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Abstract. Solitary waves in conservative and near-conservative systems may become unstable
due to a resonance of two internal oscillation modes. We study the parametrically driven, damped
nonlinear Schr̈odinger equation, a prototype system exhibiting this oscillatory instability. An
asymptotic multi-scale expansion is used to derive a reduced amplitude equation describing the
nonlinear stage of the instability and supercritical dynamics of the soliton in theweaklydissipative
case. We also derive the amplitude equation in thestronglydissipative case, when the bifurcation
is of the Hopf type. The analysis of the reduced equations shows that in theundampedcase
the temporally periodic spatially localized structures are suppressed by the nonlinearity-induced
radiation. In this case the unstable stationary soliton evolves either into a slowly decaying long-
lived breather, or into a radiating soliton whose amplitude grows without bound. However, adding
a small damping is sufficient to bring about a stably oscillating soliton of finite amplitude.

PACS numbers: 0340K, 0545, 7530D

1. Introduction and motivation

Soliton solutions are known to be of paramount importance for nonlinear dispersive systems.
Stable solitons dominate the long-term asymptotic behaviour of spatially inhomogeneous initial
conditions. Unstable solitons can nucleate collapses [1], spatially localized temporally periodic
and chaotic states [2, 3], spatio-temporal chaos [4] and phase transitions [5]. The nonlinear
evolution of a linearly unstable soliton can often be predicted from knowing themechanismof
its instability. Until the early 1990s, the onset of soliton instability in conservative systems was
typically associated with the transition of a linearized eigenvalue from the imaginary to positive
real axis (see e.g. [6,7] and references therein). In the case of the nonlinear Schrödinger (NLS)
equations that we will be concerned with in this paper, the nonlinear evolution of this instability
(usually referred to as thetranslationalinstability) may follow a limited number of scenarios:
unstablebright solitons blow up, disperse away, or evolve into a long-lived oscillating structure
asymptotically settling to a stable stationary soliton [8]; unstabledark solitons dissociate into
a couple or inflate [5,9].
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More recently it was realized that there are also different mechanisms of soliton instability;
in particular, the soliton can be destroyed as a result of a resonance of two internal oscillation
modes [10–12]. The objective of this paper is to follow the nonlinear development of this new
instability (known as theoscillatory instability) and describe supercritical dynamical regimes
of solitons. As a prototype nonlinear PDE, we adopt the parametrically driven, damped NLS
equation:

iψT +ψXX − ψ + 2|ψ |2ψ = hψ∗ − iγψ. (1)

Hereh is the amplitude of the driver andγ the dissipation coefficient; the frequency of the
driver has been normalized to unity. This equation describes a variety of physical phenomena,
including the nonlinear Faraday resonance in water [3, 13, 14]; parametric instabilities of
waves in plasma [15]; the parametric generation of spin waves and magnetic solitons in
ferromagnets and antiferromagnets [11, 16, 17] and, finally, the effect of phase-sensitive
parametric amplifiers on solitons propagating in optical fibres [18]. It also serves as an
amplitude equation for small-amplitude, parametrically driven sine-Gordon breathers [11]
and hence its range of applicability includes all systems modelled by the parametrically driven
sine-Gordon equation [19].

When the driver’s amplitude is very large,h2 > 1 + γ 2, the trivial solutionψ = 0
of equation (1) is unstable against continuous spectrum perturbations [11]. (This is what
physicists call ‘parametric instability’ [3, 13–17].) In this paper we will be concerned with
a complementary region,h2 < 1 + γ 2, and so the trivial solution will always be deemed
stable. In this region equation (1) has two stationary soliton solutions. One of these is always
unstable and will be disregarded in the bulk of this paper. The other one is stable for small
driving strengths but loses its stability ash is increased for the fixed dissipation coefficient. In
the undamped case (γ = 0) the instability arises due to the collision of two pure imaginary
eigenvalues of the associated linearized operator, one detaching from the continuous spectrum
and the other one originating from the brokenU(1) gauge invariance [11]. The two imaginary
eigenvalues collide at a critical valueh = hc ≈ 0.064 and then emerge into the complex
plane producing the oscillatory instability (and hence the oscillatory-instability bifurcation) of
the soliton. The linearized stability problem for the full, dissipative case can be reduced, by
a nonlinear eigenvalue transformation [11], to the one for the undamped equation. Roughly
speaking, this transformation subtractsγ from all eigenvalues so that the instability occurs for
larger values ofh, when a pair of complex-conjugate eigenvalues crosses the line Reλ = 0.
This is now a Hopf bifurcation, typical of dissipative systems.

A natural question is what localized nonlinear structures serve as attractors in the
supercritical domain (i.e. beyond the onset of the oscillatory and Hopf bifurcations,
respectively). In the dissipative case(γ 6= 0) this was addressed by means of direct computer
simulations of equation (1) [4]. It was observed that in the neighbourhood of the transition
curve on the(γ, h)-plane, the stationary soliton is replaced by a temporally periodic one.
Having fixed someγ in the range 0< γ < 0.37 and increasingh, the soliton undergoes the
period-doubling (forγ smaller than 0.25) or quasiperiodic (for 0.256 γ 6 0.37) transition
to chaos [4]. (Forγ > 0.37 the static soliton is stable in its entire domain of existence.)

In this paper we attempt to describe the supercritical dynamics of the soliton analytically.
Our analysis is based on the reduced amplitude equations for the soliton’s perturbation which
we derive forh in the neighbourhood of the oscillatory and the Hopf bifurcation. We also
perform computer simulations of equation (1) in the Hamiltonian case (γ = 0) which has
not been previously studied numerically. Results of these simulations are compared with
conclusions of the finite-dimensional analysis. Although theγ = 0 case is clearly nongeneric
(in the sense that some small damping is present in all underlying physical settings), it provides
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insight into, and serves as a starting point for the analysis of the general, dissipative equation.
The plan and a brief summary of the paper is as follows. First in section 2, we consider

theweaklydissipative regime,γ � 1, and derive a reduced amplitude equation describing the
nonlinear evolution of the perturbation to the soliton in the vicinity of the bifurcation point
(h ∼ hc). This amplitude equation is a complex nonlinear ODE of the second order. In
the stronglydissipative regime, i.e. forγ ∼ 1, the above second-order equation is replaced
by the (first-order) complex Landau equation. The latter is derived in section 3. In some
parts of our derivation we have to rely upon numerical solutions of eigenvalue and boundary
value problems; details of the corresponding numerical algorithms have been relegated to
the appendix. The subsequent section, section 4, contains a detailed analysis of solutions
to the above finite-dimensional system for the vanishing, small and finiteγ . The upshot of
this study is that no periodic solutions are possible in theγ = 0 case; all finite-dimensional
trajectories escape to infinity. However, adding a small damping gives rise to a stable periodic
orbit coexisting with unbounded motions. Finally, only periodic finite-dimensional trajectories
survive whenγ is made finite. In section 5 the conclusions based on the reduced amplitude
equation for the undamped case are compared with results of numerical simulations of the
full, nonreduced NLS equation (1). Consistently with the finite-dimensional predictions, no
stably oscillating solitons were observed in these simulations. All localized initial conditions
were seen to evolve either into a radiating soliton with the amplitude growing without bound,
or into a slowly-decaying, small-amplitude breather-like solution (or possibly into a couple
of diverging breathers.) The last section (section 6) contains concluding remarks and outlines
some open problems.

2. Reduced amplitude equations for the oscillatory-instability bifurcation

2.1. Soliton solutions and linear corrections

The two stationary soliton solutions of the parametrically driven, damped NLS equation (1)
are given by [11,14]:

ψ± = A±e−iθ± sech(A±X), (2a)

where

sin 2θ± = γ

h
, cos 2θ± = ±

√
1− γ

2

h2
(2b)

and

A2
± = 1±

√
h2 − γ 2. (2c)

The two solitons emerge via a saddle-node bifurcation ath = γ . Theψ+ soliton is stable in
some neighbourhood of the bifurcation point while theψ− always has a positive linearized
eigenvalue and hence is unstable forall h andγ . Since this unstable soliton does not undergo
any further bifurcations, we are disregarding it and concentrating on theψ+ in what follows.
(We will only return to the evolution of the instability of theψ− soliton when we present results
of our numerical simulations in section 5.)

Since we are interested in solutions which are close to the soliton (2) in some sense, it is
convenient to rescale variables as

X = x

A
, T = t

A2

and decomposeψ into its real and imaginary part as

ψ = A{U(x, t) + iV (x, t)}e−iθ . (3)
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HereA = A+ andθ = θ+; the subscript was omitted. Defining

H = (h2 − γ 2)1/2

A2
, 0 = γ

A2
,

the equation (1) becomes

−Vt − 20V = −Uxx +U − 2(U2 + V 2)U, (4a)

Ut + 2HV = −Vxx + V − 2(U2 + V 2)V . (4b)

The soliton solution of equation (4) is now

U0 = sechx, V0 = 0.

Linearizing equation (4) about the soliton,

U = U0(x) + εf (x)ei�t , V = iεg(x)ei�t , (5)

whereε is a small parameter, gives an eigenvalue problem forf andg:(
L1 2i0
0 L2

)(
f

g

)
= �

(
0 1
1 0

)(
f

g

)
. (6)

Here

L1 = − ∂2

∂x2
+ 1− 6 sech2 x, (7)

L2 = − ∂2

∂x2
+ 1− 2H − 2 sech2 x, (8)

and the eigenvalue� is the frequency of the perturbed soliton’s oscillations. In studies of
stability problems it is more common to deal with the quantityλ = i� which is referred to as
the ‘linearized eigenvalue’, or ‘stability eigenvalue’. However, the frequency� turns out to
be more suitable for our present purposes. Occasionally we will make reference toλ as well.

The damped eigenvalue problem (6) can be reduced, via a nonlinear eigenvalue
transformation [11], to the one with0 = 0:(

L1 0
0 L2

)(
u

v

)
= ω

(
0 1
1 0

)(
u

v

)
, (9a)

or equivalently,

3

(
u

v

)
≡
(

0 L2

L1 0

)(
u

v

)
= ω

(
u

v

)
. (9b)

Here

ω = z�, z =
(

1− 2i0

�

)1/2

, (10a)

and

u = f, v = zg. (10b)

As it was shown, numerically, in [11], the operator3 has two pairs of nonzero discrete
eigenvalues,±ωa and±ωb. ForH < Hc, these eigenvalues are real and lie in the gap of
the continuous spectrum:ωa, ωb <

√
1− 2H (see figure 1). AsH reaches the critical value

Hc ≈ 0.060, the two eigenvalues merge(ωa, ωb → ωc ≈ 0.83), and then immediately split
up moving into the complex plane (figure 1). In the undamped case (0 = 0), this implies the
oscillatory bifurcation. ForH > Hc the solution is unstable; the nonlinear evolution of this
oscillatory instability will result in some other nonlinear attractors. In the next two subsections
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Figure 1. The bifurcation diagram forγ = 0. Real (a) and imaginary (b) parts of the eigenvalues
λ = iω are shown as functions ofH . The complex plane in (c) results from the combination of
(a) and (b). The wavy line on (c) depicts the continuous spectrum and the dotted lines show the
imaginary eigenvaluesλ(±)b = ±iωb detaching from the continuum. The oscillatory instability sets
in when two pairs of imaginary eigenvalues merge atH = Hc (iωa, iωb → iωc) and become a
complex quadruplet.
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Figure 1. (Continued)

we develop an asymptotic formalism which captures the essentials of the nonlinear dynamics
of the unstable soliton in this supercritical domain.

