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The stationary Gross–Pitaevskii equation in one dimension is considered with a
complex periodic potential satisfying the conditions of the PT (parity-time reversal)
symmetry. Under rather general assumptions on the potentials, we prove
bifurcations of PT -symmetric nonlinear bound states from the end points of a real
interval in the spectrum of the non-selfadjoint linear Schrödinger operator with a
complex PT -symmetric periodic potential. The nonlinear bound states are
approximated by the effective amplitude equation, which bears the form of the cubic
nonlinear Schrödinger equation. In addition, we provide sufficient conditions for the
appearance of complex spectral bands when the complex PT -symmetric potential
has an asymptotically small imaginary part.
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1. Introduction

We consider the stationary Gross–Pitaevskii (GP) equation

− d2u

dx2
+ V (x)u+ σ(x)|u|2u = ωu, x ∈ R (1.1)

with complex 2π-periodic potentials V and σ and with a real parameter ω. The
periodic potentials satisfy the conditions of the PT (parity-time reversal) symmetry
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172 T. Dohnal and D. Pelinovsky

given by

V (−x) = V (x), σ(−x) = σ(x), for all x ∈ R. (1.2)

Assumption 1.1. Assume V ∈ L∞
per(0, 2π) and σ ∈ Hs

per(0, 2π) with s > 1/2 satisfy
the PT -symmetry condition (1.2).

Consider the linear Schrödinger operator

L := − d2

dx2
+ V : H2(R) → L2(R), (1.3)

which is not self-adjoint if V is complex. Nevertheless, we assume the existence of
a real spectral interval in the spectrum of L and prove the existence of Hs(R)-
solutions (with s > 1/2) to the stationary GP equation (1.1) bifurcating from an
edge ω∗ ∈ R of the spectral interval. We call these solutions nonlinear bound states.
They correspond to standing waves ψ(x, t) = e−iωtu(x) of the t−dependent GP
equation

i∂tψ = −∂2
xψ + V (x)ψ + σ(x)|ψ|2ψ. (1.4)

The bifurcating solutions u are approximated via a slowly varying envelope ansatz.
In a generic case (non-vanishing second derivative of the spectral function at the
edge and non-vanishing coefficient in front of the cubic nonlinear term) the effective
envelope equation is a nonlinear Schrödinger equation with constant coefficients.

We work in the Sobolev space Hs(R) with s > 1/2 in order to enjoy the algebra
property and the embedding of Hs(R) to the space of bounded and continuous
functions decaying to zero at infinity. Besides the Banach fixed point theorem, the
main analytical tool in the justification of the effective amplitude equation is the
Bloch transformation B given formally by

ũ(x, k) = (Bu)(x, k) =
∑
n∈Z

u(x+ 2πn)e−ikx−2πink. (1.5)

The Bloch transformation was introduced by Gelfand [12] and was used in the
analysis of the Schrödinger operator L with a real periodic potential V [27]. With
B := (−1/2, 1/2] being the so-called Brillouin zone, the Bloch transform

B : Hs(R) → Xs := L2(B,Hs(0, 2π))

is an isomorphism for s � 0, see [27], with the inverse given by

u(x) = (B−1ũ)(x) =
∫

B

eikxũ(x, k)dk. (1.6)

As the norm in Xs, we choose

‖ũ‖Xs
=
(∫

B

‖ũ(·, k)‖2
Hs(0,2π)dk

)1/2

.
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Bifurcation of nonlinear bound states with PT -symmetry 173

Under the Bloch transform the linear Schrödinger operator (1.3) is represented
by the family of linear operators parameterized by k ∈ B and given by

L(k) := −
(

d
dx

+ ik
)2

+ V : H2(0, 2π) → L2(0, 2π). (1.7)

Consider the family of Bloch eigenvalue problems{
L(k)p(·, k) = ω(k)p(·, k),
p(x+ 2π, k) = p(x, k) for all x ∈ R,

(1.8)

under the normalization condition ‖p(·, k)‖L2(0,2π) = 1. In what follows, we denote
the eigenpairs of the Bloch eigenvalue problem (1.8) by (ωm(k), pm(x, k)), m ∈ N,
where the ordering can be done, for example, according to the real part of the
eigenvalues ωm(k) (including their multiplicity).

We assume the existence of a real spectral interval given by an eigenvalue family
{ωm(k)}k∈B of the periodic eigenvalue problem (1.8) for some m ∈ N. We also
assume that this interval is disjoint from the rest of the spectrum of L given by
(1.3) and that the end points of the spectral interval have a non-vanishing second
derivative of ωm. In summary, we pose the following.

Assumption 1.2. For some m ∈ N the eigenvalue family ωm is real with the spectral
interval

ωm(B) = [a, b] ⊂ R (1.9)

and with [a, b] separated from the rest of the spectrum ∪k∈Bσ(L(k)). Moreover, the
eigenvalue ωm(k) is simple for each k ∈ B. For an end point ω∗ ∈ {a, b}, we assume
that

ω′′
m(k0) �= 0, (1.10)

where k0 ∈ B is the preimage of ω∗ under the mapping ωm.

In Fig. 1, we plot the first (with respect to the real part) several eigenvalues of
the spectral problem (1.8) with

V (x) = 2 cos(x) + cos(2x) + iγ sin(2x)

for γ = 1 (a) and γ = 3/2 (b,c). They have been computed via a finite difference
discretization. For γ = 1 all the lower spectral intervals appear real while for γ = 3/2
a symmetry breaking has occurred where the two lowest eigenvalue functions have
collided and bifurcated into a complex conjugate pair. The third spectral function
remains real for γ = 3/2 and its image is the marked interval [a, b]. At ω = a, we
have k0 = 0 and at ω = b it is k0 = 1/2. The fourth and fifth spectral functions also
produce unstable eigenvalues in a small neighborhood of k = 0.

For real potentials V ∈ L∞
per((0, 2π),R), the eigenvalue family {ωm(k)}k∈B cannot

have an extremum for k /∈ {0, 1/2} due to the symmetry ωm(−k) = ωm(k), the
1−periodicity of ωm and the fact that the differential equation Lu = λu posed
for the Schrödinger operator (1.3) on the infinite line is of the second order [27].
Because the spectral interval [a, b] is isolated from the rest of the spectrum of L, the
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174 T. Dohnal and D. Pelinovsky

Figure 1. The smallest (with respect to the real part) several eigenvalues ωn(k) of the
spectral problem (1.8) with V (x) = 2 cos(x) + cos(2x) + iγ sin(2x), where γ = 1 in (a) and
γ = 3/2 in (b) and (c). Purely real eigenvalues are plotted with the full blue line, complex
eigenvalues are in dotted red. A real spectral interval [a, b] = ωm(B) is marked in both (a)
and (b).

eigenvalue family {ωm(k)}k∈B then must have an extremum at either k0 = 0 or k0 =
1/2 and due to the smoothness of simple eigenvalues with respect to parameters,
one has ω′

m(k0) = 0.
The extension of these properties to general non-self-adjoint operator L with

complex potentials V ∈ L∞
per(0, 2π) is not obvious. Nevertheless, for PT -symmetric

potentials, we show in § 2 that the reflection symmetry

ωm(−k) = ωm(k) for all k ∈ B, (1.11)

still holds for the eigenvalue family {ωm(k)}k∈B in assumption 1.2. The
1−periodicity and smoothness of ωm in k hold clearly as well. Finally, the possibil-
ity of an extremum of the eigenvalue family {ωm(k)}k∈B at k0 ∈ (0, 1/2) is excluded
by the same argument as in the case of real potentials. Indeed, if an extremum of
ωm exists at k0, it also occurs at −k0 by symmetry (1.11). Therefore, on one side
of the extremal value of ωm, we have four bounded linearly independent solutions
of the eigenvalue problem Lu = λu on the infinite line, which contradicts the fact
that the eigenvalue problem is given by a second-order differential equation. Hence,
if the spectral band [a, b] is isolated, then the eigenvalue family {ωm(k)}k∈B has an
extremum at either k0 = 0 or k0 = 1/2 and

ω′
m(k0) = 0 for k0 = 0 or k0 =

1
2
. (1.12)

For any eigenpair (ω(k), p(·, k)) of the spectral problem (1.8), the pair
(ω(k), q(·, k)) with q(x, k) := p(−x, k) for all x ∈ R is also an eigenpair of the
same eigenvalue problem. This can be seen by complex conjugating L(k)p(·, k) =
ω(k)p(·, k), [

−
(

d
dx

− ik
)2

+ V (x)

]
p(x, k) = ω(k) p(x, k),
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Bifurcation of nonlinear bound states with PT -symmetry 175

using the PT -symmetry (1.2), and transforming x→ −x,[
−
(

d
dx

+ ik
)2

+ V (x)

]
p(−x, k) = ω(k) p(−x, k),

hence L(k)q(·, k) = ω(k)q(·, k). If ω(k) ∈ R is simple for some k ∈ B, then p(·, k)
and q(·, k) are linearly dependent and, thanks to the normalization condition, the
eigenfunction p(·, k) can be chosen to satisfy the PT -symmetry condition,

p(−x, k) = p(x, k), for all x ∈ R. (1.13)

In what follows, we say that the solution u to the stationary GP equation (1.1)
is PT -symmetric if it satisfies the same PT -symmetry condition,

u(−x) = u(x), for all x ∈ R. (1.14)

We study the bifurcation of PT -symmetric solutions to the stationary GP
equation (1.1) from an endpoint ω∗ of the real interval [a, b] into a spectral gap.
Hence, we pick ω∗ ∈ {a, b} as in assumption 1.2 and set

ω = ω∗ + ε2Ω, (1.15)

where ε is a formal small parameter and Ω = −1 if ω∗ = a or Ω = +1 if ω∗ = b.
We prove in § 3 that, similar to the case of real potentials V and σ [8,9] (see also

a review in Chapter 2 in [25]), the family of nonlinear bound states in Hs(R) with
s > 1/2 bifurcating from ω∗ can be approximated via the slowly varying envelope
ansatz

u(x) ∼ uform(x) := εA(εx)eik0xpm(x, k0) as ε→ 0, (1.16)

where A ∈ HsA(R) with sA � 1 satisfies the effective amplitude equation given by
the stationary nonlinear Schrödinger (NLS) equation,

− 1
2
ω′′

m(k0)
d2A

dX2
+ Γ|A|2A = ΩA, (1.17)

with

Γ :=
∫ π

−π

σ(x)pm(x, k0)|pm(x, k0)|2pm(−x,−k0)dx. (1.18)

The coefficient Γ is real due to the PT -symmetry of σ and pm(·,±k0) in (1.2) and
(1.13).

