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Abstract

We present a modified perturbation technique for the AKNS spectral system to evaluate eigenvalues supported by a
perturbed algebraic soliton potential. The results of this technique are applied to the problem of the structural instability of
algebraic solitons in the modified Korteweg-de Vries equation. It is shown analytically and numerically that the algebraic
soliton is destroyed under the action of small initial perturbations and transforms either to a steady-state soliton with
exponentially decaying tails or to a pulsating “breather”-type wave packet. (© 1997 Published by Elsevier Science B.V.

1. Introduction

Solitary wave solutions (or solitons) have been
found for various nonlinear evolution equations de-
scribing nonlinear waves (see, ¢.g., Ref. [1]). How-
ever, such solutions are important for wave dynam-
ics only if (i) they are stable under small perturba-
tions and (ii) they are not in resonance with small-
amplitude quasilinear waves. Under these conditions,
an initial localized pulse evolves into a sequence of
solitons propagating with different but constant ve-
locities separated from a wave train decaying due to
linear dispersion [1]. In the opposite case, when the
solitary waves are unstable or in resonance with lin-
ear waves, the initial pulse transforms to other, usually
nonstationary, structures of the nonlinear wave field.

It has been discovered for various fields in contem-
porary physics (see, e.g., Refs. [2-10]) that, besides
the conventional solitary wave solutions with strongly
(exponentially) decaying tails at infinity, there exist
also solitary waves whose fields fall off more weakly,

in fact algebraically. In some problems, for example,
for internal waves in a deep fluid governed by the
Benjamin-Ono equation [2,3], these algebraic soli-
tary waves play the same role as conventional soli-
tons, i.e. they propagate with different velocities and
are stable under the action of small perturbations [4].
However, in other cases [5-10], the algebraic solitons
have been found to co-exist in parameter space with
a family of exponentially decaying soliton solutions
and are a special degenerate limit of this family.

This situation is rather typical for nonlinear dis-
persive wave systems where a balance between lin-
ear dispersion and nonlinearity can be achieved only
when taking into account the strong (*‘higher-order”)
nonlinear properties of the wave field. For instance,
it has recently been shown that the gap-solitons asso-
ciated with wave resonances of different types [5,6],
the quasi-parallel Alfvén solitary waves in a magne-
tized plasma [7,8], the self-guided waves in refractive
optical materials with non-Kerr nonlinearities [9,10],
all have an algebraic shape at the edge between the
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branches of the linear and nonlinear wave spectrums.

The prototype example for this phenomenon was
found a long time ago [ 11,12] in the framework of the
modified Korteweg-de Vries (mKdV) equation which
governs the evolution of long waves in the critical
case when the usual quadratic nonlinearity vanishes.
For example, this happens for oblique ion-acoustic
plasma waves at a critical angle to a magnetic field
[ 13,14], for the wave propagation in nonlinear lattices
with symmetrical potentials [15], and for propaga-
tion of small-amplitude dark solitons along the con-
tinuous wave background in defocusing optical mate-
rials [16]. In all these cases, the underlying model,
providing a balance between linear dispersion, small
quadratic and strong cubic nonlinearities, has the di-
mensionless form

u, + 12quu, + 61Uy + Uygy =0, (1)

where ¢ is a parameter for the quadratic nonlinearity
which here is supposed to be positive.

The mKdV equation (1) has two branches of soliton
solutions (see Refs. [11,12]) given by

20p?

V@ + p2cosh[2p(x —ovt)] +og

where ¢ = 41 and p is the soliton parameter deter-
mining the velocity, v = 4p?. In the limit p > ¢ both
branches transform to the sech-type soliton solution of
the mKdV equation which are known to be stable with
respect to small perturbations (see, e.g., Ref. [17]).
Furthermore, for o = 41 the soliton field decays ex-
ponentially as |x| — oo for any p and approaches in
the limit p < g to the well-known sech?-type pro-
file which satisfies the KdV equation (see Ref. [1]).
Stability of solitons within the KdV equation has also
been proved in several works (see Ref. [17] and ref-
erences therein). On the other hand, the branch of the
exponentially decaying soliton solutions with oo = — 1
tends, for p < ¢, to the algebraic soliton [11,12],

(2)

H=1u,=

4q

1 +4g2x2° (3

U — uy=—
while the velocity v = 0. The criterion of soliton sta-
bility (see Ref. [17]) when applied to the soliton so-
lutions (2) reveals that the algebraic soliton (3) rep-
resents a critical case when the unstable mode of the
linearized problem has a degenerate zero eigenvalue.