In the weakly dissipative case (0 small but nonzero) the instability sets in not atH = Hc
but later, when the real part ofλ = i� becomes positive (see figures 2(a) and (c)). In literature,
this would be usually referred to as theHopf bifurcation. However, the asymptotic formalism
associated with theoscillatory-instability bifurcation provides an adequate description of
supercritical dynamics in the weakly dissipative limit as well. More importantly, the resulting
amplitude equation is fundamentally different from the normal form of the Hopf bifurcation
(see below). For this reason we will be using the term ‘oscillatory-instability bifurcation’ not
only when0 = 0 but also in the small-0 case.

2.2. Asymptotic analysis: second-order corrections

Now we are prepared to derive a reduced nonlinear model describing the evolution of the
perturbations to the stationary soliton (5) in the vicinity of the bifurcation valueH = Hc in
the nearly conservative case,0 ∼ 0. The derivation is facilitated by factorizing the complex
amplitude of the linear part of the perturbation (assumed small) asεa. Herea = O(1) and
ε is a dimensionless small parameter; the perturbation is also assumed to be slowly varied:
a = a(τ), whereτ = εt . We expandU andV in the asymptotic series inε:

U = U0(x) +
∞∑
n=1

εnUn(x, t, τ ), (11a)

V =
∞∑
n=1

εnVn(x, t, τ ), (11b)
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Figure 2. The bifurcation diagram forγ 6= 0. (In this plot0 = 0.2). This diagram was obtained
from the one in figure 1 by applying the transformation (10):λ = −0± i(ω2−02)1/2. For smallH
such thatωa < 0, there is a pair of real eigenvaluesλ(±)a = −0±(02−ω2

a)
1/2 (full line). Whenωa

exceeds0, an imaginary part appears while the real part remains fixed:λ
(±)
a = −0± i(ω2

a−02)1/2.

Another pair of complex-conjugate eigenvalues isλ
(±)
b = −0 ± i(ω2

b − 02)1/2 (dotted curve). At
H = Hc, whereωa = ωb, theλa andλb eigenvalues merge pairwise, and the real parts start to
grow. The instability sets in when Reλ crosses the horizontal zero line (broken) in (a).
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Figure 2. (Continued)

whereU0 = sechx,

U1 = [a(τ)eiωct + a∗(τ )e−iωct ]uc(x), (12a)

V1 = i[a(τ)eiωct − a∗(τ )e−iωct ]vc(x), (12b)

anduc, vc are components of the eigenvector of the operator (9) associated with the eigenvalue
ω = ωc and parameter valueH = Hc. These functions are real-valued and exponentially
decaying at infinities; we also assume that they are normalized to unity:∫ ∞

−∞
(u2
c + v2

c ) dx = 1. (13)

Writing

H = Hc + ε2h, 0 = ερ, (14)

we include weak dissipative effects and a small deviation from the bifurcation point into the
leading order of the asymptotic analysis. Substituting equations (11), (12) and (14) into the
system (4), and equating coefficients of like powers ofε and equal harmonics, we obtain for
theε2-correction:

U2 = |a|2u0(x) + 2 Re

{
i
da

dτ
eiωct

}
u1(x) + 2ρ Re{iaeiωct }uγ (x) + 2 Re{a2e2iωctu2(x)}, (15a)

V2 = −2 Re

{
da

dτ
eiωct

}
v1(x)− 2ρ Re{aeiωct }vγ (x) + 2 Re{ia2e2iωctv2(x)}, (15b)

where the functionsu0, u1, uγ , u2 andv0, v1, vγ , v2 are to be found by solving the following
set of linear nonhomogeneous equations:

L1u0 = 4U0(3u
2
c + v2

c ); (16)
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Mωc

(
u1

v1

)
≡
(
L1 −ωc
−ωc L2

)(
u1

v1

)
= −

(
vc
uc

)
; (17)

Mωc

(
uγ
vγ

)
= −2

(
vc
0

)
; (18)

M2ωc

(
u2

v2

)
≡
(

L1 −2ωc
−2ωc L2

)(
u2

v2

)
= 2U0

(
3u2

c − v2
c

2ucvc

)
. (19)

(Here the operatorL2 is defined by equation (7) withH = Hc.)
It is worthwhile to comment on the meaning of each term in equation (15) and the

solvability of equations (16)–(19). First of all, the functionsu0, u2, and v2 represent
the nonlinearity-induced corrections to the soliton’s shape (zeroth and second harmonic,
respectively.) The equation (16) always admits a solution decaying asx → ±∞, since
the corresponding homogeneous solution (the translational zero-frequency modefT (x) =
tanhx sechx) is an odd function and therefore, is orthogonal to the even function on the right-
hand side. On the contrary, the nonhomogeneous solution of equation (19) is bounded but does
not have to decay at the infinities as there is no reason why the correspondinghomogeneous
solution should be orthogonal to the vector function on the right-hand side of (19). The
homogeneous solution is the eigenfunction of the eigenvalue problem (9) associated with the
eigenvalueω = 2ωc ≈ 1.66. This eigenvalue belongs to the continuous spectrum and so
the nonhomogeneous solutionu2, v2 is defined up to the addition of an arbitrary combination
of two continuous spectrum eigenfunctions†. Physically, the terms proportional tou2 andv2

are interpreted as the radiation emitted by the oscillating soliton. The boundary conditions
corresponding to theoutgoingradiation waves read(

u2

v2

)
→
(

1
k2
c+1
2ωc

)
R±e∓ikcx as x →±∞, (20)

where the wavenumberkc is positive, with

k2
c =

√
H 2
c + 4ω2

c +Hc − 1. (21)

With the above choice, the radiation terms in equation (15) reduce, asx → ±∞, to the
outgoing harmonic waves proportional to exp{i(2ωct ∓ kcx)}. The functionsu2 andv2 are,
therefore, complex-valued. The functions on the right-hand side of equation (19) are even; it
is not difficult to realize that this fact, together with the radiation conditions (20), requires that
u2(x) andv2(x) should also be even. Hence,R+ = R− ≡ R.

Before commenting on equations (17) and (18), we need to recall thatωc is a repeated
(double) eigenvalue of the operator (9) arising from the coalescence of two simple eigenvalues,
ωa andωb. The associated eigenvectors,{ua, va} and{ub, vb}, are orthogonal in the sense
of the following (SO(1, 1)-invariant) scalar product:

∫∞
−∞(uavb + ubva) dx = 0. Whenωa

andωb coalesce, the associated eigenvectors can either stay linearly independent (i.e. the
double eigenvalueωc is complete) or collapse into one (i.e.ωc is defective). Our numerical
analysis shows that the second possibility occurs in the case at hand: whenH → Hc, we have
ua, ub → uc andva, vb → vc. Consequently, the orthogonality condition at the pointH = Hc
becomes

Ic ≡ 2
∫ ∞
−∞

ucvc dx = 0. (22)

In order to illustrate the validity of equation (22), we have plotted the quadratic forms

I [u, v] = 2
∫ ∞
−∞

uv dx (23)

† Here we use the term ‘eigenfunction’ simply for the sake of brevity; the continuous spectrum ‘eigenfunctions’ are,
of course, non-normalizable.
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Figure 3. The quadratic formI = 2
∫
uv dx, evaluated numerically for two soliton’s internal

modes,{ua, va} and {ub, vb}. Whenωa merges withωb, both Ia and Ib vanish ensuring the
existence of the generalized eigenvector{u1, v1} at the pointH = Hc.

for the two eigenvectors of the linearized operator (9) (figure 3). The formsIa andIb are
indeed seen to merge and vanish atH = Hc.

Turning to equation (17), we can now identify its solution{u1, v1} as a rank-2 generalized
eigenvector associated with the eigenvalueωc of the linearized operator (9). The solvability
condition for equation (17) is nothing but the orthogonality relation (22); the fact that
the quadratic formIc of the eigenvector{uc, vc} vanishes, guarantees that the generalized
eigenvector{u1, v1} exists and decays as|x| → ∞. The real functionsu1(x) andv1(x) can
be interpreted as resonantε2-corrections to the linearised perturbation.

Finally, the same equation (22) gives the solvability condition for the system (18). The
real functionsuγ andvγ account for theε2-corrections due to the weak damping.

2.3. The reduced finite-dimensional system

Having found the second-order corrections, we proceed to the third order of the asymptotic
expansion, which yields the following linear nonhomogeneous system:(

L1 ∂/∂t

∂/∂t L2

)(
U3

V3

)
=
(
Y

Z

)
, (24)

where

Y = 2(U2
1 + V 2

1 )U1 + 4U0(3U1U2 + V1V2)− V2τ − 2ρV2, (25a)

Z = 2(U2
1 + V 2

1 )V1 + 4U0V1U2 + 4U0U1V2 +U2τ + 2hV1, (25b)

andU1, V1, U2 andV2 are as in (12) and (15). The solvability condition for equation (24)
involves coefficients of the resonant harmonic; we denote themy andz:(

Y

Z

)
=
(
y(x, τ )

z(x, τ )

)
eiωct + c.c. +(other harmonics). (26)
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A bounded solution exists only if∫ ∞
−∞
(yuc + zvc) dx = 0. (27)

After some algebra this solvability condition can be reduced to an equation for the complex
amplitude of the soliton’s perturbation:

α

(
d2a

dτ 2
+ 2ρ

da

dτ
+ ρ2a

)
= βha − ζ |a|2a. (28)

Here

α = −
∫ +∞

−∞
(ucv1 + vcu1) dx, (29)

β = 2
∫ +∞

−∞
v2
c dx, (30)

ζ = −2
∫ +∞

−∞
(3u4

c + 2u2
cv

2
c + 3v4

c ) dx

−4
∫ +∞

−∞
U0[3u2

c(u0 + u2) + v2
c (u0 − u2) + 2ucvcv2] dx. (31)

In the derivation of the linear part of equation (28) we used the relations∫ +∞

−∞
ucvγ dx =

∫ +∞

−∞
vcuγ dx =

∫ +∞

−∞
ucv1 dx =

∫ +∞

−∞
vcu1 dx;

these follow from (9), (17) and (18).
The coefficientβ is manifestly positive. Since the oscillatory instability is expected to

set in for supercritical values ofH , i.e. forh > 0, we expect the coefficientα to be positive
as well. Finally, the coefficientζ involves complex functionsu2 and v2 and therefore, is
complex-valued. Using equation (19) in equation (31) one can readily find the imaginary part
of this coefficient:

Im ζ = 2kc
H 2
c + 4ω2

c +Hc
√
H 2
c + 4ω2

c

ω2
c

|R|2 > 0. (32)

The eigenvalue problem (9) and nonhomogeneous equations (16)–(19) were solved
numerically. (The details have been relegated to the appendix.) We have found the following
values for the coefficients occurring in the reduced amplitude equation (28):

α = 1.3297, β = 1.6447,
Reζ = (7.5555± 0.0005)× 10−2, Im ζ = (1.59± 0.04)× 10−3.

