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Abstract
A  -symmetric nonlinear Schrödinger dimer is a two-site discrete nonlinear
Schrödinger equation with one site losing and the other one gaining energy at
the same rate. In this paper, two four-parameter families of cubic  -sym-
metric dimers are constructed as gain–loss extensions of their conservative,
Hamiltonian, counterparts. We prove that all these damped-driven equations
define completely integrable Hamiltonian systems. The second aim of our
study is to identify nonlinearities that give rise to the spontaneous  -sym-
metry restoration. When the symmetry of the underlying linear dimer is broken
and an unstable small perturbation starts to grow, the nonlinear coupling of the
required type will divert an increasingly large percentage of energy from the
gaining to the losing site. As a result, the exponential growth will be saturated
and all trajectories remain trapped in a finite part of the phase space regardless
of the value of the gain–loss coefficient.

Keywords:  -symmetry, nonlinear Schrödinger dimer, Hamiltonian struc-
ture, complete integrability, gain and loss, trajectory confinement, spontaneous
symmetry restoration
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1. Introduction

The nonlinear Schrödinger dimer is a code name for the discrete nonlinear Schrödinger
equation defined on a lattice consisting just of two sites:

( )
( )

u v F u u v v

v u G u u v v

i ˙ , *, , * ,

i ˙ , *, , * . (1)

+ =
+ =

Here and in what follows, the overdot denotes the derivative with respect to t and the asterisk
indicates complete conjugation.

The dimer (1) is one of the simplest (and hence most heavily used) models of a coupled
bimodal structure. In optics, the system (1) describes the directional coupler—a pair of
parallel waveguides coupled through their evanescent fields. In this context, u and v are the
complex amplitudes of stationary light beams in the waveguides and t measures the distance
along their parallel cores [1–3].

When the same system is employed in the studies of the Bose–Einstein condensates, u
and v stand for the amplitudes of the mean-field condensate wave functions localized in the
left and right well of a double-well potential [4] (or of their symmetric and antisymmetric
combinations [5]). In this application, t has the meaning of time.

The nonlinear Schrödinger dimers were also utilized in the solid state physics [6–8] and
in the context of electric lattices [8].

Typically, the dimer arises as an amplitude equation; that is, u and v represent slowly
changing amplitudes of some oscillatory variables x and y:

x u t u t y v t v t( ) ( )e *( )e ..., ( ) ( )e *( )e .... .i i i iτ τ= + + = + +ωτ ωτ ωτ ωτ− −

Here t 2ϵ τ= , 2ϵ is a small parameter, and the dots stand for small anharmonic corrections.
The invariance of the optical or atomic structure with respect to translations in τ is inherited
by the amplitude equations as the invariance under simultaneous phase shifts in u and v. In
other words, physically meaningful nonlinearities have to satisfy

( )
( )

( )
( )

F u u v v F u u v v

G u u v v G u u v v

e , e *, e , e * e , *, , * ,

e , e *, e , e * e , *, , * (2)i

i i i i i

i i i i

=

=

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

− −

− −

for any real ϕ.
Another property of the dimer dictated by physics, is conservation of energy which gives rise

to an underlying Hamiltonian structure. There are two main types of Hamiltonian formulations
admitted by the dimers. One class of Hamiltonian dimers has the straight-gradient form

u

t u

v

t v
i
d

d *
, i

d

d *
. (3)

 = ∂
∂

= ∂
∂

Here  is the Hamilton function while the canonical coordinate-momentum pairs are u u( , *) and
v v( , *). Alternatively, u can be paired with v*, while u* play the role of momentum conjugate to v:

u

t v

v

t u
i
d

d *
, i

d

d *
. (4)

H H= ∂
∂

= ∂
∂

(This time we use a different notation for the Hamilton function to keep the treatment of the
two cases separate.) In what follows, we are referring to equations of the form (4) as the
cross-gradient systems.

The last requirement is that of the left–right symmetry (the parity symmetry) of the
system. This requirement arises if the two elements making up the dimer (two waveguides or
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two potential wells) are identical. Mathematically, it reduces to the invariance under the
permutation of u and v in (1):

( ) ( )F u u v v G v v u u, *, , * , *, , * . (5)=

If the two elements are not identical—for example, if one channel is dissipative while the
other one draws energy from outside—the system may be still invariant under a relaxed form
of the left–right permutation known as the parity-time ( ) symmetry [9]. Mathematically,
the discrete Schrödinger equation is said to be  -symmetric if it is invariant under the
product of  and  transformations. Here the  operator swaps the two elements around:

( ) ( )u
v

v
u , =

while the  represents the effect of time inversion on the complex amplitudes:
u t u t( ) *( ) = − , v t v t( ) *( ) = − .

The current upsurge of interest in the  -symmetric systems is due to the fact that they
can strike the balance between the gain of energy in one channel and loss in the other. In the
optical context, the  -symmetric dimer describes a waveguide with power loss coupled to a
waveguide experiencing optical gain [2, 3, 10–13]. In the matter-wave setting, the 
-symmetric system is formed by two quantum states, with one state leaking and the other one
being fed with particles [14, 15].

Since the  -symmetric systems have channels for the energy exchange with the
environment, they are commonly thought to occupy a niche between dissipative and con-
servative systems. It was therefore met with surprise when some linear [16] and nonlinear
[17]  -symmetric systems were found to possess Hamiltonian structure. In particular, there
are Hamiltonian  -symmetric dimers; one example was produced in [17]:

( )
( )

u v u v u v u u

v u v u v u v v

i ˙ 2 * i ,

i ˙ 2 * i . (6)

2 2 2

2 2 2

γ

γ

+ + ∣ ∣ + ∣ ∣ + =

+ + ∣ ∣ + ∣ ∣ + = −

The two terms in the right-hand sides of (6) account for the gain and loss of energy, with
0γ > being the gain–loss coefficient.
Another Hamiltonian  -symmetric system was identified in [18]:

u v u u u

v u v v v

i ˙ i ,

i ˙ i . (7)

2

2

γ
γ

+ + ∣ ∣ =
+ + ∣ ∣ = −

Because of its ubiquity in physics [2, 3, 12–14, 19], equation (7) is occasionally referred to as
the standard dimer.

Finally, the Hamiltonian model

( )
( )

u v u v v v u

v u v u u u v

i ˙ 2 2 i ,

i ˙ 2 2 i , (8)

1 2
2

1
2

1 2
2

1
2

α α α γ
α α α γ

+ − + ∣ ∣ − ∣ ∣ =
+ − + ∣ ∣ − ∣ ∣ = −

was discovered outside the domain of the  -symmetry—as a by-product in the search of
integrable equation [20]. Here 1α and 2α are arbitrary real coefficients.

The availability of the Hamiltonian structure is a fundamental property of a dynamical
system. This property by itself implies the conservation of phase volume and hence some
degree of regularity of motion. But in the presence of additional first integrals it allows to
establish an even higher level of regularity, namely, the Liouville integrability.

The first aim of this paper is to show that any cubic  -symmetric phase-invariant dimer
obtained as a  -symmetric extension of the conservative dimer (3) or (4), is a Hamiltonian
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system. By determining an additional integral of motion independent of the Hamiltonian, we
establish the complete integrability of all these systems.

Another topic pursued in the present study concerns the phenomenon of  -symmetry
breaking—one of the experimentally accessible properties of physical systems with gain and
loss [12, 21–23]. The spontaneous symmetry breaking occurs in linear  -symmetric sys-
tems as the gain–loss coefficient is increased beyond a critical value cγ . This exceptional point
separates the symmetric phase ( cγ γ< ), where all perturbation frequencies are real, and the
symmetry-broken phase ( cγ γ> ), where some frequencies are complex and the corresponding
modes grow exponentially.

When the input power in the physical structure is low—or, equivalently, when the initial
conditions of the corresponding mathematical model are small—all nonlinear effects are neg-
ligible and the system follows the linear laws. In particular, small initial conditions in the
symmetry-broken phase trigger an exponential growth. However as the resulting solution reaches
finite amplitude, the nonlinear coupling terms kick in. These terms may channel the power from
the site where it is gained, to the site where it is lost. The higher is the power gained, the larger
portion of it is channeled to the disposal site by the nonlinear coupling. In systems where this
mechanism is at work, the exponential growth is arrested and all escaping trajectories are sent
back to the finite part of the phase space. The  symmetry becomes spontaneously restored.

