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• Krein quantity is introduced for PT -symmetric systems.
• A necessary condition for instability bifurcation from a defective eigenvalue is proved.
• Several numerical examples illustrate the validity of theory.
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a b s t r a c t

Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states
in the PT -symmetric nonlinear Schrödinger equation. Krein quantity is real and nonzero for simple
eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary
condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition
requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures.
The theory is illustrated with several numerical examples motivated by recent publications in physics
literature.
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1. Introduction

Dynamical systems are called PT -symmetric if they are invari-
ant with respect to the combined parity (P) and time-reversal (T )
transformations. A non-Hermitian PT -symmetric linear operator
may have a real spectrum andmay define a unitary time evolution
of the linear PT -symmetric system [1]. A non-Hamiltonian PT -
symmetric nonlinear system may have a continuous family of
stationary states parameterized by their energy [2,3].

Originated in quantum mechanics [4,5], the topic of PT -
symmetry was later boosted by applications in optics [6,7] and
other areas of physics [8–10]. Recent applications include single-
mode PT lasers [11,12] and unidirectional reflectionless PT -
symmetric metamaterials at optical frequencies [13].

The non-Hermitian PT -symmetric linear operator may lose
real eigenvalues at the so-called PT -phase transition point, where
two real eigenvalues coalesce and bifurcate off to the com-
plex plane, creating instability. A stationary state of the non-
Hamiltonian PT -symmetric nonlinear system may exist beyond
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thePT -phase transition point butmay become spectrally unstable
due to coalescence of purely imaginary eigenvalues and their
bifurcation off to the complex plane. Examples of such instabilities
have been identified for many PT -symmetric linear and nonlinear
systems [1–3].

In Hamiltonian systems, instabilities arising due to coalescence
of purely imaginary eigenvalues can be predicted by computing the
Krein signature for each eigenvalue, which is defined as the sign
of the quadratic part of Hamiltonian restricted to the associated
eigenspace of the linearized problem. When two purely imaginary
eigenvalues coalesce, they bifurcate off to the complex plane only
if they have opposite Krein signatures prior to collision [14]. The
concept of Krein signature was introduced by MacKay [15] in the
case of finite-dimensional Hamiltonian systems, although the idea
dates back to the works of Weierstrass [16].

There have been several attempts to extend the concept of
Krein signature to the non-Hamiltonian PT -symmetric systems.
Nixon and Yang [17] considered the linear Schrödinger equation
with a complex-valued PT -symmetric potential and introduced
the indefinite PT -inner product with the induced PT -Krein sig-
nature, in the exact correspondence with the Hamiltonian–Krein
signature. In our previous works [18,19], we considered a Hamil-
tonian version of the PT -symmetric system of coupled oscillators
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and introduced Krein signature of eigenvalues by using the cor-
responding Hamiltonian. In the recent works [20–22], a coupled
non-Hamiltonian PT -symmetric system was considered and the
linearized system was shown to be block-diagonalizable to the
form where Krein signature of eigenvalues can be introduced. All
these cases were too special, the corresponding Krein signatures
cannot be extended to a general PT -symmetric system.

In this work, we address the following nonlinear Schrödinger’s
equation (NLSE) with a general complex potential:

i∂tψ + ∂2xψ − (V (x) + iγW (x))ψ + g|ψ |
2ψ = 0, (1)

where γ ∈ R is a gain–loss parameter, g = +1 (g = −1) defines
focusing (defocusing) nonlinearity, and the real potentials V and
W satisfy the even and odd symmetry, respectively:

V (x) = V (−x), W (−x) = −W (x), x ∈ R. (2)

In quantum physics, the complex potential V + iγW is used to
describe effects observed when quantum particles are loaded in
an open system [23,24]. The intervals with positive and negative
imaginary part correspond to the gain and loss of quantum par-
ticles, respectively. When gain exactly matches loss, which hap-
pens under the symmetry condition (2), the potential V + iγW is
PT -symmetric with respect to the parity operator P and the time
reversal operator T acting on a function ψ(x, t) as follows:

Pψ(x, t) = ψ(−x, t), T ψ(x, t) = ψ(x,−t). (3)

The NLSE (1) isPT -symmetric under the condition (2) in the sense
that if ψ(x, t) is a solution to (1), then

ψ̃(x, t) = PT ψ(x, t) = ψ(−x,−t)

is also a solution to (1).
The NLSE (1) with a PT -symmetric potential is also used in

the paraxial nonlinear optics. In that context, time and space have
a meaning of longitudinal and transverse coordinates, and com-
plex potential models the complex refractive index [25]. Another
possible application of the NLSE (1) is Bose–Einstein condensate,
where it models the dynamics of the self-gravitating boson gas
trapped in a confining potential V . Intervals, where W is positive
and negative, allow one to compensate atom injection and particle
leakage, correspondingly [23].

Here we deal with the stationary states in the NLSE (1) and
introduce Krein signature of isolated eigenvalues in the spectrum
of their linearization. We prove that the necessary condition for
the onset of instability of the stationary states from a defective
eigenvalue of algebraic multiplicity two is the opposite Krein sig-
nature of the two simple isolated eigenvalues prior to their coales-
cence. Compared to the Hamiltonian system in [18] or the linear
Schrödinger equation in [17], the Krein signature of eigenvalues
cannot be computed from the eigenvectors in the linearized prob-
lem, as the adjoint eigenvectors need to be computed separately
and the sign of the adjoint eigenvector needs to be chosen by a
continuity argument.

We show how to compute Krein signature numerically for
several examples of the PT -symmetric potentials. In the focusing
case g = 1, we consider the Scarf II potential studied in [26–28,17]
with

V (x) = −V0 sech2(x), W (x) = sech(x) tanh(x), (4)

where V0 > 0 is a parameter. This potential is a complexification
of the real Scarf potential [29], which bears the name from the
pioneer work in [30]. In the defocusing case g = −1, we consider
the confining potential studied in [31] with

V (x) = Ω2x2, W (x) = xe−
x2
2 , (5)

whereΩ > 0 is a parameter.

In agreement with the theory, we show for both examples (4)
and (5) that the coalescence of two isolated imaginary eigenvalues
in the linearized problem associated with the stationary states in
the NLSE (1) leads to instability only if the Krein signatures of the
two eigenvalues are opposite to each other.

