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Abstract

We consider standing lattice solitons for discrete nonlinear Schrodinger
equation with saturation (NLSS), where so-called transparent points were
recently discovered. These transparent points are the values of the governing
parameter (e.g. the lattice spacing) for which the Peierls—Nabarro barrier
vanishes. In order to explain the existence of transparent points, we study a
solitary wave solution in the continuous NLSS and analyse the singularities of
its analytic continuation in the complex plane. The existence of a quadruplet
of logarithmic singularities nearest to the real axis is proven and applied to
two settings: (i) the fourth-order differential equation arising as the next-order
continuum approximation of the discrete NLSS and (ii) the advance-delay
version of the discrete NLSS.

In the context of (i), the fourth-order differential equation generally does
not have solitary wave solutions due to small oscillatory tails. Nevertheless,
we show that solitary waves solutions exist for specific values of governing
parameter that form an infinite sequence. We present an asymptotic formula
for the distance between two subsequent elements of the sequence in terms
of the small parameter of lattice spacing. To derive this formula, we used two
different analytical techniques: the semi-classical limit of oscillatory integrals
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and the beyond-all-order asymptotic expansions. Both produced the same
result that is in excellent agreement with our numerical data.

In the context of (ii), we also derive an asymptotic formula for values
of lattice spacing for which approximate standing lattice solitons can be
constructed. The asymptotic formula is in excellent agreement with the
numerical approximations of transparent points. However, we show that the
asymptotic formulas for the cases (i) and (ii) are essentially different and that
the transparent points do not generally imply existence of continuous standing
lattice solitons in the advance-delay version of the discrete NLSS.

Keywords: discrete nonlinear Schrodinger equation, lattice solitons,
oscillatory integrals, beyond-all-order methods

Mathematics Subject Classification numbers: 34M35, 34M40, 35Q55,
37K40, 37K60
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1. Introduction

Lattice differential equations in the form of the discrete nonlinear Schrodinger (NLS) equa-
tions are commonly met in applications since they express the leading-order balance between
the nonlinear and periodic properties of many physical systems [37]. Lattice solitons represent
elementary excitations in nonlinear lattices which appear naturally in many physical experi-
ments [27].

Since continuous translational invariance is broken in the lattice differential equations,
travelling waves do not usually propagate steadily. Instead they slow down and stop near a
particular lattice site. The related Peierls—Nabarro (PN) energy barrier is the energy difference
between two pinned lattice solitons, one of which is symmetric about a lattice site and the
other one is symmetric about the midpoint between two nearest lattices sites. The two families
of standing lattice solitons can be pinned to any lattice site thanks to the discrete translational
invariance of the lattice differential equations.

The cubic discrete NLS equation has the two pinned standing lattice solitons [41] and
exhibit no other single-humped solutions at least for sufficiently small values of lattice spac-
ing [39]. In the past few years, there have been many attempts to construct generalizations of
the cubic discrete NLS equation, which have continuous families of standing lattice solitons
[12, 13, 35] (see also [38] for travelling lattice solitons in the same models). Such continuous
families are parameterized by the spatial translation parameter which provides a continuous
deformation between the two pinned lattice solitons. The PN energy barrier is identically zero
for the continuous families of standing lattice solitons. The main problem of the discrete NLS
models exhibiting continuous families of standing lattice solitons is that these models do not
typically arise in physical applications.

One possible generalization of the cubic NLS equation arising in many optical applications
is the NLS equation with saturation (NLSS) [15]. With a suitable normalization, the discrete
NLSS is written as the following lattice differential equation for the sequence of complex
amplitudes {1, (t) },ez € CZ evolving in time 7 € R:

dy, 1

o0
SN VORI YRR RN

1[4 ?

i

=0, nez, (1.1)
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where £ is the lattice spacing parameter and 6 is the saturation parameter. When the saturable
nonlinearity is expanded in power series and the quintic and higher-order powers are trun-
cated, one can obtain the cubic discrete NLS equation for the amplitude ¢, (f) = 1), (¢)el® 1"

do, 1
i C(lzst +ﬁ(¢n+l _2¢n+¢n—l)+9|¢n|2¢nzoa nEZ’ (]2)

which is focusing if 6 > 0.

Numerical studies of the discrete NLSS showed existence of standing lattice solitons with
zero PN energy barrier [19, 31] as well as existence of travelling lattice solitons [31, 32, 34].
It was observed in [31, 32] that standing lattice solitons with zero PN energy barrier exist
for a set of points with respect to a governing parameter (called transparent points), whereas
the travelling lattice solitons exist on a set of bifurcation curves in the velocity-frequency
parameter plane. It was conjectured in [31] that the sequence of such transparent points or
bifurcation curves is unbounded, although the numerical results only captured the first few
transparent points or bifurcation curves. The prediction of the transparent points was con-
firmed by direct numerical simulation of the lattice solitons in the discrete NLS equation (1.1)
that exhibited radiationless propagation [31, 32]. More recent numerical studies [42] showed
stability of travelling lattice solitons in the discrete NLSS.

The purpose of this work is to explain the phenomenon of a countable sequence of trans-
parent points for standing lattice solitons in the discrete NLSS. Standing lattice solitons satisfy
the following second-order difference equation:

1 Ouy,

ﬁ(un—l-l 7214,, + un—l) + u, — 1 —|—M%

Two particular solutions to the difference equation (1.3) are generally known [41]: on-site soli-
ton {u*},cz and inter-site soliton {u® },cz, according to the following symmetry conditions:

=0, nel (1.3)

oS __ _.0s is
—n = Uy u_,

u =u’ ,, ncZ (1.4)

Both lattice solitons decay to zero as |n| — oo and the transparent point can be defined as the
value of & (for fixed #) for which the PN energy barrier vanishes [19, 31]. It was shown in
[31] that the energy of the lattice soliton must be modified by the mass term in order to get
correct conclusions on the PN energy barrier compared to the earlier work [19]. It was shown
in [31] that the transparent points occur roughly at the values of & for which linearization of
the difference equation (1.3) at the on-site and inter-site solitons (1.4) admits zero eigenvalue.
Interchange between stability of the on-site and inter-site solitons in the time-evolution prob-
lem (1.1) occur at these values of /4, although the two sets are not necessary the same. Thanks
to these observations, we adopt the following equivalent definition of the transparent points in
the discrete NLSS and drop references to the vanishing PN energy barrier.

Definition 1.1. We say that & = h3® (or h = hf$) is the transparent point of the difference
equation (1.3) at the on-site (inter-site) soliton satisfying (1.4) if the Jacobian operator at the
corresponding soliton admits a zero eigenvalue.

Continuous generalization of the difference equation (1.3) is the following advance-delay
equation:
Ou(x)

L o )~ 2ue) + )]+ e
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On-site and inter-site discrete solitons satisfying (1.4) do not generally correspond to con-
tinuous solutions to the advance-delay equation (1.5). Indeed, the difference equation (1.3)
is formulated as a two-dimensional discrete map with the saddle zero equilibrium; stable and
unstable manifolds of this equilibrium intersect generally at a discrete set. Therefore, unless
the two manifolds coincide like in the two-dimensional discrete maps considered in [23, 36],
no continuous standing lattice solitons exist in the advance-delay equation (1.5) at a transpar-
ent point 4 of definition 1.1.

The only exception from the general observation above is the point & = h; := /2, for
which an exact solution u € C(R) exists because the advance-delay equation (1.5) with
h = /2 corresponds to the integrable Ablowitz—Ladik lattice which admits a large class of
exact solutions [28]. This particular value of 4 was found in [31, 32] to be the first one in the
sequence {/,, }men of the numerically detected transparent points of definition 1.1.

In order to explain the numerical results in [31, 32], we analyze the following second-order
differential equation:

d*u Ou

dx? tu 1+ u?
which is the formal limit of the advance-delay equation (1.5) as & — 0. A solitary wave solu-
tion decaying to zero at infinity exists for every 6 > 1. We extend the solution analytically off
the real line and prove that the nearest singularities in the analytic continuation of solutions are
located symmetrically as a quadruplet in the complex plane. The following theorem represents
the main result of this analysis.

=0, (1.6)

Theorem 1.1. For every 0 > 1, there exists a unique positive and decaying solution
U € C*°(R) to the second-order equation (1.6) which is continued analytically off the real
line until the nearest singularities at £« + 18, where «, 3 > 0. For every z € C close to
20 = —a + i with arg(zo — z) € (—%, 37”), the solution U satisfies

log |1 —
U(z) =i+ V0(z — 20)/1og(z0 — 2) [1 +0 (—Og| 0g 2 ZOH)] as 7 — 20, (1.7
log |z — 20|

whereas the behavior of U at other singularity points is obtained from the symmetry condi-
tions

Ui)=U(z), U(-z)=U(z), zeC. (1.8)

Theorem 1.1 is applied to the study of solitary wave solutions in the following fourth-order
differential equation
du  d*u Ou
2
el R — =0, 1.9
de4+dx2+u 1 +u? (19)
where ¢ is a small parameter. The fourth-order equation (1.9) arises from the advance-delay
equation (1.5) in the next order to the second-order equation (1.6) thanks to the formal power
expansion:

du W du

we CHR): o bt h) — 2u(e) + (e — ) = S+ TSN

2 +O(*), (1.10)

with the correspondence ¢ := h/(2v/3). A solitary wave solution decaying to zero at infin-
ity does not typically exist in the fourth-order equation (1.9) because of exponentially small
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oscillatory tails at infinity [18, 40]. Exponential asymptotic expansions (also known as beyond-
all-order asymptotics) were developed to analyze these exponentially small oscillatory tails
both for the differential equations [44, 45], advance-delay equations of the Henon type [46],
and the differential advance-delay equations [24, 33, 34].

In the method of beyond-all-order asymptotics, the existence of solitary waves decaying to
zero at infinity can be justified by computations of a scalar function called the Stokes constant. In
many cases, the Stokes constant is either nonzero [44, 46] or vanishes on a finite set of isolated
points of the one-parameter line [33]. This situation occurs typically in the case when the analytic
continuation of the solitary wave solution has a pair of symmetric singularities nearest to the real
line. It was realized some time ago [16, 17] that if the analytic continuation of the solitary wave
solution has a quadruplet of symmetric singularities nearest to the real line, the oscillations on the
solution’s tail may be suppressed at a countable set of isolated points on the one-parameter line.

This phenomenon was recently studied in the context of the lattice differential equations.
By analyzing oscillatory integrals in the semi-classical limit, the very similar explanation for
the onset of a countable sequence of travelling lattice solitons was proposed and illustrated
for a number of physically relevant examples including the Klein—Gordon lattice with the
cubic—quintic nonlinearity [1]. By analyzing the beyond-all-order asymptotics, travelling lat-
tice solitons in the diatomic Fermi—Pasta—Ulam lattice were explained similarly in [30]. These
travelling lattice solitons arises as a result of co-dimension one bifurcations among more gen-
eral travelling solutions with exponentially small oscillatory tails [20, 30, 50].

