L.
Therefore, z(L|L2

odd
) = 0 and by Lemma 2.8, the mapping c �→ ψ(·; c) is C1 in c with

L∂cψ = −ψ , so that ψ ∈ Range(L).
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Fig. 1 Normalized eigenfunctions of L on T for α = 2 computed from the exact expressions in Sect. 3.2

Assume that the even eigenfunction of L in L2
even with four nodes (call it f ) belongs to

Ker(L), hence Ker(L) = span(∂xψ, f ). Either 〈1, f 〉L2 = 0 or 〈1, f 〉L2 �= 0. If 〈1, f 〉L2 =
0, then 1 ∈ Range(L). It follows from (2.8) that if 1 ∈ Range(L), then ψ2 ∈ Range(L).
Therefore, {1, ψ,ψ2} ∈ Range(L) and by Proposition 2.5, Ker(L) = span(∂xψ), so that
the existence of f ∈ Ker(L) leads to a contradiction. Hence, z(L) = 1 if 1 ∈ Range(L).
If 〈1, f 〉L2 �= 0, then 1 /∈ Range(L) because Range(L) is orthogonal to Ker(L). Hence,
z(L) = 2 if and only if 1 /∈ Range(L). ��
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Next, we introduce the subspace of L2 with zero mean and denote it by X0:

X0 :=
{
f ∈ L2(T) :

∫ π

−π

f (x)dx = 0
}
. (2.11)

Denote 	0L	0 by L|X0 . By an explicit computation, it follows that if f ∈ Hα
per ∩ X0, then

L|X0 f := L f + 3

π
〈 f , ψ2〉. (2.12)

The following result is similar to Lemma 3.5 in [32].

Lemma 2.10 Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theorem 2.1 and

Corollary 2.2. If there exists a nonzero f ∈ Ker(L|X0) such that 〈 f , ∂xψ〉 = 0, then

z(L) = 1, and 〈 f , ψ2〉 �= 0. (2.13)

Proof Since f ∈ Ker(L|X0), then 〈1, f 〉 = 0 and f satisfies

L f = − 3

π
〈 f , ψ2〉. (2.14)

Either 〈 f , ψ2〉 = 0 or 〈 f , ψ2〉 �= 0.
If 〈 f , ψ2〉 = 0, then f ∈ Ker(L) so that z(L) = 2 and 1 /∈ Range(L) by Lemma 2.9.

However, 1 ⊥ span(∂xψ, f ) = Ker(L) implies 1 ∈ Range(L), which is a contradiction.
If 〈 f , ψ2〉 �= 0, then it follows from (2.14) that 1 ∈ Range(L) and hence z(L) = 1 by

Lemma 2.9. This yields (2.13). ��

Remark 2.11 Assuming 1 ∈ Range(L), let us define σ0 := 〈L−11, 1〉. Then, z(L|X0) = 2 if
and only if σ0 = 0. On the other hand, z(L) = 2 if and only if σ0 is unbounded.

2.3 Spectral Stability

Next, we consider if the ground state of the variational problem (2.2) with a single constraint
is a local minimizer of the following variational problem with two constraints:

rc := inf
u∈H

α
2
per

{
Bc(u) :

∫ π

−π

u4dx = 1,
∫ π

−π

udx = 0

}
. (2.15)

It is clear that rc ≤ qc,odd and therefore, minimizers of (2.2) could be saddle points of
(2.15). The following lemma provides the relevant criterion. Its proof relies on the following
proposition formulated as Theorem 4.1 in [33].

Proposition 2.12 Let L be a self-adjoint operator in a Hilbert space H with the inner product
〈·, ·〉 such that L has n(L) negative eigenvalues (counting their multiplicities) and z(L)

multiplicity of the zero eigenvalue bounded away from the positive spectrum of L. Let {v j }Nj=1
be a linearly independent set in H and define

Hc := { f ∈ H : {〈 f , v j 〉 = 0}Nj=1}.
Let A(λ) be the matrix-valued function defined by its elements

Ai j (λ) := 〈(L − λI )−1vi , v j 〉, 1 ≤ i, j ≤ N , λ /∈ σ(L).
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Then,
{
n(L

∣∣
Hc

) = n(L) − n0 − z0,
z(L

∣∣
Hc

) = z(L) + z0 − z∞,
(2.16)

where n0, z0, and p0 are the numbers of negative, zero, and positive eigenvalues of
limλ↑0 A(λ) (counting their multiplicities) and z∞ = N − n0 − z0 − p0 is the number
of eigenvalues of A(λ) diverging in the limit λ ↑ 0.

Lemma 2.13 Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theorem 2.1 and

Corollary 2.2. If 1 ∈ Range(L), then

n(L|{1,ψ3}⊥) =
{
0, σ0 ≤ 0,
1, σ0 > 0,

z(L|{1,ψ3}⊥) =
{
1, σ0 �= 0,
2, σ0 = 0,

(2.17)

where σ0 := 〈L−11, 1〉. If 1 /∈ Range(L), then

n(L|{1,ψ3}⊥) = 1, z(L|{1,ψ3}⊥) = 1. (2.18)

Proof By using the result of Proposition 2.12, we construct the following symmetric 2-by-2
matrix related to the two constraints in (2.15):

P(λ) :=
[ 〈(L − λI )−1ψ3, ψ3〉 〈(L − λI )−1ψ3, 1〉

〈(L − λI )−11, ψ3〉 〈(L − λI )−11, 1〉
]

.

If 1 ∈ Range(L), then

〈L−11,1〉=σ0, 〈L−11,ψ3〉=〈L−1ψ3,1〉=0, 〈L−1ψ3,ψ3〉=s − 1

4

∫ π

−π

ψ4dx, (2.19)

thanks to Eq. (2.9). By Proposition 2.12, we have the following identities:
{
n(L

∣∣{1,ψ3}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ3}⊥) = z(L) + z0,

(2.20)

where n0 and z0 are the numbers of negative and zero eigenvalues of P(0). Since n(L) = 2
and z(L) = 1 by Lemma 2.9, the count (2.20) yields (2.17) due to (2.19).

If 1 /∈ Range(L), then z(L) = 2 but z(L|X0) = 1 by Lemma 2.10. By Proposition 2.12,
the count (2.20) must be replaced by

{
n(L

∣∣{1,ψ3}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ3}⊥) = z(L) + z0 − z∞,

(2.21)

where z∞ = 1, z0 = 0, and n0 = 1. The count (2.21) yields (2.18). ��

It follows by Lemma 2.13 that the ground state of the variational problem (2.2) is a local
minimizer of the variational problem (2.15) if σ0 ≤ 0, which is only degenerate by the
translational symmetry if σ0 �= 0, whereas it is the saddle point of the variational problem
(2.15) if σ0 > 0 or if 1 /∈ Range(L), in which case σ0 is unbounded.

Equipped with the variational characterization of Lemma 2.13, we can clarify the spectral
stability of the odd periodic waves. The following theorem gives the relevant result.
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Theorem 2.14 Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,odd be a solution obtained in Theorem 2.1 and

Corollary 2.2. If 1 ∈ Range(L), then the periodic wave is spectrally stable if

σ0 ≤ 0,
d

dc
‖ψ‖2L2 ≥ 0, (2.22)

and is spectrally unstable with exactly one real positive eigenvalue of ∂xL in L2(T) if

either σ0
d

dc
‖ψ‖2L2 > 0 or σ0 = 0,

d

dc
‖ψ‖2L2 < 0, or σ0 > 0,

d

dc
‖ψ‖2L2 = 0, (2.23)

where σ0 := 〈L−11, 1〉. If 1 /∈ Range(L), then the periodic wave is spectrally unstable with
exactly one real positive eigenvalue of ∂xL in L2(T) if

d

dc
‖ψ‖2L2 ≥ 0. (2.24)

Proof It is well-known [22] that the periodic wave ψ is spectrally stable if it is a constrained
minimizer of energy (1.3) under fixedmomentum (1.4) andmass (1.5). SinceL is the Hessian
operator for G(u) in (1.7), the spectral stability holds if

L
∣∣{1,ψ}⊥ ≥ 0. (2.25)

On the other hand, the periodic wave ψ is spectrally unstable with exactly one real positive

eigenvalue if n
(
L

∣∣{1,ψ}⊥
)

= 1, whereas the case n
(
L

∣∣{1,ψ}⊥
)

= 2 is inconclusive (see

[34]).
Similarly to the proof of Lemma 2.13, we construct the following symmetric 2-by-2matrix

related to the two constraints in (2.25):

D(λ) :=
[ 〈(L − λI )−1ψ,ψ〉 〈(L − λI )−1ψ, 1〉

〈(L − λI )−11, ψ〉 〈(L − λI )−11, 1〉
]

.

If 1 ∈ Range(L), then

〈L−11, 1〉 = σ0, 〈L−11, ψ〉 = 〈L−1ψ, 1〉 = 0, 〈L−1ψ,ψ〉 = −1

2

d

dc
‖ψ‖2L2 , (2.26)

wherewe have usedL∂cψ = −ψ fromLemma 2.8, which can be applied since z(L|L2
odd

) = 0
follows from the proof of Lemma 2.9. By Proposition 2.12, we have the following identities:

{
n(L

∣∣{1,ψ}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ}⊥) = z(L) + z0,

(2.27)

where n0 and z0 are the numbers of negative and zero eigenvalues of D(0). Since n(L) = 2
and z(L) = 1 by Lemma 2.9, the count (2.27) implies n(L

∣∣{1,ψ}⊥) = 0 due to (2.26) if the

conditions (2.22) are satisfied and n(L
∣∣{1,ψ}⊥) = 1 if the condition (2.23) is satisfied.