In this case, effects induced by this weak instability
result in a power-like growth for small perturbations
around the soliton solution. Besides, the algebraic soli-
ton (3), which is stationary in time, is located at the
edge between the exponentially decaying solitons (2)
which propagate with positive velocities v and small-
amplitude dispersive wave packets propagating with
negative group velocities, the smaller wavelength hav-
ing the larger group velocity. Therefore the algebraic
soliton (3) is in resonance with infinitely long linear
waves. These two mechanisms must lead to a struc-
tural instability of the algebraic solitons (3) in the
mKdV equation (1).

The phenomenon of structural instability of alge-
braic solitons has been predicted for several different
models (see, e.g., Refs. [7,8,10]) but a correct de-
scription of the long-term soliton dynamics has not yet
been done even for the case when the underlying evo-
lution equation, i.e. the mKdV equation, can be solved
by means of the inverse scattering transform (IST)
technique (see, e.g., Refs. [18,19]). The difficulties
arising here are caused by the weak localization of the
algebraic soliton potentials which do not allow the ap-
plication of the results of the IST technique directly.

In this paper we develop a modified perturbation
technique to analyse the linear problem associated
with an algebraically decaying potential and construct
perturbed eigenvalues to this problem. The resuits of
this analysis enable us to describe, for the first time to
our knowledge, the long-term transformation of the al-
gebraic soliton due to its structural instability and res-
onance with long linear waves described by the mKdV
equation.

2. Regular perturbation technique

The linear spectral problem associated with the
mKdV equation (1) can be written in the form

P12 = —(g + U)oz + Apy,
¥2: = (g + u)e1 — Agy, (4)

where A is parameterized in terms of the spectral pa-
rameter k according to A = —+/g? — k%, This prob-
lem is a simple reduction of the general AKNS system
which was investigated in detail for ¢ = O in Ref. [ 18]
and for ¢ # 0 in Ref. [19]. It was shown that the
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spectral parameter & in (4) does not depend on time
¢t if the function u(x,¢t) satisfies (1). Therefore, the
initial data u(x,0) completely determines the num-
ber and location of the discrete-spectrum modes for
this linear system and also the continuous-spectrum
eigenfunctions which are referred to as the Jost func-
tions. The discrete-spectrum modes are related to the
soliton solutions of the mKdV equation while the Jost
functions describe the radiative waves decaying due
to linear dispersion (see Ref. [18]).

The Jost functions for the single-soliton potential
u = u, at t = 0 have the following explicit form,

¢ =D (x;k,p)
. Ap .
= otk [(ik + %;’— smh(2px)u,,>e,i - %upengl ,
(5)

where

+_ [ ATk - q

é ‘< g ) O T\ a+ik)

- —(A+ik) _ q
e2‘< q ) “ '(—(A+ik)>'

and A, = —+/¢%>+ p?. The single-soliton solution
(2) supports only one discrete-spectrum mode which

arises from (5) for k=ip and A = A,

¢=®, =P (x;ip,p) = —o® (x;ip.p)
oA

0 aPXpt
(e"e, —oe
2p

_pxe; )ul“ (6)
where the vectors e follow from i for k = ip and
A=A,

To describe the evolution of a single-soliton solu-
tion (2) under the action of small perturbations we
need to evaluate a perturbation-induced correction to
the eigenvalue k = ip of the discrete-spectrum mode
(6). Therefore, we present the initial data u(x,0) as
u = u, + €du, where u is an initial perturbation to
the soliton and € is a formal small parameter. Under
the condition for the discrete-spectrum mode ¢ to be
localized, it follows from (4) that the perturbation to
the eigenvalue satisfies the following integral relation,

o0
(A—/\p) /(¢l¢[>2+¢2¢)/)l)dx
—o0

+oc

=6/6u(¢l(ppl +§p2d)p2)dx' (7)