The paper is organized as follows. Section 2 introduces the
stationary states, eigenvalues of the linearization, and the Krein
signature of eigenvalues for the NLSE (1) under some mild as-
sumptions. Section 3 gives the proof of the necessary condition for
the instability bifurcation from a defective eigenvalue of algebraic
multiplicity two. Section 4 explains details of the numerical tech-
nique. Section 5 presents outcomes of numerical approximations
for the two potentials (4) and (5). Section 6 concludes the paper
with open questions.

2. Stationary states, eigenvalues of the linearization, and Krein
signature

Let us define the stationary state of the NLSE (1) by ψ(x, t) =

Φ(x)e−iµt , where µ ∈ R is a parameter. In the context of Bose–
Einstein condensate, µ has the meaning of the chemical poten-
tial [24]. The function Φ(x) : R → C is a suitable solution of the
stationary NLSE in the form

−Φ ′′(x) + (V (x) + iγW (x))Φ(x) − g|Φ(x)|2Φ(x) = µΦ(x), (6)

where x ∈ R. We say that Φ is a PT -symmetric stationary state if
Φ satisfies the PT symmetry:

Φ(x) = PTΦ(x) = Φ(−x), x ∈ R. (7)

In addition to the symmetry constraints on the potentials V and
W in (2), our basic assumptions are given below. Here and in
what follows, we denote the Sobolev space of square integrable
functions with square integrable second derivatives by H2(R) and
the weighted L2 space with a finite second moment by L2,2(R).

Assumption (A1). Weassume that the linear Schrödinger operator
L0 := −∂2x +V in L2(R) admits a self-adjoint extensionwith a dense
domain D(L0) in L2(R).

Remark 1. If V ∈ L2(R) ∩ L∞(R) as in (4), then Assumption (A1)
is satisfied with D(L0) = H2(R) (see [32], Ch. 14, p.143). If V is
harmonic as in (5), then Assumption (A1) is satisfied with D(L0) =

H2(R) ∩ L2,2(R) (see [33], Ch. 4, p.37).

Assumption (A2). We assume that W is a bounded and exponen-
tially decaying potential satisfying

|W (x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0.

Remark 2. Both examples in (4) and (5) satisfy Assumption (A2).
By Assumption (A2), the potential iγW is a relatively compact
perturbation to L0 (see [34], Ch. XIII, p.113). This implies that
the continuous spectrum of L0 + iγW is the same as L0. If V ∈

L2(R)∩L∞(R), then the continuous spectrum of L0 is located on the
positive real line. If V is harmonic, then the continuous spectrum
of L0 is empty (see [34], Ch. XIII, Theorem 16 on p.120).

Assumption (A3). We assume that for a given µ ∈ R, there exist
γ∗ > 0 and a bounded, exponentially decaying, andPT -symmetric
solution Φ ∈ D(L0) ⊂ L2(R) to the stationary NLSE (6) with
γ ∈ (−γ∗, γ∗) satisfying (7) and

|Φ(x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0. Moreover, the map (−γ∗, γ∗) ∋ γ ↦→

Φ ∈ D(L0) is real-analytic.
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Remark 3. Since the nonlinear equation (6) is real-analytic in γ ,
the Implicit Function Theorem (see [35], Ch. 4, Theorem 4.E on
p.250) provides real analyticity of the map (−γ∗, γ∗) ∋ γ ↦→ Φ ∈

D(L0) as long as the Jacobian operator

L :=

[
−∂2x + V + iγW − µ− 2g|Φ|

2
−gΦ2

−gΦ
2

−∂2x + V − iγW − µ− 2g|Φ|
2

]
(8)

is invertible in the space of PT -symmetric functions in L2(R).

Remark4. Under Assumption (A3),we treatµ as a fixed parameter
and γ as a varying parameter in the interval (−γ∗, γ∗). The interval
includes theHamiltonian case γ = 0. In the context of the example
of V in (4), it will be more natural to fix the value of γ and to
consider the parameter continuation of Φ ∈ D(L0) with respect
to µ. The continuation results for the latter case are analogous to
what we present here under Assumption (A3).

We perform the standard linearization of the NLSE (1) near the
stationary stateΦ by substituting

ψ(x, t) = e−iµt [Φ(x) + u(x, t)]

into (1) and truncating at the linear terms in u:{
iut = (−∂2x + V + iγW − µ− 2g|Φ|

2)u − gΦ2ū,
−iūt = (−∂2x + V − iγW − µ− 2g|Φ|

2)ū − gΦ
2
u.

Using u = Ye−λt and ū = Ze−λt with the spectral parameter λ
yields the spectral stability problem in the form

L
[
Y
Z

]
= −iλσ3

[
Y
Z

]
, (9)

where σ3 = diag(1,−1) is the third Pauli’s matrix and L is given
by (8). Note that if λ ̸∈ R, then Z ̸= Y .

Lemma 1. The continuous spectrum of the operator iσ3L : D(L0) ×

D(L0) → L2(R) × L2(R), if it exists, is a subset of iR.

Proof. Thanks to Assumptions (A1)–(A3), W and Φ2 terms in (8)
are relatively compact perturbations to the diagonal unbounded
operator L0 := diag(L0 − µ, L0 − µ), where L0 = −∂2x + V is
introduced in Assumption (A1). Therefore,

σc(iσ3L) = σc(iσ3L0) ⊂ iR,

where σc(A) denotes the absolutely continuous part of the spec-
trum of the operator A : D(A) ⊂ L2(R) → L2(R). □

Remark 5. If V ∈ L2(R) ∩ L∞(R) and µ < 0, then

σc(iσ3L) = i(−∞,−|µ|] ∪ i[|µ|,∞).

If V is harmonic, then σc(iσ3L) is empty.

Definition 1. We say that the stationary stateΦ is spectrally stable
if every nonzero solution (Y , Z) ∈ D(L0) × D(L0) to the spectral
problem (9) corresponds to λ ∈ iR.

We note the quadruple symmetry of eigenvalues in the spectral
problem (9).

Lemma 2. If λ0 is an eigenvalue of the spectral problem (9), so are
−λ0, λ̄0, and −λ̄0.

