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Polychromatic Solitary Waves in a Periodic and Nonlinear Maxwell System∗
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Abstract. We consider the one-dimensional Maxwell equations with low contrast periodic linear refractive
index and weak Kerr nonlinearity. In this context, wave packet initial conditions with a single
carrier frequency excite infinitely many resonances. On large but finite time-scales, the coupled
evolution of backward and forward waves is governed by nonlocal equations of resonant nonlinear
geometrical optics. For the special class of solutions which are periodic in the fast phase, these
equations are equivalent to an infinite system of nonlinear coupled mode equations, the so-called
extended nonlinear coupled mode equations, or xNLCME. Numerical studies support the existence
of long-lived spatially localized coherent structures, featuring a slowly varying envelope and a train
of carrier shocks. In this paper we explore, by analytical, asymptotic, and numerical methods, the
existence and properties of spatially localized structures of the xNLCME system for the case where
the refractive index profile consists of a periodic array of Dirac delta functions. We consider, in
particular, the limit of small amplitude solutions with frequencies near a spectral band edge. In this
case, stationary xNLCME is well approximated by an infinite system of coupled, stationary, nonlinear
Schrödinger (NLS) equations, the extended nonlinear Schrödinger system, xNLS. We embed xNLS in
a one-parameter family of equations, xNLSε, which interpolates between infinitely many decoupled
NLS equations (ε = 0) and xNLS (ε = 1). Using bifurcation methods we show existence of solutions
for a range of ε ∈ (−ε0, ε0) and, by a numerical continuation method, establish the continuation of
certain branches all the way to ε = 1. Finally, we perform time-dependent simulations of a truncated
xNLCME and find the small-amplitude near–band edge gap solitons to be robust to both numerical
errors and the NLS approximation.
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1. Introduction and overview. Nonlinear waves in periodic structures have been a subject
of great interest for many years. Early interest arose from the possibility of balancing the band
dispersion of the periodic structure with the nonlinearity to form soliton-like structures; see,
for example, [6, 12] and references cited therein. While such a heterogeneous medium possesses
the same soliton-producing ingredients of dispersion and nonlinearity found in the well-known
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Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations, which govern nonlinear
dispersive waves in spatially homogeneous media, periodic variations of the medium introduce
additional possibilities. Indeed, changing the periodicity and material contrasts of the medium
may permit tuning of the dispersive properties; e.g., the length scale on which a soliton can
form may be altered. Thus, nonlinear and periodic structures are natural candidates for
device design and applications. An example is the formation of centimeter-scale gap solitons
in periodic optical fiber gratings. Such states have been shown to propagate at a fraction of
the speed of light and have been proposed in schemes for optical storage and buffering; see,
for example, [13].

In the simplest setting, nonlinear electromagnetic waves in a one-dimensional periodic
structure are governed by a nonlinear Maxwell equation:

(1.1) ∂2
t

(
n2(z)E + χE3

)
= ∂2

zE.

Here, χ > 0 is the Kerr nonlinearity coefficient [3]. We assume a low-contrast, periodic
refractive index profile, n(z), with mean n0, given by

(1.2) n(z) = n0 + εN(z), n0 > 0, N(z) = N(z + 2π), 0 < ε � 1,

where n(z) is real-valued and no energy dissipation has been included. The periodic part of
the refractive index, N(z), can be expanded in the Fourier series

(1.3) N(z) =
∑
p∈Z

Npe
ipz, N−p = N̄p, p ∈ Z.

To ensure a nontrivial Bragg resonance, let us assume N2 �= 0. Then strong dispersion is
excited by wave packet–type initial conditions consisting of a slowly modulated plane wave of
a single frequency, chosen to be in (Bragg) resonance with the periodicity of the medium:

(1.4) E(z, t = 0) = ε
1
2
[
E+

1 (εz, 0)e
iz + E−

1 (εz, 0)e
−iz + c.c.

]
,

where E±
1 (Z, 0) are spatially localized in Z = εz and c.c. denotes the complex conjugate of

the preceding expression. This resonance strongly couples backward and forward propagating
waves. In the choice of initial condition (1.4), dispersive effects which are set by the medium
contrast, of size O(ε), have been balanced with nonlinear effects by choosing the amplitude

to be of size O(ε
1
2 ).

Suppose we make a formal multiple scale expansion based on the ansatz:

E(z, t) = ε
1
2

[
E+

1 (Z, T )e
i(z−vg t) + E−

1 (Z, T )e
−i(z+vg t) + c.c. +O(ε)

]
,(1.5)

T = εt, Z = εz, vg ≡ 1

n0
.

Then if we account only for the principal harmonics, we arrive at the nonlinear coupled mode
equations (NLCME) for E±

1 (Z, T ):

∂TE
+
1 + vg∂ZE

+
1 = iv2g

(
N0E

+
1 +N2E

−
1

)
+ iΓ

(∣∣E+
1

∣∣2 + 2
∣∣E−

1

∣∣2)E+
1 ,(1.6a)

∂TE
−
1 − vg∂ZE

−
1 = iv2g

(
N̄2E

+
1 +N0E

−
1

)
+ iΓ

(∣∣E−
1

∣∣2 + 2
∣∣E+

1

∣∣2)E−
1 ,(1.6b)
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where Γ ≡ 3χ/(2n3
0). E±

1 denote slowly varying forward and backward wave amplitudes; for
details see [6] and references cited therein.

NLCME has been rigorously derived as a leading order model in numerous contexts. For
one-dimensional propagation of electromagnetic waves in nonlinear and periodic media, it
was rigorously derived from the anharmonic Maxwell–Lorentz model in [14]. Derivations
from the Klein–Fock as well as the Gross–Pitaevskii equations have also been obtained; see
[18, 19, 15, 16]. Explicit localized stationary solutions, called gap solitons, for NLCME are
given in [1, 4]. The linear stability of the gap solitons was studied in [5], and a linear,
multidimensional, analogue of NLCME was studied in [2].

However, NLCME is not the correct mathematical description of weakly nonlinear and
weakly dispersive waves in the nonlinear and periodic Maxwell equation (1.1), with index
of refraction given by (1.2). The deficiency of the NLCME system, (1.6), stems from the
unperturbed (ε = 0) equation being the nondispersive one-dimensional wave equation. Due
to nonlinearity, a single frequency initial condition (1.4) excites infinitely many resonances,
since eim(z±t/n0),m ∈ Z, all lie in the kernel of the unperturbed operator, n2

0∂
2
t − ∂2

z . In
contrast, other models, such as the aforementioned anharmonic Maxwell–Lorentz system and
the Gross–Pitaevskii equation, remain dispersive in the ε = 0 limit; this precludes infinitely
many resonant modes.

In [21], nonlocal equations derived from nonlinear geometrical optics and an equivalent
system of infinitely many coupled PDEs, which take into account the infinitely many reso-
nances, were systematically studied. One begins with the general weakly nonlinear ansatz,

(1.7) E(z, t) = ε
1
2
[
E+(Z, T, z − vgt) + E−(Z, T, z + vgt) +O(ε)

]
,

which need not be nearly monochromatic. A necessary condition for the error term in (1.7)
to be of order ε on the time interval 0 ≤ t ≤ O (ε−1

)
is that the forward and backward wave

components, E±(Z, T, φ±), φ± = z ∓ vgt, satisfy the system of nonlocal evolution equations:

(∂T + vg∂Z + v2gN0∂φ)E
+ = v2g∂φ

[
1

2π

∫ π

−π
N(φ+ θ)E−(Z, T, φ + 2θ)dθ

]
+

Γ

3
∂φ

[
(E+)3 + 3

(
1

2π

∫ π

−π
|E−(Z, T, θ)|2dθ

)
E+

]
,

(1.8a)

(∂T − vg∂Z − v2gN0∂φ)E
−
p = −v2g∂φ

[
1

2π

∫ π

−π
N(φ− θ)E+(Z, T, φ− 2θ)dθ

]
− Γ

3
∂φ

[
(E−)3 + 3

(
1

2π

∫ π

−π
|E+(Z, T, θ)|2dθ

)
E−
]
.