—oc

Now, using a regular perturbation theory we seek so-
lutions of (4) in the form of the asymptotic series,

¢ =P, +ep, +0(),
A=A, + €X,8p + O(€), (8)

where A, = dA,/dp and 6p is a perturbation to the
parameter p of the discrete-spectrum mode (6). Sub-
stituting the series (8) into (7) we find the value of
this perturbation,

2 2
sp=T""sp 9)
2p*

where 6P, is the perturbation-induced correction to
the soliton momentum P, defined by

oo +00
Pj, = % / H?) dX, BPI’ = / Ll,,6udx. (]O)

We mention that the asymptotic equation (9) serves
also as a solvability condition for the perturbation ¢,
to be localized at infinity.

It follows from (9) that a small initial perturbation
to a single soliton (2) does not affect the existence of
the discrete-spectrum mode (6) but changes its eigen-
value k = ip to k = ip’, where p’ = p +€8p + O(€?).
This implies that the initial condition u(x,0) =u, +
€8u also generates a soliton (2) but with an effective
parameter p’. Besides, the initial condition gives birth
to a continuous-spectrum wave field decaying due to
dispersion and, possibly also, to additional discrete-
spectrum modes with small eigenvalues k. However,
all these waves take away only a small, order O(e?),
part of the perturbation-induced momentum of the
wave field. Indeed, using the explicit form (2) we find
the soliton momentum £,,

P,,=2p+q[2tan‘](qp'l)~7'ro’]. (1)

A change of the soliton momentum induced by an ini-
tial perturbation can be defined as AP = P, — P, and,
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by virtue of (9), we find that AP = €6P, + O(€?).
Therefore, the whole perturbation-induced correction
8P, to the soliton momentum goes to the renormal-
ization of the soliton parameter. This is a general re-
sult which is valid only if the basic soliton solution is
stable with respect to small perturbations.

Now we consider the limiting transition p < g for
o = —1 when the sech-type soliton (2) transforms to
the algebraic soliton (3). In this case, the expression
(9) diverges like p‘2 unless 6Py = 0. In general, this
latter condition is not satisfied and thus the regular
perturbation theory fails to describe the eigenvalues of
a perturbed algebraic soliton potential. For compari-
son, the similar limit for o = +1 leads to a regular ex-
pression for 8p if Su ~ O(p?) so that 8P, ~ O(p?)
as p — 0. In the next section we consider the correct
limiting transition to a perturbed algebraic soliton po-
tential following from a modified perturbation theory
and, therefore, specify o = —1.

3. Modified perturbation technique

The regular perturbation analysis fails in the limit
p < g (o= —1) because the discrete-spectrum mode
@, becomes orthogonal to itself. Indeed, the algebraic
soliton potential (3) supports the discrete-spectrum
mode @y following from (6),

¢p — @Dy = _qu(l + 2eox) uo,

() (0

It is easy to check that ff;f(d)mcboz) dx=0and, asa
result, the leading order term of the left-hand-side of
(7) vanishes in the limit p — 0 for the regular asymp-
totic expansion (8). This result is a consequence of
the fact that the algebraic soliton represents a critical
case for the stability problem (see Ref. [17]) so that
the derivative dP,/dv obtained from (11) at v = 4p?
vanishes for p — 0.

