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Dynamics of the parametrically driven NLS solitons beyond
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Abstract. Solitary waves in conservative and near-conservative systems may become unstable
due to a resonance of two internal oscillation modes. We study the parametrically driven, damped
nonlinear Schidinger equation, a prototype system exhibiting this oscillatory instability. An
asymptotic multi-scale expansion is used to derive a reduced amplitude equation describing the
nonlinear stage of the instability and supercritical dynamics of the soliton iweha&lydissipative

case. We also derive the amplitude equation instinenglydissipative case, when the bifurcation

is of the Hopf type. The analysis of the reduced equations shows that imntteEmpedcase

the temporally periodic spatially localized structures are suppressed by the nonlinearity-induced
radiation. In this case the unstable stationary soliton evolves either into a slowly decaying long-
lived breather, or into a radiating soliton whose amplitude grows without bound. However, adding
a small damping is sufficient to bring about a stably oscillating soliton of finite amplitude.

PACS numbers: 0340K, 0545, 7530D

1. Introduction and motivation

Soliton solutions are known to be of paramount importance for nonlinear dispersive systems.
Stable solitons dominate the long-term asymptotic behaviour of spatially inhomogeneous initial
conditions. Unstable solitons can nucleate collapses [1], spatially localized temporally periodic
and chaotic states [2, 3], spatio-temporal chaos [4] and phase transitions [5]. The nonlinear
evolution of a linearly unstable soliton can often be predicted from knowinmgahanisnof

its instability. Until the early 1990s, the onset of soliton instability in conservative systems was
typically associated with the transition of a linearized eigenvalue from the imaginary to positive
real axis (see e.g. [6, 7] and references therein). In the case of the nonlingatiBgar (NLS)
equations that we will be concerned with in this paper, the nonlinear evolution of this instability
(usually referred to as theanslationalinstability) may follow a limited number of scenarios:
unstablédright solitons blow up, disperse away, or evolve into a long-lived oscillating structure
asymptotically settling to a stable stationary soliton [8]; unstdhl solitons dissociate into

a couple or inflate [5, 9].
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More recently it was realized that there are also different mechanisms of soliton instability;
in particular, the soliton can be destroyed as a result of a resonance of two internal oscillation
modes [10-12]. The objective of this paper is to follow the nonlinear development of this new
instability (known as thescillatoryinstability) and describe supercritical dynamical regimes
of solitons. As a prototype nonlinear PDE, we adopt the parametrically driven, damped NLS
equation:

T+ Yxx — ¥+ 2Y Py = byt — iy @)

Here} is the amplitude of the driver and the dissipation coefficient; the frequency of the
driver has been normalized to unity. This equation describes a variety of physical phenomena,
including the nonlinear Faraday resonance in water [3, 13, 14]; parametric instabilities of
waves in plasma [15]; the parametric generation of spin waves and magnetic solitons in
ferromagnets and antiferromagnets [11, 16, 17] and, finally, the effect of phase-sensitive
parametric amplifiers on solitons propagating in optical fibres [18]. It also serves as an
amplitude equation for small-amplitude, parametrically driven sine-Gordon breathers [11]
and hence its range of applicability includes all systems modelled by the parametrically driven
sine-Gordon equation [19].

When the driver's amplitude is very largg? > 1 + y?2, the trivial solutiony = 0
of equation (1) is unstable against continuous spectrum perturbations [11]. (This is what
physicists call ‘parametric instability’ [3, 13—17].) In this paper we will be concerned with
a complementary regioh?> < 1 + y2, and so the trivial solution will always be deemed
stable. In this region equation (1) has two stationary soliton solutions. One of these is always
unstable and will be disregarded in the bulk of this paper. The other one is stable for small
driving strengths but loses its stability s increased for the fixed dissipation coefficient. In
the undamped casg (= 0) the instability arises due to the collision of two pure imaginary
eigenvalues of the associated linearized operator, one detaching from the continuous spectrum
and the other one originating from the brokénl) gauge invariance [11]. The two imaginary
eigenvalues collide at a critical valdle= §. =~ 0.064 and then emerge into the complex
plane producing the oscillatory instability (and hence the oscillatory-instability bifurcation) of
the soliton. The linearized stability problem for the full, dissipative case can be reduced, by
a nonlinear eigenvalue transformation [11], to the one for the undamped equation. Roughly
speaking, this transformation subtragtérom all eigenvalues so that the instability occurs for
larger values of), when a pair of complex-conjugate eigenvalues crosses the line=R6.

This is now a Hopf bifurcation, typical of dissipative systems.

A natural question is what localized nonlinear structures serve as attractors in the
supercritical domain (i.e. beyond the onset of the oscillatory and Hopf bifurcations,
respectively). In the dissipative cage # 0) this was addressed by means of direct computer
simulations of equation (1) [4]. It was observed that in the neighbourhood of the transition
curve on the(y, h)-plane, the stationary soliton is replaced by a temporally periodic one.
Having fixed some in the range O< y < 0.37 and increasing, the soliton undergoes the
period-doubling (fory smaller than 0.25) or quasiperiodic (foi28 < y < 0.37) transition
to chaos [4]. (Foy > 0.37 the static soliton is stable in its entire domain of existence.)

In this paper we attempt to describe the supercritical dynamics of the soliton analytically.
Our analysis is based on the reduced amplitude equations for the soliton’s perturbation which
we derive forh in the neighbourhood of the oscillatory and the Hopf bifurcation. We also
perform computer simulations of equation (1) in the Hamiltonian cgse-(0) which has
not been previously studied numerically. Results of these simulations are compared with
conclusions of the finite-dimensional analysis. Althoughythe O case is clearly nongeneric
(inthe sense that some small damping is presentin all underlying physical settings), it provides
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insight into, and serves as a starting point for the analysis of the general, dissipative equation.
The plan and a brief summary of the paper is as follows. First in section 2, we consider
theweaklydissipative regimey « 1, and derive a reduced amplitude equation describing the
nonlinear evolution of the perturbation to the soliton in the vicinity of the bifurcation point
(5 ~ b.). This amplitude equation is a complex nonlinear ODE of the second order. In
the strongly dissipative regime, i.e. fop ~ 1, the above second-order equation is replaced
by the (first-order) complex Landau equation. The latter is derived in section 3. In some
parts of our derivation we have to rely upon numerical solutions of eigenvalue and boundary
value problems; details of the corresponding numerical algorithms have been relegated to
the appendix. The subsequent section, section 4, contains a detailed analysis of solutions
to the above finite-dimensional system for the vanishing, small and finit€he upshot of
this study is that no periodic solutions are possible injthe 0 case; all finite-dimensional
trajectories escape to infinity. However, adding a small damping gives rise to a stable periodic
orbit coexisting with unbounded motions. Finally, only periodic finite-dimensional trajectories
survive wheny is made finite. In section 5 the conclusions based on the reduced amplitude
equation for the undamped case are compared with results of humerical simulations of the
full, nonreduced NLS equation (1). Consistently with the finite-dimensional predictions, no
stably oscillating solitons were observed in these simulations. All localized initial conditions
were seen to evolve either into a radiating soliton with the amplitude growing without bound,
or into a slowly-decaying, small-amplitude breather-like solution (or possibly into a couple
of diverging breathers.) The last section (section 6) contains concluding remarks and outlines
some open problems.

2. Reduced amplitude equations for the oscillatory-instability bifurcation

2.1. Soliton solutions and linear corrections

The two stationary soliton solutions of the parametrically driven, damped NLS equation (1)
are given by [11, 14]:

vy = Are % sechAL X), (2a)
where
2
sin29i=%, cosd. =+ /1—% (2b)
and
A2 =1+/h2—y2 (2c)

The two solitons emerge via a saddle-node bifurcationaty. The. soliton is stable in
some neighbourhood of the bifurcation point while the always has a positive linearized
eigenvalue and hence is unstabledfirh andy. Since this unstable soliton does not undergo
any further bifurcations, we are disregarding it and concentrating oftr.the what follows.
(We will only return to the evolution of the instability of thie_ soliton when we present results
of our numerical simulations in section 5.)

Since we are interested in solutions which are close to the soliton (2) in some sense, it is

convenient to rescale variables as
X t
X==, T=—
A A2
and decomposg into its real and imaginary part as

v = A{U(x,1) +iV(x,1)}e . (3)
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HereA = A, andf = 6,; the subscript was omitted. Defining

H = (hz_Aﬂ, r=2.
the equation (1) becomes
—V,— 2TV = —U, +U — 2(U?>+ VU, (4a)
U +2HV = =V +V = 2(U%2+ V?)V. (4b)
The soliton solution of equation (4) is now
Uy = sechx, Vo=0.
Linearizing equation (4) about the soliton,
U = Up(x) +&f (x)e¥, V =ieg(x)e¥, (5)

whereg is a small parameter, gives an eigenvalue problenyfandg:

(5 %) (-2 o) (0) ©

Here
82
Li=——+1—6sechx, (7
0x?
82
Ly=——+1—2H —2secx, (8)
9x?

and the eigenvalu® is the frequency of the perturbed soliton’s oscillations. In studies of
stability problems it is more common to deal with the quantitg i2 which is referred to as
the ‘linearized eigenvalue’, or ‘stability eigenvalue’. However, the frequeRdyrns out to
be more suitable for our present purposes. Occasionally we will make referenes twell.