The classification of integrable  -symmetric dimers with the nonlinearly restored
 -symmetry, is the second objective of our study.

The outline of the paper is as follows.
In section 2 we present a four-parameter family of the  -symmetric cross-gradient dimers;

all these systems are Hamiltonian in their original u and v variables. In a similar way, a four-
parameter  -symmetric extension of the straight-gradient dimer is introduced in section 3.

The straight-gradient systems do not admit the Hamiltonian formulation in terms of u and
v—except when the straight-gradient system is cross-gradient at the same time, or when it is
gauge-equivalent to a cross-gradient system. (We identify such dual cases in section 3.)
Nevertheless, transforming to the Stokes variables (section 4) we can describe all trajectories
of the straight-gradient dimer and elucidate the geometry of its phase space.

In the subsequent three sections we determine the canonical coordinates for the general
straight-gradient dimer and reformulate it as a Hamiltonian system. Three complementary
subfamilies of the straight-gradient models are considered (sections 5, 6 and 7).

Section 8 is concerned with the trajectory confinement and  -symmetry restoration. We
identify broad classes of nonlinearities capable of suppressing the exponential blowup
regimes—both within the cross-gradient and straight-gradient families.

Section 9 offers examples of simple oscillatory systems with the amplitude equations in
the form of cross- and straight-gradient dimers.

Finally, in section 10 we summarize mathematical results of this study and discuss their
physical implications.

2. Cross-gradient  -symmetric dimer

A general cross-gradient dimer (4), complying with the phase invariance (2), with no gain or
loss, with cubic nonlinearity, permutation property (5) and linear part of the form (1), is
defined by the Hamiltonian

( )u v W u v( , ). (9)0
2 2H = − ∣ ∣ + ∣ ∣ +
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Here W is a U(1)-invariant real quartic polynomial in u, v and their complex-conjugates,
which is symmetric with respect to the u v⇆ permutations. The most general quartic
polynomial with these properties can be written as

( ) ( )( ) ( )W u v u v u v uv u v u v uv* * * * ,

(10)

1
2 2 2

2
2 2

3
2 2

4
2α α α α= ∣ ∣ + ∣ ∣ + ∣ ∣ ∣ ∣ + + ∣ ∣ + ∣ ∣ + +

where , ,1 2 3α α α , and 4α are real coefficients. (See section 2 in [24].)
For any set of αʼs, this gainless lossless system admits a straightforward  -symmetric

extension

u

t v

v

t u
i
d

d *
, i

d

d *
, (11)

H H= ∂
∂

= ∂
∂

where the Hamilton function H is different from 0H in just one term:

( ) ( )u v W u v uv u v( , ) i * * . (12)2 2H γ= − ∣ ∣ + ∣ ∣ + + −

Here 0γ > is the gain–loss coefficient. Substituting the expression (12) with W as in (10) in
equation (11), we obtain a four-parameter family of Hamiltonian  -symmetric cubic
dimers:

( )

( )
( )

( )

u v u u v u v u u v

u v v

v u v u v v u v v u

v u u

i ˙ i 2 * 2 *

2 2 2 ,

i ˙ i 2 * 2 *

2 2 2 . (13)

3
2 2

3
2

4
2

1 2 4
2

1
2

3
2 2

3
2

4
2

1 2 4
2

1
2

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

γ α α α

α α α α

γ α α α

α α α α

+ − = ∣ ∣ + ∣ ∣ + +

+ + + ∣ ∣ + ∣ ∣

+ + = ∣ ∣ + ∣ ∣ + +

+ + + ∣ ∣ + ∣ ∣

A particular case of (13) is the system (6). This is selected by letting 13α = − and
01 2 4α α α= = = . Another special case is the dimer (8); this model corresponds to

03 4α α= = . The Hamiltonian structure of these two particular systems has been determined
earlier [17, 20].

Despite the seeming complexity, all trajectories of (13) admit a simple analytic
description. We define the Stokes vector X Y Zi j k = + + , where

( )X u v v u Y u v v u Z u v* * , i * * , . (14)2 2= + = − = ∣ ∣ − ∣ ∣

Note that the length X Y Z2 2 2 = + + of the Stokes vector has a simple expression in
terms of u and v:

u v .2 2 = ∣ ∣ + ∣ ∣
Transforming to X Y, , and Z, equations (13) give a dynamical system in three dimen-

sions:

X a˙ 0, (15 )=

Y Z XZ Z b˙ 2 2 4 , (15 )3 1 α α= − + +

( )Z Y XY Y c˙ 2 2 2 4 . (15 )3 2 1 γ α α α= + − − +

Equation (15a) implies that for any selection of 1α , 2α , 3α , and 4α , the cross-gradient
dimer (13) has two independent integrals of motion: X and H. Accordingly, the Hamiltonian
system (13) is Liouville-integrable.

All trajectories lie in parallel vertical planes X X0= , where X0 is an arbitrary constant.
The form of the trajectories is determined by setting X X0= in the equation
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X Y Z const( , , )H = , with H being the Hamiltonian (12) expressed in the Stokes variables:

( )Y Y X C
4

1 . (16)2
1 3 0 ⎜ ⎟

⎛
⎝

⎞
⎠

α γ α α− + + − =

Here C is a constant of integration. Equation (16) with X Y Z0
2 2 2 = + + defines a one-

parameter family of trajectories on the X X0= plane.

3. Straight-gradient  -symmetric dimer

The conservative straight-gradient dimer with general cubic nonlinearity, left–right symmetry
and phase invariance, has the form

u

t u

v

t v
i
d

d *
, i

d

d *
, (17)

 = ∂
∂

= ∂
∂

where

( )uv u v W u v* * ( , ), (18) = − + +

and W is the four-parameter quartic polynomial:

( ) ( )( ) ( )W u v u v u v uv u v u v uv* * * * .

(19)

1
2 2 2

2
2 2

3
2 2

4
2β β β β= ∣ ∣ + ∣ ∣ + ∣ ∣ ∣ ∣ + + ∣ ∣ + ∣ ∣ + +

Here , ,1 2 3β β β , and 4β are real coefficients. This is the same quartic as in the previous section;
we have just switched from the α- to the β-notation to emphasise that we consider a totally
new family of models.

The system (17)–(19) with 1
1

2
β = − , 12β = , and 03 4β β= = is known as the N = 2

discrete self-trapping equation [6]. When 03 4β β= = while 21β ρ= − , 12β ρ= − with ρ a
real coefficient, these equations constitute the spatially homogeneous version of the Aceves-
Wabnitz coupled mode system for the nonlinear optical grating [25]. A particular case of this
( 01β = , 12β = − ) is the spatially-independent Thirring model (a theory of self-interacting

spinor field) [26–28]. Another case related to spinors is 4
1

2
β = − , 01 2 3β β β= = = ; this

system derives from the one-component Gross–Neveu model [27, 29]. The system with
22β = , 4

1

2
β = − , 01 3β β= = is related to the spinor theory with the pseudoscalar interac-

tion [28, 30].
The  -symmetric extension of the general straight-gradient dimer (17) has the form

u

t
u

u

v

t
v

v
i
d

d
i

*
, i

d

d
i

*
. (20)

 γ γ− = ∂
∂

+ = ∂
∂

Evaluating the partial derivatives using (18) and (19), these equations become

( )

( )

( )

( )

u v u u v u

v u u v u v v

v u v v u v

u v v u v u u

i ˙ i 2 2 2

2 * * 2 ,

i ˙ i 2 2 2

2 * * 2 . (21)

1
2

1 2 4
2

4
2

3
2

3
2 2

1
2

1 2 4
2

4
2

3
2

3
2 2

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

γ β β β β

β β β

γ β β β β

β β β

+ − = ∣ ∣ + + + ∣ ∣

+ + + ∣ ∣ + ∣ ∣

+ + = ∣ ∣ + + + ∣ ∣

+ + + ∣ ∣ + ∣ ∣

The standard dimer (7) is a special case of (21). This is selected by taking 1
1

2
β = − , 12β = ,

and 03 4β β= = in equation (21). There is an extensive literature on mathematical aspects of
this model [13, 18, 31–37].
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The couples u u( , *) and v v( , *) do not form pairs of canonically conjugate variables. That
is, the straight-gradient dimer (21) does not admit a Hamiltonian formulation in terms of the
original complex coordinates—except when the straight-gradient dimer is cross-gradient at
the same time. The necessary and sufficient condition for the equation (17) to have a
representation (11) with some H, is

u
u

u v
v

v*
i

* *
i

*
.