To treat the special case of small p, we consider the
perturbation A — A, to have a smaller order than O(¢)
and modify the regular asymptotic series (8) by an
asymptotic expansion,

@ =+ e, +0(),

1
A=A, — —€3(p”? — p?) +0(e). (13)
29

The leading-order term ¢, then satisfies the following
linear problem,

do1x = — (g + up) o2
1 )
+ (/\,, — 562/3(1?/" - P2)>¢01,
doax = (g + u,) o
1 , 5
- (’\n - 262/3(P 7 - P')>¢02~ (14)

Here we have used the same notations for u, and A,
as above but the parameter p should be now replaced
by €'/3p.

Analysis of the linear problem (14) reveals that
a naive one-scale solution in the form ¢, = @, +
€238, +0(e*/?) fails because the perturbation term
o®, which is referred to as an associated discrete-
spectrum mode is secularly diverging as |x|] — oo.
Indeed, for the algebraic soliton (p — Q), the associ-
ated mode has the form

5P = L1p” (1 — 2e9x), (15)

and grows linearly in x. This difficulty is a conse-
quence of another property of the algebraic soliton (3)
which is a resonance with infinitely long linear waves.
Because of this resonance, the discrete-spectrum mode
@, and the associated mode 6@y are limiting degen-
erations of the Jost functions (5) at p =0 and o = —1
in the asymptotic limit & — 0.

To remove these secular divergences, we have to
introduce the second (outer) scale of the asymptotic
expansion (13), i.e. that described by the variable X =
€'/3x, and match the asymptotic solution at the outer
interval with the naive (inner-scale) expansion de-
scribed above. It is obvious from ( 14) that the function
¢, at this outer scale coincides, on neglecting terms
of O(e* 3y and higher-order terms, with the Jost func-
tions (5) extended to the complex value & = ie'/3p’.
Supposing that the parameter p’ has a positive real
part, the Jost functions @* and @~ are exponentially
localized in the limits x — +oc and x — —o0, respec-
tively. Therefore, matching these Jost functions with
the inner asymptotic expansion we find the following
uniform representation for the two-scale asymptotic
solution of the linear problem (14),



D.E. Pelinovsky, RH.J. Grimshaw/Physics Letters A 229 (1997) 165-172 169

by =P (x;ie'p’ €Pp) + O(e¥?), x>0

=@ (x:ie'p’ € 3p) + O(e*?), x <.

(16)

Finally, substituting the leading order of (16) into
(7) and evaluating the integrals we find a modified
asymptotic equation for the spectral parameter p’,

P (p”* — p?) = 4"6P,. (17)

In the limit |p’ — p| < p the modified asymptotic
equation produces

2
p—p= %751’0,
which is consistent with Eq. (9) of the regular per-
turbation theory. In the opposite limit, |[p’ ~ p| >
p, the formula (17) determines an eigenvalue of the
discrete-spectrum mode supported by the perturbed al-
gebraic soliton potential according to the simple equa-
tion, p’? = g*8P,.

4. Discussion

First, we analyse the results of the modified asymp-
totic theory applied to the case of the algebraic soliton.
Then, the cubic equation (17) for p = 0 exhibits only
one real positive solution p’ if §Py > 0 and two com-
plex conjugate solutions p’ = p, + ip; with positive
real part p, if 6Py < 0. Thus, an initial perturbation
which increases the soliton momentum, i.e. 6Py > 0,
leads to the formation of a steady-state exponentially
decaying soliton (2) with effective parameter p’ and
also to the generation of a train of small-amplitude
dispersive waves. Using the approximation of P, (see
(11)) in the limit p < g for ¢ = —1 given by

2 3

—p’ +0(p%),
we find a change of the soliton momentum induced
by an initial perturbation,

P, =2mq +

AP =P, — Py = 2edPy + O(e?).

Therefore, the train of radiative waves takes away a
third part of the momentum of an initial perturbation.

