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Abstract

We construct explicit multivortex solutions for the first and second complex sine-Gordon equations. The constructed
solutions are expressible in terms of the modified Bessel and rational functions, respectively. The vorticity-raising and
lowering Backlund transformations are interpreted as the Schlesinger transformations of the fifth Painleve equation. q 1998¨ ´
Published by Elsevier Science B.V. All rights reserved.

PACS: 11.27.qd; 03.65.Ge

MotiÕation. Recently there has been an upsurge of interest in the complex sine-Gordon equation. Originally
Ž . w xderived in the reduction of the O 4 nonlinear s-model 1 and a theory of dual strings interacting through a

w x w x w xscalar field 2 , this equation reappeared in a number of field-theoretic 3 and fluid dynamical 4 contexts. The
w xequation was shown to be completely integrable 1,5,6 , and the multisoliton solutions were constructed in a

w x w xvariety of forms, both over vanishing 7,8 and nonvanishing backgrounds 9,10 . The study of its quantized
w x w xversion started in 7,11,12 and received a new impetus recently 13 when it was realized that the complex

sine-Gordon theory may be reformulated in terms of the gauged Wess-Zumino-Witten action and interpreted as
Ž . Ž . w xan integrably deformed SU 2 rU 1 -coset model 14 .

The complex sine-Gordon theory can be conveniently defined by its action functional,

2d x22 2< < < <E s =c q 1y c . 1Ž .Ž .HSG -1 2< <1y c

The subscript 1 serves to distinguish this model from another integrable complexification of the sine-Gordon
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theory, the so-called complex sine-Gordon-2:

2< <=c 221 2< <E s q 1y c d x . 2Ž .Ž .HSG - 2 221 < <1y c2

w xThe latter system was derived in Ref. 15 as the bosonic limit of a generalized supersymmetric sine-Gordon
w xequation and, independently, in Ref. 16 . Quantum mechanically, the above two complex sine-Gordon models

Ž . w xwere shown to be the only O 2 -symmetric theories whose S-matrix is factorizable at the tree level 12 .
Ž .In all previous analyses the complex sine-Gordon equations were considered in the 1q1 -dimensional

Minkowski space-time. In the present Letter we study these two models in the 2-dimensional Euclidean space.
One reason for this is that they define integrable perturbations of Euclidean conformal field theories; more

Ž . Ž . Ž .precisely, Eqs. 1 , 2 arise as reductions of the SU 2 gauged Wess-Zumino-Witten model perturbed by aN
Ž Ž1. Ž2. . w xmultiplet of primary fields by F and F , respectively 14,17 . They are closely related to important

two-dimensional lattice systems, viz. Z parafermion models perturbed by the first and second thermalN
w xoperators, respectively 18 .

Another motivation for studying solutions of the Euclidean complex sine-Gordon equations comes from a
Ž . Ž .remarkable similarity between Eqs. 1 , 2 and several phenomenological lagrangians of condensed matter

physics, in particular the Ginsburg-Landau expansion of the free energy in the theory of phase transitions,

22 21 2< < < <E s =c q 1y c d x , 3Ž .Ž .HGL 2

w xand the energy of the Heisenberg ferromagnet with easy-plane anisotropy 20 :

2 22 2 2E s =a qsin a =b qcos a d x . 4Ž . Ž . Ž .HFM

Ž . Ž .Hence we will be using the words ‘‘action’’ and ‘‘energy’’ interchangeably in what follows. To see that 1 ,
i b i b'Ž . Ž . Ž . Ž . Ž .2 are relatives of 4 , one writes cssina e and cs 2 sin ar2 e , transforming Eqs. 1 and 2 into