 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ γ∂

∂
+ ∂

∂
= ∂

∂
− + ∂

∂
For  of the form (18), this condition translates into

W

u

W

v* *
.

2

2

2

2

∂
∂

= ∂
∂

Substituting the quartic polynomial (19) for W gives, finally, 1 4β β= .
The choice 1 4β β= ensures the existence of a (complex) function H such that

u
u v

u
u v

i
* *

, i *
*

, (22)
H H γ γ+ ∂

∂
= ∂

∂
− + ∂

∂
= ∂

∂

v
v u

v
v u

i
* *

, i *
*

. (23)
H H γ γ− + ∂

∂
= ∂

∂
+ ∂

∂
= ∂

∂
The necessary and sufficient condition for the function H in (22) to be real, is given by

v
u

u v
u

u
i

* *
i * .

 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ γ∂

∂
+ ∂

∂
= ∂

∂
− + ∂

∂
In a similar way, the necessary and sufficient condition for *H H= in equation (23) is

u
v

v u
v

v
i

* *
i * .

 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ γ∂

∂
− + ∂

∂
= ∂

∂
+ ∂

∂
For  of the form (18), each of these two conditions amounts to

W

v u

W

u v* *
,

2 2∂
∂ ∂

= ∂
∂ ∂

which gives 2 21 2 4β β β+ = . Using the previously established condition 1 4β β= , this relation
reduces simply to 02β = .

Thus, the straight-gradient dimer (21) with 1 4β β= and 02β = is, at the same time, a
Hamiltonian system with the cross-gradient canonical structure (11). The corresponding
Hamilton function H is determined by simple integration:

( ) ( ) ( )( )

( ) ( )

u v u v u v uv u v

uv vu uv vu

2
2 * *

2
* * i * * . (24)

2 2 3 2 2 2
4

2 2

3 2

H
β

β

β
γ

= − ∣ ∣ + ∣ ∣ + ∣ ∣ + ∣ ∣ + ∣ ∣ + ∣ ∣ +

+ + + −

The cross-gradient Hamiltonian (24) is of the form (12), (10) with 1 4
1

2 3α α β= = , 02α = , and
23 4α β= .
In fact, the class of straight-gradient dimers admitting the Hamiltonian formulation is

even wider. Let u0 and v0 be a solution to the straight-gradient equation (21) with 02β = and
generic ,1 4β β (that is, 1β not necessarily coinciding with 4β ). The gauge transformation

u u v ve , e0
i

0
i= =φ φ
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with

( )( )t u v( ) 2 d
t

4 1
0

2 2∫φ β β τ= − ∣ ∣ + ∣ ∣

generates functions u and v which satisfy the straight-gradient dimer equations with 02β =
and 1β set equal to 4β :

( ) ( )
( ) ( )

u v u u v u v u u v u v v

v u v v u v u v v u v u u

i ˙ i 2 2 2 * * 2 ,

i ˙ i 2 2 2 * * 2 . (25)

4
2 2

4
2

3
2

3
2 2

4
2 2

4
2

3
2

3
2 2

γ β β β β

γ β β β β

+ − = ∣ ∣ + ∣ ∣ + + + ∣ ∣ + ∣ ∣

+ + = ∣ ∣ + ∣ ∣ + + + ∣ ∣ + ∣ ∣

As we already know, this system has a cross-gradient Hamiltonian formulation with the
Hamilton function (24). Therefore, the straight-gradient dimer with 02β = and any value of
( )4 1β β− is gauge-equivalent to the cross-gradient Hamiltonian system (11), where the
Hamilton function H is as in (24).

In what follows, we uncover the Hamiltonian formulation of the straight-gradient system
(21) with 02β ≠ . This class will include, in particular, the standard dimer (7) (which has

12β = ).

4. Phase space of straight-gradient dimer

The generic ( 02β ≠ ) straight-gradient dimer does not admit the Hamiltonian formulation in
terms of the original u and v variables. In order to determine the canonical pairs of coordi-
nates, we transform it to the Stokes variables (14). Equations (21) give a dynamical system in
three-dimensions:

X YZ a˙ , (26 )2β= −

( )Y Z XZ Z b˙ 2 4 2 , (26 )2 4 3 β β β= − + + +

Z Y XY Y c˙ 2 2 4 2 . (26 )4 3 γ β β= + − −

We also note an equation for the length of the Stokes vector that follows from the system
(26):

Z˙ 2 . (27) γ=

Replacing t with  as a new independent variable, and using td d ˙ d d = ,
equations (26a) and (26b) become a linear nonhomogeneous system

( )

X
Y

Y
X

2
d

d
0,

2
d

d
4 2 2 . (28)

2

2 4 3



 

γ β

γ β β β

+ =

− + = − +

Our strategy will be to determine the general solution of (28) including two constants of
integration. These ‘constants of motion’ of the system (28) will serve as the two first integrals
of the original three-dimensional dynamical system (26). To obtain the Hamiltonian
formulation of the dimer (21), one of these will be appointed as the Hamiltonian and the other
one as a canonical coordinate.

As in the case of the cross-gradient dimer, the existence of two independent conserved
quantities along with the availability of the Hamiltonian structure will imply that the straight-
gradient dimer (21) is Liouville integrable.
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It is convenient to introduce the quantity

( )4 . (29)2
2 2 4ω β β β≡ +

The form of the solution of the system (28) depends on whether 2ω is positive, negative or
zero. We consider these three cases separately.

Assuming that 02ω > , the general solution of (28) is

X A B acos
2

sin
2

2 2

4
, (30 )3

2 4

  ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ω
γ

ω
γ

β
β β

= + +
−

+

Y A B bsin
2

cos
2

4
, (30 )

2

3
2

 ⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ω
β

ω
γ

ω
γ

γβ
ω

= − +

where A and B are constants of integration. Treating  as a parameter, and supplementing
(30a)–(30b) with the formula

Z X Y c( ) ( ) , (30 )2 2 2  = ± − −

these equations provide explicit parametric expressions for trajectories of the dimer:
X X ( )= , Y Y ( )= , Z Z ( )= .

Denoting A B2 2ρ = + , equations (30a) and (30b) give

X Y
2 2

4

4
. (31)2 3

2 4

2
2

2
3

2

2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ

β
β β

β
ω

γβ
ω

= +
−

+
+ −

Equation (31) with X Y Z2 2 2 = + + is an implicit equation of the surface on which all
trajectories lie. The shape of this surface in the X Y Z( , , ) phase space depends on the value of
the parameter

2

4
. (32)3

2 4

σ
β

β β
=

+

Figures 1(a), (b), and (c) depict the surface with 1σ∣ ∣ < , 1σ∣ ∣ > , and 1σ∣ ∣ = .
In the case where 02ω < , we define 02 2ν ω= − > . The general solution of (28) is then

X C D aexp
2

exp
2

2 2

4
, (33 )3

2 4

  ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ν
γ

ν
γ

β
β β

= + − +
−

+

Y C D bexp
2

exp
2

4
, (33 )

2

3
2

 ⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ν
β

ν
γ

ν
γ

γβ
ν

= − − − −

where C and D are two constants of integration.
Expressing CD4 in terms of X Y, ,  and denoting it s s1 2