On the other hand, if the perturbation decreases the
momentum of the algebraic soliton, i.e. §Py < 0, then
the steady-state propagation of a soliton-like initial
perturbation is revealed to be impossible. It is well-
known (see, e.g., Ref. [20]) that a complex conju-
gate pair of eigenvalues in spectral space corresponds
to a nonstationary (pulsating) nonlinear wave packet
which is referred to as a breather. This solution to the
mKdV equation (1) is described by the function

Uu=u
5 d an-! prcos @ coshyy — p; sinhmcos ¢
= Z—lan ; ; T s
ox prsin@sinhy + p; cosh 7 sin ¢
(18)
where

77=2Pr(x“'w)+7?0, 9=2Pi(x“Wt) + b,
v=4(p} - 3p}),

¢+ iy =tanh™ ' [¢7 (p, +ip) ],

w=4(3p? — p}),

and the parameters 79 and 6y are arbitrary phases.
Using the values of p, and p; predicted by the modified
asymptotic theory we find that v = 4p1g*6Py < 0
and w = 0. Therefore, the breather generated due to the
algebraic soliton transformation propagates to the left
as a small-amplitude dispersive wave. Furthermore,
the momentum Py, of the breather solutions (18) is
given by

_ 24p,
Py =4p, +2q['ﬂ'~ tan 1(———————)]
4~ (P} +p})

Using the approximation

(19)

4p, ,
Py =2mg+ %(pf ~3p2) + O((p? + p2)*'Y),

we find the change of the soliton momentum AP =
P, — Py as

AP = 48Py + O(e73).

Therefore, similarly to the case P > 0, the radiative
waves take away a third part of the momentum induced
by an initial perturbation. Thus, the algebraic soliton
is revealed to be structurally unstable under a small
perturbation and the dynamics of its transformation
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depends on the initial perturbation and is accompanied
by rather strong, O(€), generation of small-amplitude
dispersive waves.

It is easy to generalize this analysis for the case of
the exponentially decaying solitons (2) with a small
but finite value of p. The modified asymptotic equation
(17) also describes a unique real eigenvalue p’ > p
for the case 6Py > 0 and two eigenvalues with positive
real parts for the case 6Py < 0. However, for small
initial perturbations, i.e. for — P, < 6Py < 0, where

2,
Py 3\/§qu s

these two eigenvalues are real and correspond to two
solitons (2), one of which with a greater value of p’
corresponds to a soliton with ¢ = —1 and the other
one with a smaller value of p’ corresponds to a soli-
ton with o = +1. For initial perturbations with §Py <
—P,, these two eigenvalues merge and go into the
complex plane. Therefore, for such large perturbations
the soliton-like initial perturbation transforms into the
nonstationary breather (18). Location of the eigenval-
ues for a perturbed soliton (2) with p = ¢ = 1 and
o = —1 in a complex k-plane is shown in Fig. | for
varying perturbations with different values of 6F,.

In both the cases, the transformation of an exponen-
tially decaying soliton is accompanied by the genera-
tion of radiation which is small in the limit |p’ — p| <
p, where the regular perturbation theory can be ap-
plied, and is maximal in the limit [p’ — p| > p.
Thus, the phenomenon of structural instability of the
algebraic solitons in the mKdV equation leads also
to structural instability of the exponentially decaying
solitons but with respect to finite-amplitude rather than
to infinitesimal perturbations.

To confirm the results of the modified asymptotic
theory we have applied the numerical scheme pro-
posed by Boffetta and Osborne [21] for evaluation of
the eigenvalues of the AKNS spectral problem (4).
The perturbed algebraic soliton potential # was taken
in the form u = aug(x), where up is given by (3).
The case a = | corresponds to the exact soliton solu-
tions while an increase or decrease of the parameter
a induces increasing or decreasing of the initial mo-
mentum of the nonlinear field. For the case a > 1 we
have found a unique discrete-spectrum mode with the
parameter k = ip’ while for a < 1 the spectral system
(4) supports a complex-valued pair of the discrete-

Im(k)
0P, >0
k=ip
c=-=1 5Pp <0
/ T =+1
A
T O T T Re(k) 1

Fig. 1. Transformation of eigenvalues in a complex k-plane for a
perturbed soliton (2) with p = ¢ =1 and o = —1. 8P, denotes
momentum introduced by the soliton perturbation. For 6P, > 0
there is only one eigenvalue, while for 8P, < O there are two
eigenvalues which correspond to modes (6) with ¢ = 1 and
o = —1 merging at 6P = —FPy.

spectrum modes with the eigenvalues k = i(p, Lt ip;).
The dependence of p’, p,, and p; as functions of a is
shown in Fig. 2 by solid lines. The dashed lines dis-
play approximations of the modified asymptotic the-
ory which are revealed to agree with the numerical
results in a vicinity of the pointa = 1.