2 22 2 2E s =a q tan a =b qcos a d x 5Ž . Ž . Ž .HSG -1

and

1 a2 22 2 2E s =a q4tan =b qcos a d x , 6Ž . Ž . Ž .HSG - 2 2 2

respectively.
Ž .The Ginsburg-Landau free energy 3 is minimized by the Gross-Pitaevski vortices originally discovered in

w x Ž . Ž . i nuthe context of superfluidity 19 . These are topological solitons of the form c x, y sF r e , where F ™1n n

as r™`. Although these important solutions were obtained numerically and in various asymptotic regimes, no
Ž .analytic expressions for the Gross-Pitaevski vortices are available. Similarly, Eq. 4 is minimized by magnetic

w xvortices 20 , and again, these are available only numerically. The aim of this note is to demonstrate that the
Euclidean complex sine-Gordon equations also exhibit topological soliton solutions. Unlike the Gross-Pitaevski

Ž . Ž .vortices and unlike their magnetic counterparts, the vortices of Eqs. 1 and 2 can be found exactly, and in a
closed analytic form. Consequently, the significance of the complex sine-Gordon equations on the plane stems
from the fact that they provide a laboratory for studying analytic properties of vortices and their phenomenology
in a wide class of condensed matter models.
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Ž .We construct these solutions in two different ways: i by means of an auto-Backlund transformation¨
Ž .resulting from the spinor representation of the complex sine-Gordon theory, and ii via the Schlesinger

transformation of the fifth Painleve equation,´
21 1 1 Wy1 b g Wq1Ž .

2W q W y q W s aWq q Wqd W , 7Ž .r r r r 2ž / ž /r Wy1 2W W r Wy1r
Ž . Ž .which arises in a self-similar reduction of Eqs. 1 and 2 .

Vortices Õia Backlund transformation. The complex sine-Gordon-1 equation,¨
2

=c cŽ . 22 < <= cq qc 1y c s0, 8Ž .Ž .2< <1y c

Ž .T w xadmits an equivalent representation in terms of the Euclidean spinor field, Cs u,Õ 10 :
2< <i E uqÕy u Õs0, 9aŽ .

< < 2i E Õquy Õ us0. 9bŽ .
w Ž . xHere EsErE z, EsErE z and zs xq iy r2. This is nothing but the Euclidean version of the massive
Thirring model; the corresponding action functional has the form

21† † † 2E s iC g E CqC Cy C g C y1qc.c. d xŽ .HTh i i i4

2 2 2 2< < < < < <s iu E Õq iÕ E uq u q Õ y uÕ y1qc.c. d x . 10Ž .Ž .H
Ž . Ž .Since as one can easily check both u and Õ satisfy Eq. 8 , the Thirring model 9 can be regarded as a

Ž .Backlund transformation between two different solutions of Eq. 8 . Here we confine ourselves to multivortex¨
Ž . i nu Ž . Ž .solutions of the form csF r e , where r, u are polar coordinates on the plane and F r is a real functionn n

satisfying
22 2d F 1 dF F dF nn n n n 2q q y qF 1yF s0. 11Ž .Ž .n n2 2 2ž /r dr drdr 1yF rn

Ž . iŽny1.u i nuEqs. 9 with u and Õ of the form usyiF e and ÕsF e furnish an equivalent representation forny1 n
Ž .Eq. 11 :

dF ny1ny1 2y q F s 1yF F , 12aŽ .Ž .ny1 ny1 ndr r
dF nn 2q F s 1yF F , 12bŽ .Ž .n n ny1dr r

Ž . X Ž .where F and F satisfy Eq. 11 with n and n sny1, respectively. When ns1, Eq. 12a is solved byn ny1
Ž .F s1 and Eq. 12b becomes a Riccati equation:0

F
X qry1F s1yF 2 . 13Ž .1 1 1

X Ž .This equation can be linearized by writing F sS rS, where S r satisfies the modified Bessel’s equation of1
XX X Ž .zero order: S qS rrySs0. Selecting Ss I r gives the explicit form of the ns1 vortex solution of the0

complex sine-Gordon theory:

I rŽ .1
F s . 14Ž .1 I rŽ .0

Ž . X Ž .Here I r and I s I r are the modified Bessel functions of zero and first order, respectively. The vortex is0 1 0

plotted in Fig. 1.
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Fig. 1. The vortex solutions with ns1,2 and 3.