Proof. We note the symmetry of L and σ3:

L = σ1Lσ1, σ3 = −σ1σ3σ1, (10)

where σ1 = antidiag(1, 1) is the first Pauli’s matrix. If λ0 is an
eigenvalue of the spectral problem (9) with the eigenvector v0 :=

(Y , Z), then so is λ0 with the eigenvector σ1v0 = (Z, Y ). We note
the second symmetry of L and σ3:

L = PLP, σ3 = Pσ3P, (11)

where P is the parity transformation given by (3). If λ0 is an eigen-
value of the spectral problem (9) with the eigenvector v0 := (Y , Z),
then so is −λ0 with the eigenvector PT v0(x) = (Y (−x), Z(−x)). As
a consequence of the two symmetries (10) and (11), −λ0 is also an
eigenvalue with the eigenvector Pσ1v0(x) = (Z(−x), Y (−x)). □

Besides the spectral problem (9), we also introduce the adjoint
spectral problemwith the adjoint eigenvector denoted by (Y#, Z#):

L∗

[
Y#

Z#

]
= −iλσ3

[
Y#

Z#

]
, (12)

where

L∗
:=

[
−∂2x + V − iγW − µ− 2g|Φ|

2
−gΦ2

−gΦ2
−∂2x + V + iγW − µ− 2g|Φ|

2

]
.

Remark 6. Unless γ = 0 or Φ = 0, the adjoint eigenvector
(Y#, Z#) cannot be related to the eigenvector (Y , Z) for the same
eigenvalue λ.

Our next assumption is on the existence of a nonzero isolated
eigenvalue of the spectral problem (9).

Assumption (A4). We assume that there exists a simple isolated
eigenvalue λ0 ∈ C \ {0} of the spectral problems (9) and (12)
with the eigenvector v0 := (Y , Z) ∈ D(L0) × D(L0) and the adjoint
eigenvector v#0 := (Y#, Z#) ∈ D(L0) × D(L0), respectively.

Lemma 3. Under Assumption (A4), if λ0 ∈ iR, then the correspond-
ing eigenvectors v0 := (Y , Z) and v#0 := (Y#, Z#) can be normalized
to satisfy

Y (x) = Y (−x), Z(x) = Z(−x), x ∈ R (13)

and

Y#(x) = Y#(−x), Z#(x) = Z#(−x), x ∈ R. (14)

Proof. By Lemma 2, if λ0 ∈ iR is a nonzero eigenvalue with the
eigenvector v0 := (Y , Z), so is −λ0 = λ0 with the eigenvector
PT v0. Since λ0 is a simple eigenvalue, there is a constant C ∈ C
such that v0 = CPT v0. Taking norms on both sides, we have
|C | = 1. Therefore C = eiα for some α ∈ [0, 2π ], and α can
be chosen so that v0 satisfies v0 = PT v0 as in (13). The same
argument applies to the adjoint eigenvector v#0 := (Y#, Z#). □

We shall now introduce the main object of our study, the
Krein signature of the simple nonzero isolated eigenvalue λ0 in
Assumption (A4).

Definition 2. The Krein signature of the eigenvalue λ0 in Assump-
tion (A4) is the sign of the Krein quantity K (λ0) defined by

K (λ0) = ⟨v0, σ3v
#
0 ⟩ =

∫
R

[
Y (x)Y#(x) − Z(x)Z#(x)

]
dx. (15)

The following lemma states the main properties of the Krein
quantity K (λ0).

Lemma 4. Assume (A4) and define K (λ0) by (15). Then,

1. K (λ0) is real if λ0 ∈ iR \ {0}.
2. K (λ0) ̸= 0 if λ0 ∈ iR \ {0}.
3. K (λ0) = 0 if λ0 ∈ C \ {iR}.
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Proof. First, we prove that if f and g are PT -symmetric functions,
then their inner product ⟨f , g⟩ is real-valued. Indeed, this follows
from

⟨f , g⟩ =

∫
R
f (x)g(x)dx =

∫
+∞

0

(
f (x)g(x) + f (−x)g(−x)

)
dx

=

∫
+∞

0

(
f (x)g(x) + f (x)g(x)

)
dx.

Since λ0 ∈ iR \ {0} is simple by Assumption (A4), then the
eigenvectors v0 := (Y , Z) and v#0 := (Y#, Z#) satisfy the PT -
symmetry (13) and (14) by Lemma 3. Hence, the inner products
in the definition of K (λ0) in (15) are real.

Next,we prove thatK (λ0) ̸= 0 ifλ0 ∈ iR\{0} is simple. Consider
a generalized eigenvector problem for the spectral problem (9):

(L + iλ0σ3)
[
Yg

Zg

]
= σ3

[
Y
Z

]
. (16)

Since λ0 ̸∈ σc(iσ3L) is isolated and simple by Assumption (A4),
there exists a solution vg := (Yg , Zg ) ∈ D(L0) × D(L0) to the
nonhomogeneous equation (16) if and only if σ3v0 is orthogonal
to v#0 , which is the kernel of adjoint operator L∗

+ iλ0σ3. The
orthogonality condition coincides with K (λ0) = 0. However, no
vg exists since λ0 ∈ iR \ {0} is simple by Assumption (A4). Hence
K (λ0) ̸= 0.

Finally, we show that K (λ0) = 0 if λ0 ∈ C \ {iR}. Taking
inner products for the spectral problems (9) and (12) with the
corresponding eigenvectors yields{

⟨Lv0, v#0 ⟩ = −iλ0⟨σ3v0, v#0 ⟩,

⟨v0,L∗v#0 ⟩ = iλ0⟨v0, σ3v#0 ⟩,

hence

i(λ0 + λ0)K (λ0) = 0.

If λ0 ∈ C \ {iR}, then λ0 + λ0 ̸= 0 and K (λ0) = 0. □

We shall now compare the Krein quantity K (λ0) in (15) for sim-
ple eigenvalues of thePT -symmetric spectral problem (9)with the
corresponding definition of the Krein quantity in the Hamiltonian
case γ = 0 and in the linear PT -symmetric caseΦ = 0.

In the Hamiltonian case (γ = 0), the operator L in the spectral
problem (9) is self-adjoint in L2(R), that is, L = L∗. The standard
definition of Krein quantity [14,15] is given by

γ = 0 : K (λ0) = ⟨Lv0, v0⟩

= −iλ0

∫
R

[
|Y (x)|2 − |Z(x)|2

]
dx. (17)

If γ = 0 and λ0 ∈ iR, then the adjoint eigenvector (Y#, Z#) satisfies
the same equation as (Y , Z). Therefore, it is natural to choose the
adjoint eigenvector in the form:

γ = 0 : Y#(x) = Y (x), Z#(x) = Z(x), x ∈ R, (18)

in which case the definition (15) yields the integral in the right-
hand side of (17). Note that the signs of K (λ0) in (15) and (17) are
the same if λ0 ∈ iR+.

Remark 7. Since the potential V is even in (2), the eigenvector
v0 := (Y , Z) of the spectral problem (9) for a simple eigenvalue
λ0 ∈ iR \ {0} is either even or odd in the Hamiltonian case γ = 0
by theparity symmetry. It follows from thePT -symmetry (13) that
the PT -normalized eigenvector v0 is real if it is even and is purely
imaginary if it is odd.