If 1 /∈ Range(L), then z(L) = 2 but z(L|X0) = 1 by Lemma 2.10. By Proposition 2.12,
the count (2.27) must be replaced by

{
n(L

∣∣{1,ψ}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ}⊥) = z(L) + z0 − z∞,

(2.28)

where z∞ = 1 and n0+z0 = 1 if the condition (2.24) is satisfied. In this case, n(L
∣∣{1,ψ}⊥) = 1

and the periodic wave is spectrally unstable. ��
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Remark 2.15 If 1 ∈ Range(L), the case σ0 > 0 and d
dc‖ψ‖2

L2 < 0 is inconclusive because
n(L

∣∣{1,ψ}⊥) = 2. In this case, oneneeds tofind if the spectral stability problemhas eigenvalues
λ ∈ iR with so-called negative Krein signature, see [34] for further details. The same is true
if 1 /∈ Range(L) and d

dc‖ψ‖2
L2 < 0.

3 Examples of Odd Periodic Waves

Here we present three examples of the odd periodic waves obtained in Theorem 2.1 and
Corollary 2.2. Small-amplitude waves are studied with the explicit analytical computations
of the perturbation expansions. Periodic waves in the local case α = 2 are handled by explicit
analytical computations of elliptic functions. Periodic waves for α = 1 are considered by
means of numerical approximations.

3.1 Stokes Expansion of Small-AmplitudeWaves

Stokes expansions of small-amplitude periodic waves near the bifurcation point c = −1 are
rather standard in getting precise results on the existence and stability of periodic waves [25,
29,32]. The following proposition describes the properties of the small-amplitude periodic
waves.

Proposition 3.1 For each α ∈ ( 1
2 , 2

]
, there exists c0 ∈ (− 1,∞) such that the odd periodic

wave exists for c ∈ (− 1, c0) with n(L) = 2, z(L) = 1 and is spectrally stable.

Proof We solve Eq. (1.1) with b = 0 in the space of odd functions by using Stokes expansions
in terms of small amplitude A:

ψ(x) = Aψ1(x) + A3ψ3(x) + O(A5) (3.1)

and

c = −1 + A2c2 + O(A4). (3.2)

We obtain recursively: ψ1(x) = sin(x),

ψ3(x) = 1

2(1 − 3α)
sin(3x),

and c2 = 3
2 uniformly in α.

Since L = Dα − 1 + O(A2), then 1 ∈ Range(L) for small A, so that n(L) = 2 and
z(L) = 1 for any α ∈ ( 1

2 , 2
]
by Lemma 2.9.

Furthermore, L−11 = −1+O(A2), so that σ0 = 〈L−11, 1〉 = −2π +O(A2) < 0, which
implies n(L|{1,ψ3}⊥) = 0 and z(L|{1,ψ3}⊥) = 1 by Lemma 2.13. Hence, the odd periodic
wave for small amplitude A represents a local minimizer of the variational problem (2.15)
with two constraints for any α ∈ ( 1

2 , 2
]
.

Finally, we obtain ‖ψ‖2
L2 = π A2 + O(A4) so that

d

dc
‖ψ‖2L2 = 2π

3

[
1 + O(A2)

]
> 0.

By Theorem 2.14, the Stokes wave (3.1) for small A is spectrally stable since the criterion
(2.22) is satisfied. ��
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Remark 3.2 For c near −1, the small-amplitude wave of Proposition 3.1 coincides with the
odd periodic wave obtained in Theorem 2.1 and Corollary 2.2. This follows from local

uniqueness of the small-amplitude wave in the neighborhood of (0,−1) in H
α
2
per,odd × R �

(ψ, c) and the result of Lemma 2.3 which guarantees that ψ → 0 in H
α
2
per,odd as c → −1.

3.2 Local Case˛ = 2

In the case of the modified KdV equation (α = 2), Eq. (1.1) with b = 0 can be solved in the
space of odd functions by using the Jacobian cnoidal function [7,17].

Let us recall the normalized second-order equation

ψ ′′
0 (z) + (1 − 2k2)ψ0(z) + 2ψ0(z)

3 = 0, (3.3)

which admits the periodic solution ψ0(z) = kcn(z; k) with the period 4K (k), where K (k)
is the complete elliptic integral of the first kind and k ∈ (0, 1). The periodic solution also
satisfies the first-order invariant given by

(ψ ′
0)

2 + (1 − 2k2)ψ2
0 + ψ4

0 = k2(1 − k2). (3.4)

By adopting a scaling transformation and a translation of the even function cn(z; k) by a
quarter-period, we obtain the exact solution for the odd periodic wave in the form:

ψ(x) = 2

π
kK (k)cn

[
2

π
K (k)x − K (k); k

]
= 2

π
k
√
1 − k2K (k)

sn
[ 2

π
K (k)x; k]

dn
[ 2

π
K (k)x; k] (3.5)

with

c = 4

π2 K (k)2(2k2 − 1). (3.6)

We recall some properties of complete elliptic integrals K (k) and E(k) of the first and second
kinds, respectively:

(a) E(0) = K (0) = π

2
,

(b) E(k) → 1, K (k) → ∞, as k → 1,

and

(c)
d

dk
E(k) = E(k) − K (k)

k
< 0,

d

dk
K (k) = E(k)

k(1 − k2)
− K (k)

k
> 0.

It follows from (a) and (c) that

(1 − k2)K (k) < E(k) < K (k), k ∈ (0, 1). (3.7)

The following proposition summarizes properties of the odd periodic waves for α = 2.
These properties were also studied in [7,17].

Proposition 3.3 Fix α = 2. The odd periodic wave (3.5) exists for every c ∈ (− 1,∞)

with n(L) = 2 and z(L) = 1. There exists c∗ ∈ (− 1,∞) such that the odd periodic wave is
spectrally stable for c ∈ (− 1, c∗] and is spectrally unstable with one real positive eigenvalue
for c ∈ (c∗,∞).

123



Journal of Dynamics and Differential Equations (2022) 34:1601–1640 1617

Proof The mapping (0, 1) � k �→ c(k) ∈ (− 1,∞) is one-to-one and onto. This follows
from

π2

8

dc

dk
= K (k)

k(1 − k2)

[
(1 − k2)[K (k) − E(k)] + k2E(k)

]
> 0,

where property (3.7) has been used.Hence, the odd periodicwave parameterized by k ∈ (0, 1)
in (3.5) and (3.6) exists for every c ∈ (− 1,∞).

The first five eigenvalues and eigenfunctions of the normalized linearized operator

L0 = −∂2z + 2k2 − 1 − 6k2cn(z; k)2 (3.8)

are known in space L2(− 2K (k), 2K (k)) in the explicit form [17]. The two negative eigen-
values and a simple zero eigenvalue with the corresponding eigenfunctions are given by

λ0 = 1 − 2k2 − 2
√
1 − k2 + k4, ϕ0(z) = 1 + k2 + √

1 − k2 + k4 − 3k2sn(z; k)2,
λ1 = −3k2, ϕ1(z) = cn(z; k)dn(z; k),
λ2 = 0, ϕ2(z) = sn(z; k)dn(z; k).

The next two positive eigenvalues with the corresponding eigenfunctions are given by

λ3 = 3(1 − k2), ϕ3(z) = sn(z; k)cn(z; k),
λ4 = 1 − 2k2 + 2

√
1 − k2 + k4, ϕ4(z) = 1 + k2 − √

1 − k2 + k4 − 3k2sn(z; k)2.
Eigenvalues and eigenvectors of the linearized operator L are obtained after the same scaling
and translational transformation as in (3.5). In agreementwith Lemma 2.9, we have n(L) = 2,
z(L) = 1, and 1 ∈ Range(L) for every c ∈ (− 1,∞). Moreover, we compute

1

2
√
1 − k2 + k4

L0

[
λ4ϕ0 − λ0ϕ4

λ0λ4

]
= 1 and

1

2
√
1 − k2 + k4

[ϕ0 − ϕ4] = 1,

from which it follows that

〈L−1
0 1, 1〉 = λ4〈ϕ0, 1〉 − λ0〈ϕ4, 1〉

2
√
1 − k2 + k4λ0λ4

= −4 [2E(k) − K (k)] .

Since

d

dk
kE(k) = 2E(k) − K (k) and

d2

dk2
kE(k) = (1 − k2)[E(k) − K (k)] − k2E(k)

k(1 − k2)
< 0,

in addition to (b), there exists exactly one value of k, labeled as k∗ ≈ 0.909 in [17], such
that 〈L−1

0 1, 1〉 < 0 for k ∈ (0, k∗) and 〈L−1
0 1, 1〉 > 0 for k ∈ (k∗, 1). Up to a positive

scaling factor, 〈L−1
0 1, 1〉 gives the value of σ0 = 〈L−11, 1〉. By Lemma 2.13, this implies

that n(L|{1,ψ3}⊥) = 0 for k ∈ (0, k∗] and n(L|{1,ψ3}⊥) = 1 for k ∈ (k∗, 1). Therefore, there
exists a bifurcation at k = k∗ such that the odd periodic wave (3.5) is a local minimizer of
the variational problem (2.15) with two constraints for k ∈ (0, k∗) and a saddle point for
k ∈ (k∗, 1). The value of k∗ defines uniquely a value c∗ ≈ 1.425 by (3.6).