(1.8b)

While we have omitted the ± subscripts on ∂φ derivatives for the sake of brevity, the reader
should note that in recovering the primitive field, as in (1.7), E+ must be evaluated at φ+

and E− must be evaluated at φ−. E±(Z, T, φ±) are assumed to be 2π-periodic in their φ±
arguments. A similar but more general system of integro-differential equations was obtained
in [21]. In that work, the authors set N0 = 0 and vg = 1.

If we expand E±(Z, T, φ) in a Fourier series with respect to the phase variable φ,

(1.9) E±(Z, T, φ) =
∑
p∈Z

E±
p (Z, T )e

±ipφ,
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the nonlocal system (1.8) may be re-expressed as a system of infinitely many nonlinear coupled
mode (differential) equations for the Fourier mode coefficients, indexed by p ∈ Z:

∂TE
+
p + vg∂ZE

+
p = ipv2g(N0E

+
p +N2pE

−
p )

+ ip
Γ

3

⎡⎣∑
q,r∈Z

E+
q E

+
r Ē

+
q+r−p + 3

⎛⎝∑
q∈Z

∣∣E−
q

∣∣2⎞⎠E+
p

⎤⎦ ,(1.10a)

∂TE
−
p − vg∂ZE

−
p = ipv2g(N−2pE

+
p +N0E

−
p )

+ ip
Γ

3

⎡⎣∑
q,r∈Z

E−
q E

−
r Ē

−
q+r−p + 3

⎛⎝∑
q∈Z

∣∣E+
q

∣∣2⎞⎠E−
p

⎤⎦ .(1.10b)

In [21] the infinite system of PDEs (1.10) is referred to as the extended nonlinear coupled
mode equations, or xNLCME. Thus xNLCME is an extension of the classical NLCME (1.6),
appropriate for highly resonant settings, such as the weakly periodic and nonlinear Maxwell
model (1.1). Truncation of xNLCME to a single mode, E±

1 (Z, T ), yields NLCME (1.6), which,
as noted earlier, has spatially localized gap soliton solutions.

Numerical simulations of the primitive nonlinear and periodic Maxwell equation (1.1) give
evidence of two phenomena. First, there appear to be long-lived spatially localized coherent
structures. Second, within such spatially localized structures, a train of carrier shocks can
form. These structures appear to be well described by xNLCME [21].

The nonlinear Maxwell equation (1.1) does not incorporate any effects of chromatic dis-
persion which, as in the anharmonic Maxwell–Lorentz model [14], takes higher harmonics off
resonance. However, chromatic dispersion on the length scales of many experiments is a neg-
ligible effect [11]. Moreover, there are experimentally realizable regimes in which pulses with
spectral content near the zero dispersion point are propagated [17]. In these experiments, a
broad band supercontinuum is generated. The carrier shocking mentioned above is a possible
source of such broad band emission.

In this paper, we explore, by analytical, asymptotic, and numerical methods, the existence
and properties of spatially localized structures of xNLCME. These coherent solutions have a
full spectrum of active temporal frequencies, and we therefore refer to them as polychromatic
solitons, to use the terminology of [22]. In that work the authors considered a truncation of
xNLCME to first and third harmonics. Studying the problem numerically, they found evidence
for the existence of spatially localized solutions with two basic frequencies and named them
polychromatic solitons. The localized structures we study have an infinite number of discrete
carrier frequencies.

We focus on the stationary, small amplitude approximation of xNLCME for a partic-
ular choice of refractive index consisting of an infinite periodic array of Dirac delta func-
tions. In particular, we consider solutions spectrally concentrated near a band edge. In this
regime, xNLCME is well approximated by an infinite system of coupled nonlinear Schrödinger
equations, the extended nonlinear Schrödinger system, or xNLS. We embed xNLS in a one-
parameter family of equations, xNLSε, which continuously interpolates between a system of
infinitely many decoupled NLS equations (ε = 0) and xNLS (ε = 1). Using bifurcation meth-
ods based on the Lyapunov–Schmidt method and the implicit function theorem, we prove
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the existence of solutions for a range of ε ∈ (−ε0, ε0). By a numerical continuation method,
we establish the persistence of certain branches all the way to ε = 1 for finite truncations
of xNLSε. Finally, we perform time-dependent simulations of xNLCME and find the small
amplitude near–band edge gap solitons to be robust.

Outline of the paper. In section 2, we present a direct derivation of xNLCME in the
case of a periodic medium and show the sense in which xNLCME is an infinite dimensional
Hamiltonian system. In section 3 we heuristically determine conditions on N(z) for which we
may expect exponentially localized gap solitons. This motivates our study of the case where
N(z) is a periodic array of delta functions.

In the small amplitude, near–band edge limit where xNLCME reduces to xNLS, we con-
jecture that localized stationary solutions of xNLS exist. Subject to this assumption, we prove
in Theorem 3.1 that the gap soliton persists within xNLCME, in the asymptotic limit. Since
the energy of xNLS is bounded below, it is natural to ask whether a ground state of xNLS
can be constructed variationally. Unfortunately, standard methods do not apply due to a loss
of compactness, illustrated in section 3.2.3. The existence of nontrivial critical points is an
open problem.

We therefore seek to construct localized states via a continuation method. First, we embed
xNLS in a one-parameter family of systems, xNLSε, with ε = 0 corresponding to an infinite
system of decoupled NLS equations, and ε = 1 corresponding to xNLS, the system of interest.
In Theorem 3.2, we prove the existence of gap solitons for xNLSε for an open interval of
|ε| < ε0 about ε = 0.

We next attempt to numerically continue xNLSε solitons to the full interval [0, 1]. In order
to implement the numerical continuation, we seek approximate critical points of the xNLSε

variational problem. To motivate this, in section 4, we replace the variational characterization
of xNLSε solitons by a finite dimensional minimization problem over families of Gaussian trial
functions. We find critical points, with sign alternating amplitudes, of such finite dimensional
approximations and give convincing numerical evidence that some can be continued to ε = 1.

In section 5 we compute soliton solutions of truncated xNLS using information gleaned
from the trial function approximations, and show that they are robust in time-dependent
simulations of the truncated system. Section 6 summarizes our findings and highlights open
problems.

2. Coupled mode equations. In section 2.1, we present a derivation of xNLCME from
Maxwell equations using Fourier expansions of E±(Z, T, φ±), in the case where E±(Z, T, φ±)
are periodic in φ±. In section 2.2, we demonstrate that xNLCME is an infinite dimensional
Hamiltonian system with two conserved quantities.

2.1. Derivation of xNLCME in a periodically varying medium. For simplicity and with-
out loss of generality, we set n0 = 1 so that vg ≡ 1. We rewrite the nonlinear Maxwell
equation (1.1) with refractive index (1.2) as

∂2
zE − ∂2

tE = 2εN(z)∂2
t E + ε2N(z)2∂2

tE + χ∂2
tE

3.(2.1)

For ε = 0 and χ = 0, (2.1) simplifies to the one-dimensional wave equation with a solution
given by the arbitrary superposition of right and left traveling waves,

(2.2) E(0)(z, t) = E+(z − t) + E−(z + t).
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For ε small, we seek E = Eε(z, t) in the form of a multiple scale expansion

(2.3) E(z, t) = ε
1
2

(
E(0)(Z, T ; z, t) + εE(1)(Z, T ; z, t) +O(ε2)

)
,

where Z = εz and T = εt are slow spatial and temporal scales. Substituting (2.3) into (2.1),
we obtain at first order in ε

(2.4)
(
∂2
z − ∂2

t

)
E(1) = 2 (∂t∂T − ∂z∂Z)E

(0) + 2N(z)∂2
t E

(0) + χ∂2
t

(
E(0)

)3
.

The right-hand-side of (2.4) generates resonant terms along the characteristics of the wave
equation, leading to secular growth of the correction E(1) in (z, t). The slow evolution in
(Z, T ) is determined to remove these secular terms.

We begin by expanding E in a Fourier series:

(2.5) E±(Z, T ; z, t) =
∑
p∈Z

E±
p (Z, T )e

±ip(z∓t), E(1)(Z, T ; z, t) =
∑
p∈Z

E(1)
p (Z, T ; t)eipz .