In the present work, we demonstrate analytically and numerically that the symmetric location
of the branch point singularities in the solitary wave solution to the second-order equation (1.6)
explains the onset of a countable sequence of co-dimension one bifurcations for the solitary
waves of the fourth-order equation (1.9) with € near {&,, },»en. The sequence for the lattice spac-
ings {h,,} men With h,, = 21/3¢,, accumulates to zero as m — oo according to the asymptotic
representation:

43
7(2m —1)’

where o > 0 is a numerical parameter in theorem 1.1.

Compared to the previous works in [1, 30], the technical challenge of our work is caused
by the fact that the solitary wave solution to the second-order equation (1.6) is not available
in the closed analytical form. Another challenge is that the asymptotic behavior involves the
logarithmic singularity. We show that both analytical techniques developed independently in
[1, 30] lead to the same predictions for the fourth-order equation (1.9).

One can anticipate a similar sequence {/,, };cn to arise in the advance-delay equation (1.5),
for which the fourth-order equation (1.9) is the first-order approximation. Indeed, we show
existence of a countable sequence {y, }men, for which the first Stokes constant vanishes in
the advance-delay equation (1.5). However, there are two important differences between
predictions for the advance-delay equation (1.5) and the fourth-order equation (1.9). First,
the sequence {/,, }nen accumulates to zero as m — oo according to a different asymptotic
representation:

Bim meN, (1.11)

4o

hm ~ A 4N\
2m-—1)

méeN, (1.12)
where o > 0 is the same as in (1.11). The reason for the discrepancy is a different dispersion

relation between the advance-delay equation (1.5) and the fourth-order equation (1.9), which
produces a different asymptotic behavior of its roots in the limit # — 0.
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Second and mostly important, no existence of continuous solution u € C(R) to the
advance-delay equation (1.5) with 4 near {/,, }nen can be demonstrated because there are
infinitely many resonant roots of the dispersion relation in (1.5) compared to only one root
in (1.9). This corresponds to the necessity of checking infinitely many Stokes constants for
computations of standing lattice solitons. The result (1.12) is deduced from the first Stokes
constant, whereas all others are expected to be nonzero near {%,, },en with the exception of
h = V2, for which the exact solution exists and ensures that all Stokes constants vanish
simultaneously. Therefore, our results for the advance-delay equation (1.5) only allow us to
predict an approximate standing lattice soliton with a single hump at the center and the small-
est oscillatory tails in the far-field. We also show numerically that such approximate standing
lattice solitons arise roughly at same values of h corresponding to the transparent points in
definition 1.1.

The countable sequence of transparent points is related to the phenomenon of snaking of
standing lattice solitons discussed for the cubic—quintic discrete NLS equation in [7, 9] and for
the Allen—Cahn lattice in [43]. Indeed, the snaking is induced by the existence of two count-
able sequences of instability bifurcations for on-site and inter-site lattice solitons, which are
typically located at different points in the governing parameter (see figure 3 in [9]). At each
instability bifurcation, two branches of either on-site or inter-site lattice solitons merge in a
fold bifurcation, where they exchange their stabilities. In addition, asymmetric lattice solitons
bifurcate from the same fold points and connect branches of the on-site and inter-site soli-
tons. If each branch of asymmetric lattice solitons existed at the same point of the instability
bifurcation for the limiting on-site and inter-site solitons, this would suggest the existence of
continuous solutions to the advance-delay equation at this point. However, the asymmetric
lattice solitons are typically connected to the on-site and inter-site solitons at different points.
As a result, the transparent points do not guarantee bifurcations of continuous solutions in the
advance-delay equation.

The paper is organized as follows. Section 2 is devoted to analysis of singularities in the
second-order equation (1.6) and gives the proof of theorem 1.1. Validity of the asymptotic
formula (1.11) for the fourth-order equation (1.9) is shown in section 3 analytically and
numerically. Section 4 reports analogous results for validity of the asymptotic formula (1.12)
for the advance-delay equation (1.5). Section 5 concludes the paper with a summary.

2. Solitary wave solution to the second-order equation

Here we study the second-order differential equation:

d’u Ou
A o

where 6 is the model parameter. Solutions to the second-order equation (2.1) can be obtained
from the first-order invariant

2
E= (31) +u* — 0log(1 + u?), (2.2)

where the value of E is a constant in x. The implicit formula for a solution to the initial-value
problem

d
u(vo) = o, (o) = \JE+ 0log(1 + 1) —
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is given by
u d§
2y _¢2°
w VE+0log(1+€2) —¢ (2.3)
Solitary wave solutions satisfy the decay conditions u(x) — 0 as x — +oo and correspond to
the level E = 0. The exponential decaying solutions exist in (2.1) if § > 1.

Zeros of the denominator in (2.3) with £ = 0 determine the turning points for the second-
order equation (2.1). In particular, the nonzero real root of transcendental equation

X — X9 =

Olog(1 +u?) —u* =0 2.4

corresponds to the maximum value of the solitary wave. Complex roots are important for
analytic continuation of the solitary wave solutions into the complex plane. Hence, we define
the function

flu) :=0log(1 + u*) — u? (2.5)

and analyze its real and complex zeros in section 2.1. Solitary wave solutions and their ana-
Iytic continuations in the complex plane are studied in section 2.2. Asymptotic properties of
the analytic continuation and the proof of theorem 1.1 are given in section 2.3.

2.1. Zeros of the function f(u)
Let us start with the following lemma:

Lemma 2.1. For every 0 > 1 there exists only one positive root of the nonlinear equa-
tion (2.4) denoted by u*, and this root is simple.

Proof. Consider roots of f(u) : R — R. We have f(0) =f’(0) =0, f'(+v/6—1) =0,

"(u) >0, ue(0,v/0-1),
{/’(u) <0, ue(vVl-1,00),

and lim,,_, y o f () = —oo. This implies that there is exactly one root of f(u) : Rt + R de-
noted by u*. It is straightforward to check that u* # /6 — 1 for any 6 > 1 so that the root u*
is simple. O

Corollary 2.1.  For every 6 > 1, the nonlinear equation (2.4) has only three real roots given
by two simple roots +u* and the double root at 0.

Proof. It is obvious that 0 is also a root of f(u) : R +— R, and it is a double root. By the
symmetry f(—u) = f(u), there exists also a simple root at —u". O

Consider now the function f(u) for u complex. The function f(u)has two branch points at
u = +i. We restrict the consideration by one sheet of the Riemann surface of f(u). Specifically,
we consider f(u) on the set P defined as the entire complex plane with two horizontal cuts
Q1 = (—o00+1i,i], @y = (—oo — i, —i]. The function f(u) is holomorphic in P and has in P
at least three zeros u = u*, u = —u* and u = 0. The following theorem states that f(u«) has no
other zeros in P.

Theorem 2.1. Forevery 8 > 1, the nonlinear equation (2.4) has only three roots in P given
by two simple roots +u* and the double root at 0.

3451



Nonlinearity 32 (2019) 3445 G L Alfimov et al

(2) (b)

Imu D, Imw
f(uh)
+ p A >
D, u Gl 2
> —9 . G
A u B[ ! \
f(u)
0 Re u \ Rew
B J
2 .

Figure 1. The path ~, (a) and its image f(,) (b). The plot for (b) was computed
numerically for f(u) with = 5. The points A, ..., D, are images of Ay, ...,D;.

In order to prove theorem 2.1 we need the following technical lemma, the proof of which
is a straightforward exercise.

Lemma 2.2. Assume that p > 0 is small enough and 0 > 1. Let ~y, be the path in the com-
plex plane shown in figure 1(a). Assume that f(u) is represented on w™ by the main branch of
the logarithm, logu = log |u| + i arg u for arg u € (—m, 7). Then the function w = f(u) maps
Y into f(v,) = fut) UfF(CP) U f(u~) shown in figure 1(b), where

(i) f(u™) is a U-shape curve given in the parametric form by

fu™)=0log(1+ (i—1)?) —(i—1)?% t=p. (2.6)

f(u™) intersects the real axis once, at some point of positive semi-axis;

(ii) f(u) is a copy of f(u™) shifted by 2w0i. f(u') does not cross the real axis;

(iii) f(C?) is a path that connects the endpoint of f(u~) corresponding to t = p with the
corresponding endpoint of f(ut). f(C?) crosses the real axis once, at some point of
negative semi-axis.

Proof of theorem 2.1. Consider the contour I" shown in figure 2. Note that -y, in lemma 2.2
is a part of the contour I'. We assume that R is large enough and p > 0 is arbitrarily small. The
argument principle states that the number of zeros of f(u) (taking into account their multiplic-
ity) within T is equal to the number of turns around the origin that makes f(u) when u goes
around T. Due to symmetry u — # of the contour I" and since f(—R) = f(R) the numbers of
turns of f(u) are equal for the two parts of I situated in the upper and lower half-planes.
Consider the part of I' in upper half-plane between the points ¥ = R and u = —R. Along
this part of T', f(u) makes one complete turn clockwise when passing along the big semi-circle
|u| = R and, due to lemma 2.2, one more complete turn when getting round the cut Q;. There-
fore the total number of turns of f(u)for I' is equal to 4. However f(u) has already three zeros

within I': the simple zeros u = u*, u = —u* and the double zero u = 0. Therefore f(u) has no
other zeros in I'. Since R is arbitrarily large and p is arbitrarily small, we arrive at the desired
result. O
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Figure 2. The contour I for the proof of theorem 2.1.
2.2. Analytical continuation of the solitary wave solution

Simple analysis of the phase plane (u,u’) for the second-order equation (2.1) yields the
following. For 6 > 1, (0,0) is a saddle point on the phase plane (u,u’) with eigenvalues
A = ++/60 — 1. The solitary wave solution corresponds to the homoclinic loop of this equi-
librium. Due to lemma 2.1, there exists unique (up to the involution ¥ — —u) symmetric
homoclinic loop of (0, 0). Therefore there exists unique (up to transformation u — —u) even
solution U(x) such that U(x) > 0 for every x € R and U(x) — 0 as |x| — oo. The function
U(x) can be written in an implicit form as follows:

v du
v /0log(l +u?) —u?

where u* is the unique positive root in lemma 2.1. The solution U(x) decays to zero exponen-
tially fast as |x| — oo,

=—|x|, xeR, 2.7)

Ux) ~ Ce VOIH x| = o0 (2.8)

where C is a constant that depends on 6 only. Two profiles of the solution U(x) are presented
in figure 3 for 6 = 2 and 6 = 5.

Next, we extend the integral in the left-hand side of relation (2.7) into the complex plane,
thanks to the result of theorem 2.1 on the roots of its denominator. In particular, we define

du
U) = ,
(V) /y /Olog(1 + u?) — u? (2.9)

where ~ is a path that connects the points u = u* € R and u = U € C in P that does not
cross the branch cuts Q; and Q. We choose in (2.9) the branch for the square root such that
Vrei$ = \/rei®/2 for ¢ € (—m, ). The integrand has a pole at u = 0 and square root branch-
ing points at u = +u*. We introduce one more cut along the real axis, Q3 = (—oo, u*], and
define the set Q on figure 4(a).
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Ux)

T L X
2 4 6 8 10 12
Figure 3. Plots of the function U(x) versus real x for § =2 and 6§ = 5.
(a) (b)
Im U <::>
Imz
9
1
s| |9 ©
9 u Re U —o+iB a+ifl
Rez
%
-i

Figure 4. The set Q (a) and the strip S (b).