The damped eigenvalue problem (6) can be reduced, via a nonlinear eigenvalue
transformation [11], to the one with = O:

(5 2)()=+(2 o) (1) o
or equivalently,
A(ﬁ) (Lol Loz)(wzw(?,) (9b)

2ir \ /2
w =7z, z=<1—|—> , (102)

Here

and
u=f, v = zg. (10b)

As it was shown, numerically, in [11], the operatar has two pairs of nonzero discrete
eigenvaluesitw, and+w,. For H < H,, these eigenvalues are real and lie in the gap of
the continuous spectruna,, w, < /1 — 2H (see figure 1). A reaches the critical value

H. ~ 0.060, the two eigenvalues merg¢e,, v, — . ~ 0.83), and then immediately split

up moving into the complex plane (figure 1). In the undamped dase 0), this implies the
oscillatory bifurcation. FoiH > H, the solution is unstable; the nonlinear evolution of this
oscillatory instability will result in some other nonlinear attractors. In the next two subsections



Dynamics of the parametrically driven NLS solitons 107

0.1
0.05r
~ Ags Ay
P b e
Onset of
instability
-0.05+ 9
0.1+ N
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

......... goasenes

0 d.Ol 0.02 0.03 0.04 0.05 0.06 0.07
H

Figure 1. The bifurcation diagram fop = 0. Real &) and imaginarylf) parts of the eigenvalues

A = iw are shown as functions @f. The complex plane incf results from the combination of

(a) and p). The wavy line on €) depicts the continuous spectrum and the dotted lines show the
imaginary eigenvalues,” = +iw, detaching from the continuum. The oscillatory instability sets
in when two pairs of imaginary eigenvalues mergéfat= H, (iw,, iop — iw:) and become a
complex quadruplet.
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Figure 1. (Continued)

we develop an asymptotic formalism which captures the essentials of the nonlinear dynamics
of the unstable soliton in this supercritical domain.

In the weakly dissipative cas€ Emall but nonzero) the instability sets in notrat= H,
but later, when the real part af= iQ2 becomes positive (see figurespénd €)). In literature,
this would be usually referred to as tHepf bifurcation. However, the asymptotic formalism
associated with thescillatory-instability bifurcation provides an adequate description of
supercritical dynamics in the weakly dissipative limit as well. More importantly, the resulting
amplitude equation is fundamentally different from the normal form of the Hopf bifurcation
(see below). For this reason we will be using the term ‘oscillatory-instability bifurcation’ not
only whenI" = 0 but also in the small* case.

2.2. Asymptotic analysis: second-order corrections

Now we are prepared to derive a reduced nonlinear model describing the evolution of the
perturbations to the stationary soliton (5) in the vicinity of the bifurcation value- H,. in

the nearly conservative cade,~ 0. The derivation is facilitated by factorizing the complex
amplitude of the linear part of the perturbation (assumed smal)asderea = O(1) and

€ is a dimensionless small parameter; the perturbation is also assumed to be slowly varied:
a = a(t), wherer = ¢¢. We expand/ andV in the asymptotic series i

U=Us(x)+) €Uy(x,1,71), (11a)
n=1

V = Ze"Vn(x,t, 7), (11b)
n=1
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Figure 2. The bifurcation diagram foy # 0. (In this plotI" = 0.2). This diagram was obtained
from the one in figure 1 by applying the transformation (120} —I' +i(w?—TI?)%2. For smallH
suchthats, < T, there is a pair of real eigenvalus”’ = —I"+ ("2 —w?2)Y/2 (full line). Whenew,
exceeds’, an imaginary part appears while the real part remains fixgd: = —I" i (w2 —'2)Y/2,
Another pair of complex-conjugate eigenvalues(s' = —T + i(w? — '2)Y/2 (dotted curve). At

H = H., wherew, = wp, thei, anda, eigenvalues merge pairwise, and the real parts start to
grow. The instability sets in when Recrosses the horizontal zero line (broken)ai (
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whereUy = sechx,
Uy = [a(r)€”" +a* (7)€ u,(x), (12a)
V= i[a(r)eiw(t _ a*(f)e_i“’”]vc(x), (12))

andu., v, are components of the eigenvector of the operator (9) associated with the eigenvalue
o = w. and parameter valuff = H.. These functions are real-valued and exponentially
decaying at infinities; we also assume that they are normalized to unity:

f W?+v?)dx = 1. (13)
Writing
H = H, +€h, I' = ¢p, (14)

we include weak dissipative effects and a small deviation from the bifurcation point into the
leading order of the asymptotic analysis. Substituting equations (11), (12) and (14) into the
system (4), and equating coefficients of like powerg ahd equal harmonics, we obtain for
thee?-correction:

U, = |aluo(x) +2 Re{ij—iei“’"} ur(x) +2p Re{iaei“’"}uy(x) + 2 Rea?€ " uy(x)}, (15a)

Vo= -2 Re{ j—‘;éwf’} v1(x) — 20 Re{a€“ "}, (x) + 2 Relia?€?“" vy(x)}, (15b)

where the functionsg, u1, u,, u» andvg, v1, v,, v2 are to be found by solving the following
set of linear nonhomogeneous equations:

Laug = 4Uo(3u? + v?); (16)
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ur _ ( L1 —oc\[fur)_ (v,

()-8 7)) (2)
Uy \ _ o Ve ).

e (3y)=-2(5): a
u\ _ ( L1 2w s\ 3u? —v?

M2w, (Uz) = <—20)C L» ) <v2> = 2Uo ( ZCMCUC ’ (19)

(Here the operatak; is defined by equation (7) withl = H...)

It is worthwhile to comment on the meaning of each term in equation (15) and the
solvability of equations (16)—(19). First of all, the functions, u,, and v, represent
the nonlinearity-induced corrections to the soliton’s shape (zeroth and second harmonic,
respectively.) The equation (16) always admits a solution decaying as +oo, since
the corresponding homogeneous solution (the translational zero-frequency fincgde=
tanhx sechx) is an odd function and therefore, is orthogonal to the even function on the right-
hand side. On the contrary, the nonhomogeneous solution of equation (19) is bounded but does
not have to decay at the infinities as there is no reason why the corresptmdimogieneous
solution should be orthogonal to the vector function on the right-hand side of (19). The
homogeneous solution is the eigenfunction of the eigenvalue problem (9) associated with the
eigenvaluew = 2w, ~ 1.66. This eigenvalue belongs to the continuous spectrum and so
the nonhomogeneous solutiop, v, is defined up to the addition of an arbitrary combination
of two continuous spectrum eigenfunctionst. Physically, the terms proportiongaktad v,
are interpreted as the radiation emitted by the oscillating soliton. The boundary conditions
corresponding to theutgoingradiation waves read

<Z§> — (é)Rieﬂ’“ as x — +oo, (20)
2w,

where the wavenumbéy. is positive, with

k? = /H2+ 402+ H, — 1. (21)

With the above choice, the radiation terms in equation (15) reduce, as oo, to the
outgoing harmonic waves proportional to éX@w.t F k.x)}. The functiona:, andwv, are,
therefore, complex-valued. The functions on the right-hand side of equation (19) are even; it
is not difficult to realize that this fact, together with the radiation conditions (20), requires that
uy(x) andvy(x) should also be even. Hence! = R~ = R.

Before commenting on equations (17) and (18), we need to recalluthiata repeated
(double) eigenvalue of the operator (9) arising from the coalescence of two simple eigenvalues,
w, andw,. The associated eigenvectofs,,, v,} and{u,, vy}, are orthogonal in the sense
of the following (SO (1, 1)-invariant) scalar productff‘;o(uavh + upv,) dx = 0. Whenw,
and w;, coalesce, the associated eigenvectors can either stay linearly independent (i.e. the
double eigenvalue, is complete) or collapse into one (i®. is defective). Our numerical
analysis shows that the second possibility occurs in the case at handHvherH,., we have
uq, up — u. andv,, v, — v.. Consequently, the orthogonality condition at the péint H,
becomes

I. = 2/ u.v. dx = 0. (22)
In order to illustrate the validity of equation (22), we have plotted the quadratic forms
I[u,v] = 2/ uv dx (23)

T Here we use the term ‘eigenfunction’ simply for the sake of brevity; the continuous spectrum ‘eigenfunctions’ are,
of course, non-normalizable.
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Figure 3. The quadratic formy = 2 [ uvdx, evaluated numerically for two soliton’s internal
modes,{u,, v,} and {up, vp}. Whenw, merges withw,, both I, and I, vanish ensuring the
existence of the generalized eigenvedior, v1} at the pointH = H,.

for the two eigenvectors of the linearized operator (9) (figure 3). The fdynad I, are
indeed seen to merge and vanistHat H.,.

Turning to equation (17), we can now identify its solution, v, } as arank-2 generalized
eigenvector associated with the eigenvalyeof the linearized operator (9). The solvability
condition for equation (17) is nothing but the orthogonality relation (22); the fact that
the quadratic form/, of the eigenvectofu., v.} vanishes, guarantees that the generalized
eigenvectoRu;, v1 } exists and decays &s| — oco. The real functions;(x) andv;(x) can
be interpreted as resonasftcorrections to the linearised perturbation.

Finally, the same equation (22) gives the solvability condition for the system (18). The
real functions:,, andv, account for the-2-corrections due to the weak damping.

2.3. The reduced finite-dimensional system

Having found the second-order corrections, we proceed to the third order of the asymptotic
expansion, which yields the following linear nonhomogeneous system:

Ly d/ot\(Us\ (Y
(e ") ()=(2): @
Y = 2(U2 + VAU + 4Uo(3U Uz + Vi Vo) — Vo, — 2pVa, (254)

Z = 2U2 + V2)Vy + AUoViUsz + AUgU1 Vo + Uy, + 21 V1, (25b)

andU,, V1, U, and V, are as in (12) and (15). The solvability condition for equation (24)
involves coefficients of the resonant harmonic; we denote thamdz:

Y _ y(-xv ‘C) 'u)(»t i
(Z) = <z(x, o) > €“’ + c.c. +(other harmonics (26)

where
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A bounded solution exists only if
/ (yue +zv.)dx = 0. 27)

After some algebra this solvability condition can be reduced to an equation for the complex
amplitude of the soliton’s perturbation:

d? d
o —a+2,0—a+p2a = Bha — ¢|al?a. (28)
dr2 dr
Here
o =— / (uev1 + veuq) dx, (29)
-+
B = 2/ v?dx, (30)

+00
(=-2 f (Bu + 2u2v? + 3v) dx

[ee]

+00
—4/ Uo[3uf(u0 +uo) + vf(uo — up) + 2u.v.vp] dx. (32)

o]

In the derivation of the linear part of equation (28) we used the relations

+00 +00 +00 +00
/ ucvy, dx = / Vet Ox = / u.v1dx = / veuq dx;
—0oQ —00 —0oQ —0Q0

these follow from (9), (17) and (18).