2ρ , where s Csign1 = and
s Dsign2 = , we obtain

s s X Y
2

4

4
. (34)1 2

2

2 4

2
2

2
3

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ σ

β β
β
ν

γβ
ν

= + −
+

− +

Here 0ρ ⩾ and s s1 2 is either 1 or −1, depending on whetherCD 0> orCD 0< . The solution
surface (34) made up by all trajectories of the dimer, is shown in figures 1 (d), (e), and (f) for

1σ∣ ∣ < , 1σ∣ ∣ > , and 1σ∣ ∣ = , respectively.
Finally, the case 02ω = is considered in section 7 below.
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Figure 1. The surface (31) with 02ω > (a), (c), (e) and 02ω < (b), (d), (f). The
parameter σ∣ ∣ is smaller than 1 in (a), (b); greater than 1 in (c), (d), and equal to 1 in (e),
(f). The value of 2β is 1 in (a), (c), (e) and −1 in (b), (d), (f). The value of 3β is 2 in (a), 1
in (b), 5 in (c), 9/2 in (d), (e), and 7/2 in (f). In all panels, 1γ = and 24β = . The surface

parameter 72ρ = in (a), (c), (e) and s s1 2
2 1

100
ρ = − in (b), (d), (f). We also show a few

trajectories of the system (26) lying on each surface.
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5. Hamiltonian structure of straight-gradient dimer: ω2 > 0

It is convenient to write the explicit solution (30a)–(30b) in the complex form

X Yi e
2 2

4
i
4

, (35)2 i 3

2 4

2 3
3

β
ω

ρ
β

β β
γβ β
ω

+ = +
−

+
+θ−

where

A Be ( i )exp i
2

(36)i ⎛
⎝⎜

⎞
⎠⎟ρ ω

γ
= −θ−

and A B2 2ρ = + was introduced in the previous section. Assume 0ρ > ; in this case,
equation (36) serves as the definition of θ. (We will examine the possibility 0ρ = in
subsection 5.4 below.) Using equation (35), θ is expressible as a function of X, Y, and :

X

Y
arctan

2

4
. (37)

2

2
2

3
2

⎛
⎝⎜

⎞
⎠⎟θ ω

β
σ β ω

γβ ω
=

+ −
−

−

−

The definition (36) implies that the complex quantity

A Bexp
i

2
( 2 ) i⎧⎨⎩

⎫⎬⎭ρ
γ

γθ ω− − = −

is a constant. Therefore its argument

H 2 (38)γθ ω= − −
is a first integral of the system (26). We shall demonstrate that H can serve as a Hamilton
function for the three-dimensional system (26) and the underlying nonlinear Schrödinger
dimer (21).

One more integral of motion, ρ, is given by (31). Choosing ρ and θ as a pair of
coordinates in the phase space, we require that  (and hence H) be a function of ρ, θ, and
Pθ—but not depend on Pρ [18]. Irrespectively of how we define Pρ, the Hamilton equation

H

P
˙ (39)ρ = ∂

∂ ρ

will then reproduce the equation for ρ : ˙ 0ρ = . Another consequence of requiring
H P 0∂ ∂ =ρ , is that the variable Pρ will not participate in the dynamics and the Hamilton
equation

P
H˙ (40)
ρ

= −∂
∂ρ

will decouple from the rest of the system.
At this point, we note that, since θ is only different from

2
− ω

γ
by a constant,

equation (27) gives

Z˙ . (41)θ ω= −
We should choose the momentum Pθ (denoted  for brevity) in such a way that the canonical
equation

H˙ (42)θ = ∂
∂
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reproduces equation (41). For the Hamilton function of the form (38), equations (42) and (41)
are equivalent if

Z. (43)



∂
∂

=

Once the equation (42) is satisfied, the conjugate equation

H˙ (44)
θ

= −∂
∂

will be verified automatically. Indeed, since H does not depend on Pρ while ˙ 0ρ = , there are
only two nonvanishing terms in the derivative Ḣ :

H
H H˙ ˙ ˙ . 
θ

θ= ∂
∂

+ ∂
∂

Substituting for θ̇ from (42), the relation Ḣ 0= implies equation (44).
Thus all we need to do in order to put the canonical structure in place, is to identify the

canonical momentum P = θ ensuring the validity of equation (43). Before proceeding to the
unveiling of Pθ, a technical remark is in order. Equation (35) implies that the coordinate Y can
be expressed solely in terms of ρ and θ (rather than ρ, θ, and ):

Y
4

cos . (45)3
2

2

γβ
ω

ω
β

ρ θ= +

Therefore θ may be thought of as the spherical polar angle in the frame of reference where Y
is the vertical coordinate. In what follows, we also introduce (an analogue of) the azimuthal
angle on the X Z( , )-plane. This construction will be based on the following decomposition of
the coordinate X stemming from (35):

X x . (46)σ= −
Here we have isolated a term that is expressible entirely in terms of ρ and θ:

x
2

4
sin . (47)

2 4β β
ρ θ=

+
+

Our construction of the canonical momentum Pθ depends on whether the parameter σ
defined in (32) is smaller, greater, or equal to 1 in magnitude.

5.1. Hyperbolic case: ∣σ ∣ < 1

Assuming 1σ∣ ∣ < , we define

1 0.2 2Λ σ= − >
The corresponding subfamily of models includes, in particular, the standard dimer (7)—for
which 12ω = and 0σ = . (We note that the Hamiltonian structure of the standard dimer was
elucidated earlier [18].)

Inserting the decomposition (46) in the identity X Y Z2 2 2 2+ + = yields

x r , (48)
2 2

2 
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Λ σ

Λ
+ − ∂

∂
=
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where we have substituted for Z from (43) and defined

r
x

Y . (49)2
2

2
2

Λ
= +

Since x and r are expressible in terms of ρ and θ only (i.e., are independent of  ),
equation (48) is an ordinary differential equation for ( )  . To define  , it is sufficient to pick
one solution of this separable equation. We choose

r
x( ) cosh( ) ; (50)

2
  

Λ
Λ σ

Λ
= −

the formula (43) gives then

Z r sinh( ), (51)Λ=
so that

P
Z

r

1
arcsinh . (52) ⎜ ⎟⎛

⎝
⎞
⎠Λ

= =θ

Together with the definition of the coordinate ρ in (31), the coordinate θ in (37), the
definition (52) completes the set of three canonical variables. The fourth coordinate, Pρ, can
be reconstructed from equation (40) by the integration of its right-hand side in t.

Summarizing, we have cast the straight-gradient dimer (21) with 02ω > and 12σ < in
the form of a Hamiltonian system

H

P
P

H H

P
P

H
˙ , ˙ , ˙ , ˙ , (53)ρ

ρ
θ

θ
= ∂

∂
= −∂

∂
= ∂

∂
= −∂

∂ρ
ρ

θ
θ

with the Hamilton function

( ) ( )H P r P x, , 2 cosh .
2

⎡⎣ ⎤⎦ρ θ γθ ω
Λ

Λ Λ σ= − − −θ θ

Here x x ( , )ρ θ= and r r ( , )ρ θ= are as in (47) and (49), respectively; the variable Y in (49)
is defined in (45).

5.2. Elliptic case: ∣σ ∣ > 1

Assuming that 12σ > and defining

1 0,2 2Ω σ= − >
the identity X Y Z2 2 2 2+ + = becomes an ordinary differential equation for ( )  :

x r . (54)
2 2

2 
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Ω σ

Ω
− + ∂

∂
=

Here we used (43), while the variable r was introduced differently from (49):

r
x

Y .2
2

2
2

Ω
= −

The separable equation (54) is solved by taking
r

xcos( ) ; (55)
2

 
Ω

Ω σ
Ω

= − +
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hence Z r sin( ).Ω= This provides a simple expression for the canonical momentum:

P Z rarcsin( ) (56)1 Ω= =θ
−

Thus, the straight-gradient dimer (21) with 02ω > and 12σ > is cast in the form (53)
with

( ) ( )H P r P x, , 2 cos ,
2

⎡⎣ ⎤⎦ρ θ γθ ω
Ω

Ω Ω σ= − + −θ θ

where x x ( , )ρ θ= and r r ( , )ρ θ= .