Since E± are real-valued,

(2.6) Ē±
p (Z, T ) = E±

−p(Z, T ), p ∈ Z.

Substituting (2.5) into (2.4), the terms of the equation proportional to eipz are(
∂2
t + p2

)
E(1)

p = 2ip(∂T + ∂Z)E
+
p e

−ipt − 2ip(∂T − ∂Z)E
−
−pe

ipt

+ 2
∑
q

q2
(
Np−qE

+
q e

−iqt +Np+qE
−
q e

−iqt
)

+ χ
∑
q,r

p2E+
q E

+
r Ē

+
q+r−pe

−ipt + 2χ
∑
q,r

(p− 2q + 2r)2E+
q Ē

+
r E

−
q−r−pe

i(p−2q+2r)t

+ χ
∑
q,r

(p + 2q + 2r)2E−
q E

−
r Ē

+
−p−q−re

−i(p+2q+2r)t

+ χ
∑
q,r

(p − 2q − 2r)2E+
q E

+
r Ē

−
p−q−re

i(p−2q−2r)t

+ 2χ
∑
q,r

(p+ 2q − 2r)2E−
q Ē

−
r E

+
p+q−re

−i(p+2q−2r)t

+ χ
∑
q,r

p2E−
q Ē

−
r E

−
−p−q+re

ipt,

where all sums are taken over Z. Removing the terms resonant with e−ipt, we obtain

(∂T + ∂Z)E
+
p = ip

(
N0E

+
p +N2pE

−
p

)
+ ip

Γ

3

[∑
q,r

E+
q E

+
r Ē

+
q+r−p + 2E−

0

∑
q

E+
q Ē

+
q−p

+
∑
q

E−
q E

−
−qĒ

+
−p + Ē−

0

∑
q

E+
q E

+
p−q + 2

∑
q

∣∣E−
q

∣∣2 E+
p

]
.

(2.7a)
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Removing terms resonant with eipt, we obtain

−(∂T − ∂Z)E
−
−p = ip

(
N2pE

+
−p +N0E

−
−p

)
+ ip

Γ

3

[∑
q,r

E−
q E

−
r Ē

−
q+r+p + 2E+

0

∑
q

EqĒ
−
p+q

+
∑
q

E+
q E

+
−qĒ

−
p + Ē+

0

∑
q

EqĒ
+
−p−q + 2

∑
q

∣∣E+
q

∣∣2 E−
−p

]
,

(2.7b)

where we have set Γ ≡ 3χ/2 to be consistent with previous work [14, 21]. Exchanging p for
−p in (2.7b), we have

(∂T − ∂Z)E
−
p = ip

(
N−2pE

+
p +N0E

−
p

)
+ ip

Γ

3

[∑
q,r

E−
q E

−
r Ē

−
q+r−p + 2E+

0

∑
q

EqĒ
−
−p+q

+
∑
q

E+
q E

+
−qĒ

−
−p + Ē+

0

∑
q

EqĒ
+
p−q + 2

∑
q

∣∣E+
q

∣∣2E−
p

]
.

At p = 0, (2.7) can be satisfied by choosing arbitrary functions E±
0 = E±

0 (Z ∓ T ). For
simplicity, we set E±

0 (Z ∓ T ) ≡ 0. If we additionally use relations (2.6), then equations (2.7)
simplify to xNLCME (1.10) from the introduction. Recall that we have set vg = 1. Subject to

constraints (2.7), E
(1)
p , the correction, can be obtained from a linear inhomogeneous equation

as a bounded oscillatory function in t.
Note that the nonlocal system (1.8) can be recovered via the relations (1.9), with the

inverse

(2.8) E±
p (Z, T ) =

1

2π

∫ π

−π
E±(Z, T, φ)e∓ipφdφ.

The constraints (2.6) imply that E± are real-valued. To construct the primitive electric field
variables, E±(Z, T, φ±) must be evaluated at different phases, φ± = z ∓ t.

2.2. Hamiltonian structure of xNLCME. Let E±
0 = 0, and define H =

∫
R
HdZ, where

the Hamiltonian density is given by

H =
i

2

∑
p

1

p

(
E+

p ∂ZĒ
+
p − E−

p ∂ZĒ
−
p − Ē+

p ∂ZE
+
p + Ē−

p ∂ZE
−
p

)
−N0

∑
p

(|E+
p |2 + |E−

p |2)−
∑
p

N2p(Ē
−
−pE

+
−p + E−

p Ē
+
p )

− Γ

6

(∑
p

Ē+
p Ē

+
−p

)(∑
p

E−
p E

−
−p

)
− Γ

6

(∑
p

Ē−
p Ē

−
−p

)(∑
p

E+
p E

+
−p

)

− Γ

6

∑
p,q,r

(
Ē+

p E
+
q E

+
r Ē

+
q+r−p + Ē−

p E
−
q E

−
r Ē

−
q+r−p

)− 2Γ

3

(∑
p

∣∣E+
p

∣∣2)(∑
p

∣∣E−
p

∣∣2) ,

(2.9)
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where all sums are over Z \ {0}. Then xNLCME has the structure of an infinite dimensional
Hamiltonian system:

∂TE
+
p = −ip

δH

δĒ+
p
, ∂TE

−
p = −ip

δH

δĒ−
p
, p ∈ Z \ {0}.(2.10)

Formally, the Hamiltonian (2.9) is conserved under the flow of xNLCME. Besides the
Hamiltonian, the total power N =

∫
R
NdZ is invariant, where the density is

(2.11) N =
∑
p∈Z

(∣∣E+
p

∣∣2 + ∣∣E−
p

∣∣2) .
This follows by direct computation.

Since N2p = N̄−2p, p ∈ Z, the symmetry of equations (1.10) implies that if the constraint
(2.6), associated with real initial conditions for E±, is satisfied at T = 0, then it is satisfied
for all T . Additionally, if E±

p are zero initially for even p, they remain zero for all time. This
allows us to restrict (1.10) to the odd harmonics, p ∈ Zodd, and set

(2.12) E±
p = 0, p ∈ Zeven.

Constraints (2.12) arise naturally for initial data which contains only the first harmonic. Due
to the cubic nonlinearity, this generates coupling of all odd (but not even) harmonics. In what
follows, we simplify details of computations by assuming (2.12).

Under constraints (2.6), the conserved Hamiltonian density (2.9) reduces as follows:

H =
i

2

∑
p∈Z

1

p

(
E+

p ∂ZĒ
+
p − E−

p ∂ZĒ
−
p − Ē+

p ∂ZE
+
p + Ē−

p ∂ZE
−
p

)
−N0

∑
p∈Z

(|E+
p |2 + |E−

p |2)− 2
∑
p∈Z

N2pE
−
p Ē

+
p

− Γ

⎛⎝∑
p∈Z

∣∣E+
p

∣∣2⎞⎠⎛⎝∑
p∈Z

∣∣E−
p

∣∣2⎞⎠
− Γ

6

∑
p,q,r∈Z

(
Ē+

p E
+
q E

+
r Ē

+
q+r−p + Ē−

p E
−
q E

−
r Ē

−
q+r−p

)
.

(2.13)

As in the case of standard NLCME, (2.13) is unbounded from above and below subject to the
constraint of fixed N . Thus, critical points are expected to be of infinite index. This suggests
that variational methods will be of limited applicability for studying the stability of localized
stationary states of xNLCME.

3. Gap solitons. We now begin to explore the existence of localized stationary states of
xNLCME (1.10) called gap solitons. Setting vg = 1 for convenience, we seek solutions of the
form

(3.1) E+
p (Z, T ) = eip(N0−Ω)TAp(Z), E−

p (Z, T ) = eip(N0−Ω)TBp(Z), p ∈ Z,
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where Ω is a real frequency parameter and {Ap(Z), Bp(Z)}p∈Z are complex-valued amplitudes.
Using constraints (2.6) and (2.12), we assume

(3.2) Ap = Ā−p, Bp = B̄−p, p ∈ Zodd, Ap = Bp = 0, p ∈ Zeven.