If the effective equation (1.17) has a bound state, we may expect the same for the
GP equation (1.1). It follows from the elementary phase-plane analysis that bound
states of the stationary NLS equation (1.17) exist if and only if

Γ �= 0 and sign(Γ) = −sign(ω′′(k0)) = sign(Ω). (1.19)

Real even bound states A are unique and have an explicit sech-function form, see
lemma 6.15 in [11]. They belong to HsA(R) for every sA � 0. For the justification of
the effective equation, we need the invertibility of the linearization operator of the
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176 T. Dohnal and D. Pelinovsky

NLS equation at the bound state A. For this the translational and gauge invariances
of the differential equation (1.17) need to be eliminated, which is achieved if A
satisfies the PT -symmetry condition

A(−x) = A(x), for all x ∈ R. (1.20)

The following theorem justifies the effective amplitude equation (1.17) used for
the approximation (1.16) and constitutes the main result of this paper.

Theorem 1.3. Let 1/2 < s � 2 and 0 < r < 1/2 and assume assumptions 1.1 and
1.2. Let A ∈ HsA(R) be a PT -symmetric solution to the stationary NLS equation
(1.17) with sA � 1 satisfying (1.20). Then there are constants c > 0 and ε0 > 0
such that for each ε ∈ (0, ε0) there exists a PT -symmetric solution u ∈ Hs(R) of
the stationary GP equation (1.1) with ω = ω∗ + ε2Ω satisfying (1.14) and

‖u− uform‖Hs(R) � cεr+1/2,

where uform is defined in (1.16).

Remark 1.4. Condition (1.19) for the existence of NLS bound states implies that
the bifurcation is always into a spectral gap. At the lower spectral edge ω∗ = a,
where ω′′(k0) > 0, one has Ω < 0 and the bifurcation in ω is down from a; analo-
gously at the upper edge b, where ω′′(k0) < 0, one has Ω > 0 and the bifurcation
in ω is up from b.

Remark 1.5. Theorem 1.3 guarantees that the error u− uform is indeed smaller
than the approximation uform itself because ‖uform‖Hs(R) ∼ cε1/2 as ε→ 0 for an
ε-independent c.

Remark 1.6. The statement of theorem 1.3 can be generalized in a number of ways.
First, one can prove the existence of smoother solutions with s > 2 provided that
p(·, k0) belongs to Hs

per(0, 2π). This would require a smoother potential V than the
one in assumption 1.1. Second, the spectral interval [a, b] does not have to be real
entirely, as in assumption 1.2. For the justification result, it is sufficient that a little
segment of [a, b] near the end point ω∗ be real. Similarly, the simplicity assumption
of the eigenvalue ωm(k) has to be satisfied only near the end point that corresponds
to k = k0.

Remark 1.7. Assumption 1.2 is not satisfied for an arbitrary complex V . Proposi-
tions 4.2, 4.4 and 4.6 in § 4 give sufficient conditions for the occurrence of complex
spectral bands if V (x) = U(x) + iγW (x) with U even and W odd and with γ > 0
arbitrarily small. The sufficient conditions detect bifurcations of double eigenvalues
at γ = 0 into complex pairs of simple eigenvalues for γ > 0.

Remark 1.8. Recent interest in PT -symmetric periodic potentials is explained
by the experimental realization of such optical lattices in physical experiments
[13,20]. Several computational works were devoted to the existence and spectral
stability of standing waves in the GP equation with complex periodic potentials
[14,22,24] (see also the review in [19]). Persistence of real spectrum in honeycomb
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Bifurcation of nonlinear bound states with PT -symmetry 177

PT -symmetric potentials was studied in [5]. Small PT -symmetric perturbations
of honeycomb periodic potentials were considered in [6] and their effect on the
nonlinear dynamics of the GP equation was studied. A heuristic asymptotic method
was used in [23] to approximate the standing waves of the GP equation by sech-
solitons of the stationary NLS equation. Our work is the first one, to the best of
our knowledge, which gives a rigorous proof of the existence of nonlinear bound
states and their approximation by an effective equation for the bifurcation from an
edge of a real interval in the spectrum of a PT -symmetric non-selfadjoint linear
Schrödinger operator.

Remark 1.9. The bifurcation from simple eigenvalues is a more classical problem.
The bifurcation of nonlinear bound states from possibly complex eigenvalues of
non-selfadjoint Fredholm operators is covered in the pioneering works [4,15]. The
bifurcation of nonlinear bound states from simple real eigenvalues under an anti-
linear symmetry (which includes the PT -symmetry) has been shown for a large
class of nonlinear problems in [7]. Earlier, in [17] this bifurcation was proved for
the special case of a discrete NLS equation on a finite lattice. The main difference
between the bifurcation from a simple eigenvalue and from the edge of a spectral
interval is that in the former case the existence of the bifurcation is automatic due
to the separation of a simple eigenvalue from the rest of the spectrum while in the
latter case the edge is connected to the spectral band. In the case of simple eigenval-
ues, a bifurcation occurs even without symmetry assumptions and PT -symmetry
is used only to show that the nonlinear bound state corresponds to real eigenvalue
parameter. In the case of a spectral interval, the symmetry is crucial for proving
the bifurcation itself.

The rest of the paper is organized as follows. Section 2 covers the technical
results associated with the adjoint eigenvalue problem and with the Bloch trans-
form. Section 3 gives a proof of Theorem 1.3. Section 4 reports results based on
perturbation theory which give sufficient conditions on when assumption 1.2 is not
satisfied.

2. The adjoint eigenvalue problem and the Bloch transform revisited

Since the spectral problem (1.8) is not self-adjoint in the presence of complex peri-
odic potentials, we also introduce the adjoint eigenvalue problem. By the Fredholm
theory (see remark 6.23 in Chapter III.6.6 [16]), eigenvalues of the adjoint operator
L∗(k) are related to the eigenvalues of the operator L(k) by complex conjugation.
The adjoint eigenvalue problem is written by{

L∗(k)p∗(·, k) = ω(k)p∗(·, k),
p∗(x+ 2π, k) = p∗(x, k) for all x ∈ R,

(2.1)

where

L∗(k) := −
(

d
dx

+ ik
)2

+ V : H2(0, 2π) → L2(0, 2π) (2.2)

is the adjoint operator and p∗(·, k) is the adjoint eigenfunction.
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If ω(k) is a simple eigenvalue of the spectral problem (1.8), then ω(k) is a simple
eigenvalue of the adjoint spectral problem (2.1) and the adjoint eigenfunction can be
uniquely normalized by 〈p∗(·, k), p(·, k)〉 = 1. Indeed, if ω(k) is a simple eigenvalue,
then 〈p∗(·, k), p(·, k)〉 = 0 leads to a contradiction. In detail, if 〈p∗(·, k), p(·, k)〉 = 0,
then we have

p(·, k) ∈ Ker(L(k) − ω(k)) ∩ Ran(L(k) − ω(k)).

Therefore, there exists ϕ ∈ H2(0, 2π) \ {0} such that (L(k) − ω(k))ϕ = p(·, k). At
the same time, ω(k) being simple implies

Ker(L(k) − ω(k))2 = Ker(L(k) − ω(k)),

so that ϕ = cp(·, k) with c ∈ R, which contradicts equation (L(k) − ω(k))ϕ = p(·, k).
Thus, 〈p∗(·, k), p(·, k)〉 �= 0, and the normalization 〈p∗(·, k), p(·, k)〉 = 1 can be used.

In the case of simple eigenvalues, the eigenpair (ω(k), p(·, k)) of the spectral
problem (1.8) and the eigenpair (ω(k), p∗(·, k)) of the adjoint problem (2.1) are
related via

ω(k) = ω(−k), p∗(x, k) = p(−x,−k). (2.3)

This follows from the PT -symmetry of V in (1.2) such that after the transformation
x→ −x and k → −k, the adjoint problem L∗(k)p∗(·, k) = ω(k)p∗(·, k) becomes[

−
(

d
dx

+ ik
)2

+ V (x)

]
p∗(−x,−k) = ω(−k)p∗(−x,−k),

which coincides with the spectral problem (1.8). As a result of the symmetry
reflection (2.3), we obtain

ω(−k) = ω(k) for all k ∈ B, (2.4)

for every simple real eigenvalue family {ω(k)}k∈B. In addition, the eigenvalue fam-
ily can be continued as a 1-periodic function of k on R. This symmetry and the
k−smoothness of simple eigenvalues ω(k) justify (1.11) and (1.12) claimed in § 1.

Before we proceed with the proof of Theorem 1.3, let us also elaborate properties
of the Bloch transform defined by (1.5) and (1.6). Let û be the standard Fourier
transform of u given by

û(ξ) = (Fu)(ξ) =
1
2π

∫
R

u(x)e−iξxdx, u(x) = (F−1û)(x) =
∫

R

û(ξ)eiξxdξ.

Then, the Bloch transform (1.5) can also be related to the Fourier transform as
follows:

ũ(x, k) =
∑
j∈Z

eijxû(k + j), (2.5)

see [2] or § 2.1.2 in [25].
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Bifurcation of nonlinear bound states with PT -symmetry 179

By the construction of ũ in the definition of the Bloch transform in (1.5), we have
the continuation property for all x ∈ R and k ∈ R:

ũ(x+ 2π, k) = ũ(x, k) and ũ(x, k + 1) = e−ixũ(x, k). (2.6)

For two functions u, v ∈ Hs(R) with s > 1/2, the product uv is also in Hs(R),
thanks to the Banach algebra of Hs(R) with respect to the pointwise multiplication
[1, Thm.4.39]. In the Bloch space the multiplication operator is conjugate to the
convolution operator:

(B(uv))(x, k) = (ũ ∗B ṽ)(x, k) :=
∫

B

ũ(x, k − l)ṽ(x, l)dl =
∫

B+k0

ũ(x, k − l)ṽ(x, l)dl

for any k0 ∈ R, where the last equality holds due to the 1−quasi-periodicity of the
Bloch transform in the variable k. The convolution property follows from relation
(2.5). Note that due to the algebra property of Hs(R) for s > 1/2 and the above
identity, we have also the algebra property

‖ũ ∗B ṽ‖Xs
� c‖ũ‖Xs

‖ṽ‖Xs
for any ũ, ṽ ∈ Xs if s > 1/2, (2.7)

where the constant c > 0 depends on s.
Finally, for any 2π-periodic and bounded function σ, we have the property

(B(σu))(x, k) = σ(x)(Bu)(x, k) for all x ∈ R and k ∈ R. (2.8)

The commutativity property follows directly from the representation (1.5).