(33)

3. Reduced amplitude equations for the Hopf bifurcation

In this section we derive the reduced amplitude equation governing nonlinear evolutions beyond
the Hopf bifurcation. The Hopf bifurcation occurs when a pair of complex-conjugate linearized
eigenvalues crosses the imaginary axis atλ = i�c(0) (see figures 2(a) and (c)). As we
have already mentioned, this bifurcation takes place in thestronglydissipative case, i.e. for
H = Hc(0) with finite0†. We expand the fields as in equations (11) and (12):

U = U0(x) + ε[a(τ)ei�ct + a∗(τ )e−i�ct ]fc(x) +
∞∑
n=2

εnUn(x, t, τ ), (34a)

† In the previous two sections we used the notationHc for the value ofH for which the eigenvaluesωa andωb merge
and become complex. That previousHc would be calledHc(0) in the context of this section.
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V = iε[a(τ)ei�ct − a∗(τ )e−i�ct ]gc(x) +
∞∑
n=2

εnVn(x, t, τ ), (34b)

with, however, a different time scaling:

τ = ε2t.

We also assume that

H = Hc(0) + ε2ĥ.

In equations (34)fc andgc arecomplexeigenfunctions of the operator (6) associated with
the eigenvalue� = �c(0) and arising forH = Hc(0). The second-order correction terms
become

U2 = |a|2f0(x) + 2 Re{a2e2i�ctf2(x)},
V2 = |a|2g0(x) + 2 Re{ia2e2i�ctg2(x)},

wheref0 andg0 are real functions satisfying the nonhomogeneous system(
L1 20
0 L2

)(
f0

g0

)
= 4U0

(
3|fc|2 + |gc|2

i(f ∗c gc − g∗c fc)
)
, (35)

and{f2, g2} is a complex solution to(
L1 2i0 − 2�c
−2�c L2

)(
f2

g2

)
= 2U0

(
3f 2

c − g2
c

2fcgc

)
. (36)

Both equations (35) and (36) exhibit nonhomogeneous solutions exponentially decaying
as |x| → ∞ because the correspondinghomogeneoussolutions are all unbounded—with a
single exception of the translational modefT (x) = tanhx sechx, gT (x) = 0 which we have
already mentioned in section 2. As for the continuous spectrum of the operator (6), it consists
of � with �(� − 2i0) = ω2, whereω is real andω2 > 1− 2Hc. Consequently, no real�
belong to the continuous spectrum.

Thus, we proceed to the third-order approximation along the lines of section 2 and find
the complex Landau equation for the amplitudea(τ):

α̂
da

dτ
= β̂ĥa − ζ̂ |a|2a. (37)

Here the complex coefficientŝα, β̂, andζ̂ are expressible through the functionsfc, gc andf0

to g2:

α̂ = (0 + i�c)
∫ +∞

−∞
fcgc dx,

β̂ = (�c − 2i0)
∫ +∞

−∞
g2
c dx,

ζ̂ = −�c
∫ +∞

−∞
(3|fc|2f 2

c + |fc|2g2
c + |gc|2f 2

c + 3|gc|2g2
c ) dx

+2i0
∫ +∞

−∞
(3|gc|2g2

c + 2|fc|2g2
c − |gc|2f 2

c ) dx

−2�c

∫ +∞

−∞
U0{3f 2

c f0 + 3|fc|2f2 + (fcg
∗
c + f ∗c gc)g2 + g2

c f0 − |gc|2f2} dx

+4i0
∫ +∞

−∞
U0(g

2
c f0 − |gc|2f2 − ifcgcg0 + f ∗c gcg2) dx.
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The amplitude equation (37) is a normal form of the Hopf bifurcation occuring in finite-
dimensional dissipative systems (see e.g. [20]).

We conclude this section by a comment on the correspondence between ‘large0’ and
‘small 0’ amplitude equations, i.e. equations (37) and (28). Sending0→ 0, we have(

fc
gc

)
=
(
uc
vc

)
+ i0

(
uγ
vγ

)
+ O(02) (38)

and the coefficients of equation (37) become

α̂ = 0�cα, β̂ = �c

2
β, ζ̂ = �c

2
ζ. (39)

On the other hand, whenρ → ∞ the amplitude equation (28) becomes overdamped and the
aττ term can be discarded. This converts equation (28) into the first-order equation†

2αρaτ = (βh− αρ2)a − ζ |a|2a, (40)

which coincides with (37), (39) after we have made the identificationĥ = h − αρ2/β, or,
equivalently,

Hc(0) = Hc(0) +
α

β
02. (41)

As an aside remark we note that equation (41) can be rewritten as

hc(γ ) = hc(0) +
α

β

γ 2

1 +hc(0)
= 0.063 596 + 0.760 13γ 2, (42)

which gives a small-γ approximation for the upper boundary of the stationary soliton’s stability
domain.

4. Finite-dimensional supercritical dynamics

4.1. Linear stage

The linear stability properties of the stationary soliton of the NLS equation (4) are exactly
reproduced by the reduced amplitude equation, equation (28). In terms of equation (28) the
linear stage of instability can be described by discarding the cubic term. This yields

a(τ) = a0eµτ , µ = −ρ ±
√
βh

α
. (43)

In the undampedcase(ρ = 0) equation (43) implies that the oscillatory instability sets in
immediately ash becomes greater than zero. This is in exact correspondence with figure 1(a)
where the instability is seen to arise when two imaginary eigenvaluesλa = iωa andλb = iωb
merge forH = Hc (or, equivalently, forh = 0) and then split up and diverge from the imaginary
axis. In theweakly dissipativecase(ρ 6= 0) the coalescing eigenvalues have a negative real part
at the point of their merger and so the instability sets in not when they coalesce but later, when
one of the diverging eigenvalues crosses the imaginary axis. This happens ath = hc ≡ αρ2/β

and again, this threshold value is exactly reproduced by the threshold value of the reduced
equation (which is straightforward from (43)).

Finally, in thestronglydissipative case the merger of the eigenvalues and the imaginary
axis crossing occur for two widely separated values ofH . Here we deal with the conventional
Hopf bifurcation; in this case the second-order amplitude equation does not apply and should
be replaced by the complex Landau equation, equation (37).

† A more formal way to obtain a first-order equation consists in transforming toτ̃ = τ/ρ and then sendingρ →∞.
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4.2. Energy considerations

The undamped parametrically driven NLS equation (1) has two conserved quantities, the field
momentum and energy. The eigenfunctions associated with the soliton’s internal oscillation
modes are symmetric inx and so these oscillations do not affect the value of the momentum.
Consequently, energy is the only relevant integral in the present context. Although in the
dissipative case (γ 6= 0) energy is not conserved, it remains a useful characteristic of the
wave field in this case as well. Forγ 6= 0 the local energy balance equation follows from
equations (4):

∂E
∂t

+
∂FE

∂x
= −20DE , (44)

where

E = 1
2[U2

x + V 2
x +U2 + (1− 2H)V 2 − (U2 + V 2)2] (45)

is the energy density,

FE = UxVxx − UxxVx +UVx − (1− 2H)VUx + 2(U2 + V 2)(UxV − UVx) (46)

the associated flux, and

DE = V 2
x + (1− 2H)V 2 − 2(U2 + V 2)V 2 (47)

is the density of the dissipative function. Substituting the asymptotic expansion (11) in
equation (45) and integrating overx gives a total energy of the nonlinear wave field:

E =
∫ +∞

−∞
E dx = E0 + ε2E2 + ε3E3 + O(ε4), (48)

whereE0 is the energy of the unperturbed soliton (E0 = 2/3), andE2,E3, etc are corrections
due to the small localized perturbation. It follows from equations (9) and (11) that

E2 = ωcIc|a|2,
where Ic is the quadratic functional (23) evaluated at the critical eigenvector{uc, vc}:
Ic = I [uc, vc]. The quadratic formI is positive for the eigenmode{ub, vb} which detaches
from the edge of the continuous spectrum and negative for the eigenvector{ua, va}arising from
the broken phase invariance (see figure 3). Therefore, the eigenfunction{ub, vb} always brings
a positive contribution to the energy of the nonlinear field, while the contribution of the mode
{ua, va} is always negative. At the resonance (H = Hc) the two contributions cancel each other
and the second-order correctionE2 vanishes according to equation (22). The merger of two
modes of the opposite energetic contents produces the oscillatory instability of the stationary
soliton (2). At the resonance, the asymptotic expansion (48) must be extended to include the
third-order correction, for which we obtain

E3 = iαωc

(
a

da∗

dτ
− a∗ da

dτ

)
(49)

with α is as in equation (29). Finally, integrating equation (44) overx and keeping terms up
to ε3 in the expansion (48) we find the rate of change of the energy of the localized wave field:

dE3

dτ
= −2ρE3− 2ωc Im ζ |a|4. (50)

(This equation, withE3 defined by (49), can also be derived directly from the reduced amplitude
equation (28).) The equation (50) shows that the soliton is suffering two types of energy losses:
the dissipative losses described by the first term on the right-hand side and losses due to the
emission of radiation waves described by the second term.
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4.3. Effective particle representation

It appears useful to interpret the reduced amplitude equation (28) as the equation of motion of
a fictitious classical particle. In terms of the vectorr ≡ {Rea, Im a}, equation (28) becomes

r̈ + 2ρṙ − ηr + gr2r = qr2r × ẑ, (51)

where we have defined

g = Reζ

α
≈ 0.0568, q = Im ζ

α
≈ 0.0012,

and

η = β

α
h− ρ2.

(The control parameterη is positive in the supercritical region.) Next,ẑ is a unit vector in
the vertical direction;r ≡ |r|, and the overdot indicates differentiation with respect toτ .
Equation (51) describes a particle in a mexican hat-shaped radially-symmetric potential

U(r) = −η
2
r2 +

g

4
r4, (52)

subject to the constant friction with coefficient 2ρ and clockwiser-dependent torque−qr4ẑ.
Two quantities useful for the analysis are the angular momentum

l = [r × ṙ]

∣∣∣∣
z

= i

2
(aȧ∗ − a∗ȧ), (53)

and the Hamiltonian

H = ṙ2

2
+
l2

2r2
+ U(r). (54)

In terms ofl andH the vector equation (51) can be rewritten as

l̇ = −2ρl − qr4, (55)

Ḣ + 2ρṙ2 = −2ρ
l2

r2
− qlr2. (56)

Notice thatl coincides, up to a constant factor, with the third-order correction to the soliton’s
energy, equation (49):

E3 = 2αωcl. (57)

Accordingly, equation (55) is simply the equation of the soliton’s energy variation,
equation (50), rewritten in terms of the angular momentum of the fictitious particle.