The coefficient8 is manifestly positive. Since the oscillatory instability is expected to
set in for supercritical values @f, i.e. forh > 0, we expect the coefficient to be positive
as well. Finally, the coefficient involves complex functions, and v, and therefore, is
complex-valued. Using equation (19) in equation (31) one can readily find the imaginary part
of this coefficient:
H?+4w?+ H.\/H? + 4o

w2

The eigenvalue problem (9) and nonhomogeneous equations (16)—(19) were solved
numerically. (The details have been relegated to the appendix.) We have found the following
values for the coefficients occurring in the reduced amplitude equation (28):

o =1.3297 B = 1.6447
Re¢ = (7.5555+ 0.0005 x 1072, Im¢ = (1.594+ 0.04) x 1073

2
Im¢ = 2. “IRI? > 0. (32)

(33)

3. Reduced amplitude equations for the Hopf bifurcation

Inthis section we derive the reduced amplitude equation governing nonlinear evolutions beyond
the Hopf bifurcation. The Hopf bifurcation occurs when a pair of complex-conjugate linearized
eigenvalues crosses the imaginary axis.at iQ.(I") (see figures 2) and €)). As we

have already mentioned, this bifurcation takes place irsttangly dissipative case, i.e. for

H = H.(') with finite T'f. We expand the fields as in equations (11) and (12):

U = Uo(x) +ela(@e™ +a* (e ] fox) + ) _€"Up(x,1,7),  (349)
n=2

T Inthe previous two sections we used the notatiprior the value ofH for which the eigenvalues, andw, merge
and become complex. That previods would be calledd, (0) in the context of this section.



114 N V Alexeeva et al

V =iela(@e™ —a*(0)e" Mg (x) + )€ Valx.1,7), (340)

n=2
with, however, a different time scaling:

T =€,
We also assume that

H = H.(T) + €%h.

In equations (34)f, andg. arecomplexeigenfunctions of the operator (6) associated with
the eigenvalu&2 = .(I") and arising forH = H.(I"). The second-order correction terms
become

Uz = lal? fo(x) + 2 Re{a®&?! f,(x)},
Vo = |a|’go(x) + 2 Reia?e”™! g(x)},

where fy andgg are real functions satisfying the nonhomogeneous system

Ll 2r fO 3|fc|2+ |gc|2 )
=AU | . , 35
(o L2><go> O(l(ﬁgc—gi’-‘fc) (33)
and{ f>, g2} is a complex solution to
L1 20-2Q.\(f) _ 3f2—g?
<_ZQL‘ L ) (gZ) B 2UO< Zngc ’ (36)

Both equations (35) and (36) exhibit nonhomogeneous solutions exponentially decaying
as|x| — oo because the correspondihgmogeneousolutions are all unbounded—uwith a
single exception of the translational mogg(x) = tanhx sechx, g7 (x) = 0 which we have
already mentioned in section 2. As for the continuous spectrum of the operator (6), it consists
of Q with Q(Q — 2iI") = w?, wherew is real andw? > 1 — 2H,. Consequently, no re&k
belong to the continuous spectrum.

Thus, we proceed to the third-order approximation along the lines of section 2 and find
the complex Landau equation for the amplitude):
da
dr
Here the complex coefficienés 3, and¢ are expressible through the functiofis g. and fo
to go:

&:(F+|Qc‘)/ fcgcdx7

Bha — ¢\al%a. (37)

a

B =(Q— 2iF)/ g2 dx,

+00
F——q, / @B 22+ | fu 262 + g2 f2 + Blgc2g?)

o0

+0o0
+2iT / (3lgc%2 + 21,1262 — |ge[2?) dx

oo

-2, / Uol3f2 fo+ 3\ fel? fo+ (fegh + £78)82 + 82 fo — 18c| f2} dx

o]

+00
+4ir' / Uo(g2 fo — |gc|® f2 — i f.8eg0 + [ geg2) Ux.

oo
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The amplitude equation (37) is a normal form of the Hopf bifurcation occuring in finite-
dimensional dissipative systems (see e.g. [20]).

We conclude this section by a comment on the correspondence betweenllaagd
‘small I'" amplitude equations, i.e. equations (37) and (28). SenHirg 0, we have

fc _ [ Uc ; Uy 2
(g6>_<vc>+lr<vl’)+0(r) 39
and the coefficients of equation (37) become
. Q -~ Q.
& =T, = 8. =< 39
@=TQa  p=3p (=31 (39)

On the other hand, whem — oo the amplitude equation (28) becomes overdamped and the
a.. term can be discarded. This converts equation (28) into the first-order equationt
2apa; = (Bh — ap®)a — ¢lal’a, (40)

which coincides with (37), (39) after we have made the identificatioa » — ap?/8, or,
equivalently,

H.(T) = H.(0) + %r? (41)
As an aside remark we note that equation (41) can be rewritten as
2
o Y 2
() =50 + ———— = 0.063596 + 0760 13-, 42
be(¥) =5 51+5.0) ¥ (42)

which gives a smal}» approximation for the upper boundary of the stationary soliton’s stability
domain.

4. Finite-dimensional supercritical dynamics

4.1. Linear stage

The linear stability properties of the stationary soliton of the NLS equation (4) are exactly
reproduced by the reduced amplitude equation, equation (28). In terms of equation (28) the
linear stage of instability can be described by discarding the cubic term. This yields

a(t) = age"’, /L:—,o:t‘/ﬂa—h. (43)

In the undampedtase(p = 0) equation (43) implies that the oscillatory instability sets in
immediately ag becomes greater than zero. This is in exact correspondence with figdire 1(
where the instability is seen to arise when two imaginary eigenvaluesio, andi, = iw,

merge forH = H, (or, equivalently, fok: = 0) and then splitup and diverge from the imaginary
axis. Intheweakly dissipativeasep # 0) the coalescing eigenvalues have a negative real part
at the point of their merger and so the instability sets in not when they coalesce but later, when
one of the diverging eigenvalues crosses the imaginary axis. This hapgeasiat= ap?/p

and again, this threshold value is exactly reproduced by the threshold value of the reduced
equation (which is straightforward from (43)).

Finally, in thestronglydissipative case the merger of the eigenvalues and the imaginary
axis crossing occur for two widely separated valuetoHere we deal with the conventional
Hopf bifurcation; in this case the second-order amplitude equation does not apply and should
be replaced by the complex Landau equation, equation (37).

T A more formal way to obtain a first-order equation consists in transformifigsta / p and then sending — oco.
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4.2. Energy considerations

The undamped parametrically driven NLS equation (1) has two conserved quantities, the field
momentum and energy. The eigenfunctions associated with the soliton’s internal oscillation
modes are symmetric inand so these oscillations do not affect the value of the momentum.
Consequently, energy is the only relevant integral in the present context. Although in the
dissipative casey( # 0) energy is not conserved, it remains a useful characteristic of the
wave field in this case as well. For # 0 the local energy balance equation follows from
equations (4):

g_‘f + % = —2rD;, (44)
where

E=3UZ+VZ+U?+(1-2H)V? — (U*+V?? (45)
is the energy density,
Fe=UV, —U,V,+UV, — (1-2H)VU, + 2(U2 + V2)(UxV -UVy) (46)
the associated flux, and

De = VZ2+(1—2H)V? - 2U?+V?)V? (47)

is the density of the dissipative function. Substituting the asymptotic expansion (11) in
equation (45) and integrating ovemives a total energy of the nonlinear wave field:

+00

E = / Edx = Eg+€?Ey + €3Eg + O(e?), (48)
—0o0

whereEj is the energy of the unperturbed solitdty(= 2/3), andE>, E3, etc are corrections

due to the small localized perturbation. It follows from equations (9) and (11) that

2
E; = w:lc|al”,

where I, is the quadratic functional (23) evaluated at the critical eigenvefterv,.}:

I, = Ifu., v.]. The quadratic fornY is positive for the eigenmodgu,, v, } which detaches

from the edge of the continuous spectrum and negative for the eigenyegtoy, } arising from

the broken phase invariance (see figure 3). Therefore, the eigenfufigtian} always brings

a positive contribution to the energy of the nonlinear field, while the contribution of the mode
{uq, v,} is always negative. Atthe resonanée & H,) the two contributions cancel each other

and the second-order correcti@i vanishes according to equation (22). The merger of two
modes of the opposite energetic contents produces the oscillatory instability of the stationary
soliton (2). At the resonance, the asymptotic expansion (48) must be extended to include the
third-order correction, for which we obtain

. da* da
E;=iaw.{a— —a*— 49
3= iaw (a 0 a dr) (49)
with « is as in equation (29). Finally, integrating equation (44) ovand keeping terms up
to €2 in the expansion (48) we find the rate of change of the energy of the localized wave field:
dE;
dr
(This equation, withE3 defined by (49), can also be derived directly from the reduced amplitude
equation (28).) The equation (50) shows that the soliton is suffering two types of energy losses:
the dissipative losses described by the first term on the right-hand side and losses due to the
emission of radiation waves described by the second term.

= —2pE3 — 2w, Im¢|al*. (50)
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4.3. Effective particle representation

It appears useful to interpret the reduced amplitude equation (28) as the equation of motion of
a fictitious classical particle. In terms of the vectoe {Rea, Im a}, equation (28) becomes

P+ 201 — nr + grPr = qrér x 2, (51)

where we have defined

R |
=R 00568 g="%~00012
o o
and
p
n= —h — ,02.
o

(The control parametey is positive in the supercritical region.) NeX,is a unit vector in
the vertical directiony = |r|, and the overdot indicates differentiation with respect to
Equation (51) describes a particle in a mexican hat-shaped radially-symmetric potential
N o 8 4
Ur)=—-rc+=r" 52
(r) =22+ 5 (52)

subject to the constant friction with coefficient 2nd clockwise-dependent torque gr*2.
Two quantities useful for the analysis are the angular momentum

. i .