Ž .With the solution F at hand, Eqs. 12 yield a recursion relation allowing us to construct solutions with1

vorticity n)1 in a purely algebraic way:

y1 dF n 2 dFn n
F s y F sF y , nG1. 15Ž .nq1 n ny12 2dr r dr1yF 1yFn n

Ž .In particular, the first two higher-order vortices shown in Fig. 1 are given by
22 2 2I I y I I y I I y I q I I y IŽ . Ž .Ž .0 2 1 3 1 0 1 1 0 2

F sy , F s ,2 32 2 2 2I y I I y I I I y2 I q IŽ . Ž .0 1 0 2 0 2 1 0

where we have eliminated derivatives by means of the well known relation between the modified Bessel
functions of different order: I q I s2 I X . The asymptotic behaviour of the vortex with vorticity n isnq1 ny1 n

Ž .readily found from Eq. 12b :

1 1
n nq2 nq4F ; r y r qO r as r™0, 16Ž . Ž .n n nq22 n! 2 nq1 !Ž .

n n2
y3F ;1y y qO r as r™`. 17Ž . Ž .n 22 r 8r

Ž . w Ž . xOne consequence of Eq. 17 is that the energy of the vortices diverges cf. Eq. 19 below , similarly to the
w x Ženergy of the Gross-Pitaevski and easy-plane ferromagnetic vortices 19,20 . Physically, this fact simply

indicates that there is a cut-off radius in the system, for example the radius of the cylindrical superfluid
.container, or the distance between two adjacent vortex lines.

Bogomol’nyi bound. An important question is whether the vortex renders the action a minimum. Let ns1
Ž .and rewrite Eq. 1 as

2d x22 2< <E s Ecq c y1 q =PAd x , 18Ž .H HSG -1 2< <1y c

where A is a real vector field with components

< < 2A s ln 1y c e E Arg cq2c ; is1,2,Ž .i i j j i
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< < 2 Ž .and csc q ic . Assume our fields are such that c -1; then the first term in 18 attains its minimum at1 2
< < 2 Ž .solutions to the ‘‘Bogomol’nyi equation’’ Ecs1y c . This is exactly our Eq. 9b with Õsc and usyi;

Ž . Ž .its vortex solution is given by Eq. 14 . The second integral in 18 represents the divergent part of the action; it
Ž . iucan be written as a flux through a circle of the radius R™`. Perturbing the vortex csF r e by a function1

dc decaying faster than 1rr at infinity will not affect this part; the flux is uniquely determined by the vortex
asymptotes:

APn dls2p 2 Ry ln Ry1 qOO Ry1 . 19Ž . Ž . Ž .E
CR

< < 2Consequently, the ns1 vortex saturates the minimum of the action in the class of functions with c -1.
< < 2The importance of the last inequality should be specially emphasized. Without the condition c -1 being

˜ ˜ ˜Ž . < <imposed, one could construct a perturbation c x, y of the vortex satisfying c s1, =cs0 on some closed
˜Ž . < <curve on the x, y -plane which does not enclose the origin. Taking then c 41 in the interior of this contour,

Ž .the action 1 could be made arbitrarily negative.
Ž .It is interesting to note that the first-order Eqs. 9 with generic u and Õ can also be interpreted as the

Bogomol’nyi limit for some more general system with twice as many degrees of freedom. The corresponding
action functional is

< < 2 < < 2= u = Õ
2 22 2< < < <w xE u ,Õ s q1y u d xq q1y Õ d xqE , 20Ž .H H Th2 2ž / ž /< < < <1y u 1y Õ

Ž . Ž .where E is the Thirring action 10 . Clearly, any solution to 9 is automatically a solution to the second-orderTh
Ž . Ž .system 20 . The action 20 can be written as

2 2 2 2< < < < < < < <i E uqÕ 1y u i E Õqu 1y ÕŽ . Ž .
2 2 2w xE u ,Õ s d xq d xq =PAd x , 21Ž .H H H2 2< < < <1y u 1y Õ

Ž < < 2 . Ž < < 2 . < < 2 < < 2where A s ln 1y Õ e E ArgÕy ln 1y u e E Argu. Assuming, again, that u , Õ -1, the lower boundi i j j i j j
Ž . Ž . Ž .of the action 20 , 21 is saturated by solutions to Eqs. 9 .