The following results define an analytic continuation of U(x) into the complex plane
z = x + iy, which we denote by U(z). Since U is real and even on the real axis, then U in the
complex plane z satisfies the conditions

U(R)=U(z), U(—z2)=U(2). (2.10)
The analytic continuation of U in z is obtained from inversion of the implicit formula (2.9).

Lemma 2.3. Let z(U) be defined for U € Q by formula (2.9). Then

z(U) = —z(V). 2.11)

Proof. Consider the points U € Q and U € Q. Link U and u* with some path ~y in Q and
consider z(U) defined by (2.9) with this ~. Link U and u* with the path # that is symmetric to
~ with respect to the real axis and consider z(U) defined by (2.9) with this 4. In small vicin-

ity of u* the path ~ has the parametrization u = u* + re'*(") 4- O(r?) and the path 5 has the
parametrization u = u* + re~'*(") 4 O(r?). Then in this vicinity of u*

VI = \ P @)oo £ 00%) a4
Vi) = \/f/(u*)re—w(r) +0() at 7.
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(a) Imu (b) Imu (©) Im u
i i i
h I\Cr Reu s \C’ Reu \C" Reu
AT u -U AT U u* | T u

Figure 5. Paths of integration in the proof of theorem 2.2 used for formula (2.13) (a),
formula (2.14) (b), and formula (2.15) (¢).

Note that f’(u*) < 0 for all # > 1. This implies that the signs of 1/f(u) are opposite on the
pathes y and 7 (otherwise, the function 4 /f («) defined in vicinity of #* in Q has a discontinuity
on the real axis). This proves the symmetry formula (2.11). [l

Now we are in position to prove the following result.

Theorem 2.2. The function z(U) given by (2.9) defines a conformal mapping of Q such

that:
(a) Forr >0
1
z2(r) == ;grl +0(1), r—0, (2.12)
where ‘+" and * — ’ correspond to upper and lower edge of Q3 respectively, and
z (rei¢>) —z(r) = \/gd)fll +0(r), ¢e(—mmn) (2.13)

(b) If U € (0,u*) for the upper and lower edges of Qs, then

i

(=U) ==(U) + NSt (2.14)
(c) The points U = +i map into the points z = Fa + i where «, 8 > 0 are given by
m
a=Jy+Ja, ﬁ:ﬁ’ (2.15)

with

/"* du
J] = 5
1 0log(1 + u?) — u?
0(log(1 + u?) + log(1 — u?))

hi= 7/0 VO0log(1+u?) —u?/=0log(1 — 1) — 1 (\/0log(1 + u?) — u? + /=0 log(1 —u?) —u?)

(d) the image of Q shown on figure 4(b) includes the set S that consists of the
strip {0 <Imz<28} with two vertical cuts S = [—a+if,—a+2i3] and
S =la+iB,a+2i8]
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Proof. By theorem 2.1 the denominator of the integrand in (2.9) has no zeros in the interior
of Q. Therefore the integrand is holomorphic in the interior of Q and the result of integration
in (2.9) does not depend on ~. Hence, the function z(U) in (2.9) is also holomorphic in Q.

Proof of (a). Formula (2.12) follows immediately from formula (2.8). In order to prove
formula (2.13) assume that ¢ € (0, 7) and consider the path shown in figure 5(a). Let
u = re'® be the parametrization on C,. We have

irel® i¢

/ Jo— D — a0 T i

z (re'?)

+ O(r)

that yields (2.13). The same formula arises for ¢ € (—, 0) if the symmetry (2.11) is used.

Proof of (b). Note that for every # > 1 and|Im u| < 1 the following representation holds,

VOlos(1+12) — i = udy(u), (2.16)

where @y is a holomorphic function of u. In the circle |u| < 1 the function ®¢(«) can be
represented by the following Taylor series:

1)k 2k 1/2

0 = (—1Dku
1
+9_1; k1

Therefore, ®y(u) is an even function and Py(0) = /6 — 1 > 0. Consider the path in
figure 5(b) that connects the points u = —U and u = u*, passes along the upper edge of
the cut Qs, and includes C,, the arc of the circle of radius r > 0 situated in the upper half
of the complex plane. We obtain

<I>9(u) = \/9 —1

/—U du B /U du
v A/Olog(1+u?) —u2  Ju= /Olog(1 + u?) — u?

B /UU N log(ldi u?) — u? N </U+/ +/_,U) N log(ldi u?) —u2’

By the representation (2.16), the third integral is equivalent to

/U du _ /U du - / du
—r +/Olog(1+u?) —u? r /0log(l 4 u?) — u? v \/Olog(1 +u2) —u?’
which implies that the first and third integrals in the decomposition formula cancel out.

Since the total integral does not depend on r, its value is computed from the second
integral in the limit » — O:

/ V/0log(1 —|—u2 / V/0log(1 —|—u2
du i

as r—0.
c \/Hlog(l—I—uz)—u2 VO —1

This implies formula (2.14). Applying the symmetry property (2.11) we obtain the same
formula (2.14) for U € (0, u*) and the lower edge of the cut Q3.
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Figure 6. The contour I'y (a) and its image on z-plane (b). The points A,, ..., H, are
the images of the points Ay, ..., H].
Proof of (c). The function z(U) maps the point U = i into
du
20 = ) .

0 /0log(1 + u?) — u? @17
where 7 is a path that connects the points ©* and i, and lies in Q. We take the path 7 in
figure 5(c) as a union of interval of real axis [r,u*], arc C, of the circle of radius r, and the
interval on imaginary axis [ir, i], where r can be taken arbitrarily small. For this choice of -y,
one has

20 = I,(r) + Ic(r) + Li(r), (2.18)
where

L = [ du ,

ur \/0log(l + u?) — u?

I = s

c(r) /c, 0log(1+ u?) — u?

L(r) = / du .

ir /0log(1 + u?) — u?
The value of zy does not depend on r, whereas each of summands in (2.18) does. Consider
the limit » — 0. Both the integrals /,(r) and Ii(r) diverge as r — 0. However, let us show
that the sum 1,(r) + I;(r) has a finite limit as r — 0. By means of parametrization u = i¢,
integral /(r) can be rewritten in the form
1
d
Ii(r)::b/n f N
rV/~0log(1 - €) - &
therefore, both 7,(r) and I(r) are real. Summing up /,(r) and I,(r) yields
o du ! du
L(r) + I(r) = — +
(") +4(r) /r v/0log(1 + u?) — u? /r V/—0log(1 —u?) —u?

/“* ! \/Qlog(l-i—uz)—uz—\/—Glog(l—uz)—uzd
u
1 0log(1 + u?) — u? r /0log(l +u?) — u2y/—0log(1 — u?) — u?

By multiplying the numerator and denominator of the last integrand by

\/Olog(l +u?) —u? + \/—Hlog(l —u?) —u?
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we conclude that the last integral converges when r — 0. Passing to the limit r — 0
yields the real-valued coefficient

o= —lii% [L(r) + Li(r)] = J1 + Ja, (2.19)

where J; and J, are defined below (2.15). Consider now the integral I¢(r). In the limit
r — 0 the logarithm can be replaced by its Taylor expansion and the integral can be
calculated explicitly:

i

i8 = limIe(r) = — .
0= le() = 5 =

(2.20)

Limits (2.19) and (2.20) recover the expressions (2.15) for o, 8 > 0. So, the point U = i
maps to 7o = —a + if and due to (2.11) the point U = —i maps to —zp = o + if.

Proof of (d). Consider the upper part of the set Q situated in upper half-plane. Introduce
the contour I'" in figure 6(a). It passes along the big circle (arcs B;C; and D;E) that is
centered in the origin and has a large enough radius R, includes the intervals of the real
axis E1G; and H|B| and the semi-circle of a small radius r that avoids the pole in the
origin (the arc G1H1). The contour I'* also includes the path getting round the cut Q; that
consists of the line segments u*, u™, and the circle C?.

Let us analyse the image of the contour I'"™ in figure 6 (b). Consider the points A1,
By, E|, G| H| on the real axis in the U-plane. Evidently, z(#*) = 0, so the point A| maps
into the origin in the z-plane (the point A;). It follows directly from formula (2.9) that
the interval A;H, situated on the real axis maps into the interval A,H, that lies on the
real negative semi-axis in z-plane. Next, since f’(u*) < 0, it is straightforward to check
that A;B; maps to the interval A;B, of the positive imaginary semi-axis. According to
formulas (2.12) and (2.13), the arc H;G; of small semi-circle maps into a distant curve
segment H,G,. The smaller is the radius r of the semi-circle, the greater is the distance of
H,G, from the origin in the z-plane. Due to (2.14), the imaginary part of G, is equal to 23
and its real part tend to —oo as r tends to zero. Also due to (2.14), z(—u*) = 2if. Finally,
the image of interval E|F| lies on the imaginary axis in the z-plane.

Consider the great semi-circle (arcs B;C| and D} E)). It follows directly from formula
(2.9) that when R tends to infinity the image of the arc B;C| tends to a distant line segment
of length  that is parallel to the real axis. Similarly, when R tends to infinity the images
of the points D and E| tend to each other and their imaginary parts tend to infinity.

At last, consider the images of the line segments u™, u™, and the circle Cf . As it was
shown in (c), the point i maps into z = —a + i where « and /3 are given by formulas
(2.15). Let u(t) = i — t, t > p be the parametrization on u*. The images of u* are given
by

(1) a+m+/Ft du
Z = —
i /0log(1 +u?) — u?

/i—t du
i /0(log(1 + u?) + 2mi) — u?

where ¢ decreases at z* (f) and increases at 7~ (). Then

) = —a+if+
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@ !
dr VOlog(1+(i—1)) — (i —1)?
dz+ 1

At /Blog(1 + (i— 02) +2mi) — (i —1)2

The behaviour of the functions

fm) =0log(1 + (i —1)°) = (i —1)%,
fut) =0(og(1 + (i —1)?) +2mi) — (i —1)*

is described in lemma 2.2, from which it follows that

Re [/f(u™)] <0, Rel[v/f(ut)]>0, t>p.

When U moves along u~ and u™ in directions indicated by arrows on figure 6(a), the
corresponding point Re [z(U)] on figure 6(b) increases in both cases. This implies that
the image of the area inside I'" is multi-sheeted and covers completely the half-strip
{Rez<0, 0<Imz< 28} withthecutS; = [—a+i8, —a + 2ij].

Passing to the limits R — oo, p — 0 and r — 0 and employing the symmetry property
(2.11) we conclude that the set S belongs to the image of Q. [l

Theorem 2.2 implies the following corollary, which is important for further applications.