Remark 8. Since the adjoint eigenvector v#0 := (Y#, Z#) satisfying
thePT -symmetry condition (14) is defined up to an arbitrary sign,
the Krein quantity K (λ0) in (15) is defined up to the sign change.

In the continuation of the NLSE (1) with respect to the parameter
γ from the Hamiltonian case γ = 0, the sign of the Krein quantity
K (λ0) in (15) can be chosen so that it matches the sign of K (λ0) in
(17) for λ0 ∈ iR+ and γ = 0. In other words, the choice (18) is
always made for γ = 0 and the Krein quantity K (λ0) is extended
continuously with respect to the parameter γ .

In the linear PT -symmetric case (Φ = 0), the spectral prob-
lem (9) becomes diagonal. If Z = 0, then Y satisfies the scalar
Schrödinger equation(
−∂2x + V (x) + iγW (x) − µ

)
Y (x) = −iλY (x). (19)

The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the
scalar Schrödinger equation (19) is defined in [17] as follows:

Φ = 0, Z = 0 : K (λ0) =

∫
R
Y (x)Y (−x)dx. (20)

If λ0 ∈ iR, then the adjoint eigenfunction Y# satisfies a complex-
conjugate equation to the spectral problem (19), which becomes
identical to (19) after the parity transformation. Therefore, it is
natural to choose the adjoint eigenfunction Y# in the form:

Φ = 0, Z = 0 : Y#(x) = Y (−x), x ∈ R,

after which the definition (15) with Z = 0 corresponds to the
definition (20). If Y = 0, then Z satisfies the scalar Schrödinger
equation(
−∂2x + V (x) − iγW (x) − µ

)
Z(x) = iλZ(x). (21)

The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the
scalar Schrödinger equation (21) is defined by

Φ = 0, Y = 0 : K (λ0) =

∫
R
Z(x)Z(−x)dx, (22)

which coincides with the definition (15) for Y = 0 if the adjoint
eigenfunction Z# is chosen in the form:

Φ = 0, Y = 0 : Z#(x) = −Z(−x), x ∈ R. (23)

Note that if the choice Z#(x) = Z(−x) is made instead of (23),
then the definition (15) with Y = 0 is negative with respect to
the definition (22).

3. Necessary condition for instability bifurcation

Recall that the eigenvalue is called semi-simple if algebraic and
geometric multiplicities coincide and defective if algebraic multi-
plicity exceeds geometric multiplicity. Here we consider the case
when the nonzero eigenvalue λ0 ∈ iR of the spectral problem (9) is
defective with geometric multiplicity one and algebraic multiplic-
ity two. This situation occurs in the parameter continuations of the
NLSE (1) when two simple isolated eigenvalues λ1, λ2 ∈ iR \ {0}
coalesce at the point λ0 ̸= 0 and split into the complex plane
resulting in the instability bifurcation. We will use the parameter γ
to control the coalescence of two simple eigenvalues λ1, λ2 ∈ iR.

Our main result states that the instability bifurcation occurs
from the defective eigenvalue λ0 ∈ iR of algebraic multiplicity
two only if the Krein signatures of K (λ1) and K (λ2) for the two
simple isolated eigenvalues λ1, λ2 ∈ iR before coalescence are
opposite to each other. Therefore, we obtain the necessary condi-
tion for the instability bifurcation in the PT -symmetric spectral
problem (9), which has been proven for the Hamiltonian spectral
problems [14,15].

Remark 9. The necessary condition for instability bifurcation
allows us to predict the transition from stability to instabilitywhen
a pair of imaginary eigenvalues collide. Pairs with the same Krein
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signature do not bifurcate off the imaginary axis if they collide,
whereas pairs with the opposite Krein signature may bifurcate
off the imaginary axis under a technical non-degeneracy condi-
tion (30) below.

First, we state why the perturbation theory can be applied to
the spectral problem (9).

Lemma 5. Under Assumptions (A1), (A2), and (A3), the operator

L : D(L0) × D(L0) → L2(R) × L2(R)

in the spectral problem (9) is real-analytic with respect to γ ∈

(−γ∗, γ∗). Consequently, if L(γ0)with γ0 ∈ (−γ∗, γ∗) has a spectrum
consisting of two separated parts, then the subspaces of L2(R)×L2(R)
corresponding to the separated parts are also real-analytic in γ .

Proof. Operator L depends on γ via the potential iγW and the
bound state Φ , the latter is real-analytic for γ ∈ (−γ∗, γ∗) by
Assumption (A3). The assertion of the lemma follows from Theo-
rem 1.7 in Chapter VII on p. 368 in [36]. □

By Lemma 5, simple isolated eigenvalues λ1, λ2 ∈ iR of the
spectral problem (9) and their eigenvectors v1 := (Y1, Z1) and v2 :=

(Y2, Z2) are continued analytically in γ before the coalescence
point. Similarly, the adjoint eigenvectors v#1 := (Y#

1 , Z
#
1 ) and v

#
2 :=

(Y#
2 , Z

#
2 ) of the adjoint spectral problem (12) for λ1, λ2 ∈ iR are

continued analytically in γ . Therefore, the Krein quantities K (λ1)
and K (λ2) are continued analytically in γ .

Let γ0 denote the bifurcation point when the two eigenvalues
coalesce: λ1 = λ2 = λ0 ∈ iR \ {0}. For this γ0 ∈ R, we can define
a small parameter ε ∈ R such that γ = γ0 + ε. If L is denoted by
L(γ ), then L(γ ) can be represented by the Taylor expansion:

L(γ ) = L(γ0) + εL′(γ0) + ε2L̂(ε), (24)

where L̂(ε) denotes the remainder terms,

L′(γ0) =

[
iW − 2g∂γ |Φ(γ0)|2 −g∂γΦ2(γ0)

−g∂γΦ2(γ0) −iW − 2g∂γ |Φ(γ0)|2

]
, (25)

and ∂γ denotes a partial derivativewith respect to the parameter γ .
Since the remainder terms in L̂(ε) come from the second derivative
of Φ in γ near γ0, then L̂(ε) ∈ L2(R) ∩ L∞(R) thanks to Assump-
tion (A3).

Instead of Assumption (A4), we shall now use the following
assumption.