Finally, we obtain

‖ψ‖2L2 = 8

π
K (k)

[
E(k) − (1 − k2)K (k)

]
> 0

and

π

9

d

dk
‖ψ‖2L2 = 1

k(1 − k2)

[
(1 − k2)K (k)[K (k) − E(k)]+E(k)[E(k)−(1−k2)K (k)]] >0,
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for every k ∈ (0, 1), where the property (3.7) has been used. By Theorem 2.14 due to the
stability and instability criteria (2.22) and (2.23), the odd periodic wave (3.5) with the speed
(3.6) is spectrally stable for c ∈ (− 1, c∗] and is spectrally unstable with exactly one real
positive eigenvalue if c ∈ (c∗,∞). ��
Remark 3.4 The cnoidal wave of Proposition 3.3 coincides with the odd periodic wave
obtained in Theorem 2.1 and Corollary 2.2 for α = 2. This follows from uniqueness of
smooth, odd, and 2π-periodic solutions of the differential equation

− ψ ′′ + cψ = 2ψ3, (3.9)

with c ∈ (− 1,∞),whereEq. (3.9) is theEuler–Lagrange equation for the variational problem
in Theorem 2.1 and Corollary 2.2.

The claim in Remark 3.4 is based on the following proposition. Since the previous results
in [14,19] are not sufficient for the proof of this proposition, we provide a simple proof based
on explicit computations.

Proposition 3.5 For every c ∈ R, there exists a family of L-periodic, sign-indefinite solutions
of Eq. (3.9), which can be parameterized by the value I of the first-order invariant

I = (ψ ′)2 − cψ2 + ψ4. (3.10)

The mapping I �→ L is monotonically decreasing for every c ∈ R with L ∈ (0, 2π |c|−1/2)

for c < 0 and L ∈ (0,∞) for c ≥ 0. Consequently, the odd, 2π-periodic solution of Eq.
(3.9) for c ∈ (− 1,∞) is unique.

Proof Elementary phase-plane analysis (see [14,19]) shows the existence of the L-periodic,
sign-indefinite solutions of Eq. (3.9) integrable with the first-order invariant (3.10). By using
the scaling transformation, the L-periodic sign-indefinite solution is obtained from the peri-
odic solution ψ0(z) = k cn(z; k) of the normalized equations (3.3) and (3.4) in the form:

ψ(x) = k α cn(αx; k), α :=
(

c

2k2 − 1

)1/2

, (3.11)

where k ∈ (0, 1√
2
) if c < 0 and k ∈ ( 1√

2
, 1) if c > 0. For c = 0, the choice k = 1√

2
is unique

but parameter α is arbitrary.
It follows from (3.11) that period L and parameter I are expressed uniquely by

L = 4α−1K (k), I = α4k2(1 − k2), (3.12)

where α depends on k if c �= 0. Computing derivatives in k yields

dI
dk

= kc2

(1 − 2k2)3
,

dL

dk
= − 4√

c(2k2 − 1)

[
(1 − 2k2)

d

dk
K (k) − 2kK (k)

]
.

If c > 0 and k ∈ ( 1√
2
, 1), then dI

dk < 0 and dL
dk > 0 so that the mapping I �→ L is

monotonically decreasing. As k → 1√
2
, α → ∞ and L → 0. As k → 1, K (k) → ∞ and

L → ∞.
If c < 0 and k ∈ (0, 1√

2
), then dI

dk > 0 and dL
dk < 0 due to (3.7) and

dL

dk
= 4√

c(2k2 − 1)k(1 − k2)

[
(1 − k2)(E(k) − K (k)) − k2E(k)

]
< 0,
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so that the mapping I �→ L is also monotonically decreasing. As k → 1√
2
, α → ∞ and

L → 0. As k → 0, K (k) → π
2 and L → 2π |c|−1/2.

If c = 0 and k = 1√
2
, then the parameter α ∈ R is arbitrary and it follows from (3.11) that

I = C/L4 for some C > 0 so that the mapping I �→ L is also monotonically decreasing
and L ∈ (0,∞).

Since the period function L = L(I) is monotonically decreasing in I, there exists exactly
one odd, 2π-periodic solution for every c ∈ (− 1,∞) and by uniqueness of solutions to
differential equations, this unique solution is given by the cnoidal wave (3.5) and (3.6). ��

3.3 Numerical Approximations

Here we numerically compute solutions of Eq. (1.1) using Newton’s method in the Fourier
space, similar to our previous work [32]. For better performance, the odd periodic wave with
profile ψ in Theorem 2.1 is translated by a quarter period π/2 to an even function of x . The
starting iteration is generated from the Stokes expansion (3.1) after the translation and this
solution is uniquely continued in c for all c ∈ (− 1,∞). This family of solutions correspond
to b = 0 in Eq. (1.1).

Additionally, we add a perturbation to the profile ψ to preserve the even symmetry but to
break the odd symmetry after the translation. Numerical iterations converge back to the same
family of solutions with b = 0 for c < c∗, where c∗ ∈ (− 1,∞) is the bifurcation point for
which a nontrivial solution in Lemma 2.10 exists. The value of c∗ exists for all α ∈ ( 1

2 , 2
]
.

When c > c∗, numerical iterations converge to a new family of solutions to Eq. (1.1) with
b �= 0, which is then continued with respect to c. Convergence of numerical iterations is
measured by the L2 norm of the residual equation (1.1), with the tolerance equals to 10−10.

Figure 2 presents the periodic wave solutions to Eq. (1.1) for α = 2. The top left panel
shows the profiles of ψ of the family with b = 0 for three different values of c: near the
Stokes wave limit (blue curve), near the bifurcation point c∗ (black curve) and when c is away
from the bifurcation point c∗ (red curve). The top right panel shows the profiles of ψ of the
bifurcating family with b �= 0 near the bifurcation point c∗ (black curve) and increasingly
away from the bifurcation point (blue and red curves). The vertical lines show the symmetry
points at x = ±π/2. The family with b = 0 has odd symmetry with respect to these points,
whereas the family with b �= 0 does not have this symmetry; both families are even at x = 0
and x = ±π .

The middle left panel of Fig. 2 shows the dependence of b in Eq. (1.1) versus speed c.
The pitchfork bifurcation point is located at c∗ ≈ 1.425. The two symmetric branches of
solutions with b > 0 and b < 0 are obtained by using the positive and negative perturbations
to the family of solutions with b = 0.

The middle right panel of Fig. 2 shows the momentum F(ψ) versus c. The bottom left
panel shows the dependence of σ0 versus c. The bottom right panel displays the lowest
eigenvalues of L versus c. The blue curve shows the family of solutions with b = 0, whereas
the red curve shows the family of solutions with b �= 0.

As shown on the middle right panel of Fig. 2, the momentum F(ψ) is increasing function
of c for both the families. In agreement with the theory, σ0 for the family with b = 0 changes
sign from negative to positive when c passes through the bifurcation point c∗, see the bottom
left panel of Fig. 2. By Theorem 2.14, it follows that the family of solutions with b = 0 is
spectrally stable for c < c∗ and spectrally unstable for c > c∗.
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Fig. 2 Odd periodic waves for α = 2. Top left: Profiles of ψ with b = 0 for three different values of c.
Top right: Profiles of ψ with b �= 0 for three values of c. Middle left: Dependence of b versus c showing
the pitchfork bifurcation point c∗. Middle right: Dependence of the momentum F(ψ) versus c. Bottom left:
Dependence of σ0 versus c. Bottom right: The lowest eigenvalues ofL versus c. The blue (red) line corresponds
to the family with b = 0 (b �= 0)

On the other hand, the bifurcating family with b �= 0 has σ0 < 0 near the bifurcation
point but there exists another point ĉ∗ > c∗ such that σ0 diverges at c = ĉ∗ and becomes
positive for c > ĉ∗. This agrees with the behavior of the lowest eigenvalues of L shown on
the bottom right panel of Fig. 2 since z(L) = 2 at c = ĉ∗, n(L) = 2 for c < ĉ∗ and n(L) = 1
for c > ĉ∗. Lemma 2.13 and Theorem 2.14 are trivially extended to the family with b �= 0
and they confirm that for both cases of c < ĉ∗ and c > ĉ∗, the periodic waves of the family
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Fig. 3 The same as Fig. 2 but for α = 1

with b �= 0 correspond to minimizers of the constrained variational problem (2.15) and they
are spectrally stable for c > c∗.

Figure 3 presents similar results for the periodic wave solutions to Eq. (1.1) for α = 1.
Note that bifurcation point c∗ moves to the left and becomes c∗ ≈ −0.310. The existence
and stability of the family of solutions with b = 0 is very similar with the only difference that
the dependence of the momentum F(ψ) versus speed c approaches the horizontal asymptote
as c → ∞ since α = 1 is the L2-critical modified Benjamin–Ono equation [8,26,31] and
the periodic waves with the single-lobe profile converge to the solitary waves in the limit
c → ∞.
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The stability of the family of solutions with b �= 0 is however different. The momentum
F(ψ) is a decreasing function of the speed c, as the insert shows, hence the family of solutions
is spectrally unstable for all c > c∗. It also approaches to the horizontal asymptote as c → ∞.
Profiles of both the families in the limit of large c approach the soliton profile, but the family
with b = 0 contains two solitons on the period, whereas the family with b �= 0 contains a
single soliton on the period. Hence themomentum F(ψ) of the family with b = 0 approaches
the double horizontal asymptote as c → ∞ compared to the momentum F(ψ) of the family
with b �= 0.