The infinite family of amplitudes {Ap, Bp}p∈Zodd
satisfies the extended system of stationary

equations

iA′
p(Z) + pΩAp + pN2pBp + p

Γ

3

⎛⎝3Ap

∑
q∈Zodd

|Bq|2 +
∑

q,r∈Zodd

AqArAp−q−r

⎞⎠ = 0,(3.3a)

−iB′
p(Z) + pΩBp + pN̄2pAp + p

Γ

3

⎛⎝3Bp

∑
q∈Zodd

|Aq|2 +
∑

q,r∈Zodd

BqBrBp−q−r

⎞⎠ = 0,(3.3b)

with constraints (3.2). Linearizing about the zero solution yields decoupled systems of differ-
ential equations with solutions

(3.4)

[
Ap

Bp

]
∼ e±pZ

√
|N2p|2−Ω2

, p ∈ Zodd.

A necessary condition for the existence of a solution which decays exponentially fast to zero
as |Z| → ∞ is

(3.5) |Ω| < Ω0 ≡ infp∈Zodd
|N2p| .

We consider three possibilities:
Case 1: Ω0 > 0. For example, let N2p = 1, p ∈ Zodd. In this case, N(z) is a periodic

sequence of Dirac delta-functions.
Case 2: Ω0 = 0 and infp∈Zodd

|pN2p| > 0. For example, let N2p = p−1, p ∈ Zodd. In this
case, N(z) is the periodic extension of a step function.

Case 3: Ω0 = 0 and infp∈Zodd
|p2N2p| < ∞. In this case, N(z) is continuous.

If N2p = 1, p ∈ Zodd, a spectral band gap for each mode is opened, and the widths of the
band gaps grow as |p| → ∞. However, because of the coupling between the Fourier modes
with amplitudes {Ap, Bp}p∈Zodd

, the stationary localized mode (gap soliton) may reside only
in the gap of a fixed width, Ω ∈ (−Ω0,Ω0), where Ω0 = infp∈Zodd

|N2p| = 1.
If N2p = O(|p|−1), the band gap of each mode is opened again, but the widths are nearly

constant as |p| → ∞. However, the band gap (−Ω0,Ω0) for the coupled gap soliton now
shrinks to zero as Ω0 = infp∈Zodd

|N2p| = 0, and the parameter Ω must be set to 0.
If N2p = O(|p|−2), the widths of the band gaps shrink with the larger values of p, and the

exponential decay (3.4) ceases as |p| → ∞, even if Ω = 0. We do not anticipate the existence
of gap solitons in this case.

We now restrict our attention to Case 1: Ω0 > 0, and we set N2p = 1 for all p ∈ Zodd.
System (3.3) can now be rewritten as an equivalent integro-differential equation:

(−∂Z +Ω∂φ)A+ ∂φB +
Γ

3
∂φ

[
A3 + 3

(
1

2π

∫ π

−π
|B(Z, s)|2ds

)
A

]
= 0,(3.6a)

(∂Z +Ω∂φ)B + ∂φA+
Γ

3
∂φ

[
B3 + 3

(
1

2π

∫ π

−π
|A(Z, s)|2ds

)
B

]
= 0,(3.6b)
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where

(3.7) A(Z, φ) =
∑

p∈Zodd

Ap(Z)eipφ, B(Z, φ) =
∑

p∈Zodd

Bp(Z)eipφ.

As we commented earlier, if one wishes to compute the associated field induced by these
envelopes, care must be taken in where the phase variable, φ, is evaluated. Indeed, for the
electric field associated with {Ap, Bp}p∈Zodd

we have

E(z, t) = ε
1
2

⎡⎣ ∑
p∈Zodd

eip(N0−Ω)εteip(z−t)Ap(εz) +
∑

p∈Zodd

eip(N0−Ω)εte−ip(z+t)Bp(εz) +O(ε)

⎤⎦
= ε

1
2 [A(εz, (N0 − Ω)εt+ z − t) +B(εz, (N0 − Ω)εt− (z + t)) +O(ε)] ,

(3.8)

in agreement with the ansatz (1.7).

3.1. NLCME gap solitons. As noted, the truncation of xNLCME to only one mode, E±
1 ,

yields the classical NLCME. We now review the details of the NLCME gap soliton.
The spatial profiles of NLCME’s gap soliton are given by solutions of the stationary

equations

iA′
1(Z) + ΩA1 +B1 + Γ(|A1|2 + 2|B1|2)A1 = 0,(3.9a)

−iB′
1(Z) + ΩB1 +A1 + Γ(2|A1|2 + |B1|2)B1 = 0.(3.9b)

For Ω ∈ (−1, 1), these equations admit the exact solutions

A1(Z) =

√
2

3Γ

μ

α cosh(μZ)− iβ sinh(μZ)
,(3.10a)

B1(Z) =

√
2

3Γ

−μ

α cosh(μZ) + iβ sinh(μZ)
,(3.10b)

where

α =
√
1 + Ω, β =

√
1− Ω, μ =

√
1− Ω2 ≡ αβ.

The localized solution (3.10) satisfies the symmetry property

A1(Z) = Ā1(−Z), B1(Z) = B̄1(−Z), Z ∈ R.

We shall call the solution of (3.10) a monochromatic gap soliton, since the associated ap-
proximate solution of the nonlinear Maxwell model consists of a slowing varying and localized
envelope with a single fast (carrier) frequency of oscillation. This is in contrast to the broad
band, or polychromatic, solitons which possess slowly varying envelopes on multiple distinct
carrier frequencies. It seems unlikely that there is an explicit solution of the system (3.3) of
infinitely many coupled mode equations.
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3.2. Persistence of solitons in a band edge approximation. We now explore a small
amplitude, spectral band edge approximation of xNLCME, which will lead to an infinite
system of coupled NLS-type equations, xNLS.

3.2.1. The band edge approximation. The gap in the continuous spectrum exists for Ω ∈
(−1, 1). In the truncated coupled mode equations (3.9), the exact solution (3.10) shows that
the amplitude ‖A1‖L∞ of the gap soliton tends to zero as Ω → 1. Using the parameterization
Ω =

√
1− μ2 with μ small and the asymptotic expansion

A1 = μU1(μZ) +O(μ2) = μU1(ζ) +O(μ2),(3.11a)

B1 = −μU1(μZ) +O(μ2) = −μU1(ζ) +O(μ2),(3.11b)

we find

(3.12) U ′′
1 (ζ)− U1(ζ) + 6ΓU3

1 (ζ) = 0.

This equation admits the localized solution

(3.13) U�(ζ) =
1√
3Γ

sech(ζ),

which, together with (3.11), gives an asymptotic approximation of the gap soliton (3.10) as
Ω → 1. We now generalize this approach to the system of infinitely many coupled mode
equations (3.3). Let

(3.14) Ω =
√

1− μ2, Ap = μÃp(ζ), Bp = −μB̃p(ζ), p ∈ Zodd, ζ = μZ.

Substitution of (3.14) into the coupled mode system (3.3) yields

iμÃ′
p + p

√
1− μ2Ãp − pB̃p +

p
3Γμ

2F̃p = 0,(3.15a)

iμB̃′
p − p

√
1− μ2B̃p + pÃp − p

3Γμ
2G̃p = 0,(3.15b)

where

F̃p = 3Ãp

∑
q∈Zodd

∣∣∣B̃q

∣∣∣2 + ∑
q,r∈Zodd

ÃqÃrÃp−q−r,(3.16a)

G̃p = 3B̃p

∑
q∈Zodd

∣∣∣Ãq

∣∣∣2 + ∑
q,r∈Zodd

B̃qB̃rB̃p−q−r.(3.16b)

Introducing the variables

Ũp =
Ãp + B̃p

2
, Ṽp =

Ãp − B̃p

2
,

the system (3.15) can be written as

2pṼp + iμŨ ′
p +
(√

1− μ2 − 1
)
pṼp +

1

6
Γμ2p(F̃p − G̃p) = 0,(3.17a)

iṼ ′
p +

√
1− μ2 − 1

μ
pŨp +

1

6
Γμp(F̃p + G̃p) = 0,(3.17b)
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where F̃p, G̃p can be expressed in terms of Ũp and Ṽp.
Formally expanding in powers of μ,

(3.18) Ũp = Up +O(μ1), Ṽp = − iμ

2p
U ′
p +O(μ2),

we obtain, at leading order, an infinite system of coupled NLS-type equations that we deem
xNLS:

(3.19) U ′′
p (ζ)− p2Up +

2p2

3
Γ

⎛⎝3Up

∑
q∈Zodd

|Uq|2 +
∑

q∈Zodd

∑
r∈Zodd

UqUrUp−q−r

⎞⎠ = 0, p ∈ Zodd.