Some properties of the complex sine-Gordon vortices receive a natural interpretation when the equation is
Ž .reformulated as a s-model on a two-dimensional surface S embedded in a three-dimensional space n ,n ,n .1 2 3

2 2 2 2 w Ž .x Ž .The metric on S is ds sda q tan a db see Eq. 5 . In order for S to be smooth, the space n ,n ,n has1 2 3

to be pseudoeuclidean and the surface noncompact; in fact it looks like an asymptotically conical infinite bowl:

1 cosa
i b y1n q in s tana e ; n s y tanh q , qs .1 2 3 1r22q 1qcos aŽ .

Ž .Here 0Fa-pr2, 0Fb-2p . In terms of n , the lagrangian 1 readsi

y12 2 2 2 2 2E s = n q = n y = n q 1qn qn d x .Ž . Ž . Ž . Ž .HSG -1 1 2 3 1 2

As r™`, all three components of the vortex field, n , n and n , tend to infinity. Consequently, the vortices1 2 3
Ž .map a noncompactified x, y -plane onto a noncompact surface – this accounts for their infinite energy. We also

< < 2acknowledge the role of the condition c -1, which characterizes solutions admitting the s-model interpreta-
tion.

Reductions to the PainleÕe-V. The transformation´
1qW

F sn 1yW
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Ž . Ž .reduces Eq. 11 to the fifth Painleve Eq. 7 with coefficients´

asn2r8, bsyn2r8, gs0, dsy2. 22Ž .

Ž . 2 2 2 Ž . w xFor gsc 1yayb , where a s2a , b sy2b , and c sy2d , Eq. 7 admits a reduction 21 to a Riccati
equation

W sry1 Wy1 aWqb qcW . 23Ž . Ž . Ž .r

Ž .The above relation between the coefficients is in place for ns1; in terms of the vortex modulus F , Eq. 231
Ž . w xturns out to be nothing but our Eq. 13 . Next, the Schlesinger transformations of the Painleve-V to itself 22,23´

have the form

ˆ1qW
y1W sr Wy1 aWqb qcW , 24aŽ . Ž . Ž .r ˆ1yW

1qW
y1ˆ ˆ ˆ ˆ ˆyW sr Wy1 aWqb qcW . 24bŽ .Ž . Ž .ˆr 1yW

ˆ ˆ 2Ž . Ž . Ž .Here W and W satisfy Eq. 7 with the coefficients a ,b ,g ,d and a ,b ,g ,d , respectively, where a s2a ,ˆ ˆ ˆ ˆ
ˆ 2 ˆ ˆŽ . Ž .b sy2b , gsc bya , and 2 asaqby1ygrc, 2bsaqby1qgrc. With a , b and g as in Eq. 22 ,ˆ ˆ

Ž . Ž .Eqs. 24 amount to the vorticity-raising transformations 12 .
We conclude the discussion of the complex sine-Gordon-1 equation by mentioning that it would be natural to

Ž .expect its vortex solutions confined to a finite region on the plane to arise as degenerate cases of its N-soliton
w x Ž .solutions 10 which have the form of N intersecting infinite folds . This kind of correspondence between

two-dimensionally localized ‘‘lumps’’ and one-dimensional multisolitons exists, for example, in the
w xKadomtsev-Petviashvili equation 24 . Surprisingly, the only two-dimensionally localized bounded solution

Ž .resulting from the ‘‘degeneration’’ of the generic two-soliton solution of Eq. 8 is discontinuous at the origin:
Ž 2 2 .Ž 2 2 .y1 i a Ž .cs X ysinh Y X qsinh Y . Here Xq iYse xq iy , and a is an arbitrary constant angle.