Assumption (A4′). For γ = γ0, we assume that there exists a
defective isolated eigenvalue λ0 ∈ iR\{0} of the spectral problems
(9) and (12) with the eigenvector v0 := (Y0, Z0) ∈ D(L0) × D(L0),
the generalized eigenvector vg := (Yg , Zg ) ∈ D(L0) × D(L0) and
the adjoint eigenvector v#0 := (Y#

0 , Z
#
0 ) ∈ D(L0) × D(L0), the

adjoint generalized eigenvector v#g := (Y#
g , Z

#
g ) ∈ D(L0) × D(L0),

respectively.

By setting λ0 = iΩ0, we can write the linear equations for the
eigenvectors and generalized eigenvectors in Assumption (A4′):

L(γ0)v0 = Ω0σ3v0,

L(γ0)vg = Ω0σ3vg + σ3v0, (26)
L∗(γ0)v#0 = Ω0σ3v

#
0 ,

L∗(γ0)v#g = Ω0σ3v
#
g + σ3v

#
0 . (27)

The solvability conditions for the inhomogeneous equations (26)
and (27) yield the following elementary facts.

Lemma 6. Under Assumption (A4′), we have

K (λ0) = ⟨v0, σ3v
#
0 ⟩ = 0. (28)

and

⟨vg , σ3v
#
0 ⟩ = ⟨v0, σ3v

#
g ⟩ ̸= 0. (29)

Proof. Since vg exists by Assumption (A4′), the solvability condi-
tion for (26) implies (28), see similar computations in Lemma 4.
Since the eigenvalue λ0 is double, no second generalized eigenvec-
tor ṽg exists from solutions of the inhomogeneous equation

L(γ0)ṽg = Ω0σ3ṽg + σ3vg .

The nonsolvability condition for this equation implies ⟨vg , σ3v
#
0 ⟩ ̸=

0. Finally, Eqs. (26) and (27) yield

⟨vg , σ3v
#
0 ⟩ = ⟨vg , (L∗

−Ω0σ3)v#g ⟩ = ⟨(L −Ω0σ3)vg , v#g ⟩

= ⟨σ3v0, v
#
g ⟩ = ⟨v0, σ3v

#
g ⟩,

which proves the symmetry in (29). □

Remark 10. Since the generalized eigenvectors are given by so-
lutions of the inhomogeneous linear equations (26) and (27) and
the eigenvectors satisfy the PT -symmetry (13) and (14), the gen-
eralized eigenvectors also satisfy the samePT -symmetry (13) and
(14).

The following result gives the necessary condition that the de-
fective eigenvalue λ0 in Assumption (A4′) splits into the complex
plane in a one-sided neighborhood of the bifurcation point γ0.

Theorem 1. Assume (A1), (A2), (A3), (A4′), and the non-degeneracy
condition

⟨L′(γ0)v0, v#0 ⟩ ̸= 0. (30)

There exists ε0 > 0 such that two simple eigenvalues λ1, λ2 of the
spectral problem (9) exist near λ0 for every ε ∈ (−ε0, ε0) \ {0} with
λ1,2 → λ0 as ε → 0. On one side of ε = 0, the eigenvalues are
λ1, λ2 ∈ iR and

sign [K (λ1)] = −sign [K (λ2)] . (31)

On the other side of ε = 0, the eigenvalues are λ1, λ2 ̸∈ iR.

Proof. We are looking for an eigenvalue Ω(ε) of the perturbed
spectral problem(
L0 + εL̃(ε)

)
v(ε) = Ω(ε)σ3v(ε), (32)

such that Ω(ε) → Ω0 as ε → 0. Here we denote operators from
the decomposition (24) as L0 = L(γ0) and L̃(ε) = L′(γ0) + εL̂(ε).
SinceΩ0 is a defective eigenvalue of geometricmultiplicity one and
algebraic multiplicity two, we apply Puiseux expansions [37]:{
Ω(ε) = Ω0 + ε1/2Ω̃(ε),
v(ε) = v0 + ε1/2a(ε)vg + εṽ1(ε),

(33)

where v0 and vg are the eigenvector and the generalized eigen-
vector for the eigenvalue Ω0, a(ε) is the projection coefficient to
be defined, and Ω̃(ε) and ṽ1(ε) are the remainder terms. To define
ṽ1(ε) uniquely, we add the orthogonality condition

⟨ṽ1(ε), σ3v#0 ⟩ = ⟨ṽ1(ε), σ3v#g ⟩ = 0. (34)

Plugging (33) into (32) and dropping the dependence on ε for L̃, ṽ1,
a and Ω̃ gives us the nonhomogeneous equation(
L0 −Ω0σ3 + εL̃ − ε1/2Ω̃σ3

)
ṽ1 = h, (35)

where

h = ε−1/2(Ω̃ − a)σ3v0 − L̃v0 + a
(
Ω̃σ3 − ε1/2L̃

)
vg .
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By Assumption (A4′), the limiting operator σ3(L0 −Ω0σ3) has the
two-dimensional generalized null space X0 = span{v0, vg} ⊂

L2(R) × L2(R). Since Ω0 ̸∈ σc(σ3L0) is isolated from the rest of
the spectrum of σ3L0, the range of σ3(L0 − Ω0σ3) is orthogonal
with respect to generalized null space Y0 = span{σ3v

#
0 , σ3v

#
g } ⊂

L2(R) × L2(R) of the adjoint operator (L∗

0 − Ω0σ3)σ3. As a result,
σ3(L0 − Ω0σ3) is invertible on an element of Y⊥

0 and the inverse
operator is uniquely defined and bounded in Y⊥

0 . In other words,
there exist positive constants ε0, Ω0, and C0 such that for all
|ε| ≤ ε0, |Ω̃| ≤ Ω0, and all σ3f ∈ Y⊥

0 , there exists a unique
(L0 − Ω0σ3)−1f ∈ D(L0) × D(L0) satisfying the orthogonality
conditions (34) and the bound

∥(L0 −Ω0σ3)−1f ∥L2 ≤ C0∥f ∥L2 . (36)

In order to provide existence of a unique (L0 −Ω0σ3)−1f , we add
the orthogonality constraints ⟨f , v#0 ⟩ = ⟨f , v#g ⟩ = 0. By using (29)
and (34), we obtain two equations from Eq. (35):

ε⟨L̃̃v1, v#0 ⟩ + ⟨L̃v0, v#0 ⟩ = Ω̃a⟨vg , σ3v#0 ⟩ − ε1/2a⟨L̃vg , v#0 ⟩, (37)

and

ε⟨L̃ṽ1, v#g ⟩ + ⟨L̃v0, v#g ⟩ = Ω̃a⟨vg , σ3v#g ⟩ − ε1/2a⟨L̃vg , v#g ⟩

+ ε−1/2(Ω̃ − a)⟨v0, σ3v#g ⟩. (38)