3. Nonlinear estimates; proof of Theorem 1.3

Problem (1.1) transforms via the Bloch transform B to the form

(L(k) − ω)ũ(x, k) + σ(x)(ũ ∗B ũ ∗B ũ)(x, k) = 0, (3.1)

where property (2.8) has been used.
We decompose ũ into the part corresponding to the spectral band ωm and the

rest. Note that we cannot use a full spectral decomposition of ũ(·, k) as this is
not available for non-selfadjoint problems. For our decomposition, we define the
projections

Pk : Hs(0, 2π) → span{pm(·, k)}

and

Qk = I − Pk : Hs(0, 2π) → span{p∗m(·, k)}⊥

with m ∈ N fixed by assumption 1.2, such that (Pkũ)(·, k) := 〈ũ(·, k), p∗m(·, k)〉
pm(·, k), where 〈·, ·〉 is the standard L2(0, 2π)−inner product. Decomposing now
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180 T. Dohnal and D. Pelinovsky

the solution into

ũ(x, k) = ũ1(x, k) + ũ2(x, k),

where

ũ1(·, k) =Pkũ(·, k) = U1(k)pm(·, k) with U1(k) ∈ C,

ũ2(·, k) =Qkũ(·, k),

and using ω = ω∗ + ε2Ω as is given by (1.15), equation (3.1) is written as a system
of two equations given by

(ωm(k) − ω∗ − ε2Ω)U1(k) + 〈F (ũ)(·, k), p∗m(·, k)〉 = 0 (3.2)

and

Qk(L(k) − ω∗ − ε2Ω)Qkũ2(x, k) +QkF (ũ1) +Qk(F (ũ) − F (ũ1)) = 0, (3.3)

where F (ṽ)(x, k) := σ(x)(ṽ ∗B ṽ ∗B ṽ)(x, k). We note that U1 is 1-periodic because
ũ(x, ·) and p(x, ·) are 1-quasiperiodic.

Since QkF (ũ1) in (3.3) produces a large output, we need to perform a near-
identity transformation before we can proceed with the nonlinear estimates. See
the pioneering work [18] that explains this procedure. We hence decompose ũ2 into

ũ2(x, k) = ũ2,1(x, k) + ũR(x, k),

where ũ2,1 and ũR solve equations

Qk(L(k) − ω∗ − ε2Ω)Qkũ2,1(x, k) +QkF (ũ1) = 0 (3.4)

and

Qk(L(k) − ω∗ − ε2Ω)QkũR(x, k) +Qk(F (ũ) − F (ũ1)) = 0. (3.5)

The resulting system of equations is given by (3.2), (3.4) and (3.5).
The component ũ1 is supposed to approximately recover the Bloch transform of

the formal ansatz (1.16). Note that because F(A(ε·)eik0·)(k) = ε−1Â(ε−1(k − k0)),
we have

B(uform)(x, k) =
∑
j∈Z

Â

(
k − k0 + j

ε

)
pm(x, k0)eijx, (3.6)

where we have used properties (2.5) and (2.8). Since Â(ε−1(k − k0)) is concentrated
near k = k0, we decompose U1 on B + k0 into a part compactly supported near k0
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and the rest. We write

U1(k) = D̂
(

k−k0
ε

)
:= B̂

(
k−k0

ε

)
+ Ĉ

(
k−k0

ε

)
, k ∈ B + k0, (3.7)

and continue U1 outside B + k0 periodically with period one. For all ε small enough
the components B̂ and Ĉ are defined by their support

supp
(
B̂
( ·−k0

ε

))
⊂ (k0 − εr, k0 + εr),

supp
(
Ĉ
( ·−k0

ε

))
⊂ (k0 + B) \ (k0 − εr, k0 + εr),

where r ∈ (0, 1) is a parameter to be specified to suit the nonlinear estimates.
Equivalently, defining

Iεr−1 := (−εr−1, εr−1),

we have supp(B̂) ⊂ Iεr−1 and supp(Ĉ) ⊂ ε−1B \ Iεr−1 . We note that neither B̂, Ĉ,
nor D̂ refer to the Fourier transform, since they are defined in the Bloch space.
On the other hand, Â denotes the Fourier transform of the amplitude variable A
that satisfies the effective amplitude equation (1.17). In the Fourier variable κ the
amplitude Â satisfies the effective amplitude equation in the form(

1
2
ω′′

m(k0)κ2 − Ω
)
Â(κ) + Γ

(
Â ∗ Â ∗ Â

)
(κ) = 0. (3.8)

We aim at constructing a solution ũ with B̂ close to Â on Iεr−1 and with the other
components Ĉ, ũ2,1 and ũR being small corrections. Hence, due to (3.6) ansatz (3.7)
corresponds formally to the slowly varying envelope ansatz (1.16).

Obviously, system (3.2), (3.4) and (3.5) is coupled in the components B̂, Ĉ, ũ2,1

and ũR. Nevertheless, it can be approached by treating each problem independently
with consistent assumptions on the form and size of the remaining components. In
brief, our steps to construct such a solution ũ ∈ Xs of (3.1), that is, of the original
equation in the Bloch space, are as follows:

(1) For any given ũ1 small, solve (3.4) uniquely to produce a small ũ2,1 due to
the invertibility of Qk(L(k) − ω∗ − ε2Ω)Qk in QkXs for ε small enough.

(2) For any given ũ1 small, apply the Banach fixed point theorem to (3.5) in a
neigbourhood of zero to find a small solution ũR.

(3) For any given B̂ decaying sufficiently fast, apply the Banach fixed point
theorem to (3.2) on the support of Ĉ to find a small Ĉ.

(4) Prove the existence of such solutions B̂ to equation (3.2) (with the component
Ĉ given by step 3) on the support of B̂ that are close to a solution Â of
equation (3.8). It is in this step where a restriction to the PT -symmetric
solutions is necessary. It allows for the invertibility of the Jacobian operator
at Â associated with equation (3.8).

The rest of this section explains the details of each step in the justification analysis.
We denote a generic, positive, ε-independent constant by c. It may change from one
line to another line. We also restrict our work to the space Xs with 1/2 < s � 2.
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3.1. Preliminary estimates

We assume that for all ε > 0 sufficiently small

‖B̂‖L2
sB

(R) + ‖Ĉ‖L2
sC

(R) � c, (3.9)

where sB , sC � 0 are to be determined later and the space L2
s(R) for s � 0 is

L2
s(R) := {f ∈ L2(R) : ‖f‖L2

s(R) := ‖(1 + | · |)sf‖L2(R) <∞}.

We estimate first ‖ũ1‖Xs
. Since pm(·, k) ∈ H2(0, 2π) in the domain of L(k) given

by (1.7), there is a positive constant c such that for all ε > 0 sufficiently small and
any 1/2 < s � 2, we have

‖ũ1‖Xs
� sup

k∈B

‖pm(·, k)‖H2(0,2π)

∥∥∥∥D̂
(
· − k0

ε

)∥∥∥∥
L2(B)

� cε1/2‖D̂‖L2(ε−1B). (3.10)

Next, let us consider the Xs−norm of F (ũ1) given by

F (ũ1) = σ(x)
∫

B

∫
B

U1(k − l)U1(l − t)U1(−t)pm(x, k − l)pm(x, l − t)pm(x,−t)dtdl,

which appears in equations (3.4) and (3.5). By assumption 1.1, we get

‖F (ũ1)‖Xs
�‖σ‖Hs(0,2π) sup

k∈B

‖pm(·, k)‖3
H2(0,2π)‖U1 ∗B U1 ∗B U1(−·)‖L2(B)

�c‖U1 ∗B U1 ∗B U1(−·)‖L2(B).

Next, we estimate

‖U1 ∗B U1 ∗B U1(−·)‖L2(B) = ε5/2‖B̂ ∗ B̂ ∗ B̂‖L2(−3εr−1,3εr−1) + ‖E‖L2(B+k0),

where

E := 2W1 ∗B B̂

(
· − k0

ε

)
∗B B̂

(
· + k0

ε

)
+ B̂

(
· − k0

ε

)
∗B B̂

(
· − k0

ε

)
∗B W1(−·)

+ h.o.t. (3.11)

with

W1(k) =

⎧⎨
⎩Ĉ

(
k − k0

ε

)
, k − k0 ∈ B

U1(k), k − k0 ∈ R \ B

and with ‘h.o.t.’ containing the remaining convolution terms, that is, those
quadratic and cubic in W1. A direct calculation yields(

W1 ∗B B̂

( · − k0

ε

)
∗B B̂

( · + k0

ε

))
(k)

=
∑

n∈{−1,0,1}

∫
|l|<2εr

|k−l−k0−n|<1/2

∫
(−k0−εr,−k0+εr)∩B

× Ĉ

(
k − l − k0 − n

ε

)
B̂

(
l − t − k0

ε

)
B̂

(
t + k0

ε

)
dtdl,
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such that∥∥∥∥W1 ∗B B̂

(
· − k0

ε

)
∗B B̂

(
· + k0

ε

)∥∥∥∥
L2(B+k0)

� cε5/2‖Ĉ‖L2(R)‖B̂‖2
L1(R),

where we have used Young’s inequality for convolutions. Next, we use the estimate

‖B̂‖L1(R) =
∫

R

(1 + |κ|)−sB (1 + |κ|)sB |B̂|dκ � c‖B̂‖L2
sB

(R), (3.12)

which holds for any sB > 1/2 because
∫

R
(1 + |κ|)−2sB dk <∞ for sB > 1/2.

Besides, due to the support of Ĉ, we have

‖Ĉ‖L2(R) � sup
|κ|>εr−1

(1 + |κ|)−sC‖Ĉ‖L2
sC

(R) � cεsC(1−r)‖Ĉ‖L2
sC

(R) (3.13)

for any sC > 0. With (3.12) and (3.13), we obtain∥∥∥∥W1 ∗B B̂

(
· − k0

ε

)
∗B B̂

(
· + k0

ε

)∥∥∥∥
L2(B+k0)

� cε5/2+sC(1−r)‖Ĉ‖L2
sC

(R)‖B̂‖2
L2

sB
(R)

for any sB > 1/2 and sC > 0. Using similar computations for the higher-order terms
in (3.11) with the use of the estimate (3.12) for Ĉ, we obtain

‖E‖L2(B+k0) � cε5/2+sC(1−r)‖Ĉ‖L2
sC

(R)

(
‖B̂‖L2

sB
(R) + ‖Ĉ‖L2

sC
(R)

)2

, (3.14)

for any sB > 1/2 and sC > 1/2. By using the estimate

‖B̂ ∗ B̂ ∗ B̂‖L2(−3εr−1,3εr−1) � ‖B̂‖L2(R)‖B̂‖2
L1(R) � c‖B̂‖3

L2
sB

,

which follows from Young’s inequality and estimate (3.12), we arrive at

‖F (ũ1)‖Xs
� cε5/2

(
‖B̂‖L2

sB
(R) + ‖Ĉ‖L2

sC
(R)

)3

(3.15)

for any sB > 1/2 and sC > 1/2.