4.4. Conservative case(ρ = 0)

First we consider the caseρ = 0. Although the NLS equation is conservative in this case (i.e.
the total energy (48) does not change with time), the motion of the effective particle is not.
According to equation (50), in the conservative case the solitary wave evolves in such a way
that the energyE3 is decreasing at all times due to the radiation losses. In the language of
the fictitious particle this means that the angular momentum is always growing towards minus
infinity due to the nonzero clockwise torque. As we will see, the consequence of this in the
unstable regionh > 0 is that the dynamical system (28) has no bounded trajectories and the
amplitudea has to grow indefinitely.
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If there were no external torque(q = 0), both l andH would be conserved and
consequently, the fictitious particle would perform quasiperiodic oscillations in the ring
R1 < r < R2. HereR2

1 andR2
2 are the two positive roots of the cubic equation

Ueff(R
2) = H, Ueff(R

2) = l2

2R2
− η

2
R2 +

g

4
R4. (58)

Let nowq be nonzero but so small that we can still regard the particle as being trapped in an
effective radially-symmetric potential well (58), withl, the width of the centrifugal barrier,
and the energy of the particle slowly changing with time:

l̇ = −qr4, Ḣ = −qlr2. (59)

Assume first that the initial value of the angular momentum is negative:l(0) < 0. Thenl
will grow in magnitude remaining negative all the time, and the energyH will also grow. It is
not difficult to show that as a result of this, the inner and outer radii of the ring (the so-called
apsidal distances) will grow as well. Indeed, differentiating the identityUeff(R

2
i ) = H and

then using equation (59) and the representation

l2

2R2
− η

2
R2 +

g

4
R4 −H = g

4

(R2 − R2
1)(R

2 − R2
2)(R

2 +R2
3)

R2
, (60)

one finds

d

dτ
R2
i = −

4qlr2

g

|R2
i − r2|

(R2
2 − R2

1)(R
2
i +R2

3)
, i = 1, 2, (61)

which is> 0 for l < 0. Intuitively it is quite clear from (61) that the inner circle of the ring
will grow faster than the outer circle; this claim can be readily justified by comparing the
increments incurred byR1 andR2 in one half-period of oscillation, i.e. as the particle travels
from R1 to R2. Consequently, the particle will spin around the origin within an adiabatically
expanding and narrowing annular well. (By ‘narrowing’ we mean that thewidth of the ring
will be decreasing.)

Assume now that the initial value of the angular momentum is positive:l(0) > 0. In
this case bothl andH will initially decrease, and, according to (61), the trajectory will be
sandwiched between two adiabatically shrinking circles: dR1,2/dτ < 0. Eventuallyl will
become negative, and the evolution will cross over to the previous scenario.

The motion remains adiabatic as long as the width of the ring,R2 − R1, is much larger
than the increments incurred byR1(τ ) andR2(τ ) during one half-period of oscillation. To find
the region of applicability of this condition, we consider the stage where the Hamiltonian is
already so large that

η2

gH
� 1

3
. (62)

We also assume, for simplicity of calculations, that†

σ ≡ gl4

H3
�
(

4

3

)3

; (63)

then the rootsRi are given by simple expressions

R2
1 ≈

l2

2H
, R2

2 ≈ R2
3 ≈

(
4H
g

)1/2

. (64)

† The particular numerical values on the right-hand side of (62) and (63) are suggested simply by the fact that for
η2/gH < 1

3 andσ < ( 4
3)

3, the roots of the cubic equation can be found as convergent series in(η2/gH) andσ .
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Notice that in view of the inequality (63),R1/R2 � 1. (More precisely,R2
1/R

2
2 � 2/

√
27).

From (61) it follows that the velocity of expansion (or contraction) of the inner circle of the
ring satisfies

|Ṙ1| < 2q|l|
g

√
r2 − R2

1

R1R2
,

where we have used the fact thatR3 ≈ R2� R1. On the other hand, the radial velocity of the
particle is given by

|ṙ| =
√
g(r2 − R2

1)(R
2
2 − r2)(r2 +R2

3)

2r2
,

whence the increment inR1 is

|1R1| =
∣∣∣∣ ∫ R2

R1

Ṙ1
dr

ṙ

∣∣∣∣ < q
(g

2

)−3/2 |l|
√
R2

2 − R2
1

R1R
2
2

.

Using (64), we obtain
|1R1|
R2 − R1

<
2q

g
,

and since our 2q/g ≈ 0.04, we conclude that the adiabaticity condition|1R1| � R2 − R1 is
in place. In a similar way one obtains

|1R2| <
√

2qg−3/2
|l|
√
R2

2 − R2
1

R3
2

,

and making use of equations (64), this becomesq|l| < 2(gH)3/4. Therefore, in order to
ensure that|1R2| � R2 − R1, it is sufficient to require that the dimensionless quantityσ ,
equation (63), be much smaller than(2g/q)4 ∼ 8× 107. The latter is automatically satisfied
if we impose the condition (63).

AsH and(−l) grow and the ring expands and its width narrows, the quotientσ will receive
a positive increment after each period of oscillation. Quantitatively, the increment incurred in
a half-period is

1σ =
∫ R2

R1

σ̇
dr

ṙ
>
(
√

2− 1)πq

2g
σ. (65)

On the other hand, it takes the particle less thanπ
2 (gH)

−1/4 units of time to travel fromR1 to
R2. Consequently, the average growth rate can be estimated as

〈σ̇ 〉 ≡
∫ R2

R1
σ̇ dr
ṙ∫ R2

R1

dr
ṙ

� 31/4(
√

2− 1)q

g
b1/2σ 5/4, (66)

where we have used the inequality (62). This means thatσ will grow at least as fast as
1/(τ0 − τ)4 (with τ0 determined by the initial value ofσ ). Eventually the inequality (63)
will be no longer valid, and oscillations in an adiabatically growing ring will be replaced by a
regime of a faster, almost monotonic growth. (What happens is that the annular well becomes
so narrow and expands so fast, that it simply ‘pulls’ the particle along.)

It is not difficult to realize that this latter regime is self-similar. Sinceη/(gr2)→ 0, the
term withη can be neglected in equation (56) and the growing solution of the resulting system
is simply

r = r1

τ0 − τ , l = − l1

(τ0 − τ)3 , (67a)
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where

r1 = 3√
2

√
g

q

1 +

√
1 +

8

9

q2

g2

1/2

≈ 3
√
g

q
≈ 6.0× 102, (67b)

and

l1 = q

3
r4

1 ≈ 5.0× 107. (67c)

The energy grows as

H = H1

(τ0 − τ)4 , H1 = q2

12
r6

1 ≈ 5.4× 106, (68)

while the quotientσ remains constant:

σ = 64g

3q2r2
1

≈
(

4

3

)3

≈ 2.37. (69)

Figures 4(a) and (c) show results of the numerical simulation of the finite-dimensional
system (28) (equivalently, equation (51)) with the initial conditions satisfying equations (62)
and (63). For both negative and positivel(0) the evolution starts with a long transient where
the particle performs oscillations in an adiabatically expanding or contracting ring. When
l(0) > 0, the ring is initially shrinking (this phase is not very clearly seen in the plot) but
then starts expanding. Whenl(0) < 0, the shrinking phase is absent and because of that,
the evolution in this case is approximately 10 time units ahead of the one forl(0) > 0. The
exponentσ is seen to tend to the similarity value of 2.37; this indicates that the trajectory is
attracted to the self-similar regime (67).

It is important to emphasize here that the inequalities (62), (63) are sufficient but in no way
necessary for the adiabatic transient to occur. (In fact, the only role of equations (62), (63) was
to simplify calculations.) In figures 4(b) and (d) we display trajectories of the particle with
the initial conditions which do not satisfy (62), (63). Similarly to the previous case, initially
the particle is oscillating within an adiabatically changing ring (i.e.1Ri � R2−R1) but then
escapes to infinity along a self-similar trajectory (σ → 2.37). As in the previous case, the
duration of the transient depends on the sign ofl(0): for l(0) < 0 the ring starts expanding
straight away whereas forl(0) > 0, the ring first contracts until the sense of rotation of
the particle is reversed, and only then starts inflating. In terms of the full, nonreduced NLS
equation this means that initial perturbations ‘pushing’ the soliton towards smaller values ofE

will trigger a much faster decay of the unstable soliton than those bringing positive contribution
to its energy.

Thus we may conclude that in the conservative case, the oscillatory instability bifurcation
does not give rise to a stably oscillating soliton. The reason for this is the emission of a
strong second-harmonic radiation. Because of the radiation, the trajectory of the soliton’s
perturbation in its internal space is always unbounded. Provided the initial perturbation|a(0)|
is not very large, the evolution of instability starts with adiabatically growing oscillations which
then transform into a regime of rapid self-similar growth.

4.5. Weakly dissipative case (finiteρ)

Adding a weak damping can hinder radiations from freely escaping from the oscillating soliton.
According to equation (55) this can result in the angular momentum of the fictitious particle
settling to a constant value

l± = − q

2ρ
r4
±, (70)
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Figure 4. The motion of the undamped classical particle as obtained by numerical simulations of
equation (51): the radial position of the particle (a), (b) and the exponentσ = gl4/H3 (c), (d). In
these plotsh = 0.1 (η = 0.1237); in all four runs the initial radial position wasr(0) = 1 and the
initial radial velocity ṙ(0) = 0. On (a), (c) the initial angular momentum isl(0) = ±20 which
givesη2/gH(0) ∼ 10−3 andσ(0) ∼ 10−3 so that the inequalities (62), (63) hold true. On the
contrary, neither of these inequalities is satisfied for the evolutions shown on (b), (d); these start
with l(0) = ±1 which givesη2/gH(0) ≈ 0.6 andσ(0) ≈ 0.6.
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Figure 4. (Continued)



Dynamics of the parametrically driven NLS solitons 123

where the radius can adopt one of the two values:

r2
± =

2ρ2

q2

g ±√g2 − q
2η

ρ2

 . (71)

The corresponding circular orbits of equation (51) have the form

a = r± exp(iν±τ), (72)

with the angular velocities given by

ν± = − q

2ρ
r2
±. (73)

Both closed trajectories exist forg > 0 which is in place in the case at hand. In terms of the
parametrically driven NLS equation, equations (71)–(73) describe two periodically oscillating
solitons different in the amplitude and frequency of oscillation.

The soliton with the smaller amplitude of oscillation,|a| = r−, softly bifurcates from the
stationary soliton at the onset of the oscillatory instability,h = hc = αρ2/β. Ash is increased,
it merges with the second oscillating soliton(|a| = r+) at the turning point

h = hc
[

1 +

(
g

q

)2
]
. (74)

The valueh is the upper boundary of the domain of existence of the two circular orbits (71)–
(73). Intuitively, it is quite clear that the orbitr− should be stable andr+ unstable; to verify
this conjecture, we add a small perturbation:

a(τ) = (r± + eµτ δa)exp(iν±τ), |δa/r±| � 1. (75)

Substituting into (51) and linearizing with respect toδa yields a characteristic equation for the
exponentµ:

µ(µ3 + c1µ
2 + c2µ + c3) = 0, (76)

wherec1 = 4ρ > 0,

c2 = 4ρ2 + 2gr2
± + 4ν2

± > 0,

and

c3 = 4ρ(gr2
± − 2ν2

±) = ∓4r2
±
√
g2ρ2 − q2η.