I=[rx7]| = E(aa* —a*a), (53)

and the Hamiltonian
".2 12
= —+—+ .

H >t o2 Ur) (54)
In terms of/ andH the vector equation (51) can be rewritten as

I =—2pl — qr®, (55)

: . 12
H+2pi% = —2p— — qlr?. (56)
r

Notice that/ coincides, up to a constant factor, with the third-order correction to the soliton’s
energy, equation (49):

E3 = 2aw,l. (57)

Accordingly, equation (55) is simply the equation of the soliton’s energy variation,
equation (50), rewritten in terms of the angular momentum of the fictitious particle.

4.4. Conservative cagg = 0)

First we consider the cage= 0. Although the NLS equation is conservative in this case (i.e.
the total energy (48) does not change with time), the motion of the effective particle is not.
According to equation (50), in the conservative case the solitary wave evolves in such a way
that the energyEs is decreasing at all times due to the radiation losses. In the language of
the fictitious particle this means that the angular momentum is always growing towards minus
infinity due to the nonzero clockwise torque. As we will see, the consequence of this in the
unstable regioi > 0 is that the dynamical system (28) has no bounded trajectories and the
amplitudea has to grow indefinitely.
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If there were no external torquéy = 0), both/ and H would be conserved and
consequently, the fictitious particle would perform quasiperiodic oscillations in the ring
R1 < r < Ry. HereR? andRZ are the two positive roots of the cubic equation

2
Un(RD) =M.  Uen(R?) = # - SR+
Let nowg be nonzero but so small that we can still regard the particle as being trapped in an
effective radially-symmetric potential well (58), with the width of the centrifugal barrier,
and the energy of the particle slowly changing with time:

I =—qr* H = —qlr?. (59)

Assume first that the initial value of the angular momentum is negati®: < 0. Then!

will grow in magnitude remaining negative all the time, and the engfgyill also grow. Itis

not difficult to show that as a result of this, the inner and outer radii of the ring (the so-called
apsidal distances) will grow as well. Indeed, differentiating the ideni( R?) = H and

then using equation (59) and the representation

R*. (58)

2 2 p2\(R2 _ p2\(p2 2
_l _ QRZ + §R4 —H = 5 (R Rl)(R RZ)(R + RS) (60)
2R2 2 4 4 R? ’
one finds
d Ir? RZ — 2
_Ri2=_461r i | P r2| . i—12 (61)
dr g (RZ— R (R?+R?)

which is> 0 for! < 0. Intuitively it is quite clear from (61) that the inner circle of the ring
will grow faster than the outer circle; this claim can be readily justified by comparing the
increments incurred bR, and R, in one half-period of oscillation, i.e. as the particle travels
from R; to R,. Consequently, the particle will spin around the origin within an adiabatically
expanding and narrowing annular well. (By ‘narrowing’ we mean thawtlakth of the ring

will be decreasing.)

Assume now that the initial value of the angular momentum is posifit®: > 0. In
this case both andH will initially decrease, and, according to (61), the trajectory will be
sandwiched between two adiabatically shrinking circle®; g/dr < 0. Eventually! will
become negative, and the evolution will cross over to the previous scenario.

The motion remains adiabatic as long as the width of the 3g;- Ry, is much larger
than the increments incurred &y (t) andR,(t) during one half-period of oscillation. To find
the region of applicability of this condition, we consider the stage where the Hamiltonian is
already so large that

2
n 1
— L = 62
o <3 (62)
We also assume, for simplicity of calculations, thatt
gl4 4\3
=8 i 63
=L () -
then the roots; are given by simple expressions
12 AH\Y?
Rf A~ 7 R% ~ R§ ~ <?> . (64)

T The particular numerical values on the right-hand side of (62) and (63) are suggested simply by the fact that for

n?/gH < % ando < (%)3, the roots of the cubic equation can be found as convergent se(ig%/ig#) ando .
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Notice that in view of the inequality (63R1/R, < 1. (More preciselyR?/R2 < 2/+/27).
From (61) it follows that the velocity of expansion (or contraction) of the inner circle of the
ring satisfies

2_ p2
[Ry| < %r—Rl
g8 RiR>

where we have used the fact thf ~ R, > R;. On the other hand, the radial velocity of the
particle is given by

1= \/g(rZ—R%><R§—r2><r2+R§>

2r2
whence the increment iR, is

R — R

|ARy| /RZR dr (g)_s/z .
= - < —_
! R, 15 1\3 R1R3

Using (64), we obtain
[ARy| - 2q

Ro—Ri g
and since our @/g ~ 0.04, we conclude that the adiabaticity conditidnR;| << R, — Ry is

in place. In a similar way one obtains

b

11\ RS — R
R
and making use of equations (64), this becomgs < 2(gH)¥*. Therefore, in order to
ensure thatAR,| <« Rz — Ry, it is sufficient to require that the dimensionless quardity
equation (63), be much smaller théz/¢)* ~ 8 x 10’. The latter is automatically satisfied
if we impose the condition (63).
AsH and(—1) grow and the ring expands and its width narrows, the quatiavitl receive
a positive increment after each period of oscillation. Quantitatively, the increment incurred in
a half-period is

R _
Ao :/ dd_—r > wa. (65)
R r 2g

|ARy| < «/éqg’g/z

9

1
On the other hand, it takes the particle less tgzﬁng)‘l/“ units of time to travel fromR; to
R,. Consequently, the average growth rate can be estimated as

Ry - dr

o 42 -1
= 287 T D e (66)
Ri F

where we have used the inequality (62). This means dhatill grow at least as fast as
1/(to — 7)* (with 7o determined by the initial value af). Eventually the inequality (63)
will be no longer valid, and oscillations in an adiabatically growing ring will be replaced by a
regime of a faster, almost monotonic growth. (What happens is that the annular well becomes
so narrow and expands so fast, that it simply ‘pulls’ the particle along.)

It is not difficult to realize that this latter regime is self-similar. Sing€gr?) — 0, the
term withn can be neglected in equation (56) and the growing solution of the resulting system
is simply

r I

— | =——— =~ 67a
f— (o — )% (672)
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where
1/2
3 8 g2
RN 1+- 1 ~3Y8 ~60x 1% (67b)
V2 q 9g q
and
I = %rf ~ 5.0 x 10. (67c)
The energy grows as
H1 612 6
=—— = —rd~54x10° 68
(o — )% M=1on S (68)
while the quotient remains constant:
64 4\3
o= —2 ~(2) ~237 (69)
3¢%rf  \3

Figures 44) and €) show results of the numerical simulation of the finite-dimensional
system (28) (equivalently, equation (51)) with the initial conditions satisfying equations (62)
and (63). For both negative and positi@) the evolution starts with a long transient where
the particle performs oscillations in an adiabatically expanding or contracting ring. When
1(0) > 0, the ring is initially shrinking (this phase is not very clearly seen in the plot) but
then starts expanding. Wheé(0) < 0, the shrinking phase is absent and because of that,
the evolution in this case is approximately 10 time units ahead of the oriéfor- 0. The
exponent is seen to tend to the similarity value of 2.37; this indicates that the trajectory is
attracted to the self-similar regime (67).

Itis important to emphasize here that the inequalities (62), (63) are sufficient butin no way
necessary for the adiabatic transient to occur. (In fact, the only role of equations (62), (63) was
to simplify calculations.) In figures 8] and @) we display trajectories of the particle with
the initial conditions which do not satisfy (62), (63). Similarly to the previous case, initially
the particle is oscillating within an adiabatically changing ring A&; <« R, — R1) but then
escapes to infinity along a self-similar trajectosy £ 2.37). As in the previous case, the
duration of the transient depends on the siga(6j: for /(0) < O the ring starts expanding
straight away whereas fdf0) > 0, the ring first contracts until the sense of rotation of
the particle is reversed, and only then starts inflating. In terms of the full, nonreduced NLS
equation this means that initial perturbations ‘pushing’ the soliton towards smaller valEes of
will trigger a much faster decay of the unstable soliton than those bringing positive contribution
to its energy.

Thus we may conclude that in the conservative case, the oscillatory instability bifurcation
does not give rise to a stably oscillating soliton. The reason for this is the emission of a
strong second-harmonic radiation. Because of the radiation, the trajectory of the soliton’s
perturbation in its internal space is always unbounded. Provided the initial perturaon
is notvery large, the evolution of instability starts with adiabatically growing oscillations which
then transform into a regime of rapid self-similar growth.

4.5. Weakly dissipative case (finji¢

Adding a weak damping can hinder radiations from freely escaping from the oscillating soliton.
According to equation (55) this can result in the angular momentum of the fictitious particle
settling to a constant value

9 a

li = —Zri, (70)
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Figure 4. The motion of the undamped classical particle as obtained by numerical simulations of
equation (51): the radial position of the partici,((b) and the exponent = gi/*/H3 (), (d). In

these plotg: = 0.1 (n = 0.123%; in all four runs the initial radial position wag0) = 1 and the

initial radial velocityr(0) = 0. On (@), (c) the initial angular momentum i§0) = +20 which
givesn?/gH(0) ~ 1073 ando (0) ~ 103 so that the inequalities (62), (63) hold true. On the
contrary, neither of these inequalities is satisfied for the evolutions show) oftl); these start

with /(0) = £1 which givesy?/gH(0) ~ 0.6 ando (0) ~ 0.6.
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where the radius can adopt one of the two values:

2 2lC qn
2
qz 102

The corresponding circular orbits of equation (51) have the form

a =ryexp(iver), (72)
with the angular velocities given by
q
vy = —Zri. (73)

Both closed trajectories exist fgr> 0 which is in place in the case at hand. In terms of the
parametrically driven NLS equation, equations (71)—(73) describe two periodically oscillating
solitons different in the amplitude and frequency of oscillation.