3.2. Component ũ2,1

We solve now equation (3.4) for ũ2,1 under assumption (3.9). Recall that the
operator

Mk := Qk(L(k) − ω∗ − ε2Ω)Qk, (3.16)

is invertible in QkXs with a bounded inverse. Thanks to estimate (3.15) there exists
a unique solution ũ2,1 of (3.4) which satisfies

‖ũ2,1‖Xs
� Pε5/2, (3.17)

where P depends polynomially on ‖B̂‖L2
sB

(R) and ‖Ĉ‖L2
sC

(R).
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184 T. Dohnal and D. Pelinovsky

3.3. Component ũR

Next, we solve equation (3.5) for ũR via a Banach fixed point argument with ũ1

satisfying (3.9) and ũ2,1 given as above. We write

ũR = M−1
k Qk (F (ũ1) − F (ũ1 + ũ2,1 + ũR)) =: G(ũR) (3.18)

We show the contraction property of G in

BXs

Kεη := {f ∈ Xs : ‖f‖Xs
� Kεη}

for some K > 0 and η > 0 to be determined. First, using (2.7), we estimate

‖G(ũR)‖Xs
�c[‖ũ1‖2

Xs
(‖ũ2,1‖Xs

+ ‖ũR‖Xs
) + ‖ũ2,1‖2

Xs
(‖ũ1‖Xs

+ ‖ũR‖Xs
)

+ ‖ũR‖2
Xs

(‖ũ2,1‖Xs
+ ‖ũ1‖Xs

) + ‖ũ1‖Xs
‖ũ2,1‖Xs

‖ũR‖Xs

+ ‖ũ2,1‖3
Xs

+ ‖ũR‖3
Xs

].

Together with (3.10) and (3.17), we obtain for ũR ∈ BXs

Kεη

‖G(ũR)‖Xs
� P (ε7/2 + εη+1 + ε2η+1/2 + ε3η), (3.19)

where P depends polynomially on ‖B̂‖L2
sB

(R) and ‖Ĉ‖L2
sC

(R). Clearly, if 5/2 � η �
7/2, then G : BXs

Kεη → BXs

Kεη and

‖G(ũR)‖Xs
� Kε7/2, (3.20)

with K dependent on ‖B̂‖L2
sB

(R) and ‖Ĉ‖L2
sC

(R). We set η = 7/2 for a balance.
For the contraction estimate, we consider ũ := ũ1 + ũ2,1 + ũR and ṽ := ũ1 +

ũ2,1 + ṽR. A straightforward calculation leads to

‖G(ũR) −G(ṽR)‖Xs
�P (‖ũ1‖2

Xs
+ ‖ũ2,1‖2

Xs
+ ‖ũR‖2

Xs
+ ‖ṽR‖2

Xs
)‖ũR − ṽR‖Xs

�εP‖ũR − ṽR‖Xs
,

such that the contraction holds for ε > 0 small enough.
By the Banach fixed-point theorem, there exists a unique solution to equation

(3.18) for ũR, which satisfies the estimate

‖ũR‖Xs
� Kε7/2, (3.21)

where K depends polynomially on ‖B̂‖L2
sB

(R) and ‖Ĉ‖L2
sC

(R).
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3.4. Component Ĉ

Equation (3.2) on the compact support of Ĉ can be rewritten as

Ĉ

(
k − k0

ε

)
= (ω∗ + ε2Ω − ωm(k))−1(1 − χ(−εr,εr)(k − k0))〈F (ũ)(·, k), p∗m(·, k)〉

(3.22)
with k − k0 ∈ B \ (−εr, εr). Recall the decomposition ũ1(x, k) = ũ1,B(x, k) +
ũ1,C(x, k), where for k − k0 ∈ B, we have

ũ1,B(x, k) = B̂

(
k − k0

ε

)
pm(x, k), ũ1,C(x, k) = Ĉ

(
k − k0

ε

)
pm(x, k).

Equation (3.22) can be rewritten in the form

ũ1,C(x, k) = H(ũ1,C)(x, k), k − k0 ∈ B \ (−εr, εr), (3.23)

where

H(ũ1,C)(x, k) : = ν(k)(1 − χ(−εr,εr)(k − k0))[h−1(k)〈h(k)F (ũ1,B)(·, k), p∗m(·, k)〉
+ 〈(F (ũ) − F (ũ1,B))(·, k), p∗m(·, k)〉]pm(x, k),

with ν(k) := (ω∗ + ε2Ω − ωm(k))−1 and h(k) := (1 + ε−1|k − k0|)sB for some sB >
1/2 to be determined. We note that

sup
k−k0∈B\(−εr,εr)

ν(k) = cε−2r and sup
k−k0∈B\(−εr,εr)

h−1(k) = cε(1−r)sB .

The first term in H(ũ1,C) denoted as T1 is estimated as follows

‖T1‖Xs
� cε(1−r)sB−2r‖hF (ũ1,B)‖Xs

� cε(1−r)sB−2r
∥∥∥∥hB̂

( · − k0

ε

)
∗B B̂

( · − k0

ε

)
∗B B̂

( · + k0

ε

)∥∥∥∥
L2(k0−3εr,k0+3εr)

� cε5/2+(1−r)sB−2r
∥∥∥B̂ ∗ B̂ ∗ B̂

∥∥∥
L2

sB
(−3εr−1,3εr−1)

� cε5/2+(1−r)sB−2r‖B̂‖3
L2

sB
(−3εr−1,3εr−1),

if sB > 1/2. The last inequality follows from B̂ ∗ B̂ ∗ ˆ̄B = |̂B|2B, the fact that the
Fourier transform F is an isomorphism F : Hs(R) → L2

s(R) for any s � 0 and from
the algebra property of Hs for s > 1/2.

The second term in H(ũ1,C), denoted as T2, is estimated with the help of the
algebra property (2.7) of Xs for s > 1/2,

‖T2‖Xs
� cε−2r[‖ũ1,C‖3

Xs
+ ‖ũ1,C‖2

Xs
(‖ũ1,B‖Xs

+ ‖ũ2‖Xs
)

+ ‖ũ1,C‖Xs
(‖ũ1,B‖2

Xs
+ ‖ũ2‖2

Xs
) + ‖ũ1,B‖2

Xs
‖ũ2‖Xs

+ ‖ũ1,B‖Xs
‖ũ2‖2

Xs
+ ‖ũ2‖3

Xs
].

We have the equivalence

c1ε
1/2‖B̂‖L2(ε−1B) � ‖ũ1,B‖Xs

� c2ε
1/2‖B̂‖L2(ε−1B) (3.24)
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and

c1ε
1/2‖Ĉ‖L2(ε−1B) � ‖ũ1,C‖Xs

� c2ε
1/2‖Ĉ‖L2(ε−1B) (3.25)

for some c1, c2 > 0. Using (3.17) and (3.21), we further have

‖ũ2‖Xs
� Kε5/2,

where K depends polynomially on ‖B̂‖L2
sB

and ‖Ĉ‖L2
sC

. As a result, we obtain

‖T2‖Xs
� ρε−2r(‖ũ1,C‖3

Xs
+ ε1/2‖ũ1,C‖2

Xs
+ ε‖ũ1,C‖Xs

+ ε7/2) + h.o.t.,

where ρ depends on ‖B̂‖L2
sB

only, ρ = O(1) as ε→ 0, and where h.o.t. includes
terms of higher order in ε or higher powers of ‖ũ1,C‖Xs

.
Combining the estimates for T1 and T2, we obtain

‖H(ũ1,C)‖Xs
�ρ(ε5/2+(1−r)sB−2r + ε7/2−2r + ε1−2r‖ũ1,C‖Xs

+ ε1/2−2r‖ũ1,C‖2
Xs

+ ε−2r‖ũ1,C‖3
Xs

) + h.o.t.

Similarly, one gets

‖H(ũ1,C) −H(ṽ1,C)‖Xs
�ρ
(
ε1−2r + ε1/2−2r(‖ũ1,C‖Xs

+ ‖ṽ1,C‖Xs

)
+ ε−2r(‖ũ1,C‖2

Xs
+ ‖ṽ1,C‖2

Xs
))‖ũ1,C − ṽ1,C‖Xs

.

Thus, the contraction holds for ũ1C
in the ball

‖ũ1C
‖Xs

� ρ(ε5/2+(1−r)sB−2r + ε7/2−2r) (3.26)

if r ∈ (0, 1/2) and if ε > 0 is small enough. By the Banach fixed-point theorem,
there exists a unique ũ1C

satisfying equation (3.23) and the bound (3.26).
We also get an estimate for ‖Ĉ‖L2(ε−1B) by using (3.25),

‖Ĉ‖L2(ε−1B) � ρ(ε2+(1−r)sB−2r + ε3−2r), (3.27)

and an estimate of ‖Ĉ‖L2
sC

(ε−1B) by using

‖Ĉ‖L2
sC

(ε−1B) � sup
|κ|< 1

2ε

(1 + |κ|)sC‖Ĉ‖L2(ε−1B) � ρ(ε2+(1−r)sB−2r−sC + ε3−2r−sC ),

(3.28)
where ρ in both estimates (3.27) and (3.28) depends polynomially on ‖B̂‖L2

sB
.

3.5. Component B̂

Finally, we turn to the leading order component B̂((k − k0)/(ε))pm(x, k) of the
solution ũ(x, k) and prove the existence of B̂ close to Â, a solution of the effective
amplitude equation (3.8).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2018.83
Downloaded from https://www.cambridge.org/core. McMaster Health Sciences Library, on 20 May 2020 at 19:53:55, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2018.83
https://www.cambridge.org/core


Bifurcation of nonlinear bound states with PT -symmetry 187

Equation (3.2) on the compact support of B̂ can be rewritten as

(ωm(k) − ω∗ − ε2Ω)B̂
(
k − k0

ε

)
+ χ(−εr,εr)(k − k0)〈F (ũ)(·, k), p∗m(·, k)〉 = 0

(3.29)

with k − k0 ∈ (−εr, εr). Once again, we use a fixed point argument to solve for B̂.
In order to close the procedure for constructing ũ, we need the constants in all
estimates to depend only on norms of B̂ and not on norms of Ĉ. As all constants
are polynomials in ‖B̂‖L2

sB
and ‖Ĉ‖L2

sC
, we can employ (3.28) to get rid of the

dependence on ‖Ĉ‖L2
sC

. We need to ensure, however,

min{2 + (1 − r)sB − 2r − sC , 3 − 2r − sC} > 0.

Hence, sC > 1/2 is further restricted by

sC < min{2 + (1 − r)sB − 2r, 3 − 2r}.