Corollary 2.2. Let 0 > 1and «, (3 are given by formulas (2.15). The solitary wave solution
U(x) can be analytically continued to S C C where S is the strip {0 < Im z < 28} with two
vertical cuts §; = [—a+i8, —a +2if] and S; = [ + 15, a + 2i8] shown on figure 4(b).
The resulting function U(z) is single-valued in the interior of S and

(a) if0 <y <2 then limp_, 1 oo U(R+1iy) =0;
(b) if x < —aor x > athen U(x + 2if) = —U(x).

Proof. The function U(z) defined by implicit formula (2.9) coincides with U(x) on the real
axis. By theorem 2.2, the function U(z) is defined in S. This implies that U(z) is an analytic
continuation of U(x) to S. Let U(S) C Q be the image of S on the U-plane. Note, that if 7 is
an arbitrary internal point of S and U = U(Z), then z'(U) # 0 and U’(Z) # 0. This means
that there is one-to one-correspondence between some neighbourhood of z on the z-plane and
some neighbourhood of U on the U-plane. Therefore, (i) there are no two different internal
points z1,z; € S such that U(z;) = U(zz) and (ii) there are no two different points Uj, U, in
the interior of U(S) such that z(U;) = z(U,). Hence U(z) is a single-valued function in the
interior of S and z(U) is a single-valued function in the interior of U(S). The assertion (a) fol-
lows from the formulas (2.12) and (2.13). The assertion (b) follows from (2.14). O

2.3. Asymptotic properties of U(z)

The local behavior of the solution U(z) near the singularity zo with Re(z9) < 0and Im(zp) > 0
is prescribed by the following result.

Lemma 2.4. For every z near zo with arg(zo — z) € (—%, 2F), the solution U satisfies

log | log |z — zo||

Uz) =i+ vV0(z — 20)/1og(z0 — 2) {HO( log |z — zo|

ﬂ as 7 — 20, (2.21)
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where \/u is defined at the main branch with arg(u) € (0,27).

Proof. Combining (2.9) and (2.17) yields the formula

Z—20

_/U du
i \/0log(1+u?) —u?

Let us first define U on the imaginary axis below i so that we can write U = i(1 — V) with
V real and positive. Using the similar representation for the integration variable u = i(1 — v)
yields

- [ -

0 /Ologv +0log(2 —v) + (1 —v)?

=20 =

In the limit V — 0, the integrand can be expanded as

[ s o ()]

Since

1 d v 1
T = + s
Viogv do L/logv] 24/ (logv)3

the integral is represented asymptotically as

—iv 1
—z0=—— |1+ 0| —— vV —0. 2.22
== Zrir | +© (m)] = e
Define +/u at the main branch with arg(u) € (0,27) so that if V is real and positive, then
z — 7o is real and negative. If arg(V) € (=%, 3F) so that arg(U — i) € (—m, ) like on fig-
ure 4(a), then arg(z — z0) € (—3F, Z) like on figure 4(b). Hence, the function (2.22) is con-
tinued in the open region with arg(zg — z) € (-3, 3F).

It remains to justify the asymptotic expansion (2.21). To do so, we use the implicit function
theorem. By substitution

V = iv/0log(z0 — 2)(z — 20)W, (2.23)

we convert the expansion (2.22) to the nonlinear equation:

1 log W log(log(zo — z)) + log§ — 7
wWIil+0O =4/1 .
[ * (Ilog W+ [log(z0 — z)\)] \/ T logl—2) 21og(z0 — 2)
Let us define
. log(log(zo—2)) 1
log(z0 —2) " log(z0 —2)°

so that 4 — 0 and v — 0 as z — zp along any path in the domain on figure 4(b). Since
u = —vlog(v), the two variables are dependent of each other and |v| < |u| Fix the path
7 — 7o and invert the map C 3 v — p := —vlog(v) € C to obtain the map y, +— v satisfying
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B, F,
V
C1 , D1 , E1 Rez
R —Q o R

Figure 7. The contour I'; for the proof of (2.26).

lim,, o (@) = lim,,_,o /(1) = 0. The nonlinear equation for W can then be rewritten as the
root-finding problem F(W, 1) = 0, where

. v (w)] _ L L og — 7+ Tog W
F(W, u) '_W[1+0(1+\y(p)||logW|)} \/1+2,u+ 2(1 g6 + log W)v ().

The function F(W,u) : C x C — Cis C'in Wat W= 1 and C' in y along the path y — 0
with lim, 0 F(1, 1) = 0, lim,,_,0 OwF(1, ) = 1, and lim, o 9,F(1, n) = —1. By the im-
plicit function theorem, there is an unique C' map p — W along the path y — 0 such that
lim,,—,o W(p) = 1 and lim,,_,o W'(x) = 1, which is written in the original variables as fol-
lows:

log |1 —
Wi =1+ o0 (el —all)
log |z — zo
Substitution of this expansion to U = i(1 — V) with V given by (2.23) yields expansion (2.21)
for every z near zo with arg(zo — z) € (—%, 37”), O

The symmetry reflection (2.10) yields the local behaviour of the solution near the symmet-
ric singularity z5 = —Zo with Re(zj) > 0.

Corollary 2.3. For every z close to zj = —Z with arg(z — z) € (—3F, ), the solution U
satisfies U(z) = U(=3) with

. . log |log |z — 2 .
U(z) = —i— \/é(z —zp)1/log(zg — z) [1 + 0O <Wﬂ as 7z —2zp. (2.24)
0

Finally, we define the Fourier transform of the solitary wave solution U by

I(3) = / U(x)e™dx, »€R. (2.25)
R

The following lemma computes the asymptotic behavior of the Fourier integral () as
7 — 0.
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Lemma 2.5. It is true that

2Vl g, 1

Proof. Consider the contour I'jy = A{B;CDE F;G; shown in figure 7 and the integral

/ U(z)e™dz.
Iy

By theorem 2.2, the integrand is analytic inside I';, hence the integral is equal to zero. There-
fore, we decompose the integral into the sum of integrals

R
0=/U(z)ei}‘zdz=/ +/ +/ +/ +/ +/
r, -8 JEr) Jipe) St Jof o S
—a+2iB .
+/ +/ +/ +/ +/ +/ U(z)e™ dz (2.27)
a+2if U epy I [A1B1] [BiCi]

and consider each integral consecutively. We have
R .
lim U(z)e™dz = I(5). (2.28)

R—o0 _R
Thanks to (a) in corollary 2.2, we obtain

lim U&kmﬁz+/ U(z)e™*dz = 0. (2.29)

k=00 JIEF)) B:C1]

By using the parametrization z = ¢ + 2i3 and the symmetry property in (b) of corollary 2.2,
we obtain

lim
R— o0

+

/ U(Z)ei%z dz / U(Z)eizz dz
[A]B]] [F]Gl]

—Q
= ’ / U(t + 2iB)e 27! dr| +
—00

o .
/ U(t +2if)e 27l dr
(e}

< / \U(t)] e 2P dr + / \U(t)] e dr < e=2P~ / |U(t)|dt.  (2.30)
—00 « R

Because the function U is bounded on the interval [—a + 2i3; o 4 2i], we obtain

—a+42ip '
/ U(Z)el%Z dZ
a+2iB

<2 max U(z)|e= 5%, 2.31
B[_a+ma+2w]l (2)] (2.31)

It remains to estimate the integrals

I (%) = /ﬁ +/c,j +/z+ U(z)e™ dz, 1_(») = /r +/p +/r U(z)e'™ dz.
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Formulas (2.27)—(2.31) imply that
1(30) = =1 (3) = I_(3) + O (e7*F7), (2.32)

hence we need to determine the asymptotical behavior of I (s¢) as s — oo. Thanks to the
singular behavior (2.24), the integral

/ U(Z)ei%z dz
cf

tends to zero as p — 0. Therefore
a+2iB ) a+ip .
I () = / Ui(z)e™* dz + / U,(2)e”* dz,
a+if a+2i8

where Uj(z) and Us(z) are the values of U(z) on both sides of the branch cut at Re(z) = o and
Im(z) > B. Introducing parametrization z = oo+ i(3 + t) on the path of the integration one
has

B
L () = iel =) /O [U(a+i(B+1) — Us(a +i(8+1)]e™ dr

where the boundary values satisfy the singular behavior from (2.24):

Un(a+i(B + 1)) = —i — iV logt + %‘ {1 +0 (%ﬂ . 140, (233)

i log |1
Us(a+1i(B+1)) = —i — iVl /logt + % [1 +0 (Oﬁl)igoﬁtl)} , t— +0. (2.34)

Therefore, we obtain as t — +0:

U(t) := Ur(a +i(B +1) = Us(a +i(B+1))

i i log | 1
= —iV0r \/logt+m—\/logt+5m 1+0 log | log |
2 2 |log |
= — ?F\/él |:1+O(10g1|10gt||>:|
\/logtJr%lJr\/logtJr% | log 1]

im0t o log | log 1| (2.35)
V/|log 1| v/ log 1|

The integral I, (>¢) computed at the integrand (2.35) is the Laplace integral with logarithmic
singularity at # = 0. The asymptotical behavior of I (3r) as ¢ — oo is found by the Laplace
method, see formula (1.38) on p 48 in [14],

/ "B log e () dt ~ 5 (log 30 Sy (log ), a0 = T(b)(0), (2.36)
0

k=0

where f(t) € C'[0,%], b > 0 and ¢ € R. Making use of the asymptotic formula (2.36) with
b =72 and c = —1/2 yields
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/0 e | 1 \]
— _ (—B+ia)s
I () o8 =& _1 +0 <log%>_ , 2 — 00.

In the same way, we obtain

™0 . [ 1 i
[ (%)= ———F——e"F70= |1 L O
(9) 22y/log P i * log s / |

By using (2.32) and neglecting the smaller exponential terms, we finally obtain (2.26). [

X
d
8

3. Solitary wave solution to the fourth-order equation

Here we consider the fourth-order differential equation

2d4u . d%u n Ou
eE—+——4+u———
dx*  dx? 1+ u?
where € is a small positive parameter. Equation (3.1) arises as the next-order continuous
approximation for the advance-delay equation (1.5) taking into account the expansion (1.10)
with the correspondence
i (3.2)
£E=——. .
2V/3
The main goal of this section is to describe a countable sequence of solitary wave solutions
with € near {&,, } men, where the sequence {&,, }nen accumulates to zero as m — 0o according
to the asymptotic representation:

2c
7(2m —1)’

=0, 3.

Em m e N (3.3)
where a > 0 is defined by (2.15). In particular, the spacing between two consequent values of
the sequence is asymptotically given by

1 1 T

—— — — a m— oQ. (3.4)
Em+l  Em o]

With the correspondence (3.2), the asymptotic formula (3.3) is equivalent to (1.11).