Using the Routh–Hurvitz test, one may readily check that apart from the trivial translational
rootµ = 0, equation (76) always has two roots with negative real parts. The fourth root is
positive forc3 < 0 and negative otherwise; that is, we have a stable root forr = r− and
unstable one forr = r+. Thus the oscillating soliton with the larger amplitude of oscillations is
unstable and the one with the smaller amplitude is stable within our asymptotic approximation.

All trajectories of the fictitious particle will either be attracted to the stable circular orbit
r−, l− or escape to infinity along a self-similar trajectory similar to the one arising in the
undamped situation. This self-similar solution is given by the same equations (67) as in the
γ = 0 case. We are not discussing basins of attraction of the above solutions; this analysis
can be performed along the lines of the previous section. In this paper we confine ourselves
to displaying only several characteristic transients (figure 5).

In all our experiments the radial component of velocity was initially zero:ṙ(0) = 0. In
the first simulation the initial angular momentum is negative and|l(0)| andr(0) are chosen in
such a way that in the first place,qr4(0) > 2ρ|l(0)|, and in the second, the ring of admissible
motions is wider than both stationary circular orbits:R1(0) > r+. (We remind thatR1(τ )
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Figure 5. Numerical simulations of the damped fictitious particle, equation (51). Hereρ = 0.02
and η = 0.1237; the corresponding stationary orbits arer− = 1.51 (stable) andr+ = 7.80
(unstable). Curve 1 starts withr(0) = 10, l(0) = −300 and curve 5 hasr(0) = 10, l(0) = +300;
in both cases the correspondingR1(0) = 10, andR2(0) = 11.7. Curve 2 hasr(0) = 9.97,
l(0) = −99.40; the apsidal distances in this case areR1(0) = 5.33, andR2(0) = 9.97. Curve 3
starts withr(0) = 9.80 andl(0) = 96.04; the correspondingR1(0) = 5.31 andR2(0) = 9.80.
After visiting the unstable orbitr+, the curve 2 escapes to infinity while the curve 3 settles to the
stable orbitr−. The initial conditions for the curve 4 arer(0) = 3 andl(0) = −9; henceR1(0) = 3,
R2(0) = 4. Curve 6 hasr(0) = 0.5, l(0) = +20, the correspondingR1(0) = 0.5,R2(0) = 15.5.
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andR2(τ ) are defined as roots of equation (58).) In this case the angular momentum starts
decreasing further(l̇ < 0) and equation (55) implies that the height of the centrifugal barrier
at any fixed pointr = r0 grows as

d

dτ

(
l2

2r2
0

)
= |l|qr

4 − 2ρ|l|
r2

0

. (77)

On the other hand, in view of equation (56) the growth rate of the energy of the particle,
Ḣ, is bounded by|l|(qr4 − 2ρ|l|)/r2 which is smaller than (77) providedr0 < R1(τ ).
Consequently, the centrifugal barrier grows faster thanH(τ ) and the ‘window’ of admissible
motions,(R1, R2), moves further away fromr+ (curve 1). The particle escapes to infinity.

Initial conditions with l(0) < 0 andqr4(0) > 2ρ|l(0)| do not necessarily give rise
to unbounded motions. If the ring of admissible motions is initially smaller thanr+ (i.e.
R2(0) < r+) or contains the orbitr+ within it (i.e. R1(0) < r+ < R2(0)), the expanding ring
may lock on to the unstable circular orbit (curves 2 and 3) and then the initial expansion may
switch to contraction (curve 3). Finally, such a trajectory will be attracted to the stable orbit
r−.

If l(0) < 0 butqr4(0) < 2ρ|l(0)|, both the centrifugal barrier and energy as a whole will
decrease and the trajectory will quickly settle to the circular orbitr− (curve 4).

When the initial angular momentum is positive, the early stage of the evolution will
necessarily have to go via the shrinking of the ring, curves 5 and 6. (This is because bothl

andH decrease, see equations (55), (56).) Subsequently,narrow rings will shrink to the circle
r− (curve 5) whereas the direction of change of thelarge-width rings may reverse and the
trajectory escape to infinity (curve 6).

Returning to solutions of the parametrically driven, damped NLS equation (1), we
conclude that in the weakly dissipative case the nonlinear evolution of the unstable stationary
soliton ψ+(X) may follow two alternative scenarios. The first one is the formation of a
temporally periodic solitonψ∼(X, T ); this scenario is in exact agreement with numerical
simulations of [4] where stable oscillating solitons were observed. In the vicinity of the
bifurcation the solitonψ∼(X, T ) oscillates about the ‘stationary point’ψ+(X); that is, the
difference|ψ∼ − ψ+| is not large. Alternatively, the stationary soliton may undergo a more
dramatic transformation described by an unbounded trajectory of the effective particle. The
final product of this transformation is beyond the scope of the reduced amplitude equation and
the only means to find the resulting attractors seems to be the direct computer simulations of
the full, nonreduced NLS (1). Some insight can also be gained from studying the undamped
limit (γ = 0), see section 5 below.

4.6. Strongly dissipative case (ρ � 1)

As we have demonstrated in section 3, for largeρ the second-order amplitude equation
simplifies to the normal form of the Hopf bifurcation, equation (40). Any initial condition
a(0) of this first-order equation will be attracted to a periodic orbit. The transient (and the
resulting orbit) is described by an explicit solution

a = Q1/2(τ ) exp

[
−i

Im ζ̂

α̂

∫ τ

0
Q(τ ′) dτ ′

]
, (78)

where

Q(τ) = Q∞
1− e−µ(τ+τ0)

(79)
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for large perturbations of the soliton:|a(0)|2 > Q∞ ≡ β̂ĥ/Reζ̂ , and

Q(τ) = Q∞
1 + e−µ(τ−τ0)

(80)

for small initial conditions:|a(0)|2 < Q∞. Hereµ = 1/Q∞, andτ0 is an arbitrary positive
constant.

Thus, unlike the weakly dissipative regime, no unbounded trajectories arise forγ ∼ 1. In
terms of the full, nonreduced NLS equation this means that in the strongly dissipative case,
the unstable stationary solitonψ+ will necessarily evolve into a (stable) temporally periodic
solitonψ∼. Although the finite-dimensional periodic orbit is stable with respect to arbitrarily
large perturbations, this does not guarantee, of course, that the solitonψ∼ will be stable against
arbitrarily large perturbations within the full NLS equation. We also need to emphasize here
that the amplitude equation (37) is only valid in the vicinity of the Hopf bifurcation. Numerical
simulations showed that for driving strengths further away fromh = hc(γ ), the oscillating
soliton loses its stability to a double-periodic or chaotic attractor [4]. These higher bifurcations
are not captured by the present asymptotic approach.

5. Long-term evolution of the oscillatory instability

5.1. Numerical simulations

In the case of finiteγ , conclusions of our finite-dimensional analysis are in agreement with
earlier computer simulations [4] where the unstable stationary solitonψ+ was seen to evolve
into a temporally periodic solitonψ∼. In the undamped case, on the contrary, our analysis
shows that the oscillatory instability should result in a more fundamental transformation of
the soliton. This case was not studied numerically before whereas the reduced amplitude
equation provides no clue to what the corresponding asymptotic attractors should be. The case
of smallγ is intermediate; here the instability can give rise both to the oscillating soliton and
to some other, yet unknown, attractors. With the aim of gaining some insight into the nature
of these attractors as well as verifying conclusions of our finite-dimensional analysis, we have
performed a series of computer simulations of the full, nonreduced nonlinear Schrödinger
equation (1).

We restricted ourselves to the undamped case,γ = 0. Our numerical scheme is a
generalization of the split-step pseudospectral method [21] and was previously utilized in [4].
The method imposes periodic boundary conditionsψ(L) = ψ(−L), ψX(L) = ψX(−L),
where the length of the spatial interval was chosen to be 2L = 152. In order to emulate the
infinite-line situation, a ‘sound-absorbing’ term−iγ (X)ψ is added on the right-hand side of
equation (1). Here the functionγ (X) is almost zero within the subinterval(−60, 60) and
increases to the value of approximately 0.55 asX→±76:

γ (X) = 0.3

[
tanh

(
X − 70

5

)
− tanh

(
X + 70

5

)
+ 2

]
.

The effect of this term is to damp small-amplitude radiation waves emanating from the soliton
and prevent their re-entry back into the system via the periodic boundaries. Typically we
usedN = 211 = 2048 Fourier modes which implied the spatial resolution1X = 2L/N ≈
7.4× 10−2. Our time increment,1T = 1.0× 10−3, was chosen so that the stability condition
[21] of this numerical scheme be in place:1T < (1X)2/π = 1.8× 10−3.

We set up the initial condition in the form (11), (12), (15):

ψ(X, 0) = A[U(AX) + iV (AX)], (81a)
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with

U(x) = sech(x) + 2ε Reauc(x) + ε2{|a|2u0(x)− 2 Im ȧu1(x) + 2 Re[a2u2(x)]}, (81b)

V (x) = −2ε Im avc(x)− 2ε2{Reȧv1(x) + Im[a2v2(x)]}. (81c)

Here a, ȧ = constant;uc, vc are the eigenfunctions of the operator (9) corresponding to
H = Hc andu0, u1, v1, u2, v2 are solutions of the nonhomogeneous equations (16), (17), (19).
The link to the reduced amplitude equation (28) is provided by setting the two constants,a

andȧ, equal to the initial values (a(0) andȧ(0), respectively) of equation (28). Finally,A is
given by equation (2c): A = (1 + h)1/2. Our choice ofh is related to the value ofh used in
simulations of the reduced system (28) in section 4.4(h = 0.1). Takingε = 0.1, equation (14)
givesh = 0.064 72. (To get an idea of how close to the bifurcation point we are, recall that
the oscillatory instability sets in athc = 0.063 59.)

For all examined values ofa andȧ—provided|E3| (equation (49)) is not very large—the
evolution starts with a relatively long period of growth of the oscillatory instability. During
this transient period the field configuration may be regarded as aψ+ soliton with the amplitude
and width oscillating about their stationary values (figure 6). After the amplitude of the
growing perturbation has reached a certain critical value, a cross-over occurs and the subsequent
evolution settles to one of the two possible asymptotic regimes. Both of these two attractors
are localized in space and oscillate in time. In contrast to the transient phase, these oscillations
are not about the stationary soliton but aboutψ = 0 (see figures 6(c) and (d)). In both cases
the oscillations of the soliton are accompanied by intensive radiation.