Since r < 1/2 and sB > 1/2, we can choose sC = 1 > 1/2 to satisfy this restriction.
As we show below, the reduced bifurcation equation (3.29) is a perturbation of

equation (3.8). To this end, we expand the band function satisfying assumption 1.2
by

ωm(k) = ω∗ +
1
2
ω′′

m(k0)(k − k0)2 + ωr(k),

where the remainder term satisfies the cubic estimate

|ωr(k)| � c|k − k0|3 for all k ∈ B + k0. (3.30)

By substituting this decomposition into equation (3.29), we can rewrite the problem
for B̂ in the form

(
1
2
ω′′

m(k0)
(
k − k0

ε

)2

− Ω

)
B̂

(
k − k0

ε

)

+ ε−2χ(−εr,εr)(k − k0)〈F (ũ1)(·, k), p∗m(·, k)〉

+ ε−2χ(−εr,εr)(k − k0)
[
〈(F (ũ) − F (ũ1))(·, k), p∗m(·, k)〉

− ωr(k)B̂
(
k − k0

ε

)]
= 0. (3.31)

The second term in equation (3.31) recovers the nonlinearity coefficient in equation
(3.8). Indeed, when we isolate the B̂-component in U1 and approximate all Bloch
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188 T. Dohnal and D. Pelinovsky

waves by those at k = k0, we get

〈F (ũ1)(·, k), p∗m(·, k)〉 = Γ
(
B̂

(
· − k0

ε

)
∗B B̂

(
· − k0

ε

)
∗B B̂

(
· + k0

ε

))
(k)

+ ΓE(k) +H(k),

where Γ is given by (1.18), E(k) is given in (3.11), and

H(k) :=
∫

B

∫
B

(β(k, k − l, l − t, t) − Γ)U1(k − l)U1(l − t)U1(−t)dtdl

with

β(k, k − l, l − t, t) := 〈σpm(·, k − l)pm(·, l − t)pm(·,−t), p∗m(·, k)〉.
Note that Γ = β(k0, k0, k0,−k0).

Next, we show the smallness of E, H and the terms in the square brackets in
(3.31). With the help of (3.30), we obtain

∥∥∥ωr(k0 + ε·)B̂
∥∥∥2

L2(ε−1B)
�cε6

∫ εr−1

−εr−1
|B̂(κ)|2|κ|6dκ

�cε6 sup
|κ|<εr−1

|κ|6
(1 + |κ|)4

∫ εr−1

−εr−1
(1 + |κ|)4|B̂(κ)|2dκ

�cε4+2r‖B̂‖2
L2

2(R),

so that ∥∥∥ωr(k0 + ε·)B̂
∥∥∥

L2(ε−1B)
� cε2+r‖B̂‖L2

2(R). (3.32)

Estimate (3.32) dictates the choice of sB , namely, sB = 2 > 1/2. Hence, from now
on we work with

sB = 2 and sC = 1,

in addition to r < 1/2.
To estimate H, we substitute the ansatz U1(k) = D̂(((k − k0)/(ε))) for k ∈

B + k0 into H(k) and use the transformations t′ := ε−1(t+ k0 −m3), l′ := ε−1(l +
m2 −m3) and κ := ε−1(k − k0). Then we get

H(k0 + εκ) = ε2
∑

m1,2,3∈{0,1}

∫
ε−1(B+m2−m3)

∫
ε−1(B+k0−m3)

gdt′dl′,

where

g = (β(k0 + εκ, k0 + ε(κ− l′), k0 + ε(l′ − t′),−k0 + εt′) − Γ)

× χε−1(B−m1−m2+m3)(κ− l′)D̂(κ− l′ + ε−1(m1 +m2 −m3))

× χε−1B(l′ − t′)D̂(l′ − t′)χε−1B(t′)D̂(t′).

Due to the analyticity of k �→ pm(·, k) (recall that the eigenvalue family ωm is
simple) the coefficient β is certainly Lipschitz continuous in each variable and we
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Bifurcation of nonlinear bound states with PT -symmetry 189

have

|β(k0 + εκ, k0 + ε(κ− l′), k0 + ε(l′ − t′),−k0 + εt′) − β(k0, k0, k0,−k0)|
�cε(|κ| + |κ− l′| + |l′ − t′| + |t′|)
�2cε(|κ− l′| + |l′ − t′| + |t′|).

This leads to the estimate

|H(k0 + εκ)| � cε3
(
2|hD̂| ∗ |D̂| ∗ |D̂| + |D̂| ∗ |D̂| ∗ |hD̂|

)
(κ) with h(κ) := κ,

where ∗ is the convolution over the whole real line. Applying Young’s inequality for
convolutions, we have

‖H(k0 + ε·)‖L2(ε−1B) � cε3‖D̂‖L2
1(R)‖D̂‖2

L1(R) � cε3(‖B̂‖L2
1(R) + ‖Ĉ‖L2

1(R))
3,

where we have used estimate (3.12) and the triangle inequality. Employing now
estimate (3.28) with r < 1/2, sB = 2, and sC = 1, we finally obtain

‖H(k0 + ε·)‖L2(ε−1B) � ρε3, (3.33)

where ρ depends on ‖B̂‖L2
sB

only.
To estimate E, we use (3.14) and (3.28) again and obtain for r < 1/2, sB = 2,

and sC = 1

‖E(k0 + ε·)‖L2(ε−1B) � ρε4,

where ρ depends on ‖B̂‖L2
sB

(R) only.
By using (3.20) and (3.28) again, we obtain for δF (k) := 〈(F (ũ) −

F (ũ1))(·, k), p∗m(·, k)〉,

‖δF (k0 + ε·)‖L2(ε−1B) � ρε3

where ρ depends on ‖B̂‖L2
sB

(R) only.
Comparing estimates for E, H and the terms in the square bracket in (3.31),

we conclude that the estimate (3.32) yields the leading order term. In summary,
equation (3.31) reads(

1
2
ω′′

m(k0)κ2 − Ω
)
B̂(κ) + Γ(B̂ ∗ B̂ ∗ B̂)(κ) = R̂(B̂)(κ), (3.34)

where κ ∈ Iεr−1 := (−εr−1, εr−1) and the remainder term satisfies

‖R̂(B̂)‖L2(ε−1B) � ρεr, (3.35)

with ρ depending on ‖B̂‖L2
2(R) only.

Equation (3.34) is a perturbed stationary NLS equation written in the Bloch
form on the compact support. In the following, we prove the existence of solutions
B̂ to equation (3.34) close to χIεr−1 Â, where Â satisfies (3.8).
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190 T. Dohnal and D. Pelinovsky

We define

FNLS(B̂) :=
(

1
2
ω′′

m(k0)κ2 − Ω
)
B̂ + Γ(B̂ ∗ B̂ ∗ B̂)

and write (3.34) as

FNLS(B̂)(κ) = R̂(B̂)(κ), κ ∈ Iεr−1 ,

where supp(B̂) ⊂ Iεr−1 . Letting

B̂ = Âε + b̂, where Âε := χIεr−1 Â and supp(b̂) ⊂ Iεr−1 ,

we finally reformulate (3.34) as

Ĵεb̂ = W (b̂), (3.36)

where

Ĵε(κ) :=χIεr−1 (κ)DÂFNLS(Âε)(κ)χIεr−1 (κ),

W (b̂)(κ) :=χIεr−1 (κ)R̂(Âε + b̂)(κ) − χIεr−1 (κ)
(
FNLS(Âε + b̂) − Ĵεb̂

)
(κ).

Here DÂFNLS(Â) is a symbolic notation for the Jacobian of FNLS. Note that FNLS

is not complex differentiable but it is differentiable in real variables (after isolating
the real and imaginary parts).

The Taylor expansion yields

FNLS(Âε + b̂) − Ĵεb̂ = FNLS(Âε) + (DÂFNLS(Âε) − Ĵε)b̂+Q(b̂),

where Q is quadratic in b̂. The term FNLS(Âε) does not vanish exactly due to the
convolution structure of the nonlinearity but we have

FNLS(Âε) = Γ
(
Âε ∗ Âε ∗ Âε − Â ∗ Â ∗ Â

)
,

where the right-hand side includes terms of the form

âε ∗ Âε ∗ Âε, where âε := Â− Âε = (1 − χIεr−1 )Â

and terms quadratic and cubic in âε. Similarly, to estimates of Ĉ, we have

|âε(κ)| �(1 + |κ|)sA |âε(κ)| sup
|κ|>εr−1

(1 + |κ|)−sA

�cεsA(1−r)(1 + |κ|)sA |âε(κ)|,

where sA > 0 is to be specified. By using Young’s inequality, we obtain

‖âε ∗ Âε ∗ Âε‖L2(R) �cεsA(1−r)‖(1 + | · |)sAÂ‖L2(R)‖Âε‖2
L1(R)

�cεsA(1−r)‖Â‖3
L2

sA
(R),
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Bifurcation of nonlinear bound states with PT -symmetry 191

where the last estimate holds if sA > 1/2, see (3.12). Thus, we have

‖FNLS(Âε)‖L2(R) � cεsA(1−r)‖Â‖3
L2

sA
(R). (3.37)

Similarly, we obtain

‖(χIεr−1DÂFNLS(Âε) − Ĵε)b̂‖L2(R) � cεsA(1−r)‖Â‖2
L2

sA
(R)‖b̂‖L2

sB
(R) (3.38)

for any sA > 1/2.
Combining (3.35), (3.37), and (3.38), we have

‖W (b̂)‖L2(R) � cA

(
εr + εsA(1−r) + (εr + εsA(1−r))‖b̂‖L2

2(R) + ‖b̂‖2
L2

2(R) + ‖b̂‖3
L2

2(R)

)
,

where cA depends on ‖Â‖L2
sA

only. Clearly, if sA � r/(1 − r) � 1 (so that sA � 1 is
used from now on), then there exist positive constants c1 and c2 that only depend
on ‖Â‖L2

sA
such that for all ε > 0 small enough

W : B2,2
c1εr → B2,0

c1εr , (3.39)

and

‖W (b̂1) −W (b̂2)‖L2(R) � c2ε
r‖b̂1 − b̂2‖L2

2(ε
−1B) for all b̂1, b̂2 ∈ B2,2

c1εr , (3.40)

where

B2,2
c1εr := {b̂ ∈ L2

2(ε
−1B) : ‖b̂‖L2

2(ε
−1B) � c1ε

r}. (3.41)

We wish to solve (3.36) in B2,2
c1εr via the Banach fixed point iteration by writing

b̂ = Ĵ−1
ε W (b̂), where

Ĵ−1
ε : L2(ε−1B) → L2

2(ε
−1B).

The operator Ĵ−1
ε is, however, not bounded uniformly in ε (in a neighbourhood of

ε = 0) because the Jacobian Ĵ0 := DÂFNLS(Â) has a nontrivial kernel due to the
shift and phase invariances of the stationary NLS equation (1.17).