Ž .Vortices of the complex sine-Gordon-2. The complex sine-Gordon-2 results from the variation of Eq. 2 :

2
=c cŽ . 2 212 < < < <= cq q c 1y c 2y c s0. 25Ž .Ž . Ž .22< <2y c

Ž . i nu 1r2Ž . i nuThe multivortex Ansatz csF r e sQ r e takes it ton n

22 2 2 2d Q 1 dQ 1yQ dQ a yb Q 4a 1yQŽ .Ž .n n n n n n n n n
q q qQ 1yQ 2yQ q qŽ . Ž .n n n2 2 2ž /r dr Q Q y2 drdr r 2yQ r Q 2yQŽ . Ž . Ž .n n n n n

s0, 26Ž .

where a s0 and b sy2n. Next, the substitutionn n

y1Q s2 1yWŽ .n

Ž . Ž .transforms Eq. 26 to the Painleve Eq. 7 with coefficients´

as0, bsy2n2 , gs0, ds2.
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Ž .This time, in order to construct the multivortex solutions we apply the Schlesinger transformation 24 twice.
This leads to a recurrent relation

Ž . Ž .k k Žk .2 a qb y1 Q rQ y2 a q a qb QŽ . Ž .k k r k k kŽky1. Žk .Q s 2yQ 1y , 27Ž .Ž . 2 2½ 5Ž .k Žk . 2 Žk .2 Žk .rQ y2 a q a qb Q qr Q 2yQŽ . Ž .r k k k

Žk . Žky1. Ž . Ž . Ž .where Q and Q satisfy Eq. 26 with the parameters a , b and a ,b , respectively. Herek k ky1 ky1

a sa y1 and b sb y1. Starting with a trivial solution QŽ0.s1 arising for a syb sn, and usingky1 k ky1 k 0 0
Ž . Žyn. Ž .Eq. 27 n times, we end up with a solution Q sQ which satisfies Eq. 26 with a s0 and b sy2nn n n

and the boundary condition Q ™1 as r™`. These solutions are given by rational functions; in particular, then
Ž .first three multivortices see Fig. 1 read

22 4 2r r r q24Ž .
Q s ; Q s ;1 22 8 6 4 2r q4 r q64r q1152 r q9216r q36864

26 6 4 2 y1Q sr r q144r q5760r q92160 D ,Ž .3 3

D sr18 q324r16 q41472r14 q2820096r12 q114130944r10 q2919628800r 8
3

q50960793600r 6 q611529523200r 4 q4892236185600r 2 q19568944742400.
The energy of the complex sine-Gordon-2 vortices is logarithmically divergent.

Ž .Concluding remarks. The Ginsburg-Landau expansion 3 is regarded as a central postulate in the phe-
Ž . Ž .nomenological theory of phase transitions; however, for some systems Eqs. 1 , 2 may happen to provide a

more adequate description. In fact, the difference is not as big as one might think. Assuming, for instance,
< < 2 Ž .c F1, Eq. 2 can be rewritten as

2 2< < < <=c c22 21 2< < < <E f =c q 1y c q q . . . d x ; 28Ž .Ž .HSG - 2 2 2

Ž . < <this is different from 3 only in the third term which is small both when c;0 and when c ;1,=c;0. More
importantly, the complex sine-Gordon models provide a unique opportunity for studying a number of analytic
properties which are common to a wide class of vortex-bearing systems. These include the correct Ansatz for
two spatially separated vortices, the vortex-phonon scattering matrix and so on; our present construction of
coaxial multivortices is hopefully but a first step in this direction. Finally, one may see the complex sine-Gordon
vortices as a starting point in the perturbatiÕe construction of the corresponding solutions of the Ginsburg-Landau
and ferromagnet models.
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