We have checked again that σ0 along the family with b = 0 changes sign from negative to
positive at the bifurcation point c = c∗, whereas σ0 along the family with b �= 0 is negative
for c ∈ (c∗, ĉ∗) and positive for c ∈ (ĉ∗,∞), where ĉ∗ is the point where z(L) = 2 along
the family with b �= 0.

4 Even Periodic Waves

Here we consider the even periodic waves and provide the proof of Theorem 1.7. The study
follows the same structure as in the case of the odd periodic waves.

4.1 Variational Characterization

The odd periodic wave constructed in Theorem 2.1 and Corollary 2.2 is even after translation
x �→ x − π/2. However, since n(L) = 2 by Lemma 2.9, the odd periodic wave translated
into an even function cannot be a solution of the constrained minimization problem with a
single constraint. Therefore, the same constrained minimization problem (2.2) in a subspace
of even functions yields a different branch of periodic waves.

The following theorem gives the construction and properties of the even periodic waves.

Theorem 4.1 Let α > 1
2 be fixed. For every c > 0, there exists the ground state (minimizer)

χ ∈ H
α
2
per,even of the following constrained minimization problem:

qc,even := inf
u∈H

α
2
per,even

{
Bc(u) :

∫ π

−π

u4dx = 1

}
, (4.1)

with the same Bc(u) as in (2.3). There exists C > 0 such that ψ(x) = Cχ(x) satisfies Eq.
(1.1) with b = 0. If α ≤ 2, the ground state is the constant solution for c ∈ (

0, 1
2

]
and has

the single-lobe profile for c ∈ ( 1
2 ,∞

)
.

Proof It follows that Bc is a smooth, bounded, and coercive functional on H
α
2
per,even if c > 0,

hence qc,even ≥ 0. It follows from the bound (2.5) and the constraint in (4.1) that qc,even > 0.

The existence of the minimizer χ ∈ H
α
2
per,even of the constrained minimization problem (4.1)

is proven exactly like in the proof of Theorem 2.1. Moreover, for α ∈ (0, 2], the symmetric

rearrangements suggest that theminimizer χ ∈ H
α
2
per,even is either constant or it must decrease

symmetrically away from the maximum point.
In order to ensure that the minimizer has the single-lobe profile, we need to eliminate the

constant solution in H
α
2
per,even. By Lagrange’s Multiplier Theorem, the constrained minimizer
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χ ∈ H
α
2
per,even satisfies the stationary equation

Dαχ + cχ = μχ3, (4.2)

where μ = 2Bc(χ) due to the normalization in (4.1). Since Bc(χ) > 0, the scaling trans-
formation ψ = Cχ with C := √Bc(χ) maps Eq. (4.2) to the form (1.1) with b = 0. The
constant nonzero solution to Eq. (1.1) with b = 0 is given by ψ(x) = √

c/2 up to a sign
choice. The linearization operator L in (1.7) evaluated at the constant solution is given by

L = Dα + c − 6ψ2 = Dα − 2c.

Since n(L) = 1 if and only if c ∈ (
0, 1

2

]
, the constant wave is a constrainedminimizer of (4.1)

for c ∈ (
0, 1

2

]
and a saddle point of (4.1) for c ∈ ( 1

2 ,∞
)
. By the symmetric rearrangements,

the globalminimizer is given by the constant solution in the former case and by a non-constant
solution with the single-lobe profile in the latter case. ��
Remark 4.2 Periodic waves obtained in Theorem 4.1 do not satisfy the boundary-value prob-
lem (2.1) if the mean value of ψ ∈ Hα

per,even is nonzero.

4.2 Smooth Continuation

Let ψ ∈ Hα
per,even be a solution to Eq. (1.1) with b = 0 for c ∈ ( 1

2 ,∞
)
obtained by Theorem

4.1.We introduce again the linearized operatorL by (1.7) and (2.7). Equalities (2.8) and (2.9)
hold true for the even periodic wave and so do Propositions 2.4, 2.5, and 2.6 (no translation
is needed for the last proposition).

The following lemma presents the count of n(L) and z(L) for the even periodic wave.

Lemma 4.3 Let α ∈ ( 12 , 2] and ψ ∈ Hα
per,even be a solution obtained in Theorem 4.1. Then,

n(L) = 1 and

z(L) =
{
1, if 1 ∈ Range(L),

2, if 1 /∈ Range(L).

Proof Since ψ ∈ Hα
per,even is a minimizer of the constrained variational problem (4.1) with

only one constraint, we have n(L|L2
even

) ≤ 1. On the other hand, we have

〈Lψ,ψ〉L2 = −4‖ψ‖4L4 < 0,

with even ψ , hence n(L|L2
even

) ≥ 1, so that n(L|L2
even

) = 1. By Proposition 2.6 (without
translation), n(L|L2

odd
) = 0 and z(L|L2

odd
) = 1. Hence, n(L) = 1.

It remains to consider z(L) ≥ 1. Since 0 is the second eigenvalue of L, Proposition 2.4
suggests that if z(L) = 2, then the even eigenfunction of Ker(L) has at most two symmetric
nodes on T. If the periodic wave has the single-lobe profile ψ , then ψ3 has also the single-
lobe profile. By using the same argument as in the proof of Proposition 3.1 in [24], it follows
that z(L) = 1 if and only if {1, ψ3} ∈ Range(L).

Indeed, if h ∈ Ker(L) is an even eigenfunction in the case z(L) = 2 and {1, ψ3} ∈
Range(L), then 〈h, 1〉 = 0 and 〈h, ψ3〉 = 0. The first condition suggests that h is sign-
indefinite with exactly two symmetric nodes at ±x0 with x0 ∈ (0, π), but then 〈h, ψ3 −
ψ3(x0)〉 is sign-definite and cannot be zero, so that no h ∈ Ker(L) exists.

Since ψ3 ∈ Range(L) due to Eq. (2.9), it follows that z(L) = 1 if and only if 1 ∈
Range(L). ��
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The definition of L|X0 , where X0 ⊂ L2(T) is defined by (2.11), is the same as in (2.12).
The result of Lemma 2.10 holds true for the even periodic wave ψ ∈ Hα

per,even. In order to
count the indices n(L|X0) and z(L|X0), we shall re-parameterize the even periodic wave to
the zero-mean periodic wave.

Recall from Remark 4.2 that ψ has generally nonzero mean value and does not satisfy the
boundary-value problem (2.1). Let us defineψ(x) = a+φ(x), where a := 1

2π

∫ π

−π
ψ(x)dx .

Then, φ ∈ Hα
per,even ∩ X0 is a solution of the stationary equation:

Dαφ + ωφ + β = 2
(
φ3 + 3aφ2) , (4.3)

where ω := c − 6a2 and β := ca − 2a3. Since φ has zero mean, β can be equivalently
written as

β := 1

π

∫ π

−π

(
φ3 + 3aφ2) dx, (4.4)

so that Eq. (4.3) can be rewritten as the boundary-value problem:

Dαφ + ωφ = 2	0
(
φ3 + 3aφ2) . (4.5)

The following lemma presents the computation of n(L|X0) and z(L|X0).

Lemma 4.4 Let α ∈ ( 12 , 2] andψ ∈ Hα
per,even be a solution obtained in Theorem 4.1. Assume

thatω ∈ (− 1,∞) after the transformation to Eq. (4.3). Then, n(L|X0) = 1 and z(L|X0) = 1.

Proof Transformation ψ = a + φ and ω = c − 6a2 changes L given by (1.7) into the
equivalent form:

L = Dα + c − 6ψ2 = Dα + ω − 6φ2 − 12aφ =: L̃. (4.6)

Then, it follows directly that

〈L|X0φ, φ〉 = −4
∫ π

−π

φ4dx − 6a
∫ π

−π

φ3dx . (4.7)

Taking an inner product of Eq. (4.3) with φ yields the Pohozhaev-type identity

Bω(φ) =
∫ π

−π

φ4dx + 3a
∫ π

−π

φ3dx . (4.8)

where Bω(φ) is defined by (2.3). Since ω ∈ (− 1,∞) and φ ∈ Hα
per,even ∩ X0, we have

Bω(φ) ≥ 0, so that the equality (4.7) can be estimated by

〈L|X0φ, φ〉 ≤ −2
∫ π

−π

φ4dx < 0. (4.9)

Hence n(L|X0) ≥ 1 and since n(L) = 1 by Lemma 4.3, we have n(L|X0) = 1. By Proposi-
tion 2.12, we have the following identities:

{
n(L|X0) = n(L) − n0 − z0,
z(L|X0) = z(L) + z0 − z∞,

(4.10)

where z∞ = 1 if 1 /∈ Range(L). It follows from the first equality in (4.10) that n0 = z0 = 0
since n(L) = n(L|X0) = 1. Then, the second equality yields z(L|X0) = z(L) − z∞. If
z(L|X0) = 2, then z(L) ≥ 2, which is in contradiction with Lemma 2.10 extended to the
even periodic wave ψ ∈ Hα

per,even. Hence, z(L|X0) = 1, in which case z(L) = 1 + z∞ in
agreement with Lemma 4.3. ��
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Remark 4.5 It follows from the proof of Lemma 4.4 that σ0 > 0 if 1 ∈ Range(L), where
σ0 := 〈L−11, 1〉.