This can be rewritten as the integro-differential equation

(3.20) (∂2
ζ + ∂2

φ)U =
2

3
Γ∂2

φ

[
U3 + 3

(
1

2π

∫ π

−π
|U(ζ, θ)|2dθ

)
U

]
after introducing the Fourier relations

U(ζ, φ) =
∑

p∈Zodd

Up(ζ)e
ipφ, Up(ζ) =

1

2π

∫ π

−π
U(ζ, φ)e−ipφdφ.

We will now justify the reduction to xNLS (3.19).

3.2.2. Preliminaries. We first introduce appropriate function spaces. Let T denote the
interval [0, 2π], with endpoints identified so that functions on T are understood to be 2π-
periodic. We shall consider functions defined on R× T, admitting the Fourier representation

U(ζ, φ) =
∑

p∈Zodd

Up(ζ)e
ipφ.

For any s, the function space Xs is defined by

(3.21) Xs ≡
⎧⎨⎩U(ζ, φ) ∈ Hs(R× T) :

Ū(ζ, φ) = U(ζ, φ),∫ π

−π
U(ζ, φ) cos(2pφ)dφ = 0 ∀ζ ∈ R, p ∈ Zodd

⎫⎬⎭ ,

equipped with the norm

(3.22) ‖U‖Xs ≡
⎛⎝ ∑

p∈Zodd

∫
R

(p2 + ξ2)s|Ûp(ξ)|2dξ
⎞⎠1/2

,

where Ûp(ξ) is the Fourier transform of Up(ζ) in the ζ. We shall frequently go back and forth
between the U and {Up}p∈Zodd

representations of functions in Xs.
The Sobolev space Hs(R×T) is a Banach algebra with respect to pointwise multiplication

for any s > 1. Moreover, we recall the continuous embeddings Hs(R × T) ↪→ C(R × T) for
s > 1 and l2(Z) ↪→ l∞(Z). In particular if U ∈ Xs for s > 1, then

(3.23) lim
|ζ|→∞

U(ζ, φ) = 0 ∀φ ∈ T.
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Let Bδ(X
s) denote a ball of radius δ in Banach space Xs centered at the origin. The

Hamiltonian H with the density (2.13) consists of the terms controlled by the H1 norms of
E±. To see this, recall the continuous embedding H1(R × T) ↪→ L4(R × T). It follows that
for any E± ∈ Bδ(X

s) with s ≥ 1, there is a constant Cδ,s > 0 such that

H ≤ Cδ,s

(‖E+‖Xs + ‖E−‖Xs

)
.

Furthermore, the map (E+, E−) �→ H is continuously differentiable in Xs. Although we will
mainly study the problem in Xs with s > 1, we note that the energy is well defined in X1.

3.2.3. Proof of result. We now justify the small amplitude approximation of (3.3) by
(3.19). We assume existence of a localized solution U ∈ Xs, s > 1, in the integro-differential
equation (3.20). The existence of U ∈ Xs is an open problem. However, numerical evidence
of the existence of solutions can be found in section 5.1.

We also assume invertibility of a linearized operator associated with system (3.20). This
assumption is standard in the persistence analysis, and it is often checked numerically; see
[9, 10] for similar studies.

Theorem 3.1. Fix s > 1 and assume the existence of localized solution U ∈ Xs to (3.20)
satisfying the reversibility symmetry,

(3.24) Up(ζ) = Ūp(−ζ), p ∈ Zodd, ζ ∈ R.

Also assume that the linearized operator of system (3.20) at U is invertible in the subspace of
Xs associated with the constraint (3.24).

There exists μ0 > 0 such that for any μ ∈ (−μ0, μ0), the system of stationary coupled mode
equations (3.3) with Ω =

√
1− μ2 admits a unique localized solution A,B ∈ Xs satisfying the

symmetries,

(3.25) Ap(Z) = Āp(−Z), Bp(z) = B̄p(−Z), p ∈ Zodd, Z ∈ R,

and the bound,

(3.26) ‖A− μU(μ·, ·)‖Xs + ‖B + μU(μ·, ·)‖Xs ≤ Cμ2.

Proof. First, we note that the vector fields F̃ (A,B) and G̃(A,B), defined by their com-
ponents in (3.16), are analytic (cubic) maps from Xs ×Xs to Xs for any s > 1. Eliminating
Ũp from system (3.17), we obtain

(3.27) p2Ṽp − Ṽ ′′
p =

1

6
Γ
[
p2(
√

1− μ2 − 1)(F̃p − G̃p)− iμp(F̃ ′
p + G̃′

p)
]
.

The right-hand side of system (3.27) defines an analytic (cubic) map from Xs to Xs−2 for
any s > 1, where the Xs−2 norm is of order O(μ) as μ → ∞. The left-hand side operator of
system (3.27) has a bounded inverse from Xs−2 to Xs, thanks to the zero mean constraint
in Xs. By the implicit function theorem, we infer that for any δ > 0 and any s > 1, there is
μ0 > 0 such that for all μ ∈ (−μ0, μ0) and for all Ũ in a ball Bδ(X

s), there is a smooth map
Xs � Ũ �→ Ṽ [Ũ ] ∈ Xs which solves system (3.27) and satisfies the bound,

(3.28) ∃C > 0 : ‖Ṽ ‖Xs ≤ Cμ, μ ∈ (−μ0, μ0), Ũ ∈ Bδ(X
s).
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On the other hand, eliminating Ṽ from system (3.17), we obtain

(3.29) Ũ ′′
p − p2Ũp +

1

6
Γ
[
p2(
√

1− μ2 + 1)(F̃p + G̃p)− iμp(F̃ ′
p − G̃′

p)
]
= 0.

By the bound (3.28), the cubic terms of the system (3.29) are equal to those of (3.19) plus an
error of the order of O(μ2) in Xs−2. Under the assumptions of the existence of the solution
U ∈ Xs of the truncated coupled NLS equations (3.20) and the invertibility of the linearized
operator in the subspace of Xs associated with the constraint (3.24), the linearized operator
has a bounded inverse from Xs−2 to Xs for any small μ ∈ R. By the contraction mapping
arguments, there is a solution Ũ near U in Xs such that

∃C > 0 : ‖Ũ − U‖Xs ≤ Cμ2.

This gives the statement of the theorem, after the original variables A, B, and Z are restored
from the transformations above.

3.3. Hamiltonian and power of xNLS. The extended system of coupled nonlinear Schrö-
dinger equations (xNLS) (3.19) inherits the Hamiltonian structure of the coupled mode equa-
tions (3.3). The energy functional for (3.19) is given by
(3.30)

HxNLS =

∫
R

⎡⎣ ∑
p∈Zodd

(
1

p2
|U ′

p|2 + |Up|2
)
− Γ

⎛⎝ ∑
p∈Zodd

|Up|2
⎞⎠2

− Γ

3

∑
p,q,r∈Zodd

ŪpUqUrŪq+r−p

⎤⎦ dζ.
We also define the power,

(3.31) NxNLS =

∫
R

⎡⎣∑
p∈Z

|Up|2
⎤⎦ dζ.

Energy functionals are often used in proving the existence of localized solutions to con-
strained variational problems, e.g.,

(3.32) minimize HxNLS subject to fixed NxNLS.