We obtain the asymptotic values (3.3) by means of two analytical methods, one relies on
the semi-classical analysis of oscillatory integrals (section 3.1) and the other one relies on
the beyond-all-order asymptotic expansions (section 3.2). Neither method is rigorous and has
been fully justified. Nevertheless, the outcomes of the two methods are identical and these
outcomes are confirmed by the numerical results (section 3.3).

3.1. Analysis of oscillatory integrals

Let U be the even, positive, and exponentially decaying solution to the second-order equa-
tion (2.1) defined in the implicit form by (2.7). We are looking for an even solution to the
fourth-order equation (3.1) in the perturbed form u = U + v. Substitution yields the following
persistence problem for v:

L.v = H. + N(v), (3.5)
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where
&
2
LE.——aa—@—i—G—l (3.6)
is the linearization operator at the zero solution,
d*U
HE = 62@ (37)

is the source term, and

2 2 _ 72 _ I
U*(3+ U?) e UB - U?) +o(1 - U?

N() = —0
() TENDE 1+ U22(1 + U2 + 200 + 0%

(3.8)

include both linear and nonlinear terms in v. If the source term H. is zero (if € = 0), there
exists a solution v = 0, hence one can hope that small H, for small € # 0 generates small v
in Dom(L.) = H*(R) satisfying equation (3.5). Unfortunately, L. is not a Fredholm operator
in L?(R) because 0 € o(L.). Since o(L.) is purely continuous, a bounded solution v of the
inhomogeneous equation

L.v=H, 3.9)

in the space of even functions with v(—x) = v(x) for x € R generally develops oscillations
in x as |x| — oo [48, 49]. The only possibility to avoid oscillations in the bounded solution v
solving the inhomogeneous equation (3.9) is to satisfy the constraint /. = 0, where

I = / H.(x)e*=*dx. (3.10)
R
Here k. is the only real positive root of D, (k) = 0, where
D.(k):=—*+Ik*+0—1, keR

is the dispersion relation for the operator L. It is clear that k. = ¢~! + O(1) as € — 0 and
in particular, k. — 00 as € — 0. As is shown in [48], if I. = 0, then v = L7'H, € H*(R).
As is argued heuristically in [1], if I, = O for some small €, then there exists a unique solu-
tion v € H4(R) to the persistence problem (3.5) for € near g¢. Justification of the latter claim
requires new analytical tools and is open for further studies.

Hence, we are looking for zeros of I. as € — 0. Integrating (3.10) by parts four times yields
the equivalent expression for I.:

I = kie? /]R U(x)e*=*dx = k*%I(k.), (3.11)

where I(5¢) with ¢ = k. is given by (2.25). Since k. = ¢! 4+ O(1)as ¢ — 0, substituting the
asymptotic behaviour (2.26) into (3.11) yields the asymptotic behavior

I 2mv/6
log(1/e)
The leading order of I. vanishes at {e,, }men given by (3.3).

e P/ cos(afe) as e—0. (3.12)
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3.2. Beyond-all-order asymptotics

By studying the fourth-order equation (3.1) using beyond-all-order methods, we can recover
the asymptotic result (3.3). In particular, we will show that the asymptotic solution contains
two Stokes lines, each of which switches on an exponentially small contribution which does
not decay in the far field. Solitary wave solutions are associated with the special cases in
which the two contributions cancel.

The central idea of exponential asymptotics is that a divergent asymptotic series expansion
can be truncated optimally, and when this occurs, the truncation remainder is exponentially
small in the small parameter [3, 4, 6]. By rescaling the problem to obtain an equation for the
remainder, it is possible to isolate exponentially small contributions to the asymptotic solution
behaviour, which are typically invisible to classical asymptotic power series methods.

The process we use for identifying Stokes lines is based on the matched asymptotic expan-
sion technique described in [11]. We incorporate the use of late-order term analysis, devised
by [8], which extends the matched asymptotic expansion technique so that it may be applied
to nonlinear differential equations. The steps of this method are as follows:

e Determine the behaviour of the late-order asymptotic terms of the solution; that is,
expand the solution as an asymptotic power series in a small parameter and then obtain
an asymptotic approximation for the jth series term in the limit that j — oc.

e Use the asymptotic form of the late-order terms to optimally truncate the asymptotic
series. Rescale the equation to obtain an expression for the remainder term.

e Perform a local asymptotic analysis of the remainder term in the neighbourhood of Stokes
lines, and apply matched asymptotic expansions in order to determine the exponentially
small quantity that is switched on as the Stokes line is crossed.

Using this method, we will establish that the exponentially small oscillations present in the
solution u(x), denoted by ues(x), have the following asymptotic behaviour as € — 0:

0, x < —a—94,

Uose (X) ~ Z\}T%e—ﬁ/e sin (xta) , x€(—a+d,a—9), (3.13)
V0 o—Be [sin (3£9) + sin (*=9)], x>a+4,

24/log1/e €

where § = 0(61/2) describes a neighbourhood of a special line in the complex plane
known as a Stokes curve. The two exponentially small sinusoidal contributions switch on
rapidly in this neighbourhood as the associated Stokes curves are crossed at x = +q. The
asymptotic approximation (3.3) is identified from the condition that the solution tends to
Zero as X — +00.

The particular solution satisfying (3.13) is obtained by requiring that the solution tend to
zero as x — —oo, indicating that all exponentially small contributions are zero in this limit.
It is possible to obtain different solutions by imposing conditions such as symmetry about
x = 0, or requiring that the solution tend to zero as x — +o00. Each of these choices produces
the same result (3.3).

We begin by expressing u(x) in terms of an asymptotic power series

u(x) ~ > Juy(x;log 1/e), (3.14)

J=0
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where u; only contain logarithmic terms in €. In general, including the logarithmic behaviour
requires a nested power series with multiple length scales; however, this complication can
be avoided in the present study by permitting the series terms u; to vary logarithmically in €.

By applying the asymptotic series (3.14) to the governing equation (3.1), we obtain at lead-
ing order

d2u0 n GMO
= =0,
dx? 0 1+ uj

(3.15)

which is the second-order equation (2.1). We therefore set up(x) = U(x), where U is defined
and studied in section 2.

By substituting (3.14) into (3.1) and matching at O(¢%) as € — 0, we can determine a
recurrence relation for the series terms, given by

du;_ d%u; Ou:(U* — 1
e )
e dx (U2 +1)

The omitted terms are proportional to u;_; with k > 1. These terms are smaller compared
to the retained terms in the limit that j — oo due to the divergence of the asymptotic series
(3.14). Consequently, these terms do not play a role in the exponential asymptotic analysis. By
theorem 2.2, U(x) has singularities in its analytic continuation at x = £« % i3, with the signs
chosen independently. We see that obtaining u; from u;_; requires taking four derivatives of
the u;_; term, and two integrations, This indicates that any singularity in «;_; must also appear
in u;, with a strength that has increased by two. This repeated differentiation causes the series
(3.14) to diverge.

For singularly-perturbed problems, it was observed by [10] that asymptotic behaviour of
the terms of a divergent asymptotic series obtained by repeated differentiation are given as a
sum of factorial-over-power contributions, containing the most singular terms present at each
order of the asymptotic expansion. Motivated by this observation, we attempt to write the
global form of the series terms u; as a sum of terms with the factorial-over-power expression
given by

=0, j>1. (3.16)

F(x;log1/e)T(2j — 1)
X ()7

where F and  are to be defined subject to the condition  (xg) = 0, where x is a singularity
of U(x) nearest to the real axis. Since U(x) has four singularities, located at x = +a £ if3, the
asymptotic behaviour of the late-order terms u; is therefore given by a sum of four factorial-
over-power ansatz terms (3.17).

By substituting the ansatz (3.17) into the recurrence relation (3.16), it is possible to deter-
mine the form of F and  associated with each singularity. We see that as j — oo, u; is dom-
inant compared to u;_; for k > 1. This confirms that the omitted terms in (3.16) will not
contribute at any of the orders required to determine the late-order behaviour of the system.
We will perform this analysis to determine the late-order terms associated with the singularity
at xo = —« + i3, and state the remaining contributions without derivation. In particular, we
find at O(u;4) that

uj(x) ~

J— 00, (3.17)

2
(?jf) +1=0, X(x0) =0, (3.18)

which yields
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x(x) = %i(x — xp). (3.19)

We recall that the Stokes phenomenon describes the switching of exponentially small solution
components, and can only occur if Re(y) > 0. Therefore, we disregard the negative choice of
sign in (3.19) and write x(x) = i(x — xo).

At O(ujt1/2) we obtain

dr

&
which yields constant F. In order to obtain F, we must and s;—we—must match the global
behaviour of the late-order ansatz (3.17) with the local behaviour of the solution for U(x) in
the neighbourhood of the singularity at xo.

We therefore define a scaled variable 7, defined by €17 = X — Xo, and match a local solution
in the neighbourhood of the singularity with the inner limit of the outer solution for the series
term ansatz. The technical details of this process are illustrated in detail in [11]. The asymp-
totic matching reveals that

Vo

F=——, 3.21
2¢/log1/e (3.21)

0, (3.20)

which we present here for completion, although the actual value of F is not used in the sub-
sequent analysis.

Repeating this procedure for the three remaining singularities and adding the results gives
as j — oo:

FT(2j — 1) FT(2j — 1)
4O~ AP Dt a s B
n FI'(2j—1) ' FI'(2j — 1) - (3.22)
ix—a—ip)]¥~1 = [-i(x—a+iB)]¥!

Once the late-order terms have been obtained, there exist several methods that may be used
to find the Stokes structure of the solution, and to determine the exponentially small behaviour
that is switched as the Stokes lines are crossed. One can use Borel summation [2, 4, 5, 21, 22]
or matched asymptotic expansions [8, 11] in order to determine the Stokes line contributions.

In both cases, the critical idea is that the divergent asymptotic series may be truncated in
an optimal fashion, which minimizes the approximation error. This optimal truncation point
is controlled by the form of the late-order terms, and may be determined simply from this
asymptotic series term behaviour. We will again concentrate on the contribution due to the
singularity at xo = —«a + i3. The corresponding analysis for the remaining contributions is
omitted, as they may be obtained in similar fashion.

We truncate the asymptotic series (3.14) after N terms to obtain

N—1
u(x) = Z Hu;(x) + Ry (x), (3.23)
j=0

where Ry is the exact remainder after truncation. As is discussed in [6], the optimal truncation
point typically occurs at the value of j for which the jth term of the asymptotic series is small-
est. We therefore require the value of N which minimizes ¢*Vuy. If we assume this occurs after
a large number of terms, we may apply the ansatz (3.17) to uy, and then minimize the resultant
expression in order to show that the minimum value is obtained for N ~ |x + « — i8] /2e.
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We write N = |x + a — i3] /2¢ + w, where 0 < w < 1, in order to ensure that N takes integer
value.