In order to derive the spectral stability result,we shall nowextend solutions toEq. (4.3)with
respect to two independent parameters (ω, a) and with β being aC1 function of (ω, a). Since
the periodic waves satisfy Eq. (1.1) with b = 0, where c is the only parameter, parameters ω,
a, and β in Eq. (4.3) are parametrized by c, hence a is not independent of ω. The following
lemma allows us to extend zero-mean solutions to the boundary-value problem (4.5) with
respect to independent parameters (ω, a) near each uniquely defined point (ω0, a0).

Lemma 4.6 Assume α ∈ ( 12 , 2] and φ0 ∈ Hα
per,even ∩ X0 be a solution to the boundary-value

problem (4.5) with ω = ω0 ∈ (− 1,∞) and a = a0 ∈ R. Then, there exists a C1 mapping in
an open subset of (ω0, a0) denoted by O ⊂ R

2:

O � (ω, a) �→ φ(·, ω, a) ∈ Hα
per,even ∩ X0, (4.11)

such that φ(·, ω0, a0) = φ0.

Proof The proof repeats the arguments in the proof of Lemma 2.8. Let ϒ : (− 1,∞) ×R×
Hα
per,even ∩ X0 → L2

even(T) ∩ X0 be defined by

ϒ(ω, a, g) := Dαg + ωg − 2	0
(
g3 + 3ag2

)
. (4.12)

By hypothesis we have ϒ(ω0, a0, φ0) = 0. Moreover, since ϒ is smooth, its Fréchet deriva-
tive with respect to g evaluated at (ω0, a0, φ0) is given by

Dgϒ(ω0, a0, φ0) = Dα + ω0 − 6	0
(
φ2
0 + 2a0φ0

) = Dα + c0 − 6	0ψ
2
0 = L|X0 ,(4.13)

where we have unfolded the previous transformation ψ0 = a0 + φ0 and ω0 = c0 − 6a20 and
used the same operator as in (2.12) computed at ψ0.

Since z(L|X0) = 1 by Lemma 4.4 and Ker(L|X0) = span{∂xφ0} with ∂xφ0 /∈ Hα
per,even ∩

X0, we conclude that Dgϒ(ω0, a0, φ0) is one-to-one. Next, we show that Dgϒ(ω0, a0, φ0)

is onto. Since Hα
per,even ∩ X0 is compactly embedded in L2

even(T) ∩ X0 if α > 1/2, the
operator L|X0 has compact resolvent. In addition, L|X0 is a self-adjoint operator, hence its
spectrum σ(L|X0) consists of isolated eigenvalues with finite algebraic multiplicities. Since
Dgϒ(ω0, a0, φ0) is one-to-one, it follows that 0 is not in the spectrum of Dgϒ(ω0, a0, φ0), so
that it is onto. Hence, Dgϒ(ω0, a0, φ0) is a bounded linear operator with a bounded inverse.
Thus, since ϒ and its derivative with respect to g are smooth maps on their domains, the
result follows from the implicit function theorem. ��

Recall that L = L̃ in (4.6). Extension of relations (2.8) and (2.9) yields

L̃1 = ω − 12aφ − 6φ2 (4.14)

and

L̃φ = −β − 6aφ2 − 4φ3, (4.15)

where β = β(ω, a) is a C1 function by Lemma 4.6 and the representation (4.4). Therefore,
we also obtain two more relations:

L̃∂ωφ = −∂ωβ − φ, (4.16)

and

L̃∂aφ = −∂aβ + 6φ2. (4.17)
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These relations allow us to completely characterize Ker(L), which can be two-dimensional
if 1 /∈ Range(L) by Lemma 4.3.

Lemma 4.7 Assume α ∈ ( 12 , 2] and φ ∈ Hα
per,even ∩ X0 be a single-lobe solution to the

boundary-value problem (4.5) with ω ∈ (− 1,∞) and a ∈ R. Then, z(L) = 1 if and only if
s0 := ω − ∂aβ + 12a∂ωβ �= 0.

Proof Eliminating φ and φ2 from (4.14), (4.16), and (4.17) yields

L̃ (1 + ∂aφ − 12a∂ωφ) = ω − ∂aβ + 12a∂ωβ =: s0. (4.18)

Recall that L̃ = L in (4.6). If s0 �= 0, then 1 ∈ Range(L), so that z(L) = 1 holds by Lemma
4.3. If s0 = 0, then 1 + ∂aφ − 12a∂ωφ ∈ Ker(L) in addition to ∂xφ ∈ Ker(L). ��

4.3 Spectral Stability

We are now ready to provide the criterion for spectral stability of the even periodic waves.
This result is given by the following theorem.

Theorem 4.8 Assume α ∈ ( 12 , 2] and φ ∈ Hα
per,even ∩ X0 be a single-lobe solution to the

boundary-value problem (4.5)withω ∈ (− 1,∞) and a ∈ R. The periodic wave is spectrally
stable if and only if

∂

∂ω
‖φ‖2L2 ≥ 0, (4.19)

independently of either z(L) = 1 or z(L) = 2.

Proof We proceed similarly to the proof of Theorem 2.14. If 1 ∈ Range(L), we use (4.18)
and compute

σ0 := 〈L−11, 1〉 = 2π

s0
,

where s0 �= 0 by Lemma 4.7. For the even periodic wave, we have σ0 > 0 (see Remark 4.5),
so that s0 > 0. Eliminating constant term from (4.16) and (4.18) yields

L̃
[
∂ωφ + s−1

0 ∂ωβ (1 + ∂aφ − 12a∂ωφ)
]

= −φ, (4.20)

By projecting (4.16) to ∂aφ and (4.17) to ∂ωφ, it is easy to verify that

6〈φ2, ∂ωφ〉 + 〈φ, ∂aφ〉 = 0. (4.21)

Using (4.20) yields

〈L−11, φ〉 = 〈L−1φ, 1〉 = −σ0∂ωβ,

where we have used that

2π∂ωβ = 6〈φ2, ∂ωφ〉 + 12a〈φ, ∂ωφ〉 = −〈φ, ∂aφ〉 + 12a〈φ, ∂ωφ〉,
which follows from (4.4) and (4.21). Finally, we obtain from (4.20) and (4.21) that

〈L−1φ, φ〉 = −〈φ, ∂ωφ〉 + σ0 (∂ωβ)2 .
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By Proposition 2.12, we have the following identities:
{
n(L

∣∣{1,ψ}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ}⊥) = z(L) + z0,

(4.22)

where n0 and z0 are the numbers of negative and zero eigenvalues of D(0) in the proof of
Theorem 2.14. Since

detD(0) = −σ0〈φ, ∂ωφ〉.
and σ0 > 0, we have n0 + z0 = 1 if the condition (4.19) is satisfied and n0 + z0 = 0 if it is
not satisfied. Since n(L) = 1 and z(L) = 1 by Lemmas 4.3 and 4.7, the count (4.22) implies
n(L

∣∣{1,ψ}⊥) = 0 if the condition (4.19) is satisfied and n(L
∣∣{1,ψ}⊥) = 1 if it is not satisfied.

This gives the assertion of the theorem if 1 ∈ Range(L).
If 1 /∈ Range(L), then z(L) = 2 and s0 = 0. In this case, the count (4.22) should be

adjusted as
{
n(L

∣∣{1,ψ}⊥) = n(L) − n0 − z0,

z(L
∣∣{1,ψ}⊥) = z(L) + z0 − z∞,

(4.23)

where z∞ = 1. At the same time, n0 + z0 = 1 if and only if the same condition (4.19)
is satisfied and n0 + z0 = 0 if it is not satisfied. Hence the stability conclusion remains
unchanged if 1 /∈ Range(L). ��
Remark 4.9 The momentum (1.4) computed at the even periodic wave with the profileψ and
the decomposition ψ = a + φ is given by

F(ψ) = F(φ) + πa2.

If ω and a are independent parameters, it is true that

∂

∂ω
F(φ) = ∂

∂ω
F(ψ), (4.24)

however, this quantity is not defined by the dependence of the momentum F(ψ) on the
original wave speed c. In addition, if ψ satisfies Eq. (1.1) with b = 0, then a depends on ω,
therefore, the dependence of F(ψ) versus ω does not generally provide information about
the slope condition (4.24). See also numerical approximations in the next section.

5 Examples of Even Periodic Waves

Here we present three examples of the even periodic waves obtained in Theorem 4.1. These
examples mimic the corresponding examples of the odd periodic waves.