Indeed, as is well known (see Chapter 4 in [25]), the Jacobian J0 at a bound state
A of the stationary NLS equation (1.17) is a diagonal operator of two Schrödinger
operators

L+ := −1
2
ω′′

m(k0)
d2

dX2
− Ω + 3Γ|A(X)|2 : H2(R) → L2(R)

and

L− := −1
2
ω′′

m(k0)
d2

dX2
− Ω + Γ|A(X)|2 : H2(R) → L2(R)

which act on the real and imaginary parts of the perturbation to A. By the shift
and phase invariances, both operators have kernels, namely

Ker(L+) = span
(

dA
dX

)
and Ker(L−) = span(A),

and the simple zero eigenvalue of L+ and L− is isolated from the rest of their
spectra. By using the Fourier transform and the dualism between H2(R) and L2

2(R)
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192 T. Dohnal and D. Pelinovsky

spaces, these facts imply that if A �= 0 is a bound state to equation (1.17) in HsA(R)
with sA � 1, then the kernel of Ĵ0 : L2

2(R) → L2(R) is two-dimensional and the
double zero eigenvalue is bounded away from the rest of the spectrum of Ĵ0. In a
suitably selected subspace defined by a symmetry of the stationary NLS equation
(1.17), such that the invariances do not hold within this subspace, the Jacobian Ĵ0

is invertible. The two invariances are avoided if we restrict to PT -symmetric A and
b, that is,

A(−x) = A(x), b(−x) = b(x),

or equivalently

Â(κ), b̂(κ) ∈ R for all κ ∈ R.

Hence, for any given PT -symmetric solution A to equation (1.17), we consider a
solution to the fixed-point equation (3.36) in B2,2

c1εr for real b̂. By the PT -symmetry
of the original problem (1.1), all components of the decomposition of u inherit
the PT -symmetry if b̂ is real, so that if b̂ is real, then Ĵ−1

ε W (b̂) is real, and the
fixed-point equation (3.36) is closed in the space of PT -symmetric solutions. Then,
thanks to (3.39), (3.40), and (3.41), there exists a unique real solution b̂ ∈ B2,2

c1εr of
the fixed-point equation (3.36).

In order to understand the above inheritance property in more detail, note that
u is PT -symmetric if and only if ũ(·, k) is PT −symmetric for all k ∈ B. Hence, we
can check the inheritance in the Bloch variable ũ. Clearly, we need to only check
that Mk and F commute with the PT −symmetry, where Mk is given by (3.16).
We write

PT (ũ)(x, k) := ũ(−x, k).

For Mk first note that QkPT = PT Qk because the eigenfunctions pm(·, k) and
p∗m(·, k) are PT -symmetric, such that

QkPT (ũ)(x, k) = PT (ũ)(x, k) − 〈PT (ũ)(·, k), p∗m(·, k)〉pm(x, k)

= PT (ũ)(x, k) − 〈PT (ũ)(·, k),PT (p∗m)(·, k)〉PT (pm)(x, k)

= PT (ũ)(x, k) − 〈ũ(·, k), p∗m(·, k)〉PT (pm)(x, k)

= PT (Qkũ)(x, k).

Due to the PT -symmetry of V , we get also L(k)PT (ũ) = PT (L(k)ũ). As a result
MkPT = PTMk. Similarly, due to the PT −symmetry of σ, we get F (PT (ũ)) =
PT (F (ũ)).

Therefore, for each component of ũ the Banach fixed point argument can be
carried out in the PT -symmetric subspace. All the resulting components of the
decomposition are PT -symmetric and hence the full solution u is PT -symmetric.

3.6. Difference between the formal ansatz and ũ1,B

To prove the inequality in theorem 1.3, it remains to estimate the difference
uform − ũ1,B . The formal ansatz uform in (1.16) translates in Bloch variables to the
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Bifurcation of nonlinear bound states with PT -symmetry 193

decomposition (3.6). We seek now an estimate of ‖ũform − ũ1,B‖Xs
, where for all

k − k0 ∈ B, we have

ũ1,B(x, k) = B̂
(

k−k0
ε

)
pm(x, k) =

(
χ(−εr,εr)(k − k0)Â

(
k−k0

ε

)
+ b̂

(
k−k0

ε

))
pm(x, k).

The estimate is carried out as follows:

‖ũform − ũ1,B‖2
Xs

� cε‖b̂‖2
L2(ε−1B)

+
∫ k0+εr

k0−εr

∣∣∣Â (k−k0
ε

)∣∣∣2 ‖pm(·, k) − pm(·, k0)‖2
Hs(0,2π)dk

+
∫

B+k0

(1 − χk0−εr,k0+εr (k))
∣∣∣Â (k−k0

ε

)∣∣∣2 dk‖pm(·, k0)‖2
Hs(0,2π)

+
∑

j∈Z\{0}

∫
B+k0

∣∣∣Â(k−k0+j
ε

)∣∣∣2 dk‖pm(·, k0)eij·‖2
Hs(0,2π),

from which we obtain

‖ũform − ũ1,B‖2
Xs

�cε
(
‖b̂‖2

L2(ε−1B) + ε2
∫
|κ|<εr−1

|κ|2|Â(κ)|2dk

+ sup
|κ|>εr−1

(1 + |κ|)−2sA

∫
|κ|>εr−1

(1 + |κ|)2sA |Â(κ)|2dκ

+
∑

j∈Z\{0}
sup

κ∈ε−1(B+j)

(1 + |κ|)−2sA

×
∫

κ∈ε−1(B+j)

(1 + |κ|)2sA |Â(κ)|2dκ
)

and hence

‖ũform − ũ1,B‖2
Xs

� cε
(
‖b̂‖2

L2(ε−1B) + ε2‖Â‖2
L2

1(R) + ε2sA(1−r)‖Â‖2
L2

sA
(R)

)
.

Together with ‖b̂‖L2
2(ε

−1B) � c1ε
r (recall that b̂ ∈ B

2,2
c1εr ), this estimate yields

‖ũform − ũ1,B‖Xs
� cAε

r+1/2, (3.42)

where the constant cA depends polynomially on ‖Â‖L2
sA

(R) with sA � 1.
Estimate (3.42) together with (3.17), (3.21) and (3.26) and the triangle inequality

complete the proof of Theorem 1.3.

4. The spectral assumption revisited

The proof of Theorem 1.3 relies critically on assumption 1.2 that the spectral band
[a, b] is real and isolated from the rest of the spectrum of the Schrödinger operator
L in (1.3) (although this can be generalized as explained in remark 1.6 in § 1). In
real periodic potentials, every spectral band is real but the two bands may touch
at a point with no spectral gap.
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194 T. Dohnal and D. Pelinovsky

For our purposes, we say that the point (k0, μ) ∈ B × R is a Dirac point in the
one-dimensional case if two eigenvalue families k �→ ωm(k) and k �→ ωm+1(k) of the
spectral problem (1.8) are real on some neighbourhood around k = k0, if ωm(k0) =
ωm+1(k0) = μ and if ωm and ωm+1 are not differentiable at k0.

Due to the Lipschitz continuity of all ωm (as follows, e.g., by a direct modification
of the proof for the Helmholtz equation in [3]), a Dirac point is where ωm and ωm+1

are conical in shape. Moreover, at a Dirac point (k0, μ) two linearly independent
eigenvectors of the spectral problem (1.8) exist and a system of two stationary non-
linear Dirac-type equations can be derived and justified with an analogous analysis
as in the case of the stationary NLS equations [26] (see also Chapter 2 in [25]).

In PT -symmetric periodic potentials with the honeycomb symmetry in two spa-
tial dimensions, a necessary and sufficient condition was derived in [5] at the Dirac
point by the perturbation theory that shows when the spectral bands remain real
under a complex-valued perturbation.

Here we iterate the same question for the PT -symmetric potential V in assump-
tion 1.1. We derive perturbative results related to the splitting of Dirac points
when the real periodic potential is perturbed by a purely imaginary perturbation
potential. Therefore, we represent

V (x) = U(x) + iγW (x), (4.1)

where γ ∈ R is the perturbation parameter and the real potentials U,W ∈
L∞

per(0, 2π) satisfy the symmetry conditions

U(−x) = U(x), W (−x) = −W (x), for all x ∈ R. (4.2)

In what follows, we derive sufficient conditions for when the two real spectral
bands overlapping at a Dirac point (k0, μ) become complex under a small per-
turbation. This leads to an instability of the zero solution in the time-dependent
NLS equation (1.4). At the same time assumption 1.2 is no longer true and the for-
mal approximation of bound states via the stationary NLS equation (1.17) cannot
be justified.

Let us first note an elementary result.

Lemma 4.1. Fix γ = 0 and let μ = ω(k0) be a Dirac point of L(k0) for either k0 = 0
or k0 = 1/2. The two linearly independent eigenfunctions ϕ± of L(k0) can be chosen
such that ϕ+(x)eik0x is real and even and ϕ−(x)eik0x is real and odd.

Proof. At either k0 = 0 or k0 = 1/2 the functions ϕ+(x)eik0x and ϕ−(x)eik0x are
two linearly independent solutions of the Hill’s equation{

−u′′(x) + U(x)u(x) = μu(x),

u(x+ 2π) = ±u(x) for all x ∈ R,
(4.3)

where the plus sign is chosen for k0 = 0 and the minus sign is chosen for k0 = 1/2.
Since U is even due to (4.2), there exists one even and one odd real-valued solution
of the boundary-value problem (4.3), see theorems 1.1 and 1.2 in [21]. �
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Bifurcation of nonlinear bound states with PT -symmetry 195

The following proposition presents the first perturbation result on the unsta-
ble splitting of Dirac points under a PT -symmetric perturbation of a real even
potential.

Proposition 4.2. Let the periodic potential V in assumption 1.1 be given by (4.1)
and (4.2). Assume that μ = ω(k0) is a Dirac point of L(k0) at γ = 0 for either
k0 = 0 or k0 = 1/2 and choose the corresponding linearly independent eigenfunc-
tions ϕ± such that ϕ+(x)eik0x is real and even and ϕ−(x)eik0x is real and
odd. If

〈Wϕ+, ϕ−〉 �= 0,

then, for every γ �= 0 sufficiently small, there exist two eigenvalues ω±(k0) of the
spectral problem (1.8) with Im(ω±(k0)) �= 0 and ω±(k0) → μ as γ → 0.