The soliton with the smaller amplitude of oscillatidn| = r_, softly bifurcates from the
stationary soliton at the onset of the oscillatory instabilitys 4. = ap?/8. Ash isincreased,
it merges with the second oscillating solit@n| = r.) at the turning point

2
eh. [1+(§1)} (74)

The valueh is the upper boundary of the domain of existence of the two circular orbits (71)—
(73). Intuitively, it is quite clear that the orhit. should be stable and unstable; to verify
this conjecture, we add a small perturbation:

a(t) = (re + €'78a) exp(ivLT), |8a/re| < 1. (75)

Substituting into (51) and linearizing with respecttoyields a characteristic equation for the
exponeniu:

1w(u® +c1p® + cop + c3) =0, (76)
wherec, = 4p > 0,

c2 = 4p%+2gr2 + &2 > 0,
and

c3=4p(gri —2v3) = T4iv/g2p? — q%n.
Using the Routh—Hurvitz test, one may readily check that apart from the trivial translational
root © = 0, equation (76) always has two roots with negative real parts. The fourth root is
positive forcz < 0 and negative otherwise; that is, we have a stable root fer r_ and
unstable one far = r,. Thus the oscillating soliton with the larger amplitude of oscillations is
unstable and the one with the smaller amplitude is stable within our asymptotic approximation.

All trajectories of the fictitious particle will either be attracted to the stable circular orbit
r_,l_ or escape to infinity along a self-similar trajectory similar to the one arising in the
undamped situation. This self-similar solution is given by the same equations (67) as in the
y = 0 case. We are not discussing basins of attraction of the above solutions; this analysis
can be performed along the lines of the previous section. In this paper we confine ourselves
to displaying only several characteristic transients (figure 5).
In all our experiments the radial component of velocity was initially zéx@) = 0. In

the first simulation the initial angular momentum is negative |a(@j| andr(0) are chosen in
such a way that in the first placg;*(0) > 2p|/(0)|, and in the second, the ring of admissible
motions is wider than both stationary circular orbit®i(0) > r.. (We remind thatR;(t)
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(b)

Figure 5. Numerical simulations of the damped fictitious particle, equation (51). pee0.02
andn = 0.1237; the corresponding stationary orbits are = 1.51 (stable) and+ = 7.80
(unstable). Curve 1 starts witt{0) = 10,/(0) = —300 and curve 5 hag0) = 10,/(0) = +300;

in both cases the correspondiig(0) = 10, andR>(0) = 117. Curve 2 has(0) = 9.97,

1(0) = —99.40; the apsidal distances in this case R{€0) = 5.33, andR2(0) = 9.97. Curve 3
starts withr(0) = 9.80 and/(0) = 96.04; the corresponding1(0) = 5.31 andR»(0) = 9.80.
After visiting the unstable orbit., the curve 2 escapes to infinity while the curve 3 settles to the
stable orbit_. The initial conditions for the curve 4 ar¢0) = 3 and/ (0) = —9; hencer,(0) = 3,
R2(0) = 4. Curve 6 has(0) = 0.5,/(0) = +20, the corresponding;(0) = 0.5, R2(0) = 15.5.



Dynamics of the parametrically driven NLS solitons 125

and R»(7) are defined as roots of equation (58).) In this case the angular momentum starts
decreasing furthefl < 0) and equation (55) implies that the height of the centrifugal barrier
at any fixed point = ry grows as

d [/ 2 qr* —2p|l|
i (;5) = l|[———. (77)

To
On the other hand, in view of equation (56) the growth rate of the energy of the particle,
H, is bounded by!|(gr* — 2p]l|)/r? which is smaller than (77) provideth < Ri(7).
Consequently, the centrifugal barrier grows faster than) and the ‘window’ of admissible
motions,(R1, R»), moves further away from, (curve 1). The particle escapes to infinity.

Initial conditions with/(0) < 0 andgr*(0) > 2p|I(0)| do not necessarily give rise
to unbounded motions. If the ring of admissible motions is initially smaller thafi.e.

R,(0) < ry) or contains the orbit, within it (i.e. R1(0) < r+ < R2(0)), the expanding ring

may lock on to the unstable circular orbit (curves 2 and 3) and then the initial expansion may
switch to contraction (curve 3). Finally, such a trajectory will be attracted to the stable orbit
r—.

If 1(0) < 0 butgr*(0) < 2p]1(0)|, both the centrifugal barrier and energy as a whole will
decrease and the trajectory will quickly settle to the circular arbiicurve 4).

When the initial angular momentum is positive, the early stage of the evolution will
necessarily have to go via the shrinking of the ring, curves 5 and 6. (This is becauge both
andH decrease, see equations (55), (56).) Subsequeatigw rings will shrink to the circle
r_ (curve 5) whereas the direction of change of lhwge-widthrings may reverse and the
trajectory escape to infinity (curve 6).

Returning to solutions of the parametrically driven, damped NLS equation (1), we
conclude that in the weakly dissipative case the nonlinear evolution of the unstable stationary
soliton v..(X) may follow two alternative scenarios. The first one is the formation of a
temporally periodic solitony.(X, T); this scenario is in exact agreement with numerical
simulations of [4] where stable oscillating solitons were observed. In the vicinity of the
bifurcation the solitory (X, T) oscillates about the ‘stationary point..(X); that is, the
difference|y.. — .| is not large. Alternatively, the stationary soliton may undergo a more
dramatic transformation described by an unbounded trajectory of the effective particle. The
final product of this transformation is beyond the scope of the reduced amplitude equation and
the only means to find the resulting attractors seems to be the direct computer simulations of
the full, nonreduced NLS (1). Some insight can also be gained from studying the undamped
limit (¥ = 0), see section 5 below.

4.6. Strongly dissipative casg (& 1)

As we have demonstrated in section 3, for lapgehe second-order amplitude equation
simplifies to the normal form of the Hopf bifurcation, equation (40). Any initial condition
a(0) of this first-order equation will be attracted to a periodic orbit. The transient (and the
resulting orbit) is described by an explicit solution

a = 0Y?(1) exp|:—i Irgf /T o) dr’:|, (78)
0
where
Oco
QM) = T (79)
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for large perturbations of the solitofu(0)|2 > Q. = Bh/Ret, and
O

1 + e n(t—m0)

Q() = (80)
for small initial conditions:|a(0)|> < Q... Hereu = 1/Q., andr is an arbitrary positive
constant.

Thus, unlike the weakly dissipative regime, no unbounded trajectories arigefdt. In
terms of the full, nonreduced NLS equation this means that in the strongly dissipative case,
the unstable stationary solitaf,. will necessarily evolve into a (stable) temporally periodic
solitony.. Although the finite-dimensional periodic orbit is stable with respect to arbitrarily
large perturbations, this does not guarantee, of course, that the spliteill be stable against
arbitrarily large perturbations within the full NLS equation. We also need to emphasize here
that the amplitude equation (37) is only valid in the vicinity of the Hopf bifurcation. Numerical
simulations showed that for driving strengths further away ftpee h.(y), the oscillating
soliton loses its stability to a double-periodic or chaotic attractor [4]. These higher bifurcations
are not captured by the present asymptotic approach.

5. Long-term evolution of the oscillatory instability

5.1. Numerical simulations

In the case of finite/, conclusions of our finite-dimensional analysis are in agreement with
earlier computer simulations [4] where the unstable stationary salifomas seen to evolve

into a temporally periodic solitog... In the undamped case, on the contrary, our analysis
shows that the oscillatory instability should result in a more fundamental transformation of
the soliton. This case was not studied numerically before whereas the reduced amplitude
equation provides no clue to what the corresponding asymptotic attractors should be. The case
of smally is intermediate; here the instability can give rise both to the oscillating soliton and
to some other, yet unknown, attractors. With the aim of gaining some insight into the nature
of these attractors as well as verifying conclusions of our finite-dimensional analysis, we have
performed a series of computer simulations of the full, nonreduced nonlineabdiuier
equation (1).

We restricted ourselves to the undamped cases= 0. Our numerical scheme is a
generalization of the split-step pseudospectral method [21] and was previously utilized in [4].
The method imposes periodic boundary conditignd.) = ¥ (—L), v¥x(L) = ¥x(—L),
where the length of the spatial interval was chosen tobe=2152. In order to emulate the
infinite-line situation, a ‘sound-absorbing’ terriy (X)v is added on the right-hand side of
equation (1). Here the functiop(X) is almost zero within the subintervél60, 60) and
increases to the value of approximately 0.55as> +-76:

y(X) =03 [tanh(x ;70) - tanh(X ;70) + 2} .

The effect of this term is to damp small-amplitude radiation waves emanating from the soliton
and prevent their re-entry back into the system via the periodic boundaries. Typically we
usedN = 21 = 2048 Fourier modes which implied the spatial resolutioki = 2L/N ~
7.4 x 1072. Our time incrementA7 = 1.0 x 10~3, was chosen so that the stability condition
[21] of this numerical scheme be in plac&T < (AX)?/m = 1.8 x 1073,

We set up the initial condition in the form (11), (12), (15):

¥ (X,0) = A[U(AX) +iV(AX)], (81a)
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with
U (x) = sechix) + 2¢ Reau.(x) + €%{|al?uo(x) — 2 Imauy(x) + 2 Rep2u>(x)]}, (81b)
V(x) = —2¢ Imav.(x) — 2¢?{Reavi(x) + Im[avo(x)]}. (81c)

Herea,a = constant;u., v. are the eigenfunctions of the operator (9) corresponding to
H = H_.anduo, u, v1, uz, vz are solutions of the nonhomogeneous equations (16), (17), (19).
The link to the reduced amplitude equation (28) is provided by setting the two consgtants,
anda, equal to the initial valuesz(0) anda(0), respectively) of equation (28). Finally, is
given by equation @: A = (1 +h)Y/2. Our choice ofy is related to the value df used in
simulations of the reduced system (28) in section4.4 0.1). Takinge = 0.1, equation (14)
givesh = 0.064 72. (To get an idea of how close to the bifurcation point we are, recall that
the oscillatory instability sets in &t = 0.06359.)