5.1 Stokes Expansion of Small-AmplitudeWaves

Stokes expansion gives again a direct way to illustrate small-amplitude periodic waves bifur-
cating from the constant solutions at c = 1

2 . In order to eliminate the constant wave, we
set

ψ(x) =
√
c√
2

+ ϕ(x), (5.1)
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where ϕ is not required to satisfy the zero-mean property. Eq. (1.1) with b = 0 is written in
the equivalent form:

Dαϕ − 2cϕ = 2ϕ3 + 3
√
2cϕ2. (5.2)

By using the Stokes expansion in terms of small amplitude A:
{

ϕ(x) = Aϕ1(x) + A2ϕ2(x) + A3ϕ3(x) + O(A4),

2c = 1 + A2γ2 + O(A4),
, (5.3)

we obtain recursively: ϕ1(x) = cos(x),

ϕ2(x) = −3

2
+ 3

2(2α − 1)
cos(2x),

ϕ3(x) = 1

2(3α − 1)

[
1 + 9

2α − 1

]
cos(3x),

and

γ2 = 15

2
− 9

2(2α − 1)
.

It follows that γ2 = 0 if and only if 2α = 8
5 , which is true at

α0 := log 8 − log 5

log 2
≈ 0.6781. (5.4)

The following proposition summarizes properties of the small-amplitude periodic waves.

Proposition 5.1 Let α0 be given by (5.4). For each α ∈ (α0, 2], there exists c0 > 1
2 such that

the even periodic wave exists for c ∈ ( 1
2 , c0

)
with n(L) = 1, z(L) = 1 and is spectrally

stable. For each α ∈ ( 1
2 , α0

)
, there exists c0 < 1

2 such that the even periodic wave exists for
c ∈ (

c0,
1
2

)
with n(L) = 2, z(L) = 1, and is spectrally stable.

Proof The existence statement follows from the Stokes expansion (5.3) with small wave
amplitude A since γ2 > 0 for α > α0 and γ2 < 0 for α < α0.

In order to compute n(L) and z(L), we substitute (5.1) and (5.3) into (1.7) and obtain

L = Dα − 1 − A cos(x) − A2 [
γ2 + 6ϕ2(x) − 6 cos2(x)

] + O(A3).

We solve the spectral problem Lv = λv perturbatively near the eigenvalue λ = 0 associated
with the subspace of even functions in L2(T). Hence, we expand

u = cos(x) + Au1(x) + A2u2(x) + O(A3), λ = A2λ2 + O(A4),

and obtain recursively: u1(x) = 2ϕ2(x) and λ2 = 2γ2. Hence, λ > 0 if γ2 > 0 and λ < 0
if γ2 < 0. The zero eigenvalue associated with the subspace of odd functions in L2(T) is
preserved at zero for every A due to ∂xψ ∈ Ker(L). In addition, there exists a negative
eigenvalue of L associated with the constant functions at A = 0. Hence, we confirm that
n(L) = 1 for α > α0 and n(L) = 2 for α < α0, whereas z(L) = 1 for both α > α0 and
α < α0.

In order to deduce the spectral stability conclusion, we use transformation ψ(x) = a +
φ(x), where the zero-mean functionφ satisfies the boundary-value problem (4.5). Computing
the mean value

a := 1

2π

∫ ∞

−∞
ψ(x)dx = 1

2
+ 3

8

[
1 − 3

2α − 1

]
A2 + O(A4)
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we obtain

ω := c − 6a2 = −1 + 3

2

[
1 + 3

2α − 1

]
A2 + O(A2)

and

β := ca − 2a3 = 3

2
A2 + O(A4).

No fold point occurs in the expansion of ω with respect to the Stokes amplitude A, in
particular,

dω

d A2 = 3

2

[
1 + 3

2α − 1

]
+ O(A2) > 0.

Since ‖φ‖2
L2 = π A2 + O(A4), we have

d

dω
‖φ‖2L2 = 2π

3

2α − 1

2α + 2
+ O(A2) > 0. (5.5)

In Appendix A, we show that σ0 > 0 for α > α0 and σ0 < 0 for α < α0. In addition, we
show that

∂

∂ω
‖φ‖2L2 = d

dω
‖φ‖2L2 + O(A2) > 0.

By Theorem 4.8, the periodic waves are spectrally stable for small A both for α > α0 and
α < α0. ��
Remark 5.2 For α > α0, the small-amplitude periodic wave in Proposition 5.1 have the same
properties n(L) = 1, z(L) = 1, and σ0 > 0 as the even periodic wave in Theorem 4.1.
However, for α < α0, the small-amplitude periodic wave in Proposition 5.1 cannot be a
minimizer of the constrained variational problem (4.1) in Theorem 4.1 because it exists for
c < 1

2 and has n(L) = 2 and σ0 < 0. Spectral stability of the periodic wave with n(L) = 2,
σ0 < 0, and the slope condition (4.19) follows from the same computation as in the proof of
Theorem 4.8.

5.2 Local Case with˛ = 2

In the case of the modified KdV equation (α = 2), Eq. (1.1) with b = 0 can be solved in the
space of even functions by using the Jacobian dnoidal function [5,17].

Let us recall the normalized second-order equation

ψ ′′
0 (z) + (k2 − 2)ψ0(z) + 2ψ0(z)

3 = 0, (5.6)

which admits the periodic solution ψ0(z) = dn(z; k) with the period 2K (k), where K (k) is
the complete elliptic integral of the first kind. Adopting an elementary scaling transformation
yields the exact solution in the form:

ψ(x) = 1

π
K (k)dn

[
1

π
K (k)x; k

]
(5.7)

with

c = 1

π2 K (k)2(2 − k2). (5.8)
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The following proposition summarizes properties of the even periodic waves for α = 2.
These properties were studied in [5,17].

Proposition 5.3 Fix α = 2. The even periodic wave (5.7) exists and is spectrally stable for
every c ∈ ( 1

2 ,∞
)
. Moreover, n(L) = 1, z(L) = 1, and σ0 > 0 for every c ∈ ( 1

2 ,∞
)
.

Proof The mapping (0, 1) � k �→ c(k) ∈ ( 1
2 ,∞

)
is one-to-one and onto. This follows from

π2

2

dc

dk
= K (k)

k(1 − k2)

[
(2 − k2)E(k) − 2(1 − k2)K (k)

]
> 0, (5.9)

where the latter inequality was proved in [5] (see also [17]). Indeed, if

f (k) := (2 − k2)E(k) − 2(1 − k2)K (k),

then f (0) = 0, whereas f ′(k) = 3k[K (k) − E(k)] > 0 so that f (k) > 0 for k ∈ (0, 1).
The mean value of the periodic wave in (5.7) is computed explicitly by

a := 1

2π

∫ π

−π

ψ(x)dx = 1

π

∫ K (k)

0
dn(z; k)dz = 1

2
.

Hence, the zero-mean functionφ(x) := ψ(x)−a is a solution to the boundary-value problem
(4.5) with

ω = c − 3

2
, β = 1

2

(
c − 1

2

)
.

This gives the straight line dependence β = 1
2 (ω + 1) for the periodic waves with the

single-lobe profile. Furthermore, we can compute

‖φ‖2L2 = 2

π
K (k)E(k) − π

2
,

from which we verify that

〈φ, ∂kφ〉 = − 1

πk(1 − k2)

[
K (k)2(1 − k2) − E(k)2

]
> 0.

The latter inequality is also proven directly by setting

f (k) := K (k)2(1 − k2) − E(k)2

such that f (0) = 0 and f ′(k) = −2k−1[K (k)− E(k)]2 < 0 so that f (k) < 0 for k ∈ (0, 1).
ByTheorem4.8, the even periodicwave (5.7)with the speed (5.8) satisfying (5.9) is spectrally
stable for c ∈ ( 1

2 ,∞
)
.

Other properties such as 1 ∈ Range(L), σ0 > 0, and n(L) = 1 for every k ∈ (0, 1) can
be confirmed by explicit computations. The normalized linearized operator is given by

L0 = −∂2z − 4 + 5k2 − 6k2cn(z; k)2. (5.10)

Eigenvalues ofL0 in (5.10) are given by subtracting 3(1−k2) from eigenvalues ofL0 in (3.8).
However, L0 in (5.10) is considered in space L2(− K (k), K (k)) so that the eigenvalues λ1
and λ2 given below (5.10) with the eigenfunctions in L2(− 2K (k), 2K (k)) are not relevant.
Hence, the first three eigenvalues of L0 in (5.10) are given by

λ0 = −2 + k2 − 2
√
1 − k2 + k4, ϕ0(z) = 1 + k2 + √

1 − k2 + k4 − 3k2sn(z; k)2,
λ1 = 0, ϕ1(z) = sn(z; k)cn(z; k),
λ2 = −2 + k2 + 2

√
1 − k2 + k4, ϕ2(z) = 1 + k2 − √

1 − k2 + k4 − 3k2sn(z; k)2.
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Eigenvalues and eigenvectors of the linearized operator L are obtained after the same scaling
transformation as in (5.7). In agreement with Lemma 4.3, we have n(L) = 1 and z(L) = 1.
The property 1 ∈ Range(L) follows from the representation

1

2
√
1 − k2 + k4

L0

[
λ2ϕ0 − λ0ϕ2

λ0λ2

]
= 1 and

1

2
√
1 − k2 + k4

[ϕ0 − ϕ2] = 1.