Since L̃ and Ω̃σ3 are relatively compact perturbations to (L0 −

Ω0σ3), there exists a unique solution of the nonhomogeneous
equation (35) under the constraints (37) and (38) satisfying the
orthogonality conditions (34) and the resolvent estimate (36). In
particular, there exist positive constants ε0, Ω0, A0, and C0 such
that for all |ε| ≤ ε0, |Ω̃| ≤ Ω0, and |a| ≤ A0, the solution
ṽ1 ∈ D(L0) × D(L0) of Eq. (35) satisfies the estimate

∥ṽ1∥L2 ≤ C0
(
ε−1/2

|a − Ω̃| + 1
)
. (39)

Eq. (38) yields

ε−1/2(a − Ω̃) =
1

⟨v0, σ3v#g ⟩

(
Ω̃a⟨vg , σ3v#g ⟩ − ε1/2a⟨L̃vg , v#g ⟩

− ⟨L̃v0, v#g ⟩ − ε⟨L̃̃v1, v#g ⟩
)
,

where ⟨v0, σ3v
#
g ⟩ ̸= 0 due to Lemma 6. Combining with the

estimate (39), we obtain for some C1 > 0

|a − Ω̃| ≤ C1ε
1/2 and ∥ṽ1∥L2 ≤ C1. (40)

Eq. (37) yields

Ω̃a =
1

⟨vg , σ3v
#
0 ⟩

(
⟨L̃v0, v#0 ⟩ + ε1/2a⟨L̃vg , v#0 ⟩ + ε⟨L̃ṽ1, v#0 ⟩

)
,

where ⟨vg , σ3v
#
0 ⟩ ̸= 0 due to Lemma 6. Thanks to (40), we obtain

|Ω̃ −Ωg | ≤ C2ε
1/2,

where C2 > 0 is a constant, and Ωg is a root of the quadratic
equation

Ω2
g =

⟨L′(γ0)v0, v#0 ⟩

⟨vg , σ3v
#
0 ⟩

, (41)

with L′(γ0) given by (25). Since L′(γ0)v0, vg , and v#0 satisfy the
PT -symmetry conditions, both the nominator and the denomina-
tor of (41) are real-valued by the same computations as in the proof
of Lemma 4. By the assumption (30),Ω2

g is nonzero, either positive
or negative.

Let us assume thatΩ2
g > 0 without loss of generality and pick

Ωg > 0. Then ε1/2Ωg ∈ R if ε > 0 and we obtain the expansions

for the two simple eigenvalues:{
Ω1(ε) = Ω0 + ε1/2Ωg + O(ε),
Ω2(ε) = Ω0 − ε1/2Ωg + O(ε)

and their corresponding eigenvectors:{
v1(ε) = v0 + ε1/2Ωgvg + O(ε),
v2(ε) = v0 − ε1/2Ωgvg + O(ε).

The same expansions hold for eigenvectors of the adjoint spectral
problems corresponding to the same eigenvaluesΩ1,Ω2:{
v#1 (ε) = v#0 + ε1/2Ωgv

#
g + O(ε),

v#2 (ε) = v#0 − ε1/2Ωgv
#
g + O(ε).

The leading order of Krein quantities for eigenvalues λ1 = iΩ1 and
λ2 = iΩ2 is given by⎧⎪⎪⎨⎪⎪⎩

K (λ1) = ⟨v1, σ3v
#
1 ⟩

= ε1/2Ωg⟨vg , σ3v
#
0 ⟩ + ε1/2Ωg⟨v0, σ3v

#
g ⟩ + O(ε),

K (λ2) = ⟨v2, σ3v
#
2 ⟩

= −ε1/2Ωg⟨vg , σ3v
#
0 ⟩ − ε1/2Ωg⟨v0, σ3v

#
g ⟩ + O(ε),

which is simplified with the help of (29) to{
K (λ1) = 2ε1/2Ωg⟨vg , σ3v

#
0 ⟩ + O(ε),

K (λ2) = −2ε1/2Ωg⟨vg , σ3v
#
0 ⟩ + O(ε).

Since ε1/2Ωg ∈ R and ⟨vg , σ3v
#
0 ⟩ ̸= 0, we obtain (31). If ε < 0, then

ε1/2Ωg ∈ iR, so that λ1, λ2 ̸∈ iR. □

Remark 11. If the non-degeneracy assumption (30) is not satisfied,
thenΩg = 0 and the perturbation theory must be extended to the
next order. In this case, the defective eigenvalue λ0 = iΩ0 may
split along iR both for ε > 0 and ε < 0.

4. Numerical approximations

We approximate nonlinear modesΦ of the stationary NLSE (6)
and eigenvectors (Y , Z) of the spectral problem (9)with the Cheby-
shev interpolation method [38]. This method was recently applied
to massive Dirac equations in [39]. Chebyshev polynomials are
defined on the interval [−1, 1]. The stationary NLSE (6) is defined
on the real line, thereforewemake a coordinate transformation for
the Chebyshev grid points {zj = cos( jπN )}j=N

j=0 :

xj = L arctanh(zj), j = 1, 2, . . .,N − 1, (42)

where x0 = +∞ and xN = −∞. The scaling parameter L is chosen
so that the grid points {xj}

j=N−1
j=1 are concentrated in the region

where the nonlinearmodeΦ changes fast. We apply the chain rule
for the second derivative:

d2u
dx2

=
d
dx

(
du
dx

)
=

d
dz

(
du
dz

dz
dx

)
=

d2u
dz2

(
dz
dx

)2

+
du
dz

d2z
dx2

,

where
dz
dx

=
1
L
sech2

(x
L

)
=

1
L
(1 − z2)

and
d2z
dx2

= −
2
L2

sech2
(x
L

)
tanh

(x
L

)
= −

2
L2

z(1 − z2).

The first and second derivatives for ∂z and ∂2z are approximated
by the Chebyshev differentiation matrices DN and D2

N , respectively
(see p. 53 in [38]).

The stationary NLSE (6) is written in the form:

F (Φ) := (−∂2x + V + iγW − µ− g|Φ|
2)Φ = 0. (43)
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Table 1
The numerical error for the exact solution (46) versus N .