5.2. Asymptotic attractors

The first emerging attractor has anegativeoscillation frequency with the magnitude slightly
smaller than 1; it is bell-shaped and its amplitude is very slowly decaying in time (figure 6(a)).
We will be referring to this solution as thebreather; it is indeed a relative of the breather
solution of the Klein–Gordon equation [22]. (Another, and possibly even closer relative is the
soliton of the unperturbed NLS equation with the constant frequency shift, equation (1) with
γ = h = 0.) Similarly to the Klein–Gordon breather, our breather lives in the gap of the
continuous spectrum and can be constructed perturbatively.

To this end, we again decompose equation (1) withγ = 0 into its real and imaginary part
and expandψ in powers of a small parameter,ε:

ψ = U + iV, U = ε(U0 + ε2U2 + · · ·), V = ε(V0 + ε2V2 + · · ·). (82)

HereUi andVi depend on multiple space and time scales:Ui = Ui(X, T ;X1, T1), Vi =
Vi(X, T ;X1, T1), whereX1 = εX andT1 = εT . The breather is therefore constructed as a
perturbation of the trivial solutionψ = 0 with a small (but finite) amplitude. At the first order
in ε we have a linear equation

M

(
U0

V0

)
≡
(−∂2/∂X2 + 1 +h ∂/∂T

−∂/∂T −∂2/∂X2 + 1− h

)(
U0

V0

)
= 0, (83)

whose solutions are linear waves with the dispersion lawω2 = 1− h2 + k2. Since we are
primarily interested in nonpropagating structures, we take(

U0

V0

)
= ϕ(X1, T2)

(
1
iξ

)
eiωT + c.c., (84a)

where

ω =
√

1− h2 > 0, ξ = 1 +h

ω
=
(

1 +h

1− h

)1/2

. (84b)
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Figure 6. Evolution of the undamped soliton (γ = 0) perturbed by a perturbation of the form (81)
with |E3| ∼ 1 (i.e. with l(0) ∼ 1). For (a), (c): a = −1, ȧ = i and for (b), (d): a = 1, ȧ = −i;
in both casesl(0) = −1. All four pictures are obtained by means of numerical simulations of the
full, nonreduced NLS equation (1). The simulations were carried out on an interval [−76, 76]; on
(a), (b) the interval has been cut down for graphical clarity. On (c) and (d) plotted is the trajectory
of the pointψ(X = 0, T ). The broken lines sketch the boundaries of basins of attraction of (c) ψ↓
and (d) ψ↑ attractor. The arrows indicate the direction of the evolution.
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Figure 6. (Continued)
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Next, at the orderε2 we obtain

M

(
U2

V2

)
=
(−∂V0/∂T2 + ∂2U0/∂X

2
1 + 2(U2

0 + V 2
0 )U0

∂U0/∂T2 + ∂2V0/∂X
2
1 + 2(U2

0 + V 2
0 )V0

)
. (85)

Equation (85) is only solvable if the right-hand side is orthogonal (in the sense of theR2-scalar
product) to the vector(1,−iξ). This gives the (undriven) NLS equation forϕ:

−2iξ
∂ϕ

∂T2
+ (1 + ξ2)

∂2ϕ

∂X2
1

+ 2(3 + 2ξ2 + 3ξ4)|ϕ|2ϕ = 0, (86)

with an obvious soliton solution. Returning to the original variableψ , we can write our breather
solution as

ψ↓ = εb
(

2(1− h)

2 +h2

)1/2{1 + ξ

2
e−i(ω−ε2b2/ω)T +

1− ξ
2

ei(ω−ε2b2/ω)T

}
× sech(εbX) + O(ε3), (87)

whereω andξ are given by equation (84b), and the amplitudeb = O(1) is a slowly changing
parameter, which is not defined at this order of the expansion. Note that for smallh, ξ is close
to 1 and the second term in (87) is negligible comparing to the first one. It is for this reason
that in our numerical simulations the breather appears as anegativefrequency solution. When
h = 0, we haveω = 1 and equation (87) is simply the soliton of the unperturbed NLS equation
with the unit frequency shift.

The second localized attractor haspositiveoscillation frequency. Like the decaying soliton
ψ↓, it is bell-shaped but its amplitude is growing with time (figure 6(b)). This large-amplitude
soliton can also be constructed as a series in small parameterε; this time we write

ψ = ε−1(ψ0 + ε2ψ2 + · · ·), (88)

where the coefficients of the expansion depend on multiple scales:ψi = ψi(X−1, T−2;X, T ).
HereX−1 = ε−1X andT−2 = ε−2T . Substituting (88) into (1), the orderε−3 yields the
unperturbed NLS equation:

i
∂ψ0

∂T−2
+
∂2ψ0

∂X2
−1

+ 2|ψ0|2ψ0 = 0 (89)

and so the large-amplitude soliton is given by

ψ↑(X, T ) = B

ε
exp

(
i
B2

ε2
T

)
sech

(
B

ε
X

)
+ O(ε), (90)

whereB = O(1) is a slowly changing function ofX andT which is not defined at this level
of approximation.

Finding the exact laws of variation ofb andB is beyond the scope of this work. We will
restrict ourselves to commenting only onwhy the amplitude of the breatherψ↓ has to decay
and the amplitude of the solitonψ↑ to increase. As we mentioned in section 4, in the undamped
case the equation (1) conserves energy,

E =
∫ [
|ψX|2 + |ψ |2 − |ψ |4 +

h

2
(ψ2 +ψ∗2)

]
dX. (91)

Substituting (87) into (91) yields the energy of the breather:

E↓ = E[ψ↓] = 4(1− h2)

2 +h2
εb + O(ε3), (92)
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while doing the same with equation (90) gives the energy of the large-amplitude soliton:

E↑ = E[ψ↑] ≈ −2

3

(
B

ε

)3

. (93)

Since the linear radiation waves take away positive energy, the energiesE↓ andE↑ have to
decay. According to equation (92), this means that the amplitudeb of the small-amplitude
breather has to decrease. On the contrary, equation (93) implies that the amplitude of the
large-amplitude soliton,B, will have to grow.

Thus, from the energy point of view, the difference between the two attractorsψ↓ andψ↑
is that in the former case the energy of the breather decreases to zero (remaining positive all
the time) whereas in the latter case the energy of the soliton is negative and tends to minus
infinity.

A natural question is whether the type of the asymptotic regime (decay or growth) can be
predicted from the analysis of the finite-dimensional dynamics described by equation (28) with
a andȧ featuring in equation (81) taken as the initial values. Surprisingly, the answer isno. The
evolutions shown in figures 6(a), (c) and (b), (d) correspond to the choices (a = −1, ȧ = i) and
(a = 1, ȧ = −i), respectively. Although these initial conditions evolve into two completely
different asymptotic regimes, the corresponding trajectories of the fictitious particle on the
plane are identical up to a constant angular shift. In both cases the initial conditions of the
particle arer(0) = 1, ṙ(0) = 0 andl(0) = −1; the corresponding trajectory is shown in
figure 4(b).

The finite-dimensional system (28) is invariant with respect to constant phase shifts
a → aeiθ0 while it is exactly the initial phase of the perturbation that plays the crucial role in
the selection of one or the other asymptotic regime. This is shown symbolically in figures 6(c)
and (d). The two broken closed contours demarcate what can roughly be considered as the
boundaries of the basins of attraction of the decaying and growing soliton. Depending on
the phase ofa(0) (i.e. depending on the initial angular position of the fictituous particle), the
spiralling-out trajectory crosses the inner contour (schematically shown as a circle) or the
outer one (a dumb-bell). In the first case the trajectory will remain within the inner contour,
with the orbits of revolution slowly shrinking to the origin†. The corresponding solution of
the NLS equation is attracted to the slowly decaying breather,ψ↓. In the second case the
trajectory stays outside the dumb-bell, with the orbits slowly expanding. The corresponding
NLS solution locks on to the growing soliton (90).

5.3. Large-energy initial conditions; evolution of the solitonψ−

The attractorsψ↓ andψ↑ emerge if the energy|E3| of the perturbation is not very large (that
is, if the initial position and velocity of the fictitious particle are of order 1). We have also
studied the evolution of the initial condition corresponding tolarge |E3|. (More specifically,
we took|ȧ(0)| � 1 but |a(0)| = O(1).) As we remember from the simulations of the finite-
dimensional system (28), the growth of|a|2 is much faster in this case. Consistently with the
finite-dimensional description, the transient in the evolution of the NLS soliton was indeed
seen to be much shorter.

† These inner and outer contours should not be confused with the inner and outer circular bounds of the trajectory of
the effective particle discussed in section 4.4. The equation of the fictitious particle describes growing oscillations of
the fieldψ(X, T ) about the unstable stationary solitonψ+ (i.e. about the pointψ(0, T ) = A in figures 6(c) and (d).)
In contrast, the boundaries of the basins of attraction of the solitonsψ↓ andψ↑ are centred at the origin. Furthermore,
the effective-particle description is valid only while the amplitude of the oscillations is still small; it ceases to be
applicablebeforethe spiral crosses one of the broken closed contours in figures 6(c) and (d).



132 N V Alexeeva et al

Figure 7. Evolution of the undamped soliton (γ = 0) perturbed by a perturbation of the form (81)
with large negativeE3 (large negativel). Herea = 1, ȧ = −18i (and sol(0) = −18). Theψ+
soliton splits into a couple of small-amplitude breathersψ↓ equation (87), propagating in opposite
directions and slowly decaying in time.

A more significant distinction arises at a later stage, when the unstable soliton splits into a
pair of long-lived small-amplitude breathersψ↓ travelling with constant velocities in opposite
directions (figure 7). The explanation for this phenomenon is suggested by the spatial structure
of the perturbation in this case, equation (81). A large initial value ofȧ gives rise to a large
{u1, v1}-component in the perturbation while bothu1(x) andv1(x) have a sharp dip in the
middle which serves as a nucleus of the future splitting.

Finally, we have simulated the evolution of the solitonψ− (equation (2)) which has a
positiveeigenvalueλ in its spectrum of linear excitations (and so is unstable with respect to a
nonoscillatorymode). The initial condition was taken in the form

ψ(X, 0) = −iA sech(AX)− iεA[u(AX)− v(AX)],

where this timeA stands forA− = (1− h)1/2, and{u(x), v(x)} is the eigenvector‡ of the
operator (9) associated with the pure imaginary eigenvalueω = −iλ. The subsequent evolution
takes the solitonψ− to one of the two attractors observed in our simulations of theψ+ soliton.
Namely, choosingε < 0 results in the slowly decaying breather (87) while in theε > 0 case
one observes a slowly growing soliton (90). Thus, in the undamped case both the oscillatory
and the translational, nonoscillatory, instability give rise to the same asymptotic attractors.
The peculiarity of the oscillatory instability manifests itself only in theγ 6= 0 case, where it
brings about a stably oscillating soliton.