Direct computations yield

〈L−1
0 1, 1〉 = λ2〈ϕ0, 1〉 − λ0〈ϕ2, 1〉

2
√
1 − k2 + k4λ0λ2

= 2

k4
[
(2 − k2)K (k) − 2E(k)

]
> 0,

where the latter inequality is justified by assigning

f (k) := (2 − k2)K (k) − 2E(k)

with f (0) = 0 and f ′(k) = k(1 − k2)−1[E(k) − (1 − k2)K (k)] > 0 so that f (k) > 0 for
k ∈ (0, 1). ��

Remark 5.4 Explicit computations in the proof of Proposition 5.3 repeat computations in
[17], however, the expression for 〈L−1

0 1, 1〉 was typed incorrectly in [17].

Remark 5.5 The dnoidal wave of Proposition 5.3 coincides with the even periodic wave
obtained in Theorem 4.1 for α = 2. Similarly to Remark 3.4, this follows from uniqueness
of smooth, positive, and 2π -periodic solutions of Eq. (3.9) with c ∈ ( 12 ,∞), where Eq.
(3.9) is the Euler–Lagrange equation for the variational problem in Theorem 4.1. Compared
to Proposition 3.5, it is well-known (see, e.g., [39]) that the mapping I �→ L is mono-
tonically increasing for the L-periodic, positive solutions of Eq. (3.9) with the first-order
invariant (3.10) for c > 0 such that L ∈ (2π(2c)−1/2,∞). Therefore, there exists exactly
one even, positive, 2π -periodic solution for every c ∈ ( 12 ,∞) and by uniqueness of solutions
to differential equations, this unique solution is given by the dnoidal wave (5.7) and (5.8).

5.3 Numerical Approximations

Here we numerically compute solutions of Eq. (1.1) with b = 0 using Newton’s method in
the Fourier space. The starting iteration is generated from the Stokes expansion (5.3) and this
solution is uniquely continued in c for all c ∈ ( 1

2 ,∞
)
if α > α0.

Figure 4 presents the periodic wave solutions for α = 2. The top panel shows the profiles
of ψ for three different values of c. The bottom panels show the dependence of F(ψ) versus
c (left) and the dependence of F(φ) versus ω (right), where φ and ω was computed from
the transformation φ(x) = ψ(x) − a and ω = c − 6a2 with a := 1

2π

∫ π

−π
ψ(x)dx . The

even periodic wave with the single-lobe profile ψ (red line) bifurcates at c = 1
2 from the

constant wave (grey line) shown on the bottom left. Since F(φ) is increasing in ω and a = 1
2

is independent of ω, the even periodic wave is stable by Theorem 4.8.
Figure 5 presents similar results but for α = 1. The periodic wave (red line on the top

right panel) still bifurcates from the constant wave (grey line on the top right panel) to the
right of the bifurcation point at c = 1

2 . However, a depends on ω for the even periodic wave,
hence

d

dω
F(φ) = ∂

∂ω
F(φ) + da

dω

∂

∂a
F(φ)
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Fig. 4 Even periodic waves for α = 2. Top: Profiles of ψ for three different values of c. Bottom: Dependence
of the momentum F(ψ) versus c (left) and F(φ) versus ω (right)

by the chain rule. In the Stokes limit, we have shown in Appendix A that ∂
∂a F(φ) = O(A2)

for small A so that

∂

∂ω
F(φ) = d

dω
F(φ) + O(A2) > 0.

However, a discrepancy between partial and ordinary derivatives of F(φ) in ω exists away
from the Stokes limit. The additional bottom right panel on Fig. 5 (compared to Fig. 4)
shows the partial and ordinary derivatives on the same graph by the solid and dashed lines
respectively. Since ∂

∂ω
F(φ) remains positive, the even periodicwave is stable byTheorem4.8.

Since F(ψ) for the even periodic wave is decreasing in c towards the horizontal asymptote
as c → ∞, it is clear that the stability conclusion does not follow from the dependence of
the momentum F(ψ) versus the wave speed c (see Remark 4.9).

Figure 6 presents similar results but for α = 0.6 < α0. The periodic wave with the single-
lobe profileψ bifurcates to the left of the bifurcation point at c = 1

2 . There exists a fold point
c = c0 ≈ 0.4722, where the branch turns and extends to all values of c > c0. The upper
branch (shown in red line on the top right panel) in c ∈ (c0,

1
2 ) has n(L) = 2, whereas the

lower branch (shown in blue line on the top right panel) has n(L) = 1. The two branches
were found iteratively from different initial approximations: the Stokes expansion was used
for the upper branch and the periodic wave with larger c > 1

2 was used for the lower branch,
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Fig. 5 Even periodic waves for α = 1. Top: Profiles of ψ for three different values of c (left). Dependence of
the momentum F(ψ) versus c (right). Bottom: Dependence of F(φ) versus ω (left). and derivatives of F(φ)

in ω (right). The solid (dashed) line shows the partial (ordinary) derivative in ω

then the two branches were continued in either direction. The grey line on the top right panel
shows the momentum F(ψ) of the constant solution.

It follows from the graph of F(φ) versus ω and its derivatives (bottom panels) that the
periodic wave is stable near the bifurcation point before and after the fold point but there
exists c∗ ≈ 0.4774 such that the even periodic wave is stable for c < c∗ and unstable for
c > c∗. By comparing the partial and ordinary derivatives of F(φ) with respect to ω (solid
and dashed lines, respectively), we can see that the partial derivative becomes zero for a
smaller value of ω, which gives the correct transition from stability to instability at c = c∗
by Theorem 4.8.

6 Discussion

It remains an open problem to characterize the most general solution of Eq. (1.1) with
arbitrary b. Here we generalize the two alternative parametrizations used in this work for the
odd and even periodic waves.

Let ψ ∈ Hα
per,even be a periodic wave solution to Eq. (1.1) with parameters (c, b) defined

in an open region I ⊂ R
2. As in Sect. 5, we can define ψ(x) = a + φ(x), where a :=

1
2π

∫ π

−π
ψ(x)dx so that 〈1, φ〉 = 0. Then φ ∈ Hα

per,even ∩ X0 is a solution of Eq. (4.3),

where ω := c − 6a2 and β := b + ca − 2a3. Parameters (ω, a) are defined in an open
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Fig. 6 The same as Fig. 5 but for α = 0.6

region O ⊂ R
2, which is the image of the transformation ω = ω(c, b) and a = a(c, b),

whereas β = β(c, b) is uniquely determined by (4.4). Smoothness and invertibility of this
transformation are described as follows.

Proposition 6.1 Assume that z(L) = 1 for a periodic wave with the single-lobe profile
ψ ∈ Hα

per,even. Then, the mapping I � (c, b) �→ (ω, a) ∈ O is C1. The transformation is
invertible if and only if

∂a

∂b
�= 0. (6.1)

Proof In the case z(L) = 1, the mapping I � (c, b) �→ ψ ∈ Hα
per,even is C

1 by the implicit

function theorem (applied similarly to the proof of Lemma 2.8). Let ω := c − 6a2 and
a := 1

2π

∫
T

ψ(x)dx . The mapping I � (c, b) �→ (ω, a) ∈ O is C1 and the Jacobian of the
transformation is given by

∣∣∣∣
1 − 12a ∂a

∂c −12a ∂a
∂b

∂a
∂c

∂a
∂b

∣∣∣∣ = ∂a

∂b
,

so that the transformation is invertible if and only if the condition (6.1) is satisfied. ��
Remark 6.2 Since the mapping I � (c, b) �→ ψ ∈ Hα

per,even is C1 in Proposition 6.1, we
have

L∂ψ

∂b
= −1 ⇒ σ0 = 〈L−11, 1〉 = −

〈
∂ψ

∂b
, 1

〉
= −2π

∂a

∂b
.
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It follows that the criterion (6.1) is equivalent to the criterion σ0 �= 0 for z(L|X0) = 1 (see
Remark 4.5). If ∂a

∂b = 0, then z(L|X0) = 2 and ∂ψ
∂b ∈ Ker(L|X0). In the latter case, we have

bifurcation studied in Proposition 3.3 for α = 2.

Similarly, but in the opposite direction, let φ ∈ Hα
per,even ∩ X0 be a periodic wave solution

to Eq. (4.3) with parameters (ω, a) defined in an open region O ⊂ R
2 and parameter β =

β(ω, a) being uniquely defined by (4.4). Then, ψ(x) = a + φ(x) ∈ Hα
per,even is a solution

of Eq. (1.1), where c := ω + 6a2 and b := β(ω, a) − ωa − 4a3. Parameters (c, b) are
defined in an open region I ⊂ R

2, which is the image of the transformation c = c(ω, a) and
b = b(ω, a). Smoothness and invertibility of this transformation are described as follows.

Proposition 6.3 Assume that z(L|X0) = 1 for a zero-mean periodic wave with the single-
lobe profile φ ∈ Hα

per,even ∩ X0. Then, the mapping O � (ω, a) �→ (c, b) ∈ I is C1. The
transformation is invertible if and only if

ω − ∂β

∂a
+ 12a

∂β

∂ω
�= 0. (6.2)

Proof In the case z(L|X0) = 1, the mapping O � (ω, a) �→ φ ∈ Hα
per,even ∩ X0 is C1 by the

implicit function theorem (applied similarly to the proof of Lemma 4.6). Let c := ω + 6a2

and b := β(ω, a)−ωa−4a3. The mappingO � (ω, a) �→ (c, b) ∈ I isC1 and the Jacobian
of the transformation is given by

∣∣∣∣
1 12a

∂β
∂ω

− a ∂β
∂a − ω − 12a2

∣∣∣∣ = ∂β

∂a
− 12a

∂β

∂ω
− ω,

so that the transformation is invertible if and only if the condition (6.2) is satisfied. ��

Remark 6.4 The criterion (6.2) is equivalent to the criterion for z(L) = 1 as in Lemma 4.7.
If

ω − ∂β

∂a
+ 12a

∂β

∂ω
= 0,

then z(L) = 2 as follows from equality (4.18). In the latter case, we have bifurcation studied
in Proposition 5.1 for small-amplitude periodic waves.