∥Φexact −Φnumerical∥
2

N = 50 1.5 × 10−6

N = 100 2.4 × 10−13

N = 500 2.2 × 10−13

We fixµ, γ , g , V ,W and use Newton’smethod to look for a solution
Φ satisfying Assumption (A3):[
Φn+1

Φ̄n+1

]
=

[
Φn

Φ̄n

]
− L−1

n

[
F (Φn)
F̄ (Φn)

]
, (44)

where Ln is the Jacobian operator to the nonlinear problem (43),
which coincides with (8) computed atΦn. SinceΦ(x0) = Φ(xN ) =

0, the Jacobian operatorLn is represented by the 2(N−1)×2(N−1)
matrix.

It follows by the gauge transformation that

L
[

iΦ
−iΦ̄

]
=

[
0
0

]
, (45)

where L is computed at Φ . Therefore, L is a singular operator for
every parameter choice of Eq. (43). However, if the eigenvector
satisfies the symmetry Z̄ = Y as in (45), then the eigenvector does
not satisfy the PT -symmetry:

PT
[

iΦ
−iΦ̄

]
=

[
−iΦ(−x)
iΦ(−x)

]
= −

[
iΦ

−iΦ̄

]
.

Hence, L is invertible on the space of PT -symmetric functions
satisfying (7). In terms of the coefficients of Chebyshev polyno-
mials, the restriction means that the even-numbered coefficients
are purely real, whereas the odd-numbered coefficients are purely
imaginary.

Choosing a first guess for the iterative procedure (44) depends
on the choice of the potentials V and W . For the Scarf II poten-
tial (4), one can use a scalar multiple of the sech(x) function for the
first branch of solutions and a scalar multiple of the sech(x) tanh(x)
function for the second branch of solutions [26]. For the confining
potential (5), one can use the corresponding Gauss–Hermite func-
tions of the linear system for each branch [40].

The spectral problem (9) uses the same operator L and can be
discretized similarly. One looks for eigenvalues and eigenvectors
of the discretized matrix by using the standard numerical meth-
ods for non-Hermitian matrices. For example, MATLAB R⃝ performs
these computations by using the QZ algorithm.

Throughout the numerical results, we pick the value of a scaling
parameter L to be L = 10. This choice ensures that Φ remains
nonzero up to 16 decimals on the interior grid points {xj}

j=N−1
j=1 . The

algorithm was tested on the exact solution derived in [27] for the
Scarf II potential (4) with V0 = 1 and µ = γ = −1:

Φ(x) = sinα sech(x) exp
[
i
2
cosα arctan(sinh(x))

]
, (46)

where α = arccos(2/3). Table 1 shows a good agreement between
exact and numerical results.

Once we computed eigenvalues and eigenvectors for the spec-
tral problem (9), we proceed to computations of the Krein quantity
defined by (15). Several obstacles arise in the definition of the
Krein quantity:

1. Eigenvectors of the Chebyshev discretization matrices are
normalized with respect to z.

2. Eigenvectors are not necessarily PT -symmetric.
3. The sign of the adjoint eigenvectors relative to the eigenvec-

tors is undefined.

Here we explain how to deal with these difficulties.

1. The eigenvectors are normalized in the L2([−1, 1]) norm
with respect to the variable z. In order to normalize them
in the L2(R) normwith respect to the variable x, we perform
the change of coordinates (42). In particular, we use inte-
gration with the composite trapezoid method on the grid
points {xj}

j=N−1
j=1 and neglect integrals for (−∞, xN−1) and

(x1,+∞).
2. In order to restore the PT -symmetry condition (13), we

multiply the component Y of the eigenvector (Y , Z) by eiθ
with θ ∈ [0, 2π ] and require

eiθY (x) = e−iθY (−x) ⇒ 2iθ = log
Y (−x)
Y (x)

,

where the point x is chosen so that Y (x) and Y (−x) are
nonzero. For example, we compute θ for all interior grid
points {xj}

j=N−1
j=1 for which Y (xj) ̸= 0 and take the average.

Both Y and Z in the same eigenvector are rotated with the
same angle θ . Similarly, this step is performed for Y# and Z#

according to the PT -symmetry condition (14).
3. We fix the sign of the adjoint eigenvectors at the Hamil-

tonian case γ = 0 by using (18). Then we continue the
eigenvectors and the adjoint eigenvectors for simple eigen-
values before coalescence points. Numerically, we take two
steps in γ : γ1 < γ2, with |γ2 − γ1| ≪ 1. Suppose that
the sign of eigenvector for γ1 has been chosen already.
We take eigenvectors for γ1 and γ2 and compare them. If
eigenvectors have been made PT -symmetric and properly
normalized, then the norm of their difference is either small
(the eigenvectors are almost the same) or close to 2 (the
eigenvectors are negatives of each other). We choose the
sign of the eigenvector so that the norm of their difference
is small.

With the refinements described above, we can now compute
the Krein quantity K (λ) defined by (15) using the same numerical
method as the one used for computing the norms of eigenvectors.

In numerical computations, we have often encountered sit-
uations when eigenvalues nearly coalesce, but the standard
MATLAB R⃝ numerical routines do not approximate well the coales-
cence of eigenvalues. In order to check if the eigenvectors are lin-
early dependent near the possible coalescence point, we compute
thenormof the difference between the twoeigenvectors andplot it
with respect to the parameter γ . If the difference between the two
eigenvectors vanishes as γ is increased towards the coalescence
point, we say that the defective eigenvalue arises at the bifurcation
point. If the difference remains finite, either we are dealing with
the semi-simple eigenvalue at the coalescence point or the two
simple eigenvalues pass each other without coalescence.

5. Numerical examples

In the numerical examples, we set N = 500. This gives enough
accuracy for computing eigenvalues, as it was shown in [39]. We
will demonstrate numerical results in Figs. 1–4. Each figure dis-
plays branches of the nonlinear modesΦ versus a parameter used
in the numerical continuations (eitherµ or γ ), where the blue solid
line corresponds to stable modes and the red dashed line denotes
unstable ones. The top andmiddle panels show the power curves of
∥Φ∥

2, a sample profile of the nonlinear modeΦ , and the spectrum
of linearization before and after the instability bifurcation. The
bottom panels show the imaginary part of eigenvalues λ and the
Krein quantity of isolated eigenvalues. Green color corresponds to
eigenvalues λ ∈ iR with the positive Krein signature, red — to
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Fig. 1. Scarf II potential (4) with V0 = 2, γ = −2.21. (a) Power curves versusµ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d) Same for point
B. (e) Im(λ) for the spectrum of linearization versus µ. (f) Krein quantities for isolated eigenvalues versus µ.

those with the negative Krein signature, and black color is used for
complex eigenvalues λ ̸∈ iR and for the continuous spectrum.