For all examined values af anda—provided| E3| (equation (49)) is not very large—the
evolution starts with a relatively long period of growth of the oscillatory instability. During
this transient period the field configuration may be regarded/assaliton with the amplitude
and width oscillating about their stationary values (figure 6). After the amplitude of the
growing perturbation has reached a certain critical value, a cross-over occurs and the subsequent
evolution settles to one of the two possible asymptotic regimes. Both of these two attractors
are localized in space and oscillate in time. In contrast to the transient phase, these oscillations
are not about the stationary soliton but abgut= 0 (see figures &) and @)). In both cases
the oscillations of the soliton are accompanied by intensive radiation.

5.2. Asymptotic attractors

The first emerging attractor hasagativeoscillation frequency with the magnitude slightly
smaller than 1; it is bell-shaped and its amplitude is very slowly decaying in time (figaie 6(
We will be referring to this solution as thHareather it is indeed a relative of the breather
solution of the Klein—Gordon equation [22]. (Another, and possibly even closer relative is the
soliton of the unperturbed NLS equation with the constant frequency shift, equation (1) with
y = bh = 0.) Similarly to the Klein—Gordon breather, our breather lives in the gap of the
continuous spectrum and can be constructed perturbatively.

To this end, we again decompose equation (1) with O into its real and imaginary part
and expand/ in powers of a small parameter,

v =UH+iV, U=¢eUy+e?Up+--), V=e(Vo+e’Vot---). (82)

Here U; and V; depend on multiple space and time scalés:= U;(X,T; X1, T1), V; =
Vi(X,T; X1, T1), whereX; = ¢X andTy; = ¢T. The breather is therefore constructed as a
perturbation of the trivial solutiogr = 0 with a small (but finite) amplitude. At the first order
in ¢ we have a linear equation

Ug\ _ (—9%/0X?+1+p 3/0T Uo\ _
M<Vo>=< —0/0T —32/3X2+1—h)<Vo>_0’ (83)

whose solutions are linear waves with the dispersiondgw= 1 — h2 + k. Since we are
primarily interested in nonpropagating structures, we take

<l‘£§> = ¢(X1, To) <zls) e +c.c, (84a)

where

12
w=V1—h2 >0, g=ﬂ=<l+b) . (84b)

w 1-9
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Figure 6. Evolution of the undamped solitog (= 0) perturbed by a perturbation of the form (81)
with |E3| ~ 1 (i.e. with/(0) ~ 1). For @), (c): a = —1,a =i and for ), (d): a = 1,a = —i;

in both case$(0) = —1. All four pictures are obtained by means of numerical simulations of the
full, nonreduced NLS equation (1). The simulations were carried out on an intervé) Y6]; on

(a), (b) the interval has been cut down for graphical clarity. ©rand @) plotted is the trajectory

of the pointy (X = 0, T). The broken lines sketch the boundaries of basins of attractiar) ¢f(

and @) v attractor. The arrows indicate the direction of the evolution.
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Next, at the ordes? we obtain
w (U2 — (—8Vo/3T2+0%Uo/0XE + 2US + V) Uo
V, dUG/dTo + 32Vo/dX2+2Us + VA Vo )
Equation (85) is only solvable if the right-hand side is orthogonal (in the sense@btsealar
product) to the vectofl, —i&). This gives the (undriven) NLS equation for

(85)

2622 s 14690 4 o34 2674 3Y g = 0, (86)
dT> X2

with an obvious soliton solution. Returning to the original variab)eve can write our breather
solution as

21—-h)\"*[1+¢ iw—e202/o)T + L 7§ jw—e22je)T
= + —
@ﬁi eb ( N hz ) 5 e 5 e

x sech(ebX) + O(£®), (87)

wherew andé are given by equation (&), and the amplitudé = O(1) is a slowly changing
parameter, which is not defined at this order of the expansion. Note that fortgrhddlclose
to 1 and the second term in (87) is negligible comparing to the first one. It is for this reason
that in our numerical simulations the breather appearsagativefrequency solution. When
h = 0, we havey = 1 and equation (87) is simply the soliton of the unperturbed NLS equation
with the unit frequency shift.

The second localized attractor hmssitiveoscillation frequency. Like the decaying soliton
¥, itis bell-shaped but its amplitude is growing with time (figurb)( This large-amplitude
soliton can also be constructed as a series in small paramebés time we write

Y= Yo+ Y+, (88)

where the coefficients of the expansion depend on multiple scgles:v; (X _1, T_2; X, T).
HereX_; = ¢ X andT_, = ¢~ 2T. Substituting (88) into (1), the order yields the
unperturbed NLS equation:

2
i31ﬁ0+31/f0

+ 2ol = 0 89
a1 oz 2l (89)

and so the large-amplitude soliton is given by

2
Ur (X, T) = B exp(iB—2T> sech(EX) +0(e), (90)
& & &

whereB = O(1) is a slowly changing function o and7 which is not defined at this level
of approximation.

Finding the exact laws of variation éfand B is beyond the scope of this work. We will
restrict ourselves to commenting only ay the amplitude of the breathef, has to decay
and the amplitude of the solitafy, to increase. As we mentioned in section 4, in the undamped
case the equation (1) conserves energy,

E=/[ll/fx|2+|1ﬂ|2—|1/f|4+g(1/f2+1/f*2):| ax. (o1)
Substituting (87) into (91) yields the energy of the breather:
_Rr2
E, = E[y,] = 20 O, (92)

2+h?
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while doing the same with equation (90) gives the energy of the large-amplitude soliton:

3
B =i ~—5 (1) 99

Since the linear radiation waves take away positive energy, the endéfgiasd E, have to

decay. According to equation (92), this means that the amplibuoethe small-amplitude

breather has to decrease. On the contrary, equation (93) implies that the amplitude of the

large-amplitude solitonB, will have to grow.

Thus, from the energy point of view, the difference between the two attragioasd,
is that in the former case the energy of the breather decreases to zero (remaining positive all
the time) whereas in the latter case the energy of the soliton is negative and tends to minus
infinity.

A natural question is whether the type of the asymptotic regime (decay or growth) can be
predicted from the analysis of the finite-dimensional dynamics described by equation (28) with
a anda featuring in equation (81) taken as the initial values. Surprisingly, the ansn@rThe
evolutions shown in figures &), (c) and ), (d) correspond to the choices & —1, a = i) and
(a = 1,a = —i), respectively. Although these initial conditions evolve into two completely
different asymptotic regimes, the corresponding trajectories of the fictitious particle on the
plane are identical up to a constant angular shift. In both cases the initial conditions of the
particle arer(0) = 1, 7(0) = 0 and/(0) = —1, the corresponding trajectory is shown in
figure 4Q).

The finite-dimensional system (28) is invariant with respect to constant phase shifts
a — a€® while it is exactly the initial phase of the perturbation that plays the crucial role in
the selection of one or the other asymptotic regime. This is shown symbolically in figgjes 6(
and ). The two broken closed contours demarcate what can roughly be considered as the
boundaries of the basins of attraction of the decaying and growing soliton. Depending on
the phase o£(0) (i.e. depending on the initial angular position of the fictituous particle), the
spiralling-out trajectory crosses the inner contour (schematically shown as a circle) or the
outer one (a dumb-bell). In the first case the trajectory will remain within the inner contour,
with the orbits of revolution slowly shrinking to the origint. The corresponding solution of
the NLS equation is attracted to the slowly decaying breather, In the second case the
trajectory stays outside the dumb-bell, with the orbits slowly expanding. The corresponding
NLS solution locks on to the growing soliton (90).

5.3. Large-energy initial conditions; evolution of the solitgn

The attractorsy; andy, emerge if the energyEs| of the perturbation is not very large (that

is, if the initial position and velocity of the fictitious particle are of order 1). We have also
studied the evolution of the initial condition correspondindetge |E3|. (More specifically,

we took|a(0)| > 1 but|a(0)] = O(1).) As we remember from the simulations of the finite-
dimensional system (28), the growth|ef? is much faster in this case. Consistently with the
finite-dimensional description, the transient in the evolution of the NLS soliton was indeed
seen to be much shorter.

Tt These inner and outer contours should not be confused with the inner and outer circular bounds of the trajectory of
the effective particle discussed in section 4.4. The equation of the fictitious particle describes growing oscillations of
the fieldy (X, T') about the unstable stationary solitgn (i.e. about the point/ (0, T) = A in figures 6¢) and @).)

In contrast, the boundaries of the basins of attraction of the solitprasdyr, are centred at the origin. Furthermore,

the effective-particle description is valid only while the amplitude of the oscillations is still small; it ceases to be
applicablebeforethe spiral crosses one of the broken closed contours in figuckatd d).
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Figure 7. Evolution of the undamped solitog (= 0) perturbed by a perturbation of the form (81)
with large negativeE; (large negativé). Herea = 1,a = —18i (and sd(0) = —18). They
soliton splits into a couple of small-amplitude breathgysequation (87), propagating in opposite
directions and slowly decaying in time.

A more significant distinction arises at a later stage, when the unstable soliton splits into a
pair of long-lived small-amplitude breatheps travelling with constant velocities in opposite
directions (figure 7). The explanation for this phenomenon is suggested by the spatial structure
of the perturbation in this case, equation (81). A large initial value gives rise to a large
{u1, v1}-component in the perturbation while bath(x) andvi(x) have a sharp dip in the
middle which serves as a nucleus of the future splitting.

Finally, we have simulated the evolution of the solitgn (equation (2)) which has a
positiveeigenvaluei in its spectrum of linear excitations (and so is unstable with respect to a
nonoscillatorymode). The initial condition was taken in the form

Y(X,0) = —iAsechAX) —icA[u(AX) — v(AX)],

where this timeA stands forA_ = (1 — h)¥?, and{u(x), v(x)} is the eigenvectort of the
operator (9) associated with the pure imaginary eigenvalge—ii. The subsequent evolution
takes the solitony_ to one of the two attractors observed in our simulations ofjthsoliton.
Namely, choosing < 0 results in the slowly decaying breather (87) while in¢he 0 case

one observes a slowly growing soliton (90). Thus, in the undamped case both the oscillatory
and the translational, nonoscillatory, instability give rise to the same asymptotic attractors.
The peculiarity of the oscillatory instability manifests itself only in thez O case, where it
brings about a stably oscillating soliton.