Next, we have simulated the mKdV equation (1)
numerically with the same initial condition u(x, Q) as
above. For @ > | we have observed the formation
of an exponentially decaying soliton propagating with
constant velocity to the right away from the disper-
sive wave tail (see Fig. 3a). On the other hand, for
a < 1 the initial pulse generates waves propagating to
the left (see Fig. 3b). These waves are presented by a
superposition of a pulsating strongly-nonlinear wave
packet (breather) and a dispersive wave background.
We have used periodic boundary conditions for the
numerical simulations modified by damping elements
at the boundaries to suppress penetration of artificial
ripples through a period of a computational window.
However, these artificial ripples are still presented in
our simulations (see Figs. 3a, 3b). Nevertheless, the
small-amplitude ripples can only change fine details
of the observed processes near a critical value of an
initial amplitude, a ~ 1, as well as some quantitative
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|
|
0.0 +— | -
0.9 1.0 a T
Fig. 2. The parameters of the eigenvalues of a perturbed algebraic
soliton potential versus the amplitude a of the initial perturbation
calculated numerically (solid) and analytically (dashed) within
the linear problem (4) at ¢ = 1.

characteristics of the nonlinear structures formed. A
general qualitative picture of the structural instability
of the algebraic soliton is not affected by this artifi-
cial effect and is clearly observed in direct numerical
simulations.

Finally, we mention that a perturbation with 6Py = 0
does not lead to a transformation of the algebraic soli-
ton (3) at the first order of the modified perturbation
theory. However, even in this case, there is an exact
solution to the mKdV equation (1) which describes
nontrivial dynamics of the algebraic soliton induced
by its structural instability. This solution can be ob-
tained from (18) in the limit p? + p? < 4%,

12g(3 — 24¢%x* + 3844*xt — 164%x*)
u= .
4g%(3x — 484°t — 492x*)2 +9(1 + 4¢%x2)2
(20)

As a matter of fact, this solution was first found in
Ref. [22] but the authors did not analyse the corre-
sponding soliton dynamics and referred to (20) as a
new algebraic soliton. We present in Fig. 4 the wave
field evolution in different time instants according to
the exact solution (20) for ¢ = 1. It is obvious that
this solution describes a degenerate radiationless pro-
cess of the resonant interaction of the algebraic soli-
ton with an infinitely long linear wave (i.e. shelf) oc-
curring when the initial perturbation does not change
the soliton momentum, i.e. 6Py = 0 (see (19) for

-4 -20 0 20 0 T

Fig. 3. Transformation of the algebraic soliton within the mKdV
equation (1) at ¢ = 1 for the initial value u(x,0) = auy(x),
where (a) ¢« = 1.1 and (b) ¢ =0.9.

pr=pi =0). As a result of this interaction, the coor-
dinate of the algebraic soliton propagates as t'/? and
the soliton amplitude changes from its minimal value
i = —4q to the maximal value u = +4¢ and back.

To conclude we have presented a new modifica-
tion of the perturbation theory for linear spectral prob-
lems with algebraically decaying potentials and found
that the perturbation to the algebraic soliton induces
its structural instability and transformation either to a
soliton with exponentially decaying tails or to pulsat-
ing wave packets. We believe that our results can be
generalized for other physically relevant models which
display similar phenomenon and which are solvable
by means of the IST technique.
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ty }] Vot

5

T T T 1

-8 ' 0 8 T

Fig. 4. Evolution of the exact rational solution (20) for ¢ = | at
different times, t| = —2.5, t = 0.0 and 13 = 2.5,
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