Unfortunately, this strategy fails for our problem, as demonstrated by the following coun-
terexample. Let

(3.33) Up(ζ) = λ1/2
n W (λnζ) (δp,n + δp,−n), p ∈ Zodd,

where W ∈ H1(R) is a fixed function, λn > 0 is an arbitrary parameter, and n ≥ 1 is an
arbitrary odd integer. Then, NxNLS is independent of the parameters λn and n. On the other
hand,

HxNLS =
2λ2

n

n2
‖W ′‖2L2 − 6λn‖B‖4L4 .

If we set λn = n and let n → ∞, we obtain no lower bound on HxNLS. Thus, localized solutions
of xNLS (3.19), if they exist in some Xs, cannot be global minimizers of HxNLS subject to
fixed NxNLS; they will be either local extrema or saddle points.
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3.4. Persistence of monochromatic solitons to coupling in xNLS. We study the question
of persistence of NLS solitons within xNLS by embedding xNLS in a one-parameter family
of models, xNLSε, for which xNLS0 is an infinite system of decoupled NLS equations and
xNLS1=xNLS:

(3.34) U ′′
p −p2Up+6p2ΓU3

p+
2p2

3
εΓ

⎛⎝3Up

∑′

q∈Zodd

|Uq|2 +
∑′

q,r∈Zodd

UqUrUp−q−r

⎞⎠ = 0, p ∈ Zodd,

where the
∑′ indicates that the cubic self-interaction terms, U3

p , are excluded. Within each
mode of the decoupled system at ε = 0, we have a solution

(3.35) Up(ζ) = ±U�(pζ), p ∈ Zodd,

where U�(ζ) is the NLS soliton (3.13).
We now prove the persistence of the solution U ε=0

1 (ζ) = U�(ζ) and U ε=0
p = 0 for p �= 1

within xNLSε (3.34) for all ε sufficiently small. Furthermore, we make the reduction

Up(ζ) = Ūp(ζ) = U−p(ζ), p ∈ Zodd.

In other words, we now assume that the envelopes in each harmonic are real-valued.
Theorem 3.2. Fix s > 1. There exist ε0 > 0 and C > 0 such that for any ε ∈ (−ε0, ε0),

xNLS (3.34) admits a unique localized solution U ∈ Xs satisfying the even symmetry:

(3.36) Up(ζ) = Up(−ζ).

Moreover, U(ζ, φ) is a small deformation of the unperturbed ε = 0 soliton solution,

U�(ζ, φ) = 2U�(ζ) cos(φ),

in the sense that

(3.37) ‖U − U�‖Xs ≤ Cε.

Proof. The proof relies on a Lyapunov–Schmidt reduction, where we shall first express the
higher harmonics as functions of U1 = U−1 and then apply the implicit function theorem to
an equation written entirely in terms of U1.

From (3.34), define F in terms of the components

Fp = 3Up

∑′

q∈Zodd

|Uq|2 +
∑′

q,r∈Zodd

UqUrUp−q−r,

where each Fp excludes the purely self-interacting terms. We then have

(3.38) Up = −(∂2
ζ − p2)−1p2

(
6ΓU3

p

)− ε(∂2
ζ − p2)−1p2

2

3
ΓFp, |p| > 1.

The terms on the right are in Xs since s > 1 and (∂2
ζ − p2)−1p2 is a bounded operator.

Therefore, for sufficiently small ε0 > 0 and finite δ0, the contraction mapping theorem yields
a unique map,

Φ : (U1, ε) �→ {Up}|p|>1 ,
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in a ball U1 ∈ Bδ(H
s) with δ < δ0 and |ε| < ε0. From (3.38), there exist constants C > 0 and

ε0 > 0 such that for all |ε| < ε0, (3.38) has a solution Up = Up[U±1], for |p| > 1, satisfying the
bound ∥∥∥{Up}|p|>1

∥∥∥
Xs

= ‖Φ(U1, ε)‖Xs ≤ Cε ‖U1‖3Hs .

We now eliminate {Up}|p|>1 from the p = ±1 equations of (3.34) using the mapping Φ.
Since U1 = U−1, we consider only the p = 1 equation:

(3.39) M[U1, ε] ≡ U ′′
1 − U1 + 6ΓU3

1 +
2

3
εΓF1[Φ(U1, ε)] = 0.

For any U1 ∈ Bδ(H
s) with finite δ > 0 and small |ε| < ε0, there is a C > 0 such that

‖F1[Φ(U1, ε)]‖Hs ≤ Cε ‖U1‖5Hs .

To solve (3.39), we apply the implicit function theorem. The key ingredient is to check that
the linearization of M at U1 = U� and ε = 0,

dM[U�, 0] = ∂2
ζ − 1 + 18ΓU2

� ,

is an invertible mapping from Hs−2
even to Hs

even, the subspace of H
s satisfying (3.36). It is simple

to check that the null space of this operator is span {∂ζU�}. Since ∂ζU� does not satisfy (3.36),
the Hs

even-kernel of dM[U�, 0] = {0} and dM[U�, 0] is invertible. Hence, the implicit function
theorem yields a neighborhood of U� in Hs in which we can obtain U1 with |ε| < ε1 ≤ ε0.

Moreover, we see from (3.39) that there exists C > 0 such that for all |ε| < ε1,

‖U1 − U�‖Hs ≤ Cε2.

Combining this estimate with the one derived from (3.38) yields (3.37). This completes the
proof of Theorem 3.2.

This result has several obvious extensions. We can consider the local continuation about
a soliton localized in any other mode p0 ∈ Zodd,

(3.40) Up0(ζ) = ±U�(pζ).

We could also continue a solution about any finite collection of such solitons, indexed by a set
J . However, if we begin with solitons in any infinite subset of odd harmonics, they will not
have finite L2 norm; i.e., ∫ ∑

p∈J
|Up|2 dζ = ‖U�‖2L2

∑
p∈J

1

|p| = ∞.

The continuation of such infinite energy solutions is not covered by our analysis.

4. Approximation of solutions via trial functions. As noted at the end of section 3.2.3,
although the functional is bounded from below, the natural variational formulation for local-
ized solutions of xNLS exhibits a loss of compactness. In this section we use this functional
to obtain approximations of critical points using parameterized trial functions.
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4.1. Gaussian approximations. Let us consider the Gaussian variational ansatz

(4.1) Up(ζ) = ape
−bpζ2 , p ∈ Zodd,

where ap ∈ R and bp ∈ R+ are parameters to be determined. The Gaussian ansatz is useful
because all integrals in HxNLS can be computed in the analytical form. Although a sech-like
ansatz may seem natural for approximating solitary waves with exponentially decaying tails,
the integrals in HxNLS for the nonlinear terms do not simplify for sech functions.

Direct substitution and integration show that
√

2
πHxNLS becomes

(4.2)

HGauss =
∑

p∈Zodd

√
bpa

2
p

p2
+

a2p√
bp

− Γ
∑

p,q∈Zodd

a2pa
2
q√

bp + bq
− 1

3
Γ

∑
p,q,r∈Zodd

√
2apaqarap−q−r√

bp + bq + br + bp−q−r

.

Again, we introduce a parameter ε in order to decouple the different modes, as in system
(3.34). Equation (4.2) is then rewritten in the form

HGauss(ε) ≡
∑

p∈Zodd

√
bpa

2
p

p2
+

a2p√
bp

− Γ
3a4p√
2
√

bp

− εΓ

⎛⎝ ∑′

p,q∈Zodd

a2pa
2
q√

bp + bq
+

1

3

∑′

p,q,r∈Zodd

√
2apaqarap−q−r√

bp + bq + br + bp−q−r

⎞⎠ .

(4.3)

The sums
∑′ exclude the purely self-interacting a4p/

√
bp terms, and HGauss(1) = HGauss.

If ε = 0, there exists an uncoupled solution of the Euler–Lagrange equations produced
from variations of HGauss(0),

(4.4) ap = ± 23/4

3Γ1/2
, bp =

p2

3
, p ∈ Zodd.

The exact solution (4.4) will be used as a seed point in the numerical continuation algorithm.

4.2. Numerical continuation. Truncating HGauss(ε) in (4.3) to resolve only N harmonics,
we define HN

Gauss(a,b, ε). The associated system of 2N Euler–Lagrange equations is

(4.5) ∇aH
N
Gauss(a,b, ε) = 0, ∇bH

N
Gauss(a,b, ε) = 0.