Both parameters c and b arise as Lagrangemultipliers of the following variational problem
with two constraints

rc,m := inf
u∈H

α
2
per

{
Bc(u) :

∫ π

−π

u4dx = 1,
1

2π

∫ π

−π

udx = m

}
. (6.3)

When m = 0, the variational problem (6.3) reduces to the form (2.15) which was used in
the context of the odd periodic waves. Without loss of generality, it suffices to consider (6.3)
for m ≥ 0 as solutions for m ≤ 0 are mapped to solutions for m ≥ 0 by the transformation
u �→ −u. As is shown inAppendix B, the variational problem (6.3) defines constant solutions

if m = m0 := (2π)− 1
4 and periodic waves with the single-lobe profile if m ∈ (−m0,m0).

Further studies are needed to investigate how the variational problem (6.3) with two
constraints recovers the most general periodic solution to Eq. (1.1) with two parameters
(c, b).
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Appendix A. Stokes Expansion of General Small-AmplitudeWaves

Here we generalize the Stokes expansion of Sect. 5.1 in order to prove that σ0 > 0 for α > α0

and σ0 < 0 for α < α0, where σ0 = 〈L−11, 1〉 is computed on the small-amplitude wave
(5.1) and (5.3) in terms of the small amplitude A.

Let ψ satisfy Eq. (1.1) for (c, b) defined in an open neighborhood I ⊂ R
2 of the point( 1

2 , 0
)
. We generalize the decomposition (5.1) by setting

ψ(x) = ψ0 + ϕ(x), (6.4)

where ψ0 = ψ(c, b) is a root of the cubic equation b + cψ0 = 2ψ3
0 and ϕ is not required

to satisfy the zero-mean property. Since three roots exist for ψ0 at b = 0, we are picking
uniquely the positive root by using the expansion

ψ0(c, b) = 1

2

√
2c + b

2c
+ O(b2). (6.5)

Eq. (1.1) is written in the equivalent form:

Dαϕ + (c − 6ψ2
0 )ϕ = 2ϕ3 + 6ψ0ϕ

2, (6.6)

which generalizes (5.2). By using the Stokes expansion in terms of small amplitude A:
{

ϕ(x) = Aϕ1(x) + A2ϕ2(x) + A3ϕ3(x) + O(A4),

c − 6ψ2
0 = −1 + A2ω2 + O(A4),

(6.7)

we obtain recursively: ϕ1(x) = cos(x),

ϕ2(x) = −3ψ0 + 3ψ0

2α − 1
cos(2x),

ϕ3(x) = 1

3α − 1

[
1

2
+ 18ψ2

0

2α − 1

]
cos(3x),

and

ω2 = 3

2
− 36ψ2

0 + 18ψ2
0

2α − 1
.

By substituting ω2 to the expansion for c in (6.7) and using expansion (6.5), we obtain

γ2A
2 = 2c − 1 + 6b + O((2c − 1)2 + b2), (6.8)

where γ2 = −ω2|ψ0= 1
2
is the same as in (5.3). By using (6.8), we obtain perturbatively:

a = 1

2π

∫ π

−π

ψ(x)dx = ψ0
[
1 − 3A2 + O(A4)

]

= 1

2
− a1(2c − 1) − a2b + O((2c − 1)2 + b2),
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ω = c − 6a2

= −1 + 1

2
(1 + 12a1)(2c − 1) + 6a2b + O((2c − 1)2 + b2),

and

β = b + ca − 2a3

= 1

4
(1 + 4a1)(2c − 1) + (1 + a2)b + O((2c − 1)2 + b2),

where

a1 := 3

8γ2

4 − 2α

2α − 1
, a2 := 3

2γ2

2 + 2α

2α − 1
.

If γ2 �= 0 for α �= α0 given by (5.4), the transformation I � (c, b) �→ (ω, a) ∈ O is C1 and
invertible with the inverse transformation

c = 1

2
+ (ω + 1) + 6(a − 1

2
) + O((ω + 1)2 + (2a − 1)2),

b = − 1

a2

[
2a1(ω + 1) + 1

2
(1 + 12a1)(2a − 1) + O((ω + 1)2 + (2a − 1)2)

]
,

from which we obtain β = β(ω, a):

β = a2 − 4a1
2a2

(ω + 1) + 2a2 − 1 − 12a1
2a2

(2a − 1) + O((ω + 1)2 + (2a − 1)2)

and

s0 = ω − ∂aβ + 12a∂ωβ = 1

a2
+ O((ω + 1)2 + (2a − 1)2).

Since σ0 = 2π
s0
, we have sign(σ0) = sign(a2) = sign(γ2), from which it follows that σ0 > 0

for α > α0 and σ0 < 0 for α < α0.
Furthermore, it follows from (6.8) that

γ2A
2 = 2(a2 − 6a1)

a2
(ω + 1) + 3(2a2 − 1 − 12a1)

a2
(2a − 1) + O((ω + 1)2 + (2a − 1)2).

Explicit computation shows that 2a2 − 1 − 12a1 = 0, hence ‖φ‖2
L2 = π A2 + O(A4) as a

function of (ω, a) satisfies

∂

∂ω
‖φ‖2L2 = 2π(a2 − 6a1)

γ2a2
+ O(A2) = 2π

3

2α − 1

2α + 2
+ O(A2) = d

dω
‖φ‖2L2 + O(A2),

in agreement with (5.5). In other words, although a is defined by ω at the periodic waves
satisfying b = 0 by

2a − 1 = − 4a1
1 + 12a1

(ω + 1) + O((ω + 1)2),

this dependence does not result in the discrepancy between partial and ordinary derivatives
of ‖φ‖2

L2 in ω along the family of even periodic waves in the limit A → 0.
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Appendix B. On the Variational Problem (6.3) with Two Constraints

We show that the periodic solutions to Eq. (1.1) with two parameters (c, b) can be recovered
from the ground state of the variational problem (6.3).

Proposition 6.5 Fix α > 1
2 and m0 := (2π)− 1

4 . For every m ∈ [−m0,m0] and every

c ∈ (− 1,∞), there exists the ground state (minimizer) χ ∈ H
α
2
per of the variational problem

(6.3). If m ∈ (−m0,m0), the ground state has the single-lobe profile and there exists C > 0
such that ψ(x) = Cχ(x) satisfies Eq. (1.1) with some b.

Proof The bound |m| ≤ m0 follows by the Hölder’s inequality
∣∣∣∣
∫

T

udx

∣∣∣∣ ≤
(∫

T

1
4
3 dx

) 3
4
(∫

T

u4dx

) 1
4 = (2π)

3
4 .

The quadratic functional Bc(u) in (2.3) is bounded from below by the Poincaré inequality:

Bc(u) ≥ 1

2
‖u − m‖2L2 + 1

2
c‖u‖2L2 = 1

2
(1 + c)‖u‖2L2 − πm2.

By the same analysis as in the proof of Theorem 2.1, for every m ∈ [−m0,m0] and every

c ∈ (− 1,∞), there exists the ground state χ ∈ H
α
2
per of the variational problem (6.3).

Moreover, by the symmetric rearrangements, the ground state is either constant or has the
single-lobe profile. The constant solution corresponds to |m| = m0, hence the ground state
has the single-lobe profile if m ∈ (−m0,m0).

With two Lagrange multipliers μ and ν, the ground state χ ∈ H
α
2
per satisfies the stationary

equation

Dαχ + cχ + ν = μχ3. (6.9)

Lagrange multipliers satisfy two relations due to the constraints in (6.3):

μ = 2Bc(χ) + 2πmν, μ

∫

T

χ3dx = 2π(cm + ν). (6.10)

Eliminating ν yields
[
1 − m

∫

T

χ3dx

]
μ = 2

[
Bc(χ) − πcm2] . (6.11)

The left-hand side of (6.11) can be rewritten in the equivalent symmetrized form:

1 − m
∫

T

χ3dx = 1

2π

[(∫

T

dx

)(∫

T

χ4dx

)
−

(∫

T

χdx

) (∫

T

χ3dx

)]

= 1

16π

∫

T

∫

T

(
[χ(x) − χ(y)]4 + 3

[
χ2(x) − χ2(y)

]2)
dxdy,

fromwhich it follows that it is strictly positive ifχ(x) is not constant. Similarly, the right-hand
side of (6.11) is strictly positive if χ(x) is not constant due to the following inequality

2Bc(χ) − 2πcm2 = ‖D α
2 χ‖2L2 + c‖u − m‖2L2 ≥ (1 + c)‖u − m‖2L2 > 0.

Since the ground state is non-constant if m ∈ (−m0,m0), we obtain the unique μ > 0 from
(6.11) such that the transformation ψ = Cχ with C := √

μ/
√
2 reduces (6.9) to Eq. (1.1)

with b = ν
√

μ/
√
2, where ν is uniquely found from (6.10). ��
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