Substituting the truncated series (3.23) into the governing equation (3.1) and using the
recurrence relation (3.16) when necessary, gives as € — 0

2d4RN dzRN N dZI/lN

o e €T
where the omitted terms are small in the asymptotic limit.
The solution behaviour for (3.24) in regions where the right-hand side is small, and the
problem may therefore be considered homogeneous, can be obtained using the Liouville—
Green (JWKB) method in the limit that e — 0, giving Ry(x) ~ Ce iFa=i8)/¢ where C is
some constant. Importantly, near the Stokes line, the right-hand side of (3.24) will not be
negligible, and this solution is not valid. Consequently, to determine Ry near Stokes lines, we

write

(3.24)

Ry(x) ~ Se-itta=if)/e a5 ¢ 4, (3.25)

where S is a Stokes multiplier, or a quantity that is constant away from the Stokes line, but per-
mitted to vary rapidly in the neighbourhood of the Stokes line. The remainder equation (3.24)
becomes, after some simplification

g o €2N+1FF(2N+ 1) ei(x+oz—i6)/e.
dr © A4fi(x + a — ip)]N T

(3.26)

Recalling that N = |x + a — /3| /2¢ 4+ w, we apply a change of variables, expressing the sin-
gulant in polar coordinates to give i(x + a — i) = re”. Stokes lines typically follow radial
directions in this coordinate system, so we restrict our attention to angular variation. Noting
that N = r/2¢ + w, and applying Stirling’s formula, we reduce (3.26) to

dS  iFV2mr

a0 " 4e2
as € = 0. We see that the right-hand side of this expression is exponentially small, except
on ¥ = 0, across which the Stokes multiplier varies rapidly. This is therefore the Stokes line
associated with the late-order behaviour, and corresponds to Im(x) = 0 and Re(x) > 0, as
expected. This condition defines a line extending vertically downwards from the singularity at
Xo = —a+1f along Re(x) = —a. In order to determine the quantity switched as this Stokes
line is crossed, we apply an inner expansion in the neighbourhood of this curve, given by
¥ = €'/2¢. This gives

ds iF\/zﬁewz .
d¢ 4
We apply the condition that the Stokes contribution is zero as Re(x) — —oo, which implies
that S is zero on the left-hand side of the Stokes line (¢ — —o0). Solving (3.28) with this
condition gives

exp (g(eh9 1) -0 (g n Zw)) (3.27)

(3.28)

I
iFv2m / e~ 24t (3.29)

S(@)~

Crossing the Stokes line in the positive ¢ direction is equivalent to taking the limit as ¢ — oc.
Hence, as the Stokes line is crossed, the value of S varies smoothly in a region of width O(¢!/?)
from zero to iSy,, where Son = 7F /2.

3469



Nonlinearity 32 (2019) 3445 G L Alfimov et al

Im(x)
Singularity

D

—a+if a+if Branch cut

Stokes line

Ry =0

Ry ~ mFe P/¢sin (z+a)
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Figure 8. Complete Stokes structure for u(x). In the region Re(x) < —a, there are no
exponentially small oscillations. In the region —a < Re(x) < a, there is one oscillatory
wave contribution. In the region Re(x) > «, there are two oscillatory contributions.
Each oscillatory contribution is switched on smoothly but rapidly across the Stokes
lines, which are depicted as thick gray lines at Re(x) = —a and Re(x) = a.

Hence, using (3.25), the contribution that is switched on across the Stokes line associated
with the singularity at x) = —« + i, which follows the curve Re(x) = —q, is given by

Ry(x) ~ iSpe 0Ha=i8) g e 0. (3.30)

Using similar analysis, we find that the Stokes switching contribution associated with the
singularity at Xo = —« — i3, which also follows the curve Re(x) = —a, is given by the com-
plex conjugate of this expression. Furthermore the contribution that is switched on across the
Stokes line associated with the singularity at x;; = o + 153, which follows the curve Re(x) = «
is given by

Ry(x) ~ —iSppe'™™ 2718 as €0, (3.31)

while the contribution associated with the singularity at X;; = o — i3, which is also switched
on across the Stokes line Re(x) = «, takes the corresponding conjugate behaviour. Combining
the four contributions gives the composite exponentially small behaviour Ry as

Ry(x) ~ iSje A/e(e71lFa) _gilta)y 45 e=hle(emilma) _ gilv=a)y (3.32)
where S; switches rapidly from zero to S,, in a region of width O(¢!/?) about the Stokes line
Re(x) = —a, while S; switches from zero to S,, about the Stokes line Re(x) = a.
It is simple to rewrite this in terms of real-valued trigonometric functions, giving
Ry(x) ~ 2816~/ sin (x - O‘) 128 P/ sin (x + O‘) . (3.33)
€ €

This gives the asymptotic expression given in (3.13) and illustrated in figure 8. The asymptotic
result (3.3) is recovered by considering the behaviour of solutions in the region of the complex
plane in which both oscillatory contributions have been switched on, or Re(x) > a. It is clear
from (3.33) that in the region Re(x) > «, the oscillatory contribution may be rewritten as

Ry(x) ~ 2rFeP/¢ cos (g> sin (E) , as e — 0. (3.34)

€ €
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When written in this form, it is clear that Ry cancels in this region Re(x) > « if
afe = (2m — 1)/2 with m € N.If we denote these choices of the small parameter as €, this
yields the asymptotic result (3.3).

The beyond-all-order asymptotic method produces formal expressions; however, signifi-
cant work has been performed in making this method rigorous using Borel transform methods
(see, for example, [2, 4, 5, 21, 22]). For this problem, establishing the results with full rigour
would require obtaining precise error bounds on the late-order term approximation (3.17).
Once the late-order asymptotics are rigorously justified, Borel transforms may be applied in
order to obtain the remainder Ry as an integral expression that can be bounded, as in [2]. A
fully rigorous analysis is quite technical, and beyond the scope of the present study.

We observe that the beyond-all-order asymptotic method recovers the same asymptotic
representation as in (3.3) so one can wonder why this highly technical method is used to derive
the same result as the much simpler method relying on analysis of oscillatory integrals. The
utility of the beyond-all-order asymptotic method lies in obtaining an explicit asymptotic form
for the exponentially small contribution, given in (3.13). By isolating this contribution, we are
able to directly observe the important role played by the Stokes phenomenon in describing the
solution behaviour on this scale.

3.8. Numerical results

We confirm numerically the validity of the asymptotic formula (3.3) by computing solutions
to the fourth-order equation (3.1) that decays to zero at infinity.

Define a dynamical system in the phase space (u,u’,u”,u""") associated with the fourth-
order equation (3.1). The only equilibrium is O = (0,0, 0,0), hence the solitary wave solu-
tions correspond to homoclinic loops to this equilibrium. The system is conservative due to
the first integral

SBudu [ du\> du\ >
E=¢2 lzdﬁdx - (dﬁ) ] + (dx> +u? — 0log(1 + u?), (3.35)

which generalizes the first integral (2.2) of the second-order equation (2.1). The fourth-order
equation (3.1) is invariant with respect to the transformation x — —x, therefore the dynamical
system is invariant with respect to the involution

o (u, u/, I/t”, u///) - (u’ —u’,u”, _u///).

The invariant set of oy is the 2D plane § = {&’ = 0,u’”” = 0}. Since equation (3.1) is also
invariant with respect to the transformation u — —u, the dynamical system is invariant with
respect to another involution

oy (wd ") = (—u,—d,—d",—u").

The equilibrium O lies in & = {€ = 0}, the zero level of the first integral. Evidently, & is
a 3D set. The four eigenvalues in the linearization of the dynamical system at O are given by
two pairs +A; and £\,, where

Al :\}Zs\/,/1+452(9—1)—1, Azzés\/,/1+452(9—1)+1.

Therefore, O is classified as the saddle-center point for any € and 6 > 1. This implies that
there exist a pair of outgoing trajectories W]Jf » of O and a pair of incoming trajectories 7, of
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Figure 9. (A) The plot of W(e) for # = 5. The three greatest zeros of W(e) are shown
as blue, red, and green balls: ; ~ 0.321 28, ¢, ~ 0.22152 and €3 ~ 0.166 84. (B) The
solution profiles corresponding to €, €2, €3. The colors (blue, red and green) of the
profiles corresponds to the colors of the balls in panel (A).

0. The pair of trajectories '71+ and y;r , as well as ;" and y, , are related with each other by
the involution o,. Similarly, the trajectories vf and 7, , as well as 72+ and v, are related by
the involution o;.

All the trajectories ’yfz with the connection to O are also situated at the zero energy level &.
The homoclinic orbit arises due to an intersection of 7" (or 757) with 7, (or 75 ). The intersec-
tion of two trajectories within the 3D set & does not correspond to the generic case, hence the
homoclinic orbits are not generic. However, homoclinic orbits may exist for selected values of
the governing parameter € as a result of co-dimension one bifurcations.

In what follows we restrict the consideration by even solutions to the fourth-order equa-
tion (3.1). They correspond to the homoclinic orbits of O that are invariant with respect to the
involution . In order to compute these orbits and the corresponding values of € we make use
of the fact that a symmetric homoclinic orbit in a reversible system must intersect the invari-
ant set of the involution (see, e.g. lemma 3 in [47]). Hence the trajectory fyf“ (or *y;r ) has to
cross the plane S. Then ~y,” (or v, ) also crosses S at the same point and the homoclinic loop is
composed from the two pieces of these trajectories before they hit the plane S. Since 'yl+ and
7;“ are related by the involution o3, it is sufficient to consider the trajectory fy]+ only and to
detect numerically its intersections with the plane S.

For a given value of € we compute the trajectory *yl+ until the first point Py where u’|p, = 0
and register the values W := u"’|p,. Then we vary the value € and plot W versus €. This plot
for § = 5is shown in figure 9, panel (A). We can see that W oscillates in € and has many zeros.
For each zero of W, both u'|p, and u”|p, vanishes, hence ;" intersects S at Py and represent
the homoclinic orbit.

The numerical computation of ﬁ starts from a vicinity of O where the components
u, ', u”,u'"" are small. Then 7;" can be extended to larger values of u,u’,u”,u"" by means
of the fourth-order Runge—Kutta method. Figure 9, panel (B), represents three profiles of the
solitons corresponding to three largest zeros of W at £ = 0.321, €, &~ 0.221 and €3 ~ 0.166.
We note that the dependence of amplitude of the solitary wave on € is not monotonic. This
fact was re-checked by series of numerical computations with different steps and different
starting points at *yl+.
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Table 1. The values € corresponding to the homoclinic orbits of equation (1.9) at 6 = 5.

2a

m En = e Computed ¢, eal—ert,
1 0.42505 0.32128
2 0.25503 0.22152 1.40163
3 0.18216 0.166 84 1.47497
4 0.14168 0.13322 1.51259
12 0.05101 0.05029 1.55773
13 0.04723 0.04663 1.55911
14 0.04397 0.04347 1.56117
2} l/e ,:,::ﬁ"i
P
20 § -
18} o
16 F A
14}
12 |
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2 »
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Figure 10. The numerical values of &;,! corresponding to homoclinic orbits (red balls)
and their asymptotic values (blue balls) computed from (3.3) for § = 5.