T Inthe case of the_ soliton the linearized operator has the same form as ivthease, equations (7)—(9), where
one only needs to repladé — —H and remember that noW = —h/(1— b).
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6. Concluding remarks and open problems

In this paper we have derived a reduced amplitude equation for the soliton in the vicinity
of the oscillatory instability bifurcation. Bifurcations of this type occur in conservative and
weaklydissipative wave systems. Similarly to the case of the Hopf instability (characteristic
of strongly dissipative systems), the oscillatory instability sets in when a pair of complex-
conjugate linearized eigenvalues crosses the imaginary axis. What makes the oscillatory
instability bifurcation fundamentally different from the Hopf bifurcation, however, is the
phenomenon of fusion and subsequent dissociation of a pair of stable eigenvalues which takes
place just before the eigenvalues have acquired a positive real part. The oscillatory instability
may therefore be regarded as a product of the resonance of two internal oscillation modes. As
a consequence of the proximity to such resonance, the amplitude equation associated with the
oscillatory instability is qualitatively different from the normal form of the Hopf bifurcation.
(The former is second-order whereas the latter is a first-order equation.)

The second-order amplitude equation for the unstable perturbation admits a useful
mechanical interpretation as an equation of planar motion of a classical particle in a radially-
symmetric potential. The particle is also subject to a constant friction and time-independent
torque which is induced by radiation waves emitted by the soliton. Exploiting this analogy and
the associated classical mechanical formalism, we have demonstrated thay ie-tbecase
the presence of the torque always makes the trajectory of the fictitious particle unbounded.
(The motion starts with quasiperiodic oscillations in an adiabatically changing ring which
subsequently transform into a self-similar trajectory rapidly spiralling out.) In terms of the
full nonreduced NLS dynamics, this means that the emission of radiation suppresses stably
oscillating solitons. The finite-dimensional analysis provides no answe&h&b will be the
resulting asymptotic attractors in this case, however.

In theweaklydissipative casef small but nonzero) the unbounded motions coexist with
stable periodic orbits and therefore, the unstable stationary soliton may transform into a new
soliton-like attractor which is localized in space and oscillates in time. Finally, iattbagly
damped casés ~ 1), where the soliton’s perturbations satisfy the complex Landau equation,
unbounded finite-dimensional trajectories do not arise at all. Any perturbation of the unstable
stationary soliton will necessarily have to evolve into a temporally periodic solitonic attractor.

In the undamped situatiofy = 0) the conclusions of the reduced finite-dimensional
analysis have been verified in direct numerical simulations of the full, nonreduced NLS
equation (1). In agreement with the effective particle description, no stably oscillating solitons
were seen to arise. Our second aim here was to understand what are the infinite-dimensional
counterparts of the unbounded finite-dimensional solutions; in other words, what localized or
extended NLS attractors are represented by these spiralling-out trajectories. Depending on the
initial perturbation, the decay of the unstable stationary soliton was observed to result in one
of the two basic products: (a) a slowly decaying breaihgrand (b) the solitony, whose
amplitude is increasing, slowly but indefinitely. Initial conditions with larger energy contents
can give rise to gair of small-amplitude breathers moving away from each other.

In the damped cases # 0) the numerical simulations of the NLS equation (1) were
reported in [4]. Consistently, with our present conclusions, it was shown there that in some
finite neighbourhoody > §. of the bifurcation valud).(y) the unstable stationary soliton
Y. is replaced by a stable temporally-periodic solitbn. Here it is important to emphasize
the difference between this soliton and what we refer to as the bre@ther Firstly, the
solitony . oscillates about the stationary solitgn, with the amplitude of oscillations being
close to zero foly close toh.. On the contrary, the breathér, oscillates about the trivial
solutionyr = 0, with the amplitude of oscillations being about one half of the amplitude of the
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solitony,.. Secondly, the frequency of thle. soliton is positive whereas the frequency of the
breathen/, is negative. Lastly and most importantly, tife soliton does not decay whereas
the breather has a long but finite lifetime.

Since the unbounded trajectories persist if a small damping is added, the small-amplitude
breathers (and large-amplitude slowly growing solitons) should persist for small ngnzero
However, adding even a small damping should drastically reduce the breather’s lifetime. In
this case the breather should arise only as a transient structure; the corresgbnéing
asymptotic state will be trivialyy = 0. The trivial attractor was indeed observed in numerical
simulations of [4]. It is appropriate to mention here that in [4] the unstable stationary soliton
was perturbed only by the discretization errrors, i.e. the perturbation was always very weak.
Speaking in the language of the fictitious particle, its initial radial position and velocity were
always very small:|a(0)|, |a(0)| ~ 0. The trajectory evolving from these initial conditions
will necessarily be attracted to the stable periodic orbit. This explains the existence of a
neighbourhood of the bifurcation valggwhere the evolution of the unstable stationary soliton
¥, necessarily results in the periodic solutipn [4]. The trivial attractory = 0 also exists
in this neighbourhood but since the above-mentioned initial conditions lie ouside its basin of
attraction, it did not arise in the numerical simulations of [4]. The trivial attractor was only
observed for thosg where the periodic solitogy. becomes unstable, along with its double-
and higher-periodic descendants.

It would be interesting to find out what is the# 0-counterpart of the growing soliton
Y4+. Computer simulations of the damped NLS equation (1) witii &< < 0.02 did exhibit
a similar object which was seen to perform irregular walks, back and forth, over a strong
radiation background [23]. This large-amplitude ‘wandering’ soliton was observed for fairly
large values of) (h ~ 0.35) whereas fof in the immediate vicinity ofy.(y) =~ 0.07 the
decay of the unstable stationary solitgn was seen to result in the stably oscillating soliton
Y. Interestingly, the ‘wandering’ soliton emerged foon the borderline between the region
where the dominant attractor was trivigd,= 0, and the region where the unstable stationary
solitonyr, would ‘ignite’ a spatio-temporal chaotic state. A natural questionis, therefore, onthe
relation between the large-amplitude soliibp(slowly growing, oscillating and/or wandering)
and spatio-temporal chaos. We are planning to return to this problem in future publications.

Finally, it is appropriate to mention a recent paper [24], whose author also uses singular
perturbation expansions for the analysis of the parametrically driven NLS equation. However,
the focus of [24] is orstablesolitons and their response structural perturbations (such as
external fields, noise, etc) as well as soliton—soliton interactions. The present paper deals with
completely different parameter range and completely different class of phenomena.
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Appendix

In this appendix we outline the scheme of numerical solution of the eigenvalue problem (9)
and inhomogeneous equations (16)—(19). Some parts of this scheme are plain applications of
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the Fourier method; other parts are not so straightforward yet general enough to be useful in
the asymptotic analyses of other instances of radiating solitons.

A.1. Exponentially localized solutions

Expanding eigenfunctionsandv over cosines,

1 (@] (n)
(40) = 2 (40)+ 2 Z(zm) (), (0

and truncating the seriesat= N reduces equation (9) to an eigenvalue problem for a block

matrix:
Ly O uw\ 0 I u
(5 2)(0)-=(7 o) (%) 9
Herew andwv are (N + 1)-dimensional column vectorse = @@, u®, ... a7 v =
W@, v® v andL, andL, are(N + 1) x (N + 1) matrices with entries
2 6
L9 =1-2H - =, L0 =1- T
2 2
E(O ) £(ln 0 _ V2 mz 7 E(loﬁm) _ E(m 0 _ 3£(o m)’
iz sinh (%)
2 + _
L(Zm,n) — ﬁén,m) _ _77:_2 m-—n + m § n 7
L smh[—” (”’L+")] smh[—(’"L ”)] (96)
ﬁ(lm’”) = L(l"’m) = 3£(Zm’") (m,n=1,...,N, m#n);
2 2
£ = (”_m) sloom 2o Fmm "
L L g2 sinh(%)
Eg-m»m) _ (n'Tm)Z-'-l E 67T2m

L ; w2m\
L2 smh(T)

In equation (94) we restricted ourselves to the cosine series giacel v are assumed to

be even. The matrice8; and £, are finite-dimensional approximations for the differential
operatorsl; and L, respectively. In equation (96) we have also approximated finite-range
integrals of the forny|,” sectf(x) cos(*2%) dx by

*° Tmx 7’m w%m
secH(x) cos( ) dx = sinh .
0 L 2L 2L
The introduced error is exponentially small in The normalization condition (13) for the
eigenfunctions translates into the normalization condition for the Fourier coefficients:

2(u? +v%) = 1. (97)

The matrix eigenvalue problem (95)—(97) was solved by a standard numerical routine.
Taking L = 20 with N = 100, 200 and 400, we have fourfdh. = 0.059 7928 w. = 0.830 28
and 8 = 1.644676 in all cases, while increasing the interval twide £ 40) gave
H. = 0.0597933w, = 0.830294 angB8 = 1.644 669 (both forv = 200 and 400). Further
increasing the intervall( = 80 with N = 400) did not bring any change to the last set of
numbers.
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The need for such a high accuracy stems from the fact that small eridrsdan and hence
the critical wavenumber (21), produce large errors in the asymptotic phase of the radiation-
wave solutioru,(x), v2(x) as|x| — oo. Since it is exactly the asymptotic phase that selects
the particular solution we need (the outgoing wave), an inaccurately determined far-field phase
would have resulted in an incorrect near-field behaviour,0t, and eventually, in a highly
inaccurate value of the integral(equation (31)).