5.3. Parabolic case: ∣σ ∣ ¼ 1

Assuming 1σ = ± , the identity X Y Z2 2 2 2+ + = reduces to an equation

x Y x2 , (57)2 2
2

 ⎜ ⎟⎛
⎝

⎞
⎠ σ+ + ∂

∂
=

with a solution

x
Y

x2
1 . (58)2

2

2
 ⎛

⎝⎜
⎞
⎠⎟

σ= + +

The rule (43) gives then Z xσ= , so that

Z

x
. (59) σ=

The construction of the canonical variables in the 1σ = ± sector is hereby complete. In
the canonical equation (53), the Hamiltonian is

( )H P
x

P
Y

x
, , 2

2
1 ,2

2

2

⎡
⎣⎢

⎤
⎦⎥ρ θ γθ ωσ= − − + +θ θ

with x x ( , )ρ θ= and Y Y ( , )ρ θ= .

5.4. One-dimensional motion: ρ ¼ 0

Finally, we consider the situation where A B 0= = in (30a)–(30b) and hence, 0ρ = .
Equation (31) gives

X
2

4
, (60)

2 4


β β

σ=
+

−

Y
4

. (61)3
2

γβ
ω

=

The invariant manifold defined by 0ρ = , consists of a single curve lying in the plane (61).
The parametric equations for this quadratic curve, with  as the parameter, are given by (60),
(61) and (30c).

Using the identity X Y Z2 2 2 2+ + = , the conserved quantity Y2 2 2γ− can be repre-
sented as a function of X, Z and :

( )Y X Z2 2 2 . (62)2 2 2 2 2 2 2γ γ γ− = + −

Here X is expressible in terms of  using (60) and the coefficient 2 2γ− was introduced for the
later convenience.
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We choose (62) as Hamiltonʼs function and  as the canonical coordinate. The only term
in (62) that remains independent of , is Z2 2 2γ . Defining the momentum by Z2 γ= , the
Hamiltonʼs function (62) becomes

H U U
2

( ), 2
2

4
2 , (63)

2
2

2 4

2
2 2   ⎛

⎝⎜
⎞
⎠⎟γ

β β
σ γ= + =

+
− −

while the canonical equation Ḣ = ∂ ∂ reproduces equation (27). The conjugate equation
Ḣ = −∂ ∂ is then satisfied automatically, because of Ḣ 0= .

Thus, the motion along the quadratic curve 0ρ = is governed by a Hamiltonian system
with one degree of freedom.

6. Hamiltonian structure of straight-gradient dimer: ω2 < 0

6.1. ρ > 0: two-dimensional motion

Turning to the dimers with 02ω < , we continue to employ the first integral ρ as one of the
two canonical variables. This time, 2ρ is defined by (34) and equals CD4 ∣ ∣. Using the explicit
solution (33), one can form linear combinations

X Y s

X Y s

e
2 2

4

4
,

e
2 2

4

4
, (64)

2
2

3

2 4

2 3
3

2
1

3

2 4

2 3
3





β
ν

ρ
β

β β
γβ β
ν

β
ν

ρ
β

β β
γβ β
ν

+ = +
−

+
−

− = +
−

+
+

θ

θ

−

where we have introduced

s C s De 2 exp
2

, e 2 exp
2

. (65)1 2 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ ν

γ
ρ ν

γ
= = −θ θ−

Provided 0ρ > , either of these two equations defines a real θ which we adopt as the second
canonical variable.

Writing equations (65) in the form

s
C

s
D2

exp
2

2
,

2
exp

2

2
, (66)1 2

 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ

γθ ν
γ ρ

ν γθ
γ

= − = −

we note that since C, D, and ρ are time-independent, the argument of the exponentials in (66)
is a conserved quantity. Therefore

H 2 (67)γθ ν= − +

provides us with the second integral of motion for the system (26a). We will employ H as its
Hamilton function.

Proceeding to the construction of the momentum P =θ canonically conjugate to θ, we
note that the constancy of the difference 2ν γθ− together with the equation (27) yield

Zθ̇ ν= . Comparing this to the canonical equation (42), we conclude that the variable 
should be introduced so as to satisfy the rule (43)—as in section 5 where we considered the
case 02ω > .

When 2ω was considered positive, the rule (43), the decomposition (46), and the identity
X Y Z2 2 2 2+ + = were the only relations necessary to derive the representations (52),
(56), and (59) for the momentum  . Also used was the fact that x and Y were  -independent.
When 2ω is taken to be negative, equations (64) give
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Y
s se e

2

4
;

2

2 1 3
2

ν
β

ρ
γβ
ν

= − −
θ θ−

that is, Y remains to be  -independent. As for the x, we define it by

x
s s2

4

e e

22 4

1 2

β β
ρ=

+
+ +θ θ−

instead of (47). This preserves the validity of the decomposition (46)—and therefore, of the
representations (52), (56), and (59) for the momentum Pθ. As in the case 02ω > ,
equations (52), (56) and (59) pertain to σ∣ ∣ smaller, greater and equal to 1, respectively.

This completes the Hamiltonian formulation of the ( 0)2ω < -straight gradient dimer in
the part of the phase space with 0ρ > . As in the case of the ( 0)2ω > -subfamily, the
canonical equations are given by (53).

6.2. ρ ¼ 0: one-dimensional motion

It remains to consider the invariant manifold 0ρ = . The manifold is described by
equation (33) with C = 0 or D = 0 (supplemented by (30c) for the vertical coordinate).
Assume, for definiteness, that D = 0. Then C and  define a pair of curvilinear coordinates on
the manifold—which is, therefore, a two-dimensional surface. We will show that the coor-
dinate curve corresponding to each particular value of C, is a trajectory of a Hamiltonian
system with one degree of freedom.

Letting D = 0, equation (33) become

X C Y Cexp
2

2 2

4
, exp

2

4
.

(68)

3

2 4 2

3
2

  ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ν
γ

β
β β

ν
β

ν
γ

γβ
ν

= +
−

+
= − −

The second equation in (68) implies that

H Y
4

exp
2

3
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

γβ
ν

ν
γ

= + −

is a first integral of the system. We choose  as the canonical coordinate and appoint H as the
Hamiltonian: H H ( , ) = . Here  is the momentum canonically conjugate to  (still to be
introduced).

The momentum should be defined so that the canonical equation Ḣ = ∂ ∂ reproduce
the equation (27). The two equations coincide if

Z
Y1

2
exp

2
. (69) ⎛

⎝⎜
⎞
⎠⎟γ

ν
γ

= ∂
∂

−

Eliminating C between two equations in (68) we can express X as

X Y x, (70)2β
ν

= − +

where

x
2

4

4
(71)

2 4

2 3
3


β β

γβ β
ν

σ=
+

− −

is independent of Y. Assume, for definiteness, 02 4β β < . (The case 02 4β β > can be dealt with
in a similar way.) Substituting (69) and (70) in the identity X Y Z2 2 2 2+ + = , we obtain
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Y x
Y

r
4

, (72)
4

2
2

2
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ν
β

η+ + ∂
∂

=−

where

r x
16

exp ,
4 4

. (73)2
2

2 4
2

2

4

2
2

2

2 4

2 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟η

γ β β
ν

ν
γ

ν
β

ν
β β

= − = −

Since neither of x, η, or r depends on Y, (72) is a separable differential equation for Y ( ) . A
particular solution is Y r xsin( ) (4 )4

1η ν β= − − . This relation defines  :

r
Y x

1
arcsin

1

4
.

4


⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥η

ν
β

= +

Lastly, we write the Hamilton function in terms of the canonical variables:

H r x( , ) sin ( )
4

4
exp

2
,

4

3
2

   ⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟η ν

β
γβ
ν

ν
γ

= − + −

where the coefficients x ( ) , ( )η , and r ( ) are as in (71) and (73). The two-dimensional
manifold 0ρ = consists of trajectories of the Hamiltonian system Ḣ = ∂ ∂ ,

Ḣ = −∂ ∂ . Individual trajectories are only different in the value of H.