More values of € for which W is zero are shown in table 1. It follows from table 1 that the
values {¢;, !} ,en are asymptotically equidistant with spacing close to 7/ where « is the real
part of the singularity of U(z). For § = 5, we have detected numerically « ~ 2.003, therefore
7/ & 1.568, which is close to the numerical values in table 1.

Figure 10 presents the values {&,}men computed numerically and from the asymptotic
formula (3.3). The correspondence is fairly good. Similar agreement is observed for other
values of 6.

4. Approximate solitary wave solutions to the advance-delay equation

Here we consider the advance-delay equation:

1 Ou(x)

7 [u(x+h) — 2u(x) + u(x — h)] + u(x) — 5 u()? =0, 4.1
where & is a small positive parameter for the lattice spacing. The main goal of this section is
to show the existence of a countable sequence of approximate solitary wave solutions to the
advance-delay equation (4.1) at & near {h,, },ncn, Where the sequence {/h, }men accumulates
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to zero as m — oo according to the asymptotic representation (1.12), where a > 0 is defined
by (2.15). If we use h,, = 2v/3ep according to the correspondence (3.2), then the spacing
between two consequent values of {&,, },,en is asymptotically given by

1 1 V3

—— = — as m— 00, “4.2)
Em+1 Em (&%

which is different from the asymptotic result (3.4) for the fourth-order equation (3.1).

Approximate solitary wave solutions are again obtained by two equivalent methods in sec-
tions 4.1 and 4.2. These approximate solutions are related to the transparent points in defini-
tion 1.1, which are computed numerically in section 4.3.

4.1. Analysis of oscillatory integrals

Let U be the even, positive, and exponentially decaying solution to the second-order equa-
tion (2.1) defined in the implicit form by (2.7). We are looking for a symmetric solution to
the advance-delay equation (4.1) in the perturbed form u = U + v. Substitution yields the
persistence problem for v:

Lyv = H, + N(v), (4.3)

where N(v) is the same as in (3.8), L, is a new linearization operator at the zero solution given
by

(Ly0)(x) := =75 [o(x + h) = 20(x) + v(x = A)] + (0 — )o(x), (4.4)

and H}, is a new source term given by

1 d*u
Hy, ::ﬁ[U(x+h)72U(x)+U(xfh)]—@. (4.5)
Fourier transform for the operator L, yields the dispersion relation:
4 kh
Dy(k) := i sin? <2> +60-1, keR (4.6)

If 6 > 1, there exist no real roots of the transcendental equation D,(k) = 0. However, as
h — 0, there exists a countable sequence of roots at k, = 2mnh~! + O(1), n € N, where the
O(1) correction is purely imaginary.

Although the dispersion relation Dy(k) = 0 does not exhibit real roots in k, the inverse of L,
on L*(R) is bounded but singular as & — 0. As a result, iterations for the fixed-point problem
(4.3) do not converge to a unique fixed point unless a countable number of solvability condi-
tions is added. For the solution of the linear inhomogeneous equation L,v = Hj, the set of

solvability conditions is given by {I,S") = 0},en, Where
Ii(ln) ::/Hh(x)eik""dx, n € N. 4.7
R

By change of variables and integration by parts, these integrals become

" 4 5 (keh
I = [kﬁ - h281nz< ; ﬂ 1(ky), (4.8)
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where 1(5¢) with 3¢ = k, is given by (2.25). Since k, = 2mnh~! + O(1) as h — 0, substituting
the asymptotic approximation (2.26) into (4.8) yields the asymptotic result:

27/ 0 -
//T\f 6727rn6h !

log(2mnh—1)

h cos(2mnah ™). (4.9)

Since {I, é")}neN forms a hierarchic sequence of exponentially small terms, the dominant
contribution is given by I,(l]). The leading order of I,Sl) vanishes at {h,, }men given by (1.12).
This asymptotic computation defines an approximate solitary wave solution to the advance-
delay equation (4.1) for i near {h,, }men-

There are infinitely many zeros of the dispersion relation Dj(k) = 0 in k and &, is only the
smallest root. Even if /(" vanishes at /,,, we know from (4.9) that 1{* does not vanish at this £,
therefore, we cannot predict that the continuous solutions « € C(R) to the advance-delay equa-
tion (4.1) exist for & near this /,,. The only exception is the value &, = v2, for which reduction
of the advance-delay equation (4.1) to the integrable Ablowitz—Ladik lattice yields an exact
solution for u € C(R).

4.2. Beyond-all-order asymptotics

By studying the advance-delay equation (4.1) using beyond-all-order methods, we can recover
the asymptotic result (1.12). We will show that the asymptotic solution again contains two
Stokes lines, each of which switches on an exponentially small contribution which does not
decay in the far field. Approximate solitary wave solutions are associated with the special
cases in which the two contributions cancel.

We will establish that the exponentially small oscillations present in the solution u(x),
denoted by uos:(x), have the following asymptotic behaviour as & — 0:

0, x< —a—4,

_%efzwﬁ/hsin (h();lim)) xe(—a+68,a—90),

78w3sze—2wﬁ/h [Sin (W) +sin (2”(27*“))} , x>a+d,

where § plays the same role as in (3.13), and F is a constant that is proportional to 1/+/log 1 /A.
The two exponentially small sinusoidal contributions switch on rapidly as the associated Stokes
curves are crossed at x = +q respectively.

This analysis differs in some technical details from the fourth-order equation (3.1) due to
the difference terms. We therefore follow the method established in for differential-difference
equations in [29], and subsequently utilised for difference equations in [25, 26].

We first apply a Taylor expansion about 7 = 0 to smooth solutions of the advance-delay
equation (4.1), giving

2 K Ou
il (2r) _ -0
h2 ; (2r)!u tu 1+ u? ’ (4.10)

Uosc (x ) ~

where u”) represents the rth derivative of u(x) with respect to x. This is a differential equa-
tion with infinite order, unlike the fourth-order equation (3.1). We expand u as a power series,
giving

o0

u(x) ~ Z h¥u;(x;1log 1/h). 4.11)

J=0
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Applying this series to (4.10) and matching at leading order gives the second-order equa-
tion (2.1). We therefore set again ug(x) = U(x), where U is defined and studied in section 2.
Matching in the small / limit at O(h¥) we obtain a recurrence relation for k > 0,

j+1 o (2r)

Ui Ou;(U? — 1)
2 e, TR 4.12
2 U et @12

where the omitted terms are smaller than those terms retained in the limit that j — co. As in
the analysis of the fourth-order equation (3.1), we may use this recurrence relation to deter-
mine the asymptotic form of the series terms u; in the limit that j — oc.

In order to determine the late-order terms, we require an ansatz with similar form to (3.17),
however the choice is made more complicated by the observation that the number of contrib-
uting terms grows as r increases. We therefore again apply the recursion relation (4.12) to the
leading-order solution in the neighbourhood of the singularity at x( and obtain:

i (x) ~ F(x;log 1/m)T(2))
, X!

where F and x are to be defined and x(xo) = 0. We note that the representation (4.13) differs
from (3.17), as the argument of the gamma function differs from the power of the denominator
due to the presence of the summation expression in (4.12), which introduces new terms into
the expression for u; at each recursion.

Putting (4.13) into (4.12) and matching at O(uy), we obtain

Jj— 0, (4.13)

k

2k —2r —1 dy \ >
22((20!)(—(1};) —0. (4.14)

r=1
Now, as late-order terms are only valid for k being large, it is possible to show that we intro-
duce only exponentially small error into y by taking the behaviour of this equation as k — oo.
We evaluate the finite sum, and take the leading-order behaviour in this limit. Recalling that
X(x0) = 0 at the singular point xo, this gives

d
cosh <d§> =1, x(x)=0. (4.15)

This expression is easily solved to give x(x) = 27iM (x — xo), where M € Z. Due to the form
of the late-order ansatz (4.13), the dominant behaviour must associated with nonzero values of
x that have smallest magnitude on the real axis, associated with M = 31. We therefore have

x(x) = £27i(x — xo). (4.16)

As in the previous case, for each singularity, we will have one choice of x that induces Stokes
switching, which yields x(x) = 27i(x — xo) for xp = —a +i5.
Putting (4.13) into (4.12) and matching at O(u;_; /) gives

k 2r—1
§ k2 1) ()R
2r:1 (2r —1)! dx dx =0, @17

which is solved to leading-order in the limit that k — 0, giving

dy dy . dx\|dF _ .dF
|:dxCOSh<dx) +281nh<dx>] P 72mdx =0. (4.18)
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Consequently, we know that F is constant. This constant may be determined using asymp-
totic matching in the same fashion as the fourth-order equation. This is a more complicated
process for discrete problems, due to the complexity of the expression (see, for example,
[25, 26]). Performing this analysis reveals that F is a real constant proportional to1/4/log 1/h,
which can be obtained numerically. This analysis also validates the choice of ansatz (4.13).
Furthermore, this constant is identical for each singularity.

Adding all four singularity contributions and leaving the constant F' in the general form
gives as j — 00,

(x) ~ FT(2)) N FT(2))
! 27i(x+a —if)F~!  [27i(x + a +i8)]¥ !
FT(2)) FT(2))
[27Ti(x —a— iﬁ)]2j—1 [—27Ti(x — o+ iﬁ)]zj—] . (4.19)

We again determine the exponential contribution associated with the singularity at
xo = —a + Pi. We again truncate the asymptotic series (4.11) after N terms and show that the
optimal truncation point is N ~ 7|x + o — i3|/h. We again write N = 7|x + « — Bi|/h + w,
where 0 < w < 1, in order to ensure that N takes integer value, and denote the remainder term
by Ry. Substituting the truncated series into the governing equation (3.1), using the recurrence
relation (4.12) when necessary, gives as € — 0

2 o K (2r) 2Nd2”N

where the omitted terms are small in the asymptotic limit. Using the Liouville-Green (JWKB)
method on the homogeneous version of (4.20) gives the behaviour away from the Stokes line
as

Ry(x) ~ (Ax + B)e_zm(x"'a_iﬂ)/h, as e — 0, 4.21)

where A and B are constants. It is clear from the boundary conditions of the problem that
A = 0; however, we must determine B using asymptotic matching. Had we not determined the
value of A here, it would have been obtained as part of the matching condition. We set

Ry(x) ~ Se2milxt+a—if)/h as e—0 (4.22)

where S is a Stokes multiplier. The remainder equation (4.20) becomes, after some
simplification

i (=2mi)> 2 d286727ri(x+a7iﬁ)/h ~ 2N dzMN_

2r—2)l dx? 2 (4.23)
By evaluating the series and applying the late-order ansatz, we obtain
2 2
s th(—Zm) (2N — 1)FT'(2N + 1)627ri(x+a—iB)/h. (4.24)

dx? 227i(x + a — if)PN+H!