Having found the critical eigenvalue. and the corresponding eigenvecta (v.), we
proceed to solution of the nonhomogeneous equation (17). Expanding

ui(x) _ 1 u(o) \/E s I,t(n) mnx
(Ul(X)) o ﬁ <vilo)> " L Z (v(lln) ) COS(T)’ (98)

n=1

and substituting into (17) gives

ul\ Ly —od ur) _ [ v
s ()= (0 2 () -- () )
with ug = @2, ulP, ..., u!™)T andvy = @2, 0", ..., v{™)T. Although the matrix\1,,,
has a zero eigenvalue, the solvability of this linear system is guaranteed by the fact that the

associated eigenvectfi,., v.} satisfies the condition (22):
u. - v. = 0. (100)

In order to factor out the linear subspace spanned by this eigenvector, we decompose the
singular matrix asM,,.£ = QR, whereR is upper-triangular an@ orthogonal matrix.
Equation (99) is transformed to the upper triangular form:

R(a) =)
(5)=(%) o

and¢& is a permutation matrix which is chosen so that to make the zero diagonal element of
the matrixR appear in the lower right corner. The matgxwill then contain the vector
{u., v.} as its last column and by virtue of equation (100), the last component of the vector on
the right-hand side of equation (101) will be zero. Hence, in order to solve the linear system
(101) it is sufficient to discard its last equation (which is simply?ff’*l) = 0). The resulting
system of 2N + 1) equations has a nonsingular matrix and can be solved by a standard routine.
After that we puti{"*™ = 0 and use equation (102) to recover a solution of the original
system (99). (Choosing any other value &t *” amounts to adding{"*" x {u,, v.} to the
solution{u1, v1}; in view of the orthogonality relation (22) this does not affect the value, of
equation (29).)

The accuracy of the computation can be judged by the values of the integral (29). Choosing
L = 20 with N = 100, 200 and 400 we obtained= 1.330575 in all cases; doubling the
interval length withN = 200 and 400 gave = 1.329676; finally takingL. = 80 with
N = 400 produced = 1.329 675.

The nonhomogeneous equation (16) is solved in a similar way. The only difference is
that since the homogeneous solution of equation (16) is an odd function, the matisx
nonsingular and so there is no need in the diagonalization in this case.

where
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A.2. Radiation waves: the two-interval technique

The solution of the boundary-value problem (19), (20) turns out to be somewhat more laborious.
As we have already mentioned in section 2.2, equation (19) has a bounded homogeneous

solution:
Ll —ch Up _
(L 2 (") -0 a03)

This solution is the eigenfunction of the operator (9) associated with the continuous spectrum
eigenvaluey = 2w,. In general, the forcing term on the right-hand side of (19) will not satisfy
the condition of solvability of equation (19) in the class of square-integrable functions:

00 2 .2
f {uh,vh}-(?’”z;_vf’6>uodx=o. (104)

This does not mean, of course, thaindecayingnonhomogeneous solutions do not exist.

Quite the contrary, from the fact that,, v, undergo nondecaying oscillations jag — oo

one can readily deduce that the nonhomogeneous equation (19) has oscillatory solutions. We

need to construct the solutidn,, v,} satisfying the radiation conditions (20) at infinity; the

problem, however, is that the Fourier method can only be implementiaitarintervals. This

difficulty can be circumvented by making usetabfinite intervals; our method is as follows.
First, we observe that the homogeneous equation (103) will not, in general, have solutions

with periodic boundary conditions, (L) = u,(—L), u},(L) = u) (—L) (and similarly forv;).

The periodic solutions will arise only for particular valueslof (Here we assume thdt is

large enoughiL > 1) so that whenx| ~ L, the functions:, (x) andv, (x) will have settled to

their oscillatory asymptotes.) For theesonantvalues ofL and for sufficiently largéx| ~ L

we will have then

up — Acos{k.(Jx| — L)} (105)

and a similar relation fop,. Next, since the operatavl,,, has a zero eigenvalue with the
associated eigenfunction periodic on the intetval., L), the nonhomogeneous equation (19)
does not have a periodic solution on this interval. We can, however, solve it on a nonresonant
interval (—L, L), whereL # L; we will denote the corresponding solutigi,, i,}. The
functions on the right-hand side of equation (19) fall with distance 88, wherexy ~ 0.67;
consequently we should chookes> 1. Then, for sufficiently largéx| ~ L we have

ii; — Bcos{k.(|x] — L)} (106)

and a similar relation fobs.

Finally, the nonhomogeneous solution satisfying the radiation condition (20) can be
constructed as a linear combination of the nonhomogeneous sofutioty}, periodic with
period Z, and the even homogeneous solutjep, v,} periodic with period 2.:

()= () ().
U2 U2 (A

Substituting (105), (106) and (107) into (20) and setting the coefficients dffexp|} to zero,
we find the value ot’:

B . -
C = _Zenkp(um, (108)

T More precisely, Ixo = 1 + 2., wherex, is the decay rate af.(x) andv.(x): Kf =1-H, — JHZ+Z.
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while comparing coefficients of eXp-ik.|x|} gives a simple relation betwe®) the amplitude
of the radiation at infinity, an@, the amplitude of the nonhomogeneous solution periodic on
the interval(—L, L):
g kL
B=-IR———. (209)
sin{k.(L — L)}

This formula is another manifestation of the fact that the inhomogeneous problem cannot be
solved on the resonant intervat L, L) on which the homogeneous solution was found. The
smaller is the difference. — L|, the greater will be the amplitud® and, according to (108),
the larger coefficienC we will have to take in equation (107) in order to offset the ingoing
component of the radiation wave. Consequently, the less accurate will be the resulting solution
us(x).

From the above construction it is also clear why we did not invo#td homogeneous
solutions. Adding an odd homogeneous solution to the funatian) given by equation (107)
with C fixed by equation (108), would bring an uncompensated ingoing wae'& ! thereby
violating the radiation condition. For this reason we have identified the amplitudes of the right
and left outgoing waves in section 2R* = R~ = R.

In order to implement the above procedure numerically, we expand

uz(x) 1 (ul f NN Tnx

<v2<x>> VL <v;°>) Ik (v;n> ) COS(T)’

n=1
ul(x) —v2(x)\ _ 1 (5o \/7 N (sp Tnx
2Uo(x) ( 2o (1) v (x) ) = (m) P <tn > cos(~7-)-

Truncating the series at= N, equation (19) is converted to a linear algebraic system

()5 B0 e

whereuy, vy, s andt are(N + 1)-dimensional vectors, e.g, = (u(zo), u;D, el u;N))T. For
resonant interval lengths the matrix My, will have zero among its@’ + 1) eigenvalues

o, 1, - .., M2y+1. The resonant lengths can be found with any desirable accuracy. In
particular, takingL. = 20.11725 with 100 Fourier modes yields the smallest modulus
eigenvalug:, = 1.1x 107, The choiced. = 38.610 176 withV = 200 andL = 79.295 415

with N = 400 result inu, = 3.7 x 10~" andu, = 3.6 x 1077, respectively. The associated
eigenvectors give a reasonably accurate approximation for the even homogeneous solution
(un, vy) of equation (19), periodic with period/2

Next, by varying intervals slightly. — L, we can always ensure that the smallest
modulus eigenvalug, is notverysmall. In particular, choosing = 19.65 with N = 100
givesji, = 3.5 x 1072; for L = 38 with N = 200 andL = 78.65 with N = 400 one obtains
iy = 2.4x 102 andfi, = 1.2 x 1072, respectively. We solved the nonhomogeneous system
(111) in each of these cases. The resulting even nonhomogeneous soluiipis, of course,
periodic with period 2.: ii5(0) = ii,(L) = 0; #5(0) = (L) = 0. These boundary conditions
are imposed by making use of the Fourier expansions.

After L has been picked up not very closeltpthe dominant error in the numerically
found solutionuz, v, comes from thdinitenessf the interval(—L, L). The truncation of the
infinite interval results in thé-function peak in the Fourier transform §(x), v2(x) being
replaced by thsincfunction:

(110)

ésin{(k —ko)L}

= Ré sinc{(k — k.)L} (112)
T (k—k)L = 0w o

RSk — k) — R



Dynamics of the parametrically driven NLS solitons 139

Table 1.
Re¢ Im ¢, equation (31) Ing, equation (32)
L =79.295415,L = 79.0, N = 400 842 x 1072 1.92x 1073 2.55x 1073
L =1199807,L = 11975, N = 600 815 x 1072 1.84x 1073 2.22x 1073
L =17915922,L = 17895, N = 600 795 x 1072 176 x 1073 2.00x 1073
Next, k can only assume a discrete set of values: k, = 7n/L, wheren = 0,1, ..., N. In

generaltwo values ofk, sayk,, andk,,,+1, will fall into the central lobe of theinc funct|on
ke — /L < ky < kpns1 < ke + /L. Accordingly, the solutiori,, 7, will approach a linear
combination oftwo cosines, co&,x) and cosk,,+1x), asx — oo. On the top of that,
additional wavenumber components will be introduced by the sidelobes sirnty&inction,
and thus the asymptotic waveform may substantially deviate frontkgos

These undesirable numerical effects can be reduced by increasing the interval length.
First, the width of the central lobe of tlsnc-function is equal to 2/L; asL is increased, the
central lobe narrows and the error in the asymptotic wavenumber reducgs.aSdcond, the
amplitude of the central lobe grows in proportionftavhereas amplitudes of the sidelobes
remain constant. Hence, increasing the interval length suppresses the leakage to the sidelobes
as well.

With the solution of the boundary value problem (19), (20) at hand, we can evaluate the
coefficients, equation (31). The imaginary part pfcan be recomputed in a different way:
instead of doing the integral (31), we identify the amplitiglrom the asymptotic behaviour
of i1z(x) (see equation (105)); then recover the amplit®dgom equation (109) and finally,
use equation (32). The discrepancy between the two answers fophovides an estimate
for the accuracy of the computation.

We have carried out three series of calculations for the increasing valugd.cind N .
Results are presented in table 1.

When plotted versus/L, the values of Re lie on the same straight line. The linear
extrapolation ta. = oo gives Re; = (7.5555+ 0.0005 x 10-2. The corresponding values
of the imaginary part of the integral (31) (second column in table 1) also change linearly
with 1/L. Extrapolating to infinity we get Inm = (1.60 + 0.02) x 1073, On the other
hand, the linear extrapolation of ltnobtained by means of the far-field formula (32) gives
Im ¢ = (1.59+ 0.04) x 10~2 which agrees well with the result of the numerical integration.
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