7. Singular straight-gradient dimer: ω2 ¼ 0

Finally we discuss the class of dimers with 02ω = . (We remind that ( 4 )2
2 2 4ω β β β= + .) The

straight-gradient dimer with 02β = is gauge-equivalent to a cross-gradient system with u and
v as canonical variables (section 3). Therefore it remains to consider the case 4 02 4β β+ =
with 02β ≠ only.

We start with uncovering the Hamiltonian structure of the singular dimer with an arbi-
trary coefficient 3β (subsection 7.1). In the special case where 03β = , the dimer admits an
alternative, coexisting, Hamiltonian formulation. This is considered in subsection 7.2.

7.1. General singular dimer: arbitrary value of β3

The general solution of equation (28) with 0ω = has the form

X Y X a
2 4 12

, (74 )2
0

2
2

2 2 3
2

3
0  β

γ
β
γ

β β
γ

= − + − +

Y Y b
1

2
, (74 )3 2

0 
γ

β
γ

= − + +

where X0 and Y0 are constants of integration. We define our first canonical variable by

y Y
1

2
. (75)3 2 

γ
β
γ

= + −

According to (74b), y is conserved: y Y0= . As in the nonsingular situation, the advantage of
using the first integral as a canonical coordinate is that the associated momentum Py drops out
of the dynamics.

Appointing  as the second canonical coordinate, we need to determine the expression
for the momentum P canonically conjugate to . To simplify the notation, we denote it  .
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Note that X is not an independent variable here; instead, X X y( , , ) = . Also note the
expression for the Y component of the Stokes vector:

Y y
1

2
. (76)3 2 

γ
β
γ

= − +

We define the Hamiltonian by

H X y
2 4 12

. (77)2 2
2

2 2 3
2

3  β
γ

β
γ

β β
γ

= + − +

The fact that H is a conserved quantity follows from equation (74a): H X0= . To identify the
momentum P  = , we compare the Hamilton equation

Ḣ = ∂
∂

to equation (27). Since H X ∂ ∂ = ∂ ∂ , this comparison yields

Z
X1

2
. (78)γ

= ∂
∂

Substituting (76) and (78) in the identity X Y Z2 2 2 2+ + = , we obtain an ordinary
differential equation for X ( ) :

X
X

r
1

4
, (79)2

2

2
2

⎜ ⎟⎛
⎝

⎞
⎠γ

+ ∂
∂

=

where we have introduced

r y y( , )
1

2
.2 3 2

2

   ⎛
⎝⎜

⎞
⎠⎟γ

β
γ

= − − +

Note that r is independent of  .
A particular solution of (79) is

X r sin(2 );γ=

then

Z r cos(2 ).γ=

These equations define the momentum P:

P
X

Z

1

2
arctan . (80) ⎜ ⎟⎛

⎝
⎞
⎠γ

= =

On the other hand, the momentum Py is defined by the canonical equation

P
H

y
˙ .y = −∂

∂

Since H P 0y∂ ∂ = , the right-hand side is independent of Py and the momentum is recovered
by a simple integration: P H y t( )dy ∫= − ∂ ∂ .

To complete the identification of the Hamiltonian structure of the singular dimer, we
express the Hamilton function in canonical variables:
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H y y y( , , )
2

1

2 6
sin(2 )

1

2
.2 3 2 2 3 2

2

        ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

β
γ γ

β
γ

γ
γ

β
γ

= − + + − − +

7.2. Special singular dimer: β3 ¼ 0

In this subsection, we consider a special subclass of singular dimers where 03β = is satisfied
along with 4 02 4β β+ = . Setting 03β = and using (74b) to eliminate Y0 from (74a), the
solution (74) becomes

X Y X Y Y
4 2

,
1

. (81)2
2

2 2
0 0  β

γ
β
γ γ

= − − + = − +

This time, we choose Hamiltonʼs function H to be a multiple of Y0:

H Y , (82)γ= − −

and define a canonical coordinate ρ as a quadratic combination of X and Y:

Y X4 . (83)2
2ρ β= −

Using (81), one readily verifies that ρ is a first integral: Y X42 0
2

0ρ β= − .
Appointing Y as the second canonical coordinate, the associated momentum PY =

should be introduced so as to satisfy the canonical equation Y H˙ = ∂ ∂ . The conjugate
equation H Ẏ = −∂ ∂ will then be satisfied automatically. Comparing Y H˙ = ∂ ∂ to (26b)
and making use of (82) gives

Z2 . (84)



∂
∂

=

With the help of equation (84), the identity Z X Y2 2 2 2 − = + becomes

r
1

4
, (85)2

2
2 

⎜ ⎟⎛
⎝

⎞
⎠− ∂

∂
=

where r stands for X Y2 2+ . Using (83), X can be expressed in terms of the independent
coordinates Y and ρ. This means that r is a function of Y and ρ—but does not depend on  :

( )r Y Y
1

16
.2

2
2 2 2β ρ= − +

Accordingly, equation (85) can be considered as a differential equation for ( )  .
A simple solution to this separable equation is

r acosh(2 ). (86 ) =

Equation (84) gives then

Z r bsinh(2 ). (86 )=

The relations (86) define the momentum: Zarctanh ( )1

2
 = .

Thus the singular dimer with 03β = and 4 02 4β β+ = is a Hamiltonian system with the
Hamilton function

( )H Y Y Y
cosh(2 )

4
16 ,2

2 2 2γ β ρ= − − − +

canonical coordinates ρ and Y, canonical momentum PY = defined by (86), and the
momentum Pρ recoverable from P H˙ ρ= −∂ ∂ρ . This Hamiltonian formulation coexists with
the formulation derived in the previous subsection.
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8. Nonlinearity-induced  -symmetry restoration

That some conservative systems have all their trajectories confined to a finite part of the phase
space, is a common knowledge. The harmonic oscillator provides a textbook example of this
behaviour.

Systems with balanced gain and loss may have a similar property. Assume, for instance,
that the amplitudes u and v in (13) and (21) are small. Then these  -symmetric dimers
reduce to a two-site linear Schrödinger equation:

u v u v u vi ˙ i , i ˙ i .γ γ+ = + = −

When γ is small, all solutions to this system are bounded but as γ exceeds the critical value of
1cγ = , generic initial conditions lead to solutions that grow exponentially (with the growth

rate 1 02λ γ= − > ). It is common to say that the  symmetry is spontaneously broken
in the domain cγ γ⩾ (where solutions blow up) and unbroken in the region cγ γ< (where all
trajectories are confined). The system is said to undergo the  -symmetry breaking transition
as γ is raised through cγ [11–13].

Adding nonlinear terms may bring about a variety of effects. Thus, the on-site non-
linearity of the standard dimer (7) promotes the blow-up. In this system, large enough initial
conditions trigger exponential growth regardless of the value of γ [33, 34]; furthermore, when

1γ ⩾ , all generic initial conditions blow up [34, 36]. In contrast, the nonlinear coupling of the
cross-gradient dimer (6) softens the symmetry-breaking transition. In this case stable bounded
solutions persist for arbitrarily large values of the gain–loss coefficient [17]. (A similar effect
is exhibited by couples of damped–antidamped anharmonic oscillators [38] and solitons in a
defocusing nonlinear trap with symmetrically distributed gain and loss [39]; hence the
nonlinear softening is a general phenomenon not limited to dimers.)

In what follows, we show that there are several classes of cross-gradient and straight-
gradient  -symmetric dimers that confine all their trajectories—regardless of the value of
the gain–loss parameter γ. In these cases the nonlinearity not just softens the symmetry-
breaking transition but suppresses it completely. The  -symmetry becomes spontaneously
restored.

The spontaneous symmetry restoration employs the same mechanism as the transition
softening—just in a more efficient way. The exponential growth of small initial conditions is
curbed by the nonlinear coupling which diverts increasingly large amounts of energy from the
gaining to the losing site. As a result, the blow-up is arrested and all trajectories remain
trapped in a finite part of the phase space. (Previously, a similar blow-up suppression was
observed in a damped-driven dimer without the  symmetry, namely, in the actively
coupled waveguide pair [34, 40].)