Recalling that N = |x + o — if|/2h + w, we apply a change of variables, expressing the
singulant in polar coordinates to give 27i(x + a — i3) = re'’. Stokes lines typically follow
radial directions in this coordinate system, so we restrict our attention to variation in angle.
Calculating the variation in the angular direction, noting that N = r/2h + w, and applying
Stirling’s formula, we are able to reduce (4.24) to
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2 . 5/2 '

% + i% ~ —% exp (%(e"9 — 1) +iv (% 2wt 1)) (4.25)
as € — 0. We see that the right-hand side of this expression is exponentially small, except
on ¥ = 0, across which the Stokes multiplier varies rapidly. This is therefore the Stokes line
associated with the late-order behaviour, and corresponds to Im(x) = 0 and Re(x) > 0, as
expected. This condition defines a line extending vertically downwards from the singularity at
Xo = —a + 1/ along Re(x) = —a. In order to determine the quantity switched as this Stokes
line is crossed, we apply an inner expansion in the neighbourhood of this curve, given by
9 = h'/2¢. This gives

5/
dS ir’/ \/27TFe_r¢2/2.

@ ~— o (4.26)
As before, we find
ir’2nF [V
S~ _IT” / e~ /2ds. (4.27)

We recall that r = 27|x + a — i3], so as the Stokes line is crossed along the real axis at
Re(x) = —a is given by r = 27 3. Consequently we see that S rapidly jumps from zero to
iSon as the Stokes line is crossed, where So, = —47 52F /h. The corresponding remainder
contribution is given by

Ry(x) ~ iSgpe 2milHa=if) g h 0. (4.28)

As before, we compute the remaining Stokes contributions and write this in terms of real-
valued trigonometric functions, giving

2 — 2
Ry(x) ~ 2816 2B gin (ﬂ(xha)) +28e 2B gin <7r(xh—|—oz)> , (4.29)

where &) switches rapidly as the Stokes line is crossed from zero to S, in a region of width
O(h'/?) about the Stokes line Re(x) = —a. Similarly, S, switches from zero to S, across the

Stokes line Re(x) = a. The exponentially small contributions are depicted very similar to the
schematic picture on figure 8. In the region Re(x) > a, we can rewrite (4.29) as

16m382F (2 2
Ry ~ _% cos (7;0‘) sin (7) ., as  e—0. (4.30)

Therefore, Ry cancels in this region Re(x) > a if 2wa/h = w(2m — 1)/2, where m € N. If
we denote these choices of the small parameter as £, this yields the asymptotic result (1.12),
corresponding to transparent points. We note that these transparent points are approximate
solitary wave solutions, as we only demonstrated cancellation of the dominant contributions
arising from (4.15) associated with M = =£1. This is unlike the fourth-order equation, for
which we found parameter values that cause that all oscillatory contributions to the solution to
vanish, thereby producing solitary wave solutions.

4.3. Numerical results

Here we approximate numerically on-site and inter-site lattice solitons (1.4) to the second-
order difference equation (1.3). In accordance to definition 1.1, we will approximate the trans-
parent points by using a computational method consistent with the one used in [31], where the
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transparent points were computed by finding the values of &, for which the eigenvalue of the
stability problem passes through zero. We detect the transparent points by seeking for local-
ized solution of linearized problem
2
% [vn—i-l - 2'0,, + vn—l] + 0, — mvn
where {u, }nez € (*(Z) is the solution of discrete equation (1.3). If {0, },ez € ¢*(Z) exists,
then it corresponds to the eigenvector of the stability problem with zero eigenvalue. Cases
of the on-site lattice soliton {u%},cz and the inter-site lattice soliton {ui*},cz are treated
separately.

Let {u%*},cz be the on-site lattice soliton of the difference equation (1.3) for some 4 and
consider the linearized difference equation (4.31) with this {ug°},cz. The sequence {v%°},c7_
satisfies the decay condition v° — 0 as n — —oo. For large values of n — —oo, we can use
the linear asymptotics v3° ~ C~+", where C > 0 is constant and -~y is the root of dispersion
equation

=0, nez, 431

Y—2+@O D)y +1=0, (4.32)

such that|y| > 1. Thanks to the symmetry of {u$*},cz, we require the eigenvector {v9°},cz to
satisfy the same symmetry as the translational (derivative) mode:

0% = -0, nelZ. (4.33)

—n n°

Generically, the sequence {v%},c7_ does not satisfy the symmetry condition vy =0 and
hence violates the symmetry (4.33). Moreover, if the sequence is continued to 7 € Z, it
diverges generally as n — +o00. Therefore, we introduce the function W (h) = v§® and look
for zeros of W (h) as h varies.

Similarly, let {u!},cz be the inter-site lattice soliton of the difference equation (1.3) for
some / and consider the linearized difference equation (4.31) with this {u*},cz. The sequence
{088} ,ez_ is computed by using the same asymptotics vis ~ Cy", where C > 0 is constant and
~y is the root of equation (4.32) with |y| > 1. Thanks to the symmetry of {u}’ },cz, we require
the eigenvector {0}, to satisfy the same symmetry as the translational (derivative) mode:

v = ol ner. (4.34)

—n n—1»

Generically, a sequence {0/}, does not satisfy the symmetry condition v_; + vp = 0 and
hence violates the symmetry (4.34). Again, we introduce the function W*(h) = v | + v} and
look for zeros of W*(h) as h varies.

Our numerical procedure consists in computing the functions W () and W' (k) with small
enough spacing with respect to 4 and seeking for their zeros. If a continuous solution to the
advance-delay equation (1.5) exists at /., then

W (h,) = W(h,) = 0. (4.35)

One transparent point is known at h, = V2 for any 6 > 1 thanks to the reduction of the
advance-delay equation (1.5) to the integrable Ablowitz—Ladik lattice [28]. This case was
used for testing of the numerical procedure.

With this numerical algorithm for 6 = 3,5, 15, we have obtained sequences {/,, }men of
zeros of W (h) and W (k) that are close to each other within the distance of 5 - 1073, The
difference becomes even smaller and indistinguishable for zeros with smaller 4 since the step
size in / is smaller tan 103, We have also recovered the value h; = V/2 at the first transparent

point and found no zeros of W (h) and W*(h) for h € (1/2,2.5). The corresponding profiles
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Figure 11. The profiles of on-site (red) and inter-site (blue) solitons for (1.3) with
6 = 5 shown in the same scale. Panel (A): the third transparent point 4 = 0.849. Panel
(B): the seventh transparent point 7 = 0.463.

Table 2. Transparent points for the advance-delay equation (1.5). The results are
presented for @ = 3,5, 15. For each value of 6 two entries are shown: average h,
between the zeros of WO (k) and W' (k) (the 2nd, 4th and 6th columns) and the distance
A between them (3rd, 5th and 7th columns). The first zero corresponds to the exact

value h; = V2.

m hp, =3  A(on-off) h,,0=5 A(on-off) h, 6=15 A (on-off)
1 1.41421 0 1.41421 0 1.41421 0

2 1.066 00 0.00078 1.06557 0.00478 1.05367 0.02619
3 0.84863 0.00016 0.84901 0.00163 0.83791 0.01749
4 0.70323 0 0.70361 0.00048 0.694 66 0.00924
5 0.59979 0 0.60006 0.00013 0.59257 0.004 56
6 0.52263 0 0.52280 0.00004 0.51626 0.00221
7 0.46291 0 0.463 04 0.00001 0.45716 0.00107
8 0.41536 0 0.41545 0 0.41012 0.00051
9 0.37662 0 0.37669 0 0.37180 0.00024
10  0.34446 0 0.34452 0 0.34000 0.00012
11 0.31733 0 0.31739 0 0.31320 0.00006
12 029415 0 0.29421 0 0.29030 0.00003
13 0.27412 0 0.27417 0 0.27052 0.00001
14 0.25663 0 0.25668 0 0.25325 0.00001
15 0.24124 0 0.24128 0 0.23806 0

16  0.22758 0 0.22762 0 0.22458 0

17 — — 0.21542 0 0.21254 0

18 — — 0.20446 0 0.20173 0

19 — — 0.19456 0 0.19196 0

20 — — 0.18557 0 0.18309 0

21 — — 0.17737 0 0.17501 0

22 — — 0.16987 0 0.16760 0

23 — - - — 0.16080 0
24— - - — 0.15453 0
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Figure 12. The plots of log,, |W*(h)| (red line) and log,, [W® (k)] (blue line), 6 = 5,
0.4 < h < 1. The peaks correspond to zeros of the functions W*(h) and W*(h). Zeros
hs g are shown, see enumeration of zeros in table 2.

1/h
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Figure 13. The numerical values of /! corresponding to the transparent points for the
advance-delay equation (1.5) (red balls) and their asymptotic predictions (blue balls)
computed by the formula (4.2) for m = 3 = 16, Here # = 5 and the numerical values
are taken from table 2.

of on-site (red) and inter-site (blue) solitons are depicted in figure 11 for the third 2 = 0.849
and the seventh & = 0.463 transparent points.

Table 2 represents these numerical results. It is interesting that zeros of W (k) and W (h)
change insignificantly for different values of 6. For instance, the 13th zero in table 2 differs by
1% between @ = 3 to § = 15. This fact is explained by slow dependence of o from parameter
0. Indeed, o =~ 2.2025 for @ = 3 and o ~ 1.9771 for 6 = 15.

3481



Nonlinearity 32 (2019) 3445 G L Alfimov et al

The plots of log;, |W (h)| and log,, |W*(h)| for § = 5 and for 0.4 < h < 1 are shown in
figure 12. The peaks correspond to zeros of the functions W° (/) and W (k). They are consist-
ent with the values in table 2. Note that the difference is visible for %, i3 but becomes negli-
gible for h4 and smaller values of A.

Figure 13 shows the numerical values of {,, }men (red balls) and their asymptotical values
computed by the formula (4.2) (blue balls) for m = 3 < 16 and 6 = 5. The numerical values
are taken from table 2. The numerical results are in excellent agreement with the asymptotic
formula.

5. Conclusion

We have addressed the existence of transparent points for standing lattice solitons in the dis-
crete NLSS and presented three groups of results.

Rigorous results are derived on existence and analytical continuation of solitary wave solu-
tions to the second-order differential equation which corresponds to the continuum limit. By
studying analytic mappings, we proved existence of a quadruple of logarithmic branch point
singularities in the complex plane nearest to the real line with a specific analytic behaviour
near the singularities.

These rigorous results are used in the asymptotic computations supporting our conjecture
on existence of an infinite countable set of solitary waves in the fourth-order differential equa-
tion which corresponds to the next-order in the continuum limit. We presented two alternative
asymptotic computations producing identical results: one relies on computations of oscilla-
tory integrals in the persistence problem and the other one relies on beyond-all-order theory.
With application of these results to the advance-delay equation, we can only conjecture on
existence of an infinite countable set of transparent points for which the standing lattice soli-
tons are nearly continuous.

Finally, careful numerical computations are performed to show validity of our asymptotic
predictions. Numerical computations of solitary wave solutions in the fourth-order differential
equation agree well with the asymptotic formula. Numerical computations of standing lattice
solitons also confirmed existence of the countable set of transparent points.
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