‡ In the case of theψ− soliton the linearized operator has the same form as in theψ+ case, equations (7)–(9), where
one only needs to replaceH →−H and remember that nowH = −h/(1− h).
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6. Concluding remarks and open problems

In this paper we have derived a reduced amplitude equation for the soliton in the vicinity
of the oscillatory instability bifurcation. Bifurcations of this type occur in conservative and
weaklydissipative wave systems. Similarly to the case of the Hopf instability (characteristic
of strongly dissipative systems), the oscillatory instability sets in when a pair of complex-
conjugate linearized eigenvalues crosses the imaginary axis. What makes the oscillatory
instability bifurcation fundamentally different from the Hopf bifurcation, however, is the
phenomenon of fusion and subsequent dissociation of a pair of stable eigenvalues which takes
place just before the eigenvalues have acquired a positive real part. The oscillatory instability
may therefore be regarded as a product of the resonance of two internal oscillation modes. As
a consequence of the proximity to such resonance, the amplitude equation associated with the
oscillatory instability is qualitatively different from the normal form of the Hopf bifurcation.
(The former is second-order whereas the latter is a first-order equation.)

The second-order amplitude equation for the unstable perturbation admits a useful
mechanical interpretation as an equation of planar motion of a classical particle in a radially-
symmetric potential. The particle is also subject to a constant friction and time-independent
torque which is induced by radiation waves emitted by the soliton. Exploiting this analogy and
the associated classical mechanical formalism, we have demonstrated that in theγ = 0 case
the presence of the torque always makes the trajectory of the fictitious particle unbounded.
(The motion starts with quasiperiodic oscillations in an adiabatically changing ring which
subsequently transform into a self-similar trajectory rapidly spiralling out.) In terms of the
full nonreduced NLS dynamics, this means that the emission of radiation suppresses stably
oscillating solitons. The finite-dimensional analysis provides no answer towhat will be the
resulting asymptotic attractors in this case, however.

In theweaklydissipative case (γ small but nonzero) the unbounded motions coexist with
stable periodic orbits and therefore, the unstable stationary soliton may transform into a new
soliton-like attractor which is localized in space and oscillates in time. Finally, in thestrongly
damped case(γ ∼ 1), where the soliton’s perturbations satisfy the complex Landau equation,
unbounded finite-dimensional trajectories do not arise at all. Any perturbation of the unstable
stationary soliton will necessarily have to evolve into a temporally periodic solitonic attractor.

In the undamped situation(γ = 0) the conclusions of the reduced finite-dimensional
analysis have been verified in direct numerical simulations of the full, nonreduced NLS
equation (1). In agreement with the effective particle description, no stably oscillating solitons
were seen to arise. Our second aim here was to understand what are the infinite-dimensional
counterparts of the unbounded finite-dimensional solutions; in other words, what localized or
extended NLS attractors are represented by these spiralling-out trajectories. Depending on the
initial perturbation, the decay of the unstable stationary soliton was observed to result in one
of the two basic products: (a) a slowly decaying breatherψ↓, and (b) the solitonψ↑ whose
amplitude is increasing, slowly but indefinitely. Initial conditions with larger energy contents
can give rise to apair of small-amplitude breathers moving away from each other.

In the damped case(γ 6= 0) the numerical simulations of the NLS equation (1) were
reported in [4]. Consistently, with our present conclusions, it was shown there that in some
finite neighbourhoodh > hc of the bifurcation valuehc(γ ) the unstable stationary soliton
ψ+ is replaced by a stable temporally-periodic solitonψ∼. Here it is important to emphasize
the difference between this soliton and what we refer to as the breather(ψ↓). Firstly, the
solitonψ∼ oscillates about the stationary solitonψ+, with the amplitude of oscillations being
close to zero forh close tohc. On the contrary, the breatherψ↓ oscillates about the trivial
solutionψ = 0, with the amplitude of oscillations being about one half of the amplitude of the
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solitonψ+. Secondly, the frequency of theψ∼ soliton is positive whereas the frequency of the
breatherψ↓ is negative. Lastly and most importantly, theψ∼ soliton does not decay whereas
the breather has a long but finite lifetime.

Since the unbounded trajectories persist if a small damping is added, the small-amplitude
breathers (and large-amplitude slowly growing solitons) should persist for small nonzeroγ .
However, adding even a small damping should drastically reduce the breather’s lifetime. In
this case the breather should arise only as a transient structure; the correspondingT →∞
asymptotic state will be trivial:ψ = 0. The trivial attractor was indeed observed in numerical
simulations of [4]. It is appropriate to mention here that in [4] the unstable stationary soliton
was perturbed only by the discretization errrors, i.e. the perturbation was always very weak.
Speaking in the language of the fictitious particle, its initial radial position and velocity were
always very small:|a(0)|, |ȧ(0)| ∼ 0. The trajectory evolving from these initial conditions
will necessarily be attracted to the stable periodic orbit. This explains the existence of a
neighbourhood of the bifurcation valuehc where the evolution of the unstable stationary soliton
ψ+ necessarily results in the periodic solutionψ∼ [4]. The trivial attractorψ = 0 also exists
in this neighbourhood but since the above-mentioned initial conditions lie ouside its basin of
attraction, it did not arise in the numerical simulations of [4]. The trivial attractor was only
observed for thoseh where the periodic solitonψ∼ becomes unstable, along with its double-
and higher-periodic descendants.

It would be interesting to find out what is theγ 6= 0-counterpart of the growing soliton
ψ↑. Computer simulations of the damped NLS equation (1) with 0.016 γ 6 0.02 did exhibit
a similar object which was seen to perform irregular walks, back and forth, over a strong
radiation background [23]. This large-amplitude ‘wandering’ soliton was observed for fairly
large values ofh (h ≈ 0.35) whereas forh in the immediate vicinity ofhc(γ ) ≈ 0.07 the
decay of the unstable stationary solitonψ+ was seen to result in the stably oscillating soliton
ψ∼. Interestingly, the ‘wandering’ soliton emerged forh on the borderline between the region
where the dominant attractor was trivial,ψ = 0, and the region where the unstable stationary
solitonψ+ would ‘ignite’ a spatio-temporal chaotic state. A natural question is, therefore, on the
relation between the large-amplitude solitonψ↑ (slowly growing, oscillating and/or wandering)
and spatio-temporal chaos. We are planning to return to this problem in future publications.

Finally, it is appropriate to mention a recent paper [24], whose author also uses singular
perturbation expansions for the analysis of the parametrically driven NLS equation. However,
the focus of [24] is onstablesolitons and their response tostructuralperturbations (such as
external fields, noise, etc) as well as soliton–soliton interactions. The present paper deals with
completely different parameter range and completely different class of phenomena.
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Appendix

In this appendix we outline the scheme of numerical solution of the eigenvalue problem (9)
and inhomogeneous equations (16)–(19). Some parts of this scheme are plain applications of
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the Fourier method; other parts are not so straightforward yet general enough to be useful in
the asymptotic analyses of other instances of radiating solitons.

A.1. Exponentially localized solutions

Expanding eigenfunctionsu andv over cosines,(
u(x)

v(x)

)
= 1√

L

(
u(0)

v(0)

)
+

√
2

L

∞∑
n=1

(
u(n)

v(n)

)
cos

(πnx
L

)
, (94)

and truncating the series atn = N reduces equation (9) to an eigenvalue problem for a block
matrix: (

L1 0
0 L2

)(
u

v

)
= ω

(
0 I

I 0

)(
u

v

)
. (95)

Hereu andv are (N + 1)-dimensional column vectors:u = (u(0), u(1), . . . , u(N))T , v =
(v(0), v(1), . . . , v(N))T andL1 andL2 are(N + 1)× (N + 1) matrices with entries

L(0,0)2 = 1− 2H − 2

L
, L(0,0)1 = 1− 6

L
;

L(0,m)2 = L(m,0)2 = −
√

2π2m

L2 sinh
(
π2m
2L

) , L(0,m)1 = L(m,0)1 = 3L(0,m)2 ;

L(m,n)2 = L(n,m)2 = −π
2

L2

 m + n

sinh
[
π2(m+n)

2L

] +
m− n

sinh
[
π2(m−n)

2L

]
 ,

L(m,n)1 = L(n,m)1 = 3L(m,n)2 (m, n = 1, . . . , N, m 6= n);
L(m,m)2 =

(πm
L

)2
+ 1− 2H − 2

L
− 2π2m

L2 sinh
(
π2m
L

) ,
L(m,m)1 =

(πm
L

)2
+ 1− 6

L
− 6π2m

L2 sinh
(
π2m
L

) .

(96)

In equation (94) we restricted ourselves to the cosine series sinceu andv are assumed to
be even. The matricesL1 andL2 are finite-dimensional approximations for the differential
operatorsL1 andL2, respectively. In equation (96) we have also approximated finite-range
integrals of the form

∫ L
0 sech2(x) cos( πmx

L
) dx by∫ ∞

0
sech2(x) cos

(πmx
L

)
dx = π2m

2L
sinh

(
π2m

2L

)
.

The introduced error is exponentially small inL. The normalization condition (13) for the
eigenfunctions translates into the normalization condition for the Fourier coefficients:

2(u2 + v2) = 1. (97)

The matrix eigenvalue problem (95)–(97) was solved by a standard numerical routine.
TakingL = 20 withN = 100, 200 and 400, we have foundHc = 0.059 7928, ωc = 0.830 28
and β = 1.644 676 in all cases, while increasing the interval twice (L = 40) gave
Hc = 0.059 7933, ωc = 0.830 294 andβ = 1.644 669 (both forN = 200 and 400). Further
increasing the interval (L = 80 withN = 400) did not bring any change to the last set of
numbers.
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The need for such a high accuracy stems from the fact that small errors inHc, ωc and hence
the critical wavenumber (21), produce large errors in the asymptotic phase of the radiation-
wave solutionu2(x), v2(x) as|x| → ∞. Since it is exactly the asymptotic phase that selects
the particular solution we need (the outgoing wave), an inaccurately determined far-field phase
would have resulted in an incorrect near-field behaviour ofu2, v2 and eventually, in a highly
inaccurate value of the integralζ (equation (31)).

Having found the critical eigenvalueωc and the corresponding eigenvector (uc, vc), we
proceed to solution of the nonhomogeneous equation (17). Expanding(

u1(x)

v1(x)

)
= 1√

L

(
u
(0)
1

v
(0)
1

)
+

√
2

L

∞∑
n=1

(
u
(n)
1

v
(n)
1

)
cos

(πnx
L

)
, (98)

and substituting into (17) gives

Mωc

(
u1

v1

)
≡
(
L1 −ωcI
−ωcI L2

)(
u1

v1

)
= −

(
vc
uc

)
, (99)

with u1 = (u(0)1 , u
(1)
1 , . . . , u

(N)
1 )T andv1 = (v(0)1 , v

(1)
1 , . . . , v

(N)
1 )T . Although the matrixMωc

has a zero eigenvalue, the solvability of this linear system is guaranteed by the fact that the
associated eigenvector{uc, vc} satisfies the condition (22):

uc · vc = 0. (100)

In order to factor out the linear subspace spanned by this eigenvector, we decompose the
singular matrix asMωcE = QR, whereR is upper-triangular andQ orthogonal matrix.
Equation (99) is transformed to the upper triangular form:

R
(
ũ1

ṽ1

)
= −QT

(
vc
uc

)
, (101)

where (
ũ1

ṽ1

)
= E−1

(
u1

v1

)
(102)

andE is a permutation matrix which is chosen so that to make the zero diagonal element of
the matrixR appear in the lower right corner. The matrixQ will then contain the vector
{uc, vc} as its last column and by virtue of equation (100), the last component of the vector on
the right-hand side of equation (101) will be zero. Hence, in order to solve the linear system
(101) it is sufficient to discard its last equation (which is simply 0· ṽ(N+1)

1 = 0). The resulting
system of(2N +1) equations has a nonsingular matrix and can be solved by a standard routine.
After that we putṽ(N+1)

1 = 0 and use equation (102) to recover a solution of the original
system (99). (Choosing any other value forṽ(N+1)

1 amounts to adding̃v(N+1)
1 × {uc, vc} to the

solution{u1, v1}; in view of the orthogonality relation (22) this does not affect the value ofα,
equation (29).)