Proof. The assertion follows from the perturbation theory for the Bloch eigenvalue
problem {

[LU (k0) + iγW ]p(·, k0) = ω(k0)p(·, k0),

p(x+ 2π, k0) = p(x, k0) for all x ∈ R,
(4.4)

where LU (k0) := −(d/dx+ ik0)2 + U and μ = ω(k0) is double at γ = 0,
with two linearly independent eigenfunctions ϕ±. We normalize ϕ± such
that ‖ϕ±‖L2(0,2π) = 1. The eigenfunctions are orthogonal 〈ϕ+, ϕ−〉 = 〈ϕ+e

ik0·,
ϕ−eik0·〉 = 0 because ϕ+e

ik0· and ϕ−eik0· have opposite (even and odd) symmetries.
Let us use the orthogonal projection operators P0 and Q0 = I − P0, such that

for every f ∈ L2(0, 2π), we define

P0f = 〈ϕ+, f〉ϕ+ + 〈ϕ−, f〉ϕ−.

Then, clearly, 〈ϕ+, Q0f〉 = 〈ϕ−, Q0f〉 = 0. Therefore, we write{
p(·, k0) = c+ϕ+ + c−ϕ− + γϕ, 〈ϕ+, ϕ〉 = 〈ϕ−, ϕ〉 = 0,

ω(k0) = μ+ γΩ,
(4.5)

where c+, c− ∈ C are coordinates of the decomposition over the eigenfunctions ϕ+,
ϕ− and ϕ, Ω are the remainder terms (which depend on γ). By using projection
operators P0 and Q0, we project the eigenvalue problem (4.4) into the two blocks

iMW c + iγ

[
〈ϕ+,Wϕ〉
〈ϕ−,Wϕ〉

]
= Ωc (4.6)

and

[LU (k0) − μ]ϕ = HW := Q0(Ω − iW )[c+ϕ+ + c−ϕ− + γϕ], (4.7)

where c := (c+, c−)T and

MW :=

[
〈Wϕ+, ϕ+〉 〈Wϕ−, ϕ+〉
〈Wϕ+, ϕ−〉 〈Wϕ−, ϕ−〉

]
. (4.8)
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196 T. Dohnal and D. Pelinovsky

Because W is odd and |ϕ±(x)|2 = ϕ±(x)eik0xϕ±(x)eik0x are even, we get
〈Wϕ±, ϕ±〉 = 0. Hence,

MW =

[
0 〈Wϕ−, ϕ+〉

〈Wϕ+, ϕ−〉 0

]
.

Since MW is hermitian, the two eigenvalues Ω of the truncated eigenvalue problem

iMW c = Ωc (4.9)

are purely imaginary, Ω1,2 = iλ1,2 := ±i|〈Wϕ+, ϕ−〉|. They are nonzero and distinct
if 〈Wϕ+, ϕ−〉 �= 0. The eigenvectors c for the two distinct eigenvalues are linearly
independent.

Since the double eigenvalue μ is isolated from the rest of the spectrum of LU (k0)
in L2(0, 2π), a positive constant C0 exists such that

‖Q0(LU (k0) − μ)−1Q0‖L2(0,2π)→L2(0,2π) � C0.

Let us assume that c and Ω are bounded by a γ-independent positive constant in the
limit γ → 0. Since HW ∈ Ran(LU (k0) − μ), fixed-point iterations can be applied to
system (4.7) for any finite c, finite Ω, and sufficiently small γ > 0. There exists a
unique solution ϕ = ϕ(γ,Ω, c) ∈ L2(0, 2π) to system (4.7) satisfying the bound

‖ϕ‖L2(0,2π) � C(‖c‖ + |Ω|),

for γ > 0 sufficiently small and a γ-independent constant C > 0.
We substitute now ϕ = ϕ(γ,Ω, c) into (4.6) and close the construction via an

implicit function argument. Let us define

G(γ,Ω, c) := iMW c + iγ
[

〈ϕ+,Wϕ〉
〈ϕ−,Wϕ〉

]
− Ωc.

We have G(0,Ω1, c1) = G(0,Ω2, c2) = 0, where Ω1,2 = iλ1,2 are the two eigenvalues
of the truncated eigenvalue problem (4.9) with the eigenvectors c1,2 ∈ C2. The
Jacobian with respect to Ω and c is given by

Jj(Ω̃, c̃) := (D(Ω,c)G)|(0,iλj ,cj)(Ω̃, c̃) = i(MW − λj)c̃ − Ω̃cj , j = 1, 2.

For every b ∈ C2, there is a unique Ω̃ ∈ C and c̃ ∈ C⊥
j := {c ∈ C2 : c ⊥ cj} such

that Jj(Ω̃, c̃) = b. Indeed, each b ∈ C2 can be uniquely decomposed into Cj and
C⊥

j via b = bjcj + b⊥
j for some bj and b⊥

j ⊥ cj . Then, Ω̃j = −bj and c̃ ∈ C⊥
j is the

unique solution of the linear inhomogeneous equation i(MW − λj)c̃ = b⊥
j .

Hence, the implicit function theorem produces two unique roots for c �= 0 and
Ω in system (4.6) which converge as γ → 0, respectively, to the eigenpairs (iλ1, c1)
and (iλ2, c2) of the truncated problem (4.9). �

Remark 4.3. For a general choice of the orthogonal and normalized eigenfunctions
ϕ+ and ϕ−, the matrixMW in (4.8) is no longer anti-diagonal. However, eigenvalues
of MW are invariant with respect to the rotation of the basis in C2 and, therefore,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2018.83
Downloaded from https://www.cambridge.org/core. McMaster Health Sciences Library, on 20 May 2020 at 19:53:55, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2018.83
https://www.cambridge.org/core


Bifurcation of nonlinear bound states with PT -symmetry 197

the two eigenvalues are still distinct. The proof of Proposition 4.2 can be applied
for a general choice of eigenfunctions ϕ+ and ϕ− and the sufficient condition for
the splitting of the Dirac points is given by invertibility of the matrix MW .

If U = 0, there are infinitely many Dirac points in the Bloch eigenvalue prob-
lem (4.4) for γ = 0. The following proposition gives a sufficient condition that one
of these Dirac points splits and gives rise to instability under the PT -symmetric
potential W .

Proposition 4.4. Let U = 0. At γ = 0 Dirac points exist at each μn = 1/4n2, n ∈
N. The k-coordinate of the Dirac point at μn is k0 = 0 for n even and k0 = 1/2 for
n odd. Let W ∈ L∞

per(0, 2π) be defined by the Fourier sine series

W (x) =
∑
j∈N

bj sin(jx) (4.10)

with bj ∈ R for every j ∈ N. If bn �= 0 for some n ∈ N, then for every γ �= 0 suffi-
ciently small the Dirac point at μn = 1/4n2 breaks into two complex eigenvalues
ω±(k0) of the spectral problem (1.8) with Im(ω±(k0)) �= 0 and ω±(k0) → μn as
γ → 0.

Proof. For U = 0 and γ = 0, the eigenvalues of the Bloch eigenvalue problem (1.8)
are

ω̃2m−1(k) = (k −m)2, ω̃2m(k) = (k +m)2, m ∈ N, k ∈ B,

which give the location of the Dirac points at (k0, μ) = (0,m2), that is, the cross-
ing point of ω̃2m−1(k) and ω̃2m(k), and at (k0, μ) = (1/2, (2m− 1)2/4), that is,
the crossing point of ω̃2m−2(k) and ω̃2m−1(k). Note that in contrast to ωn the
eigenvalues ω̃n are not ordered according to the magnitude (of the real part) but
rather according to the Fourier series index. We enumerate the Dirac points by
μn := 1/4n2 for n ∈ N.

If n = 2m− 1 with m ∈ N, the two linearly independent normalized eigenfunc-
tions of the Bloch eigenvalue problem (1.8) with the symmetry properties as in
lemma 4.1 are given by

ϕ+(x) =
1

2
√
π

(
ei(m−1)x + e−imx

)
, ϕ−(x) =

1
2i
√
π

(
ei(m−1)x − e−imx

)
. (4.11)

If n = 2m with m ∈ N, the two eigenfunctions are

ϕ+(x) =
1√
π

cos(mx), ϕ−(x) =
1√
π

sin(mx). (4.12)

In both (4.11) and (4.12), we have

〈Wϕ+, ϕ−〉 =
1
2
bn,

where bn is the Fourier coefficient in (4.10) for either n = 2m− 1 or n =
2m. If bn �= 0 for some n ∈ N, the two eigenvalues ω±(k0) are complex by
proposition 4.2. �
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198 T. Dohnal and D. Pelinovsky

Figure 2. Eigenvalues ωn(k), n = 1, . . . , 6 of the Bloch eigenvalue problem (1.8) with V ≡ 0
in (a) and V (x) = 0.2i sin(2x) in (b) and (c) computed numerically. The Dirac point at
the intersection of ω̃2 and ω̃3 with V ≡ 0 splits into a complex conjugate pair when
V (x) = 0.2i sin(2x). Purely real eigenvalues are plotted with the full blue line, complex
eigenvalues are in dotted red.

Figure 2 illustrates proposition 4.4 with the example W (x) = sin(2x) for γ = 0
(a) and γ = 0.2 (b,c). The eigenvalue families in (b,c) were computed numerically
using a finite difference discretization.

Remark 4.5. If bj �= 0 for all j ∈ N in the Fourier series (4.10), then all Dirac points
split into two complex eigenvalues and none of the spectral bands is completely real
for γ small.

The final result shows that if U is smoother than W and W is not too smooth,
then the high-energy bands split generally and become unstable for every nonzero
γ. This means that the PT -symmetry breaking threshold discussed in many publi-
cations (see, e.g., the review in [19]) is identically zero even if the real potential U is
generic and has no Dirac points. To simplify the proof of the following proposition,
we assume that U has zero mean.

Proposition 4.6. Let U and W be defined by the Fourier series

U(x) = 2
∑
j∈N

aj cos(jx), W (x) = 2
∑
j∈N

bj sin(jx), (4.13)

where {aj}j∈N, {bj}j∈N ∈ �1(N,R) satisfy

lim
j→∞

|aj |
|bj |

= 0, lim
j→∞

1
j2|bj |

= 0, lim
j→∞

∑∞
k=j+1 |bk|2

j2|bj |2
= 0. (4.14)

Then for every γ �= 0 there is a sufficiently large N ∈ N such that for every n � N
two complex eigenvalues ω±(n)(k0) of the spectral problem (1.8) with k0 ∈ {0, 1/2}
exist, which satisfy
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Bifurcation of nonlinear bound states with PT -symmetry 199

(i) Im(ω±(n)(k0)) �= 0,

(ii) |ω±(n)(k0) − n2/4| → 0 as n→ ∞.