8.1. Cross-gradient dimer

We start with the family of the cross-gradient dimers (13). Each member of the family has two
independent constants of motion, X and H, where the Hamiltonian (12) has the following
expression in terms of the Stokes variables:

X XR Y Y
4 4

. (87)1
2 2

4
2

3
2 2H  ⎜ ⎟

⎛
⎝

⎞
⎠α α α α α γ= + + + + − −

Assume, first, that 02α ⩽ while 01
1

4 2α α+ ≠ . Noting that Y ∣ ∣ ⩽ , we obtain a lower bound
for H:
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( )X
X

X

4

1

2
1

4
4

1

4
. (88)1

2 3

1 2

2

4
2 2 3

2

2 1
H 

⎜ ⎟
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢⎢⎢⎢
⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥
⎛
⎝

⎞
⎠α

α α γ

α α
α α α γ

α α
⩾ − + − −

+
+ + −

− −
+

If 1α is greater than 1

4 2α∣ ∣, then, keeping in mind that X is a first integral, this inequality
implies that  is bounded from above by two constants of motion. That is, there exists an 0
such that t( ) 0 ⩽ for all t 0⩾ —the trajectory is trapped in a finite part of the phase space.

To find the Hamiltonianʼs lower bound in the situation where 02α > , we first write
equation (87) in the form

( )X
Y X

X1

2 4

2

4

1

4
.1

3

1

2
2

2

2
2

4
2 3

2

1

2

2
H  ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠α α

α
α γ

α
α α

α
α

γ
α

= + − + − + + −
−

−

This representation is valid if neither 1α nor 2α is zero. Assuming 02α > , this gives a lower
bound different from (88):

( )X
X

X1

2

1

4
.1

3

1

2

4
2 3

2

1

2

2
H ⎛

⎝⎜
⎞
⎠⎟α α

α
α

α
α

γ
α

⩾ + − + −
−

−

If, in addition, 01α > , this inequality implies that there is 0 such that t( ) 0 ⩽ for all
t 0⩾ .

If 02α < and 01α < , or if 02α ⩾ and 1
1

4 2α α< − , we can establish the boundedness of
t( ) by considering the lower bound for the integral H− instead of H.
In summary, trajectories of the cross-gradient dimer are confined if either (a) 1α and 2α

are both nonzero and have the same sign; (b) 1α and 2α are both nonzero and of the opposite
sign, with 42 1α α∣ ∣ < ∣ ∣; (c) 01α ≠ while 02α = .

8.2. Straight-gradient dimer

Similar analysis can be carried out for the straight-gradient dimer (21). Let, first, 02ω > and
assume that  → ∞ as t tends to infinity or approaches some finite value t0. Equation (30a)
gives

( )X O as .0  σ= − + → ∞

This is only consistent with the inequality X ∣ ∣ ⩽ if 1σ∣ ∣ ⩽ . Consequently, if 1σ∣ ∣ > , all
trajectories of the straight-gradient dimer have to be confined: t( ) 0 ⩽ with some finite

0 .
This conclusion is illustrated by the left column of figure 1 which shows the surface (31)

with 1σ∣ ∣ < , 1σ∣ ∣ > , and 1σ∣ ∣ = . The surface is only seen to be compact in the middle panel,
where 1σ∣ ∣ > .

Turning to the 02ω < subfamily and assuming  → ∞, equation (33a) indicates that
the coordinate X will grow exponentially in  if C is nonzero. This is clearly inconsistent
with X ∣ ∣ ⩽ . The only trajectories in (33a) that are consistent with this inequality, are those
with C = 0; here the growth becomes linear in  as  → ∞. However if 1σ∣ ∣ > , the slope of
the asymptote of X X ( )= will be greater than 1. This is, again, incompatible with X ∣ ∣ ⩽ .
Therefore in the case 1σ∣ ∣ > all trajectories have to be bounded: t( ) 0 ⩽ .

The surfaces (31) with 02ω < are plotted in figure 1, right column. As in the left column,
here we illustrated 1σ∣ ∣ < , 1σ∣ ∣ > , and 1σ∣ ∣ = . Only the surface with 1σ∣ ∣ > (middle panel)
is compact.
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It remains to consider the situation 02ω = which consists of two cases: (a) 02β = and
(b) 4 02 4β β+ = . In case (a), equations (28) yield

( )
X X Y

X
,

4 2

2 2
.0

2 4 0 3 2 β β
γ

β
γ

= =
+ −

+

As  → ∞, the expression for Y is only consistent with Y ∣ ∣ ⩽ if 03β = . Therefore if
03β ≠ , the trajectories have to be confined. This is in agreement with the fact that the

straight-gradient dimer with 02β = is gauge-equivalent to a cross-gradient dimer with

1
1

2 3α β= and 02α = , while the cross-gradient dimer with 02α = and 01α ≠ has been shown
to suppress the blowup (see the previous subsection).

Finally, we let 4 02 4β β+ = . To avoid the duplication of results of the previous para-
graph, we also require 02β ≠ . Assuming  → ∞, the exact solution (74) indicates that the X
component would have to grow cubically or quadratically in  if 03β ≠ or 03β = ,
respectively. However, neither cubic nor quadratic growth is consistent with the inequality
X ∣ ∣ ⩽ . Hence in the case where 4 02 4β β+ = but 02β ≠ , all trajectories have to be
bounded: t( ) 0 ⩽ .

To illustrate this conclusion geometrically, we depict the solution surface for the case
4 02 4β β+ = . Eliminating Y0 between (74a) and (74b) gives

X Y X
6 4 2

. (89)2 3
2

3 2
2

2 2
0  β β

γ
β
γ

β
γ

− + + =

For each X0, equation (89) describes a surface in the X Y Z( , , ) space which hosts a one-
parameter family of trajectories. If 03β ≠ and 02β ≠ , the surface is compact (figure 2(a)) so
all trajectories are confined to a finite part of the space.

When 03β = , the surface (89) with a sufficiently large γ ( 1

2
γ > ) is noncompact; yet the

self-trapping of trajectories can be illustrated in this case as well. To this end, we note that the
equation (74a) also defines a surface in the X Y Z( , , ) space. For the given X0 and Y0, this
surface hosts a single trajectory of the dimer. When 03β = (while 02β ≠ ), the surface (74a)
is compact—for any γ and any choice of X0 and Y0. This is illustrated in figure 2(b).

To summarize, trajectories of the straight-gradient dimer are confined if either (a)
( 4 ) 02 2 3β β β+ ≠ and 2 43 2 4β β β∣ ∣ > ∣ + ∣; (b) 02β = but 03β ≠ ; or (c) 4 02 4β β+ = but

02β ≠ .

9. A note on applications

The standard dimer (7) describes the coupling of a Kerr optical waveguide with loss to a twin
waveguide characterized by the optical gain of equal rate [2, 3, 10–13]. In the boson con-
densation context, the same pair of equations governs condensates in two identical potential
wells [4], with one well losing and the other one being fed with atoms [14, 15]. The cross-
gradient dimer (6) models the same potential-well geometry of the condensate, the difference
from the standard dimer being that this time u and v are the amplitudes of the symmetric and
antisymmetric state [5] rather than the amplitudes of the condensate in the left and right well.

The aim of this section is to emphasise that other nonlinear models in (13) and (21) are
not physically irrelevant either. In particular, these dimers furnish amplitude equations for
couples of oscillators with physically realistic nonlinearities. We exemplify this correspon-
dence by simple systems with the gain–loss balance of two different types.
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9.1. Two pendula with periodic coupling

The first system consists of two pendula with a periodically varied coupling:

x
x y

y
y x

d

d
sin ( ) 0,

d

d
sin ( ) 0. (90)

2

2

2

2τ
κ τ

τ
κ τ+ + = + + =

The coupling is assumed to be weak and varied at the frequency close to the double natural
frequency of each pendulum:

2 cos(2 ), 1 .2 2κ ϵ ωτ ω Ωϵ= = −

Here 2ϵ is a small parameter that sets the scale of the amplitude of the coupling modulation,
while the coefficient O (1)Ω = measures the detuning of the driving half-frequency from the
frequency of the linear oscillations.