The accuracy of the computation can be judged by the values of the integral (29). Choosing
L = 20 withN = 100, 200 and 400 we obtainedα = 1.330 575 in all cases; doubling the
interval length withN = 200 and 400 gaveα = 1.329 676; finally takingL = 80 with
N = 400 producedα = 1.329 675.

The nonhomogeneous equation (16) is solved in a similar way. The only difference is
that since the homogeneous solution of equation (16) is an odd function, the matrixL1 is
nonsingular and so there is no need in the diagonalization in this case.
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A.2. Radiation waves: the two-interval technique

The solution of the boundary-value problem (19), (20) turns out to be somewhat more laborious.
As we have already mentioned in section 2.2, equation (19) has a bounded homogeneous
solution: (

L1 −2ωc
−2ωc L2

)(
uh
vh

)
= 0. (103)

This solution is the eigenfunction of the operator (9) associated with the continuous spectrum
eigenvalueω = 2ωc. In general, the forcing term on the right-hand side of (19) will not satisfy
the condition of solvability of equation (19) in the class of square-integrable functions:∫ ∞

−∞
{uh, vh} ·

(
3u2

c − v2
c

2ucvc

)
U0 dx = 0. (104)

This does not mean, of course, thatnondecayingnonhomogeneous solutions do not exist.
Quite the contrary, from the fact thatuh, vh undergo nondecaying oscillations as|x| → ∞
one can readily deduce that the nonhomogeneous equation (19) has oscillatory solutions. We
need to construct the solution{u2, v2} satisfying the radiation conditions (20) at infinity; the
problem, however, is that the Fourier method can only be implemented onfinite intervals. This
difficulty can be circumvented by making use oftwofinite intervals; our method is as follows.

First, we observe that the homogeneous equation (103) will not, in general, have solutions
with periodic boundary conditionsuh(L) = uh(−L), u′h(L) = u′h(−L) (and similarly forvh).
The periodic solutions will arise only for particular values ofL. (Here we assume thatL is
large enough(L� 1) so that when|x| ∼ L, the functionsuh(x) andvh(x)will have settled to
their oscillatory asymptotes.) For theseresonantvalues ofL and for sufficiently large|x| ∼ L
we will have then

uh→ A cos{kc(|x| − L)} (105)

and a similar relation forvh. Next, since the operatorM2ωc has a zero eigenvalue with the
associated eigenfunction periodic on the interval(−L,L), the nonhomogeneous equation (19)
does not have a periodic solution on this interval. We can, however, solve it on a nonresonant
interval (−L̃, L̃), whereL̃ 6= L; we will denote the corresponding solution{ũ2, ṽ2}. The
functions on the right-hand side of equation (19) fall with distance as e−|x/x0|, wherex0 ≈ 0.6†;
consequently we should chooseL̃� 1. Then, for sufficiently large|x| ∼ L̃ we have

ũ2→ B cos{kc(|x| − L̃)} (106)

and a similar relation for̃v2.
Finally, the nonhomogeneous solution satisfying the radiation condition (20) can be

constructed as a linear combination of the nonhomogeneous solution{ũ2, ṽ2}, periodic with
period 2L̃, and the even homogeneous solution{uh, vh} periodic with period 2L:(

u2

v2

)
=
(
ũ2

ṽ2

)
+C

(
uh
vh

)
. (107)

Substituting (105), (106) and (107) into (20) and setting the coefficients of exp{ikc|x|} to zero,
we find the value ofC:

C = −B
A

eikc(L−L̃), (108)

† More precisely, 1/x0 = 1 + 2κc, whereκc is the decay rate ofuc(x) andvc(x): κ2
c = 1−Hc −

√
H 2
c + ω2

c .
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while comparing coefficients of exp{−ikc|x|} gives a simple relation betweenR, the amplitude
of the radiation at infinity, andB, the amplitude of the nonhomogeneous solution periodic on
the interval(−L̃, L̃):

B = −iR
e−ikcL

sin{kc(L̃− L)}
. (109)

This formula is another manifestation of the fact that the inhomogeneous problem cannot be
solved on the resonant interval(−L,L) on which the homogeneous solution was found. The
smaller is the difference|L̃−L|, the greater will be the amplitudeB and, according to (108),
the larger coefficientC we will have to take in equation (107) in order to offset the ingoing
component of the radiation wave. Consequently, the less accurate will be the resulting solution
u2(x).

From the above construction it is also clear why we did not invokeodd homogeneous
solutions. Adding an odd homogeneous solution to the functionu2(x) given by equation (107)
with C fixed by equation (108), would bring an uncompensated ingoing wave∼ eikc |x| thereby
violating the radiation condition. For this reason we have identified the amplitudes of the right
and left outgoing waves in section 2.2:R+ = R− ≡ R.

In order to implement the above procedure numerically, we expand(
u2(x)

v2(x)

)
= 1√

L

(
u
(0)
2

v
(0)
2

)
+

√
2

L

∞∑
n=1

(
u
(n)
2

v
(n)
2

)
cos

(πnx
L

)
,

2U0(x)

(
3u2

c(x)− v2
c (x)

2uc(x)vc(x)

)
= 1√

L

(
s0
t0

)
+

√
2

L

∞∑
n=1

(
sn
tn

)
cos

(πnx
L

)
.

(110)

Truncating the series atn = N , equation (19) is converted to a linear algebraic system

M2ωc

(
u2

v2

)
≡
(
L1 −2ωc
−2ωc L2

)(
u2

v2

)
=
(
s
t

)
, (111)

whereu2, v2, s andt are(N + 1)-dimensional vectors, e.g.u2 = (u(0)2 , u
(1)
2 , . . . , u

(N)
2 )T . For

resonant interval lengthsL the matrixM2ωc will have zero among its 2(N + 1) eigenvalues
µ0, µ1, . . . , µ2N+1. The resonant lengths can be found with any desirable accuracy. In
particular, takingL = 20.117 25 with 100 Fourier modes yields the smallest modulus
eigenvalueµα = 1.1×10−6. The choicesL = 38.610 176 withN = 200 andL = 79.295 415
with N = 400 result inµα = 3.7× 10−7 andµα = 3.6× 10−7, respectively. The associated
eigenvectors give a reasonably accurate approximation for the even homogeneous solution
(uh, vh) of equation (19), periodic with period 2L.

Next, by varying intervals slightly,L → L̃, we can always ensure that the smallest
modulus eigenvaluẽµα is notverysmall. In particular, choosing̃L = 19.65 withN = 100
givesµ̃α = 3.5× 10−2; for L̃ = 38 withN = 200 andL̃ = 78.65 withN = 400 one obtains
µ̃α = 2.4×10−2 andµ̃α = 1.2×10−2, respectively. We solved the nonhomogeneous system
(111) in each of these cases. The resulting even nonhomogeneous solutionũ2, ṽ2 is, of course,
periodic with period 2̃L: ũ′2(0) = ũ′2(L̃) = 0; ṽ′2(0) = ṽ′2(L̃) = 0. These boundary conditions
are imposed by making use of the Fourier expansions.

After L̃ has been picked up not very close toL, the dominant error in the numerically
found solutionu2, v2 comes from thefinitenessof the interval(−L̃, L̃). The truncation of the
infinite interval results in theδ-function peak in the Fourier transform ofũ2(x), ṽ2(x) being
replaced by thesinc-function:

Rδ(k − kc) −→ R L̃
π

sin{(k − kc)L̃}
(k − kc)L̃

≡ R L̃
π

sinc{(k − kc)L̃}. (112)
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Table 1.

Reζ Im ζ , equation (31) Imζ , equation (32)

L = 79.295 415,L̃ = 79.0,N = 400 8.42× 10−2 1.92× 10−3 2.55× 10−3

L = 119.9807,L̃ = 119.75,N = 600 8.15× 10−2 1.84× 10−3 2.22× 10−3

L = 179.159 22,L̃ = 178.95,N = 600 7.95× 10−2 1.76× 10−3 2.00× 10−3

Next,k can only assume a discrete set of values:k = kn = πn/L̃, wheren = 0, 1, . . . , N . In
general,two values ofk, saykm andkm+1, will fall into the central lobe of thesinc-function:
kc − π/L̃ < km < km+1 < kc + π/L̃. Accordingly, the solutioñu2, ṽ2 will approach a linear
combination oftwo cosines, cos(kmx) and cos(km+1x), asx → ∞. On the top of that,
additional wavenumber components will be introduced by the sidelobes of thesinc-function,
and thus the asymptotic waveform may substantially deviate from cos(kcx).

These undesirable numerical effects can be reduced by increasing the interval length.
First, the width of the central lobe of thesinc-function is equal to 2π/L̃; asL̃ is increased, the
central lobe narrows and the error in the asymptotic wavenumber reduces as 1/L̃. Second, the
amplitude of the central lobe grows in proportion toL̃ whereas amplitudes of the sidelobes
remain constant. Hence, increasing the interval length suppresses the leakage to the sidelobes
as well.

With the solution of the boundary value problem (19), (20) at hand, we can evaluate the
coefficientζ , equation (31). The imaginary part ofζ can be recomputed in a different way:
instead of doing the integral (31), we identify the amplitudeB from the asymptotic behaviour
of ũ2(x) (see equation (105)); then recover the amplitudeR from equation (109) and finally,
use equation (32). The discrepancy between the two answers for Imζ provides an estimate
for the accuracy of the computation.

We have carried out three series of calculations for the increasing values ofL, L̃ andN .
Results are presented in table 1.

When plotted versus 1/L, the values of Reζ lie on the same straight line. The linear
extrapolation toL = ∞ gives Reζ = (7.5555± 0.0005)× 10−2. The corresponding values
of the imaginary part of the integral (31) (second column in table 1) also change linearly
with 1/L. Extrapolating to infinity we get Imζ = (1.60± 0.02) × 10−3. On the other
hand, the linear extrapolation of Imζ obtained by means of the far-field formula (32) gives
Im ζ = (1.59± 0.04)× 10−3 which agrees well with the result of the numerical integration.
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