Proof. By the asymptotic theory in [10, Chapter 4] for γ = 0, the band edge
points converge at infinity to the Dirac points of the homogenous problem (1.8)
with V = 0. Therefore, in order to prove the assertion, we will treat U and W as
perturbation terms in the Bloch eigenvalue problem{

[L0(k0) + U + iγW ]p(·, k0) = ω(k0)p(·, k0),
p(x+ 2π, k0) = p(x, k0) for all x ∈ R,

(4.15)

where L0(k0) := −(d/dx+ ik0)2. The two eigenfunctions of L0(k0) are given by
either (4.11) or (4.12) for the double eigenvalue ω(k0) = 1

4n
2 with either n = 2m− 1

and k0 = 1/2 or n = 2m and k0 = 0.
We present here the even case n = 2m, m ∈ N. The odd case is analogous. We

represent

ω(k0) = m2 + Ω,

where Ω is shown to be small as m→ ∞. Let us write p(·, k0) in the Fourier series
form

p(x, k0) =
∑
j∈Z

cje
ijx.

Substituting these representations in the Bloch eigenvalue problem (4.15), we obtain
the discrete eigenvalue problem

(j2 −m2 − Ω)cj +
∑
k∈Z

(ak + γbk)cj−k = 0, (4.16)

where a−k = ak and b−k = −bk for k ∈ N and a0 = b0 = 0. Singling out the resonant
terms at j = ±m, we project the eigenvalue problem (4.16) into two blocks[

0 am + γbm

am − γbm 0

]
Cm +

[ ∑
j∈Z\{0,2m}(aj + γbj)cm−j∑
j∈Z\{0,−2m}(aj + γbj)c−m−j

]
= ΩCm

(4.17)
and

cj =
1

m2 + Ω − j2

∑
k∈Z

(ak + γbk)cj−k, j ∈ Z\{m,−m}, (4.18)

where Cm := (cm, c−m)T . The two eigenvalues of the matrix in the first term of the
left-hand side of (4.17) are given by

Ω(0)
± := ±

√
a2

m − γ2b2m. (4.19)

Since lim
m→∞ |am|/|bm| = 0 by the first assumption in (4.14), for any γ �= 0 there exists

a sufficiently large N such that a2
m − γ2b2m < 0 for any m � N . The corresponding
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200 T. Dohnal and D. Pelinovsky

eigenvalues Ω(0)
± are distinct and complex. In what follows, we prove persistence of

this complex splitting of the double zero eigenvalue Ω in the block (4.17).
We assume that Cm and Ω are bounded by an m-independent positive constant

in the limit m→ ∞. We denote cm := {cj}j∈Zm
with Zm := Z\{m,−m} and work

in the sequence space �2(Zm), which represents the space L2(0, 2π) for the original
problem (4.15).

Since the spacing between m2 and (m± 1)2 grows like m as m→ ∞, we set

Kj :=
1

m2 + Ω − j2

∑
k∈Z\{j−m,j+m}

(ak + γbk)cj−k, j ∈ Zm

and obtain

‖K‖	2(Zm) � Cm−1(‖a‖	1 + |γ|‖b‖	1)‖cm‖	2(Zm), (4.20)

by using Young’s inequality for convolutions

‖x ∗ y‖	r � ‖x‖	p‖y‖	q , r, p, q � 1, 1 +
1
r

=
1
p

+
1
q
, (4.21)

with r = 2, p = 1, and q = 2. The positive constant C is m-independent but may
depend on Ω and γ. In what follows, we use the same notation for the generic
constant C that may change from one line to another line.

Thanks to the bound (4.20), the inverse operator can be constructed for system
(4.18) in �2(Zm) for any finite Cm and Ω if m is sufficiently large. By the inverse
function theorem, there exists a unique solution cm ∈ �2(Zm) to system (4.18),
which can be represented in the form

cm = cmPm(Ω, γ) + c−mQm(Ω, γ), (4.22)

where the unique vectors Pm,Qm ∈ �2(Zm) depend on m, Ω, and γ and satisfy the
bounds

‖Pm(Ω, γ)‖	2(Zm) + ‖Qm(Ω, γ)‖	2(Zm) � Cm−1 (4.23)

for an m-independent positive constant C.
By the symmetry of system (4.18), we note that

[Qm(Ω, γ)]−j = [Pm(Ω,−γ)]j , j ∈ Zm. (4.24)

Moreover, solving system (4.18) by iterations, we can write

[Pm(Ω, γ)]j =
aj−m + γbj−m

m2 + Ω − j2
+ [P̃m(Ω, γ)]j , j ∈ Zm. (4.25)

where P̃m satisfies the system

[P̃m(Ω, γ)]j = (m2 + Ω − j2)−1
∑

k∈Zm\{j−m,j+m}
(ak + γbk)[Pm(Ω, γ)]j−k, j ∈ Zm.

Thanks to Young’s inequality (4.21), the higher order terms satisfy the bound

‖P̃‖	2(Zm) � Cm−1‖Pm‖	2(Zm) � Cm−2, (4.26)

for another m-independent positive constant C.
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Bifurcation of nonlinear bound states with PT -symmetry 201

Substituting (4.22) to (4.17), we obtain the matrix nonlinear eigenvalue problem
in the form[

Em(Ω, γ) am + γbm + Fm(Ω, γ)
am − γbm +Gm(Ω, γ) Hm(Ω, γ)

]
Cm = ΩCm, (4.27)

where

Em(Ω, γ) :=
∑

j∈Z\{0,2m}
(aj + γbj)[Pm(Ω, γ)]m−j ,

Fm(Ω, γ) :=
∑

j∈Z\{0,2m}
(aj + γbj)[Qm(Ω, γ)]m−j ,

Gm(Ω, γ) :=
∑

j∈Z\{0,−2m}
(aj + γbj)[Pm(Ω, γ)]−m−j ,

Hm(Ω, γ) :=
∑

j∈Z\{0,−2m}
(aj + γbj)[Qm(Ω, γ)]−m−j .

By the symmetry in (4.24), we obtain

Em(Ω, γ) = Hm(Ω,−γ), Fm(Ω, γ) = Gm(Ω,−γ).

Eigenvalues Ω are found as roots of the characteristic equation for (4.27), namely

[Ω − E+
m(Ω, γ)]2 = [am + F+

m(Ω, γ)]2 − [γbm + F−
m(Ω, γ)]2 + [E−

m(Ω, γ)]2 (4.28)

where E±
m and F±

m define the symmetric and anti-symmetric combinations of Em

and Fm respectively, for example,

E±
m(Ω, γ) :=

Em(Ω, γ) ± Em(Ω,−γ)
2

.

Substituting the leading order (4.25), we find

Em(Ω, γ) =
∑

j∈Z\{0,2m}

a2
j − γ2b2j

m2 + Ω − (m− j)2
+ h.o.t.,

Fm(Ω, γ) =
∑

j∈Z\{0,2m}

(aj + γbj)(aj−2m − γbj−2m)
m2 + Ω − (m− j)2

+ h.o.t.,

where the higher-order terms are convolutions of a + γb and P̃ estimated in (4.26).
Hence, by Young’s inequality, h.o.t. is bounded in the �∞ norm by C/m2.

Since the leading order of Em(Ω, γ) is even in γ, we obtain the estimates:

|E+
m(Ω, γ)| �C1m

−1,

|E−
m(Ω, γ)| �C2|γ|m−2,

for m-independent constants C1, C2, where the factor of γ is included for con-
venience. On the other hand, the leading order of Fm(Ω, γ) can be estimated as
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follows:∣∣∣∣∣∣
∑

j∈Z\{0,2m}

ajaj−2m

m2 + Ω − (m− j)2

∣∣∣∣∣∣ =
∣∣∣∣∣∣

a2
m

m2 + Ω
+ 2

∑
j�m+1,j 	=2m

ajaj−2m

m2 + Ω − (m− j)2

∣∣∣∣∣∣
�C

(
a2

m

m2
+

(
∑

j∈N
|aj |2)1/2(

∑
j�m+1 |aj |2)1/2

m

)
,

with similar estimates for the other parts of the leading order of Fm(Ω, γ). Com-
bining with the higher-order terms and recalling the first assumption in (4.14), we
obtain the estimates

|F+
m(Ω, γ)| �C3m

−1

⎛
⎝ ∑

j�m+1

|bj |2
⎞
⎠

1/2

+ C4m
−2,

|F−
m(Ω, γ)| �C5|γ|m−1

⎛
⎝ ∑

j�m+1

|bj |2
⎞
⎠

1/2

+ C6|γ|m−2,

for m-independent constants C3, C4, C5, C6.
The right-hand side of the nonlinear characteristic equation (4.28) is

Rm := b2m

(
−γ2 +

a2
m

b2m
+ 2

amF
+
m

b2m
+

(F+
m)2

b2m
− 2

γF−
m

bm
− (F−

m)2

b2m
+

(E−
m)2

b2m

)
.

Using the three assumptions in (4.14), we conclude thatRm = b2m(−γ2 + δm), where
|δm| → 0 as m→ ∞. Therefore, Rm < 0 if m is sufficiently large.

We note next that the roots Ω of the characteristic equation (4.28) are bounded
in m as they are fixed points of

Ω = E+
m(Ω, γ) ±

√
Rm(Ω, γ),

where |E+
m(Ω, γ)| is estimated above and |

√
Rm(Ω, γ)| � C|bm|(|γ| +

√
|δm|). Hence

|Ω| � C7m
−1

for some C7 > 0 independent of m. This leads to an estimate on the imaginary part
of E+

m. Namely, since

Im(E+
m) = −Im(Ω)

⎛
⎝ ∑

j∈Z\{0,2m}

a2
j − γ2b2j

(m2 + Re(Ω) − (m− j)2)2 + Im(Ω)2
+ h.o.t.

⎞
⎠ ,

we have

|Im(E+
m)| � C/m3.

Finally, thanks to the second assumption in (4.14), the imaginary part of the two
roots of Ω is nonzero if m is so large that |δm|/γ2 < 1 because then the following
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Bifurcation of nonlinear bound states with PT -symmetry 203

asymptotics hold

Im(Ω) ∼ ±|γbm|
√

1 − δm/γ2 (m→ ∞).

The assertion of the proposition is thus proved. Note that Ω(0)
± given by (4.19) may

be smaller than the leading order term for Ω given by E+
m = O(m−1). �

As an example for the assumptions in proposition 4.6, we consider the periodic
potentials U and W such that

|am| = O(m−5/2) for m→ ∞,

C−m−3/2 �|bm| � C+m
−3/2 for all m sufficiently large

with some 0 < C− � C+ <∞. Since
∑

j�m+1 |bj |2 = O(m−2), the assumptions in
(4.14) are satisfied and by proposition 4.6, for every γ > 0, there exists N such
that eigenvalues (4.19) are complex for every m � N . Moreover, there is a positive
constant C such that N � Cγ−2. The latter estimate follows from |δm| � c(m−1 +
γ2m−1/2) obtained from the previous estimates on E±

m and F±
m as well as the

definition of δm. If C is sufficiently large in N � Cγ−2, then |δm|/γ2 is small for
every m � N .
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