This type of parametric driving can be easily realized experimentally. For example, the
pendula can be hung from a common horizontal rope, with a periodically varied rope tension.

Assuming that the pendula are performing small-amplitude librations, we expand x and y
in powers of ϵ:

x x x y y y..., ... .1
3

3 1
3

3ϵ ϵ ϵ ϵ= + + = + +

The coefficients of the expansion are allowed to depend on a hierarchy of time scales
Tn

nϵ ωτ= , n 0, 2 ,...= . . The times Tn become independent as 0ϵ → ; in this limit,
D Dd d ( ...)0

2
2τ ω ϵ= + + , where D Tn n= ∂ ∂ . We also develop xsin and ysin in powers of

their arguments.
Substituting these expansions in (90) and equating coefficients of like powers of ϵ, the

order 1ϵ yields

x A A y B Be *e , i e i *e ,T T T T
1

i i
1

i i0 0 0 0= + = −− −

where A and B are functions of T T, ,...2 4 —but not of T0. At the order 3ϵ we obtain a pair of
equations

Figure 2. (a) The surface (89) with 02 3β β ≠ . In this plot, 1γ = , 42β = , 13β = ,
14β = − , and X 30 = . Also shown are two trajectories of the system (26). (b) The

surface (74a) with 03β = . Here, 1γ = , 42β = , X 30 = andY 20 = . This surface carries
only one trajectory of the system (26) (depicted).
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( )

( )

( )

( )

D x D x D D x T y x

D y D y D D y T x y

1 2 2 2 cos 2
1

6
,

1 2 2 2 cos 2
1

6
.

0
2

3 0
2

1 0 2 1 0 1 1
3

0
2

3 0
2

1 0 2 1 0 1 1
3

Ω

Ω

+ = − − +

+ = − − +

Substituting for x1 and y1, and setting the secular term equal to zero we arrive at

D A A B A A

D B B A B B

2i 2 i *
1

2
0,

2i 2 i *
1

2
0. (91)

2
2

2
2

Ω

Ω

+ − − ∣ ∣ =

+ − − ∣ ∣ =

Assuming, for definiteness, 0Ω > and letting

( )A u v B u v2 ( ), 2 * * ,Ω Ω= + = −

equation (91) become

( )
( )

u v u u v u v v

v u v v u v u u

i ˙ i * 2 ,

i ˙ i * 2 , (92)

2 2 2

2 2 2

γ

γ

+ − = + ∣ ∣ + ∣ ∣

+ + = + ∣ ∣ + ∣ ∣

where we have introduced (2 ) 1γ Ω= − and the overdot indicates differentiation with respect to
t T2Ω= . The system (92) is nothing but the cross-gradient  -symmetric dimer (13) with

02 3α α= = and 1 4
1

2
α α= = .

9.2. Damped–antidamped oscillator couples

Another, unrelated, interpretation of equations (13) and (21) is that of amplitude equations for
a damped oscillator coupled to an oscillator with negative damping. (This time the coupling
coefficient is assumed to be constant.) Following the multiple-scale procedure of the previous
subsection, one can readily check that the cross-gradient dimer (13) governs the oscillation
amplitudes of the damped–antidamped pair

( ) ( )
( ) ( )

x x x y c x y x c x c y y

y y y x c y x y c y c x x

3 ,

3 . (93)

0
2 2

1
2

2
2

0
2 2

1
2

2
2

η κ

η κ

+ + + = + + +

− + + = + + +
ττ τ

ττ τ

Here 2κ ϵ= and 2η γϵ= are the coupling and the gain–loss coefficient (assumed small),
while the nonlinearity coefficients c0, c1 and c2 can be chosen arbitrarily. The dimer
parameters in (13) are expressible through the coefficients in (93): c1

3

2 2α = , c c32 1 2α = − ,

c33 0α = , and c4
1

2 1α = .
On the other hand, the straight-gradient dimer (21) serves as the amplitude system for the

oscillator couple

( ) ( )
( ) ( )

x x x y c x c y x c x y y

y y y x c y c x y c y x x

3 ,

3 .

1
2

2
2

0
2 2

1
2

2
2

0
2 2

η κ

η κ

+ + + = + + +

− + + = + + +
ττ τ

ττ τ

This time, the relation between the coefficients of the oscillators and the dimer parameters is
as follows: c1

3

2 1β = , c c32 2 1β = − , c33 0β = , and c4
1

2 2β = .
The damped–antidamped oscillator model has been employed to interpret experiments in

systems as diverse as a tied pair of magnetically kicked pendula [41], two connected optical
whispering galleries [16, 42], or a tandem of inductively coupled active LRC circuits—one
with amplification and the other one attenuated at an equal rate [43].
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10. Conclusions

The main results of this study can be summarized as follows.

(1) We have introduced a four-parameter ( , , ,1 2 3 4α α α α ) family of Hamiltonian -symmetric
dimers with a cross-gradient canonical structure, equation (13). The entire family was
shown to have an additional integral of motion, independent of the Hamiltonian; hence
each member of the family is Liouville integrable. All trajectories in these systems were
described analytically.

(2) We have considered a  -symmetric extension of a four-parameter ( , , ,1 2 3 4β β β β )
family of conservative dimers with the straight-gradient Hamiltonian structure,
equation (21). Unlike for the cross-gradient dimers, the original complex u v, variables
do not constitute canonical coordinates for the straight-gradient family (21)—except
when the straight-gradient dimer has a coexisting cross-gradient formulation. The three-
parameter ( , ,1 3 4β β β ) subfamily of straight-gradient dimers with 02β = was shown to
admit such an alternative cross-gradient representation.
We have identified canonical coordinates and momenta and uncovered the Hamiltonian
structure for the entire four-parameter family of the straight-gradient  -symmetric
dimers. By establishing that each member of the family has an additional integral of
motion, we have demonstrated that the entire family is Liouville integrable. All
trajectories of the straight-gradient  -symmetric dimers were described analytically.

(3) We have proved that the cross-gradient dimer with parameters 1,2α satisfying (a) 01 2α α > ;
or (b) 01 2α α < with 42 1α α∣ ∣ < ∣ ∣; or (c) 01α ≠ while 02α = —has all trajectories
bounded, irrespectively of the values of other parameters 3,4α or the gain–loss
coefficient γ.

(4) We have established that regardless of the value of 1β and the gain–loss coefficient γ, the
straight-gradient dimer with parameters satisfying (a) ( 4 ) 02 2 3β β β+ ≠ ,
2 43 2 4β β β∣ ∣ > ∣ + ∣; or (b) 02β = , 03β ≠ , with no constraints on 4β ; or (c)

4 02 4β β+ = , 02β ≠ , with no constraints on 3β —has all trajectories bounded.
(5) We have demonstrated that the amplitudes of libration of two coupled oscillators with on-

site nonlinearities, driven by the periodic variation of their coupling coefficient, satisfy a
 -symmetric cross-gradient dimer system. □

Thus, the principal mathematical conclusion is that the  -symmetric extensions of all
conservative nonlinear Schrödinger dimers remain completely integrable Hamiltonian sys-
tems. On the other hand, the principal physical upshot is that there are broad classes of
 -symmetric dimers that confine all their trajectories regardless of the value of the
gain–loss parameter γ. The  -symmetry, which is broken at the level of the underlying
linear equation, becomes spontaneously restored thanks to the nonlinear coupling.

The spontaneous  -symmetry restoration may find applications in integrated optics
where  -symmetric nonlinear Schrödinger dimers describe directional waveguide couplers.
A nonlinear coupler composed of one core with a certain amount of optical gain and another
one with an equal amount of loss switches the entire power to one waveguide [3]. In the
standard  dimer, this power switching is accompanied by an unbounded power growth in
one of the arms of the device—the growth not saturable by nonlinearity [12, 13, 23, 37]. In
contrast, no input can trigger an uncontrollable growth of optical modes in a dimer with the
nonlinearly-restored  symmetry. As a result, the  symmetry restoration may represent a
technological advantage.
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