We now seek solutions of the ε = 0 system, where all modes are decoupled, that can be
continued to ε = 1, the desired system. The natural family of solutions is given by (4.4).
Thus, for our ε = 0 starting point, we consider solutions of the form

a∗ =
23/4

3Γ1/2
(σ1, σ2, . . . , σN ) ,(4.6)

b∗ =
1

3

(
12, 32, . . . , (2N − 1)2

)
,(4.7)

where σj ∈ {−1, 0, 1}. The variances, b∗, are unaffected by σ. Indeed, for σj = 0, bj is
ill-defined and can take any value.
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Figure 1. Various continuation branches for a two-mode trial function system.

We now explore continuations from various choices of σ’s. Before giving the results, we
state the conjecture that our computations suggest.

Conjecture 4.1. For any N ≥ 1, there is a nontrivial configuration σ that can be continued
from ε = 0 to ε = 1. At ε = 1, the amplitudes are sign alternating:

sign(ap) = (−1)(|p|−1)/2.

For a system of two modes (N = 2), the numerical continuation of four σ configurations
is plotted in Figure 1. The configurations σ = (0, 1) and σ = (1,−1) can be continued to
ε = 1, while the other two collide and terminate near ε = 0.368. Extending this to a system
of three modes, we plot the analogous results in Figure 2. Three configurations σ = (0, 1, 0),
σ = (0, 0, 1), and σ = (1,−1, 1) can be continued to ε = 1. We note that the configurations
σ = (0, 1), σ = (0, 1, 0), and σ = (0, 0, 1) are trivial in the sense that they are generated by
the reductions of the truncated coupled NLS equations. When more modes are included in the
system, these degenerate configurations are destroyed. On the other hand, the configurations
σ = (1,−1), (1,−1, 1) are nontrivial and persist with respect to adding more modes in the
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Figure 2. Various continuation branches for a three-mode trial function system.
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Table 1
Computed values for a truncated trial function approximation for ε = 1.

No. of modes a1 b1 a3 b3 a5 b5
1 0.56060 0.33333 - - - -
2 0.56321 0.33148 -0.13918 3.9413 - -
3 0.56329 0.33189 -0.14585 3.6287 0.062822 8.5577

Table 2
Computed values for a truncated trial function approximation with fixed b∗ for ε = 1. The branch from

which we continue is alternating for 1 ≤ N ≤ 4: σ = (1), (1,−1), (1,−1, 1), (1,−1, 1 − 1). The case N = 5 is
continued from the branch (1,−1, 1, 1, 1), and N = 6 is continued from (1,−1, 1,−1,−1,−1).

No. of modes a1 a3 a5 a7 a9 a11

1 0.56060 - - - - -
2 0.5643 -0.12734 - - - -
3 0.56409 -0.13759 0.061454 - - -
4 0.56386 -0.14037 0.068618 -0.037695 - -
5 0.56372 -0.14139 0.071254 -0.042822 0.026041 -
6 0.56364 -0.14184 0.072457 -0.045015 0.029896 -0.019323

coupled NLS equations. Our results for the nontrivial configurations at ε = 1 are summarized
in Table 1.

Though computations for two and three modes suggest that an alternating configuration
of ±1’s can always be successfully continued to ε = 1, this is not the case, as the following
computations demonstrate. We first make the additional simplification, observing that the
values of bj in Table 1 are close to j2/3. This motivates fixing them as such and solving the
problem only for the amplitudes, a. Thus, we solve

(4.8) ∇aH
N
Gauss(a,b∗, ε) = 0,

where b∗ is given by (4.7). The results of our computations with these fixed variances are given
in Table 2. Continuation from the alternating branch σ = (1,−1), (1,−1, 1), . . . is successful
until N = 4. The alternating branch cannot be continued to ε = 1 for five and six modes,
though there are other initial states that can be continued to ε = 1, with sign alternations at
ε = 1; see Table 2.

Although these results were initially computed using a naive continuation algorithm in
MATLAB, solving with a given value of ε and using that solution as the initial guess for a
larger value of ε, they were confirmed by our computations using AUTO [7, 8].

Though the starting branch may not have an alternating sign structure, sign alternating
solutions may still be found at ε = 1. This makes it challenging to perform numerical contin-
uation with these branches if we no longer assume the variances to be fixed. For a system of
five modes, a7 is positive for small values of ε and negative for ε = 1; hence it must change sign
for an ε ∈ (0, 1). When it crosses zero, the variance becomes ill-defined introducing numerical
difficulties. On the other hand, if we iterate the system (4.5) near the solution of (4.8) for
ε = 1, the convergence is usually achieved with few iterations.

4.3. Tails of the variational solutions. Although we are able to construct a sequence of
trial function approximations with Gaussian ansatz, it is not yet clear if such solutions should
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exist in space Xs for s > 1 or at least have finite power (L2) in the limit N → ∞. Indeed,
the solution (a∗,b∗) given by (4.4) for ε = 0 with all ap �= 0 has infinite power, since

√
2
π

∫
R

∣∣ap exp(−bpζ
2)
∣∣2 dζ =

(
2

3

)3/2 1

|p|Γ2

and
∑

p∈Zodd

1
|p| = ∞. However, the results of Table 2 show that at ε = 1, the sign alternating

amplitudes {ap}p∈Zodd
are also decaying in p ∈ Zodd. We explore whether or not the decay

is sufficiently rapid to have finite power and to belong to the energy space, where HGauss is
finite. To this end, we employ a more refined trial-function ansatz, allowing for weak decay
of ap:

(4.9) ap = A(−1)(|p|−1)/2 |p|−γ , bp =
p2

3 , p ∈ Zodd,

where A and γ are unknown parameters to be determined from the Euler–Lagrange equations.
If γ > 0, the trial function approximation has both HGauss and NGauss finite.

Substituting (4.9) into (4.2) yields a two-parameter Hamiltonian

(4.10) h(γ,A) = A2f(γ)−A4Γg(γ),

where

f(γ) =
∑

p∈Zodd

4√
3
|p|−1−2γ ,(4.11a)

g(γ) =
∑

p,q∈Zodd

√
3
p−2γq−2γ√
p2 + q2

+
∑

p,q,r∈Zodd

√
2

3
(−1)(|p|+|q|+|r|+|p−q−r|)/2 |p|−γ |q|−γ |r|−γ |p− q − r|−γ√

p2 + q2 + r2 + (p − q − r)2
.

(4.11b)

Solving ∂Ah(γ,A) = 0, we find

A2(γ) =
f(γ)

2Γg(γ)
.

Plugging this back into (4.10), we get

(4.12) h̃(γ) = h(γ,A(γ)) =
f(γ)2

2Γg(γ)
− f(γ)2

4Γg(γ)
=

1

4Γ

f(γ)2

g(γ)
.

Truncating this approximation to N modes, h̃N (γ), we are able to identify a sequence of
critical points, suggesting convergence as N → ∞ and the existence of a critical point in the
primitive functional (4.12). A few of these approximations are plotted in Figure 3 with Γ = 1.
All of the computed h̃N (γ)’s have the property that

(4.13) lim
γ→∞ h̃N (γ) = h̃1(γ) =

8

9

√
2

3
.
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Figure 3. Two-parameter approximation (4.9) of HGauss for different truncations.

Table 3
Computed critical values of γ for the curves in Figure 3.

No. of modes γ� Δγ�
2 1.35511 -
3 1.30184 0.05327
4 1.28176 0.02008
5 1.27208 0.00968
6 1.26672 0.00536

The critical values of γ, γ� are given in Table 3. These appear to converge to a value of γ near
γ = 1.26 indicating that the corresponding variational approximations belong to the energy
space of the coupled NLS equations. Moreover, since

‖U‖Xs ∼
∑

p∈Zodd

|p|2s−1|ap|2 ∼
∑

p∈Zodd

|p|2s−1−2γ

and γ ≈ 1.26, the corresponding variational approximations belong to the space Xs for s < γ.
Therefore, the results of Theorems 3.1 and 3.2 can be used in the nonempty interval for the
values of s ∈ (1, γ). As it appears that γ is strictly greater than one as the number of modes
increases, a solution of infinitely many modes might be more regular than H1.