Fig. 1(a)–(f) shows the instability bifurcation for the Scarf II
potential (4) studied in [17] in the focusing case with g = 1. Here
V0 = 2, γ = −2.21, and the first branch of the nonlinear modesΦ
is considered. As two eigenvalues with different Krein signatures
coalesce, they bifurcate into a complex quadruplet, in agreement
with Theorem 1. Note that there is a small region of stability for the
nonlinear modesΦ of small amplitudes, as it was shown in [17].

Fig. 2(a)–(f) shows the instability bifurcation for the Scarf II
potential (4) studied in [27] in the focusing case with g = 1.
Here V0 = 3, γ = −3.7, and the second branch of the nonlinear
modesΦ is considered. The second branch is unstable with at least
one complex quadruplet for all values of parameter µ used. The
imaginary part of this complex quadruplet is not visible in Fig. 2(e)
as it coincides with the location of the continuous spectrum. In the
presence of this complex quadruplet, we observe a coalescence of
two simple eigenvalues λ1, λ2 ∈ iR and the instability bifurcation
into another complex quadruplet. Numerical evidence confirms

that the eigenvalues have the opposite Krein signatures prior to
collision, allowing us to predict the instability bifurcation, in agree-
ment with Theorem 1.

Figs. 3, 4(a)–(f) show the confining potential (5) studied in [31],
in the defocusing case with g = −2. Compared to (5), we use a
scaled version of this potential to match the one in [31]:

V (x) = x2, W (x) = 2Ω−3/2xe−
x2
2Ω , (47)

where Ω = 10−1 is a scaling parameter. There are four branches
of the nonlinear modes Φ shown, out of which we highlight only
the third and fourth branches. The first branch is stable, whereas
the second branch becomes unstable because of a coalescence of a
pair of eigenvalues ±λ ∈ iR with the negative Krein signature at
the origin [31]. The third and fourth branches are studied in Figs. 3
and 4.

In Fig. 3we can see that there are three bifurcations occurring at
γ1 ≈ 0.07, γ2 ≈ 0.1031 and γ3 ≈ 0.1069. For each bifurcation two
eigenvalues with different Krein signatures collide and bifurcate
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Fig. 2. Scarf II potential (4) with V0 = 3, γ = −3.7. (a) Power curves versus µ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d) Same for point
B. (e) Im(λ) for the spectrum of linearization versus µ. (f) Krein quantities for isolated eigenvalues versus µ.

off to the complex plane in accordance with Theorem 1. In addi-
tion, two simple eigenvalueswith different Krein signatures nearly
coalesce near γ4 ≈ 0.1. Fig. 5(a) shows the norm of the difference
between the two eigenvectors and two adjoint eigenvectors for the
two simple eigenvalues while γ is increased towards γ4. As the
difference does not vanish, we rule out this point as the bifurcation
point for the defective eigenvalue. Consequently, the eigenvalues
are continued past this point with preservation of their Krein
signatures.

In Fig. 4 we can see three bifurcations occurring at γ1 ≈

0.1303, γ2 ≈ 0.1427, and γ3 ≈ 0.2078. At γ1, an eigenvalue
pair with negative Krein signature coalesce at zero and become
a pair of real (unstable) eigenvalues. As γ is increased towards
γ2, two eigenvalues with opposite Krein signature move towards
each other. Fig. 5(b) illustrates that the norm of the difference
between the two eigenvectors and the two adjoint eigenvectors
vanishes at the coalescence point. Therefore, we conclude that

at γ2 we have a defective eigenvalue which does not split into
a complex quadruplet. According to Theorem 1, the defective
eigenvalue does not split into complex unstable eigenvalues only
if the non-degeneracy condition (30) is not satisfied. Similar safe
passing of eigenvalues of opposite Krein signature through each
other is observed in [17]. The behavior near γ2 shows that having
opposite Krein signatures prior to coalescence of two simple eigen-
values into a defective eigenvalue is a necessary but not sufficient
condition for the instability bifurcation. At γ3, two eigenvalues
with opposite Krein signatures coalesce and bifurcate into a com-
plex quadruplet according to Theorem 1.

6. Discussion

In this work, we introduced the Krein quantity for simple iso-
lated eigenvalues in the linearization of the nonlinearmodes in the
PT -symmetric NLS equation. We proved that the Krein quantity



A. Chernyavsky, D.E. Pelinovsky / Physica D 371 (2018) 48–59 57

Fig. 3. Confining potential (5), scaled as in (47). (a) Power curves versus γ . (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B.
(e) Im(λ) for the spectrum of linearization versus γ . (f) Krein quantities for isolated eigenvalues versus γ .

is zero for complex eigenvalues and nonzero for simple purely
imaginary eigenvalues. When two simple eigenvalues of opposite
Krein signature coalesce on the imaginary axis in a defective
eigenvalue, the Krein quantity vanishes and we proved under the
non-degeneracy assumption that this bifurcation point produces
complex unstable eigenvalues on one side of the bifurcation point.
This result shows that themain feature of the instability bifurcation
in Hamiltonian systems is extended to thePT -symmetric systems.

There are nevertheless limitations of this theory in the PT -
symmetric systems. First, the adjoint eigenvectors are no longer
related to the eigenvectors of the spectral problem, which opens
up a problem of normalizing the adjoint eigenvector relative to
the eigenvector. We fixed the sign of the adjoint eigenvector in
the Hamiltonian limit and continue the sign off the Hamiltonian
limit by using continuity of eigenvectors along the parameters of
the model.

Second, if the bifurcation point corresponds to a semi-simple
eigenvalue, then the bifurcation theory does not lead to the same

conclusion as in the Hamiltonian case. The first-order perturbation
theory results in the non-Hermitian matrices, hence it is not clear
how to conclude on the splitting of the semi-simple eigenvalues on
each side of the bifurcation point.

Finally, coalescence of the simple purely imaginary eigenvalues
at the origin and the related instability bifurcations are observed
frequently in the PT -symmetric systems and they are not pre-
dicted from the Krein quantity. Therefore, we conclude that the
stability theory of Hamiltonian systems cannot be fully extended
to the PT -symmetric NLS equation, only the necessary condition
for the instability bifurcation can be, as is shown in this work.
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Fig. 4. Confining potential (5), scaled as in (47). (a) Power curves versus γ . (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B.
(e) Im(λ) for the spectrum of linearization versus γ . (f) Krein quantities for isolated eigenvalues versus γ .

Fig. 5. The norm of the difference between the two eigenvectors and the two adjoint eigenvectors prior to a possible coalescence point: (a) for Fig. 3 (b) for Fig. 4.
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