The sign alternating structure of the ansatz (4.9) is fundamental for the existence of the
critical point of h(γ,A). For the variational ansatz,

(4.14) ap = A |p|−γ , bp =
p2

3 , p ∈ Zodd,

we can redo the computations to obtain Figure 4. No critical point of h(γ,A) exists for the
sign-definite variational approximation (4.14).

5. Numerically computed gap solitons. Motivated by our observations from the results
of our trial function approximations, we solve the xNLS (3.34) directly to explore the existence
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Figure 4. Two-parameter approximation (4.14) of HGauss for different truncations.

of gap solitons. We note that in [22], the authors explored the related problem of solitons of
xNLCME truncated to two modes.

5.1. Computation of gap solitons. We numerically solve equations (3.34) by continua-
tion. Our starting point is the exact solution at ε = 0,

Up(ζ; ε = 0) =
σp√
3Γ
sech(pζ),

where σ is a branch found in section 4.2 that led to a nontrivial solution at ε = 1. Incrementing
the value of ε, we solve the system (3.34) using the MATLAB bvp5c algorithm with absolute
tolerance 10−4 and relative tolerance 10−8 on the domain [0, 25]. bvp5c is a nonlinear finite
difference algorithm for two-point boundary-value problems discussed in [20]. We use the
even symmetry of the solutions to impose the boundary condition U ′

p(0) = 0 and the artificial
boundary condition

U ′
p(ζmax) + pUp(ζmax) = 0

to approximate the correct exponential decay.
The results for systems of up to six coupled NLS equations at ε = 1 are displayed in

Figure 5. As we can see, the amplitude decays in p. Moreover, as the number of modes
is increased, each mode’s profile appears to stabilize to a limiting profile. We conjecture
that this profile persists as additional modes are included. Alternatively, the solution can be
expressed as U(ζ, θ) by combining the Fourier modes. The resulting solution surface of the
integro-differential equation (3.20) appears in Figure 6. The inclusion of additional harmonics
induces a more ornate structure near the extrema.

Although we have computed these finite truncation solutions, we ask again whether the
corresponding solutions have finite power. For our computed solutions, we find that the power,
NxNLS, appears to converge, and most of the power remains in the first mode. The data is
given in Table 4.
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Figure 5. Soliton profiles for the coupled NLS equations (3.19).
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(a) Two Modes (b) Six Modes

Figure 6. The solution surface of the integro-differential equation (3.20) generated by the truncated coupled
NLS soliton in Figure 5.

Table 4
Computed powers for the soliton profiles appearing in Figure 5.

No. of modes ‖U1‖2L2
1
2
NxNLS

1
2
NxNLS − ‖U1‖2L2

1 0.66667 0.66667 0
2 0.66982 0.68582 0.016000
3 0.67147 0.68929 0.017825
4 0.67211 0.69031 0.018201
5 0.67226 0.69070 0.018441
6 0.67236 0.69088 0.018523

5.2. Gap solitons in time-dependent simulations. Small amplitude gap soliton solutions
of the coupled NLS equation (3.19) can be used as initial conditions in the coupled mode
equations (1.10) to assess their stability and robustness. Once the solution {Up(ζ)}p∈Zodd

is
computed, the initial conditions for the time-dependent simulation are given by

(5.1) E+
p (Z, 0) = μUp(μZ), E−

p (Z, 0) = −μUp(μZ), p ∈ Zodd,

with even modes set to zero. By Theorem 3.1, the small amplitude approximation is accurate
only up to O(μ2). We view this small error as an initial data perturbation in the time
evolution of the coupled mode equations (1.10). In this way, our numerical results address
simultaneously the existence of stationary solutions to xNLCME, their differences from the
stationary solutions of xNLS, and the stability of these stationary solutions.

We present the results of two- and four-mode systems. In each case, we truncate both the
system of coupled NLS equations (3.19) and the coupled mode equations (1.10) at the same
number of resolved modes. In our simulations, we take as our constants

vg = 1, N0 = 0, N2p = 1, Γ = 1.
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The simulations were performed with the indicated number of grid points using a pseudo-
spectral discretization and fourth order Runge–Kutta time stepping. For both the two- and
four-mode simulations, the initial conditions (5.1) were computed with greater precision than
in the previous section; the absolute tolerance was 10−7, the relative tolerance was 10−9, and
the domain was [0, 35].

In Figures 7 and 8, we plot the normalized time-space surfaces of
∣∣E+

p

∣∣ from our simulations
of the first four odd modes. For both values of μ, the solution is persistent, but the oscillations
are greater for the larger value of μ, and there is some decoherence near the peak. With the
smaller value of μ, there is far less distortion. Additional details of the dynamics are available
online in the following animations:
Two-mode truncation. The following simulations were computed with 1024 grid points. The

μ = 0.4 simulations were computed on the domain [−50, 50], the μ = 0.2 simulations
were computed on the domain [−100, 100], and the μ = 0.1 simulations were computed
on the domain [−200, 200].

1. 83789 01.mov [local/web 4.71MB],
2. 83789 02.mov [local/web 1.58MB].

Four-mode truncation. The following simulations were computed with 2048 grid points. The
μ = 0.4 simulations were computed on the domain [−50, 50], the μ = 0.2 simulations
were computed on the domain [−100, 100], and the μ = 0.1 simulations were computed
on the domain [−200, 200].

1. 83789 03.mov [local/web 4.72MB],
2. 83789 04.mov [local/web 4.48MB],
3. 83789 05.mov [local/web 4.50MB],
4. 83789 06.mov [local/web 4.58MB].

As one would expect, there is better agreement between the approximate small amplitude
soliton and the time-dependent simulation as μ → 0. However, for all values of μ presented,
there is a persistence of the localization, even if there is distortion of some of the fine structure
in the higher harmonics. All of this suggests that the gap solutions are robust.

Many other experiments are possible: simulating with more modes, simulating with larger
values of μ, and seeding the initial conditions of a smaller system into a larger system. In the
previous work [21], the exact gap soliton (3.10) was used as an initial condition for successively
larger truncations of the extended coupled mode system (1.10).

6. Open problems. We conclude this work with a discussion of open problems concerning
the existence of nontrivial localized solutions of xNLCME and xNLS arising for the case of a
refractive index composed of an infinite array of Dirac delta functions. The challenges include
the following:

1. Prove the existence of a nontrivial critical point to h (4.10), the single parameter trial
function approximation.

2. Prove the existence of a nontrivial solution to HGauss (4.2), the Gaussian trial function
approximation.

3. Prove the existence of a nontrivial solution to the coupled NLS equations (3.19).
4. Prove the existence of a nontrivial solution to the coupled mode equations (3.3).

By “nontrivial,” we mean a solution in which all modes are active and nonzero. It would
also be of interest to obtain proofs of existence for arbitrarily large finite truncations of these
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Figure 7. Surfaces generated from simulations of the coupled mode system (1.10) truncated to four modes
with initial data (5.1). The μ = 0.4 simulations were computed on the domain [−50, 50], and the μ = 0.1
simulations were computed on the domain [−200, 200]. In both cases, there were 2048 grid points.

problems. Intimately connected with the last two challenges is the question of appropriate
function spaces. As discussed in section 4.3, our variational approximations live in the function
space Xs for 1 < s < γ ≈ 1.26 for which our Theorems 3.1 and 3.2 are stated. The upper
value on s that ensures that the interval is nonempty is only approximated numerically from
the “rough” variational approximation. Of course, it is also possible that such solutions may
not exist. A counterexample would also be of interest.

Modeling the nonlinear Maxwell equation with refractive index given by a periodic se-
quence of Dirac delta-functions is a challenging problem both analytically and numerically.
Results of our work give a starting point for further exploration of this system and the evo-
lution of its localized excitations. The question of localized solutions for xNLCME for less
restrictive, and more physical, refractive indices is also of great interest.
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Figure 8. Continuation